Двигатель дизеля: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Содержание

Дизельный двигатель

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

Содержание статьи

Принцип работы

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Поршни и свечи дизеля

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа:

неразделенные и разделенные.

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

Камеры сгорания дизельного двигателя

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в

цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизельного двигателя

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

Насос-форсунка дизельного двигателя

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common Rail

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Mazda создала бензиновый двигатель дизельного цикла

Mazda

Японская автомобильная корпорация Mazda Motor объявила о разработке нового двигателя внутреннего сгорания Skyactive-X, который будет устанавливаться на новые машины с 2019 года. Как сообщает Reuters, новая силовая установка работает по дизельному циклу, но в качестве горючего использует бензин.

В современных автомобилях используются три основных типа двигателей: газовые, бензиновые и дизельные. Вторые имеют наибольшее распространение на легковом транспорте. Во время работы бензинового двигателя в цилиндр подаются воздух и бензин, которые затем сжимаются. Сжатая смесь поджигается искрой от свечи зажигания. Этот цикл повторяется постоянно.

Дизельный двигатель отличается от бензинового тем, что в нем происходит самовоспламенение топлива при подаче в цилиндр с предварительно сжатым воздухом. Степень сжатия в цилиндрах даже тихоходного дизельного двигателя будет выше, чем в цилиндрах бензинового.

В целом дизельный двигатель по своей конструкции несколько проще бензинового, поскольку в нем отсутствует электрическая цепь свечей зажигания и система управления ими. Дизельный двигатель может работать практически на любом топливе, однако в этом случае его ресурс сократится в разы. Дизельный цикл считается более экономичным, чем бензиновый.

По данным Mazda, новый двигатель Skyactive-X будет на 20-30 процентов экономичнее других бензиновых двигателей в линейке компании. Интерес к новой силовой установке уже проявили автопроизводители Daimler и General Motors.

Следует отметить, что двигатели, работающие по дизельному циклу, рассматриваются в качестве силовых установок для пассажирских вертолетов будущего. В частности, исследования по использованию таких силовых установок проводятся в рамках европейской программы Clean Sky 2.

Предполагается, что вертолетные поршневые двигатели дизельного цикла, работающие на авиационном керосине, будут потреблять меньше топлива. Кроме того, считается, что такие двигатели будут более экологичными. При этом переход на дизельное топливо не рассматривается, поскольку при его сгорании выбрасываются опасные соединения серы и сажа.

Василий Сычёв

Дизельные двигатели

Французский ученый С. Карно в 1824 году создал основы термодинамики. В этой работе он, в числе многого другого, утверждал, что заставить тепловую машину работать наиболее экономично можно, доводя рабочее тело до температуры вспышки топлива сжатием. Фактически он сформулировал принцип, на котором работают дизельные двигатели. Оставалось только взять и сделать такой двигатель. Но этого пришлось ждать еще несколько десятков лет.

В 1892 году немецкий инженер Рудольф Дизель получает патент на первый двигатель (показан на рисунке), работающий на сжатии воздуха до температуры вспышки. В 1987 году первый «дизель-мотор» (так немцы называют двигатель с воспламенением от сжатия) заработал и доказал свою эффективность.

По сравнению с «отто-мотором» (бензиновый двигатель со свечами зажигания) новый двигатель был более тяжелым и поначалу не внушал большого энтузиазма. Но только поначалу. Устройство дизельного двигателя первых образцов включало воздушный компрессор для впрыскивания топлива.

Сам Дизель вначале предполагал применить совсем уж экзотический вариант: угольная пыль. Смесь угольной пыли и воздуха, конечно, способна работать в двигателе, но за сколько часов абразивные частицы съедят кольца, поршни, седла и тарелки клапанов, об этом как-то не подумали. Да и саму угольную пыль получить не так просто.

Из-за тяжелого компрессора двигатель оказывалось невозможно применить на наземном транспорте. Но в работе он расходовал так мало горючего и работа его была настолько устойчивой, что отказаться от него было уже невозможно. Расчеты показывали, что от двигателя можно ожидать значительно большую мощность, если решить проблему с подачей топлива.

У инженеров возникла идея заменить компрессор плунжерным насосом. Качать топливо в жидком виде было чрезвычайно выгодно, на это уходит гораздо меньше энергии, а насос можно сделать совсем небольшим. Однако, изготовить плунжерную пару было не так просто. Дело в особой точности изготовления — расстояние между деталями составляет 2-3 микрона.

Все же дизелям нашлась работа. Впервые они были установлены на немецких подводных лодках еще при кайзере Вильгельме. (Возможно, с этим как раз связано темная история исчезновения самого изобретателя, утонувшего в Ла-Манше по дороге в Англию.)

В 1920 году Роберт Бош наконец, получает качественный плунжерный насос. В цилиндры двигателя научились подавать больше топлива. Теперь обороты дизельного двигателя и его удельная мощность, становятся достаточными для установки на автотранспорте. Вместе с насосом Бош разрабатывает и очень удачную форсунку для топлива.

Сгорание топлива в дизельном двигателе

Проще всего понять, как работает дизельный двигатель, если посмотреть на сгорание топлива в нем. В дизелях используется тяжелое топливо. Это означает, что двигатель внутреннего сгорания такого типа может работать на керосине (известном как солярка), мазуте, сырой нефти, и даже на некоторых растительных маслах.

Все эти виды топлива более калорийны, чем бензин. Так что, рабочая температура дизельного двигателя заметно выше, чем у бензинового. Но тяжелые виды топлива горят хуже, чем бензин, медленнее и трудно поджигаются. Для их воспламенения требуется большая степень сжатия, воздушно-топливная смесь должна нагреваться до 700-800°С.

Вязкость любого из дизельных видов топлива, даже в подогретом состоянии, выше бензиновой, а распылять его необходимо до мельчайшего состояния, особенно в быстроходных дизелях. Еще экспериментальный двигатель Дизеля работал при впрыске топлива под давлением не менее 50 бар (атм), а практический двигатель требует 100-200 бар.

Однако, у тяжелых калорийных топлив есть свое преимущество перед бензином. Давление в цилиндре дизеля практически постоянно на всем такте расширения, поэтому крутящий момент у них весьма значителен и стабилен. Благодаря постоянному давлению, угол опережения зажигания также остается постоянным и регулировки не требует. Ресурс дизельного двигателя больше, чем у бензинового. Есть области, где дизель практически незаменим, например в сельскохозяйственном тракторе.

Разновидности дизельных двигателей

Принцип действия дизельного двигателя для всех из них одинаков: сначала производится сжатие свежего заряда рабочего тела (воздуха), затем впрыскивается топливо. От высокой температуры смесь воспламеняется и сгорает, поднимая давление. Под его действием поршень двигается обратно и в нижней точке выпускной клапан цилиндра открывается, выпуская отработанный газ. В основном, это углекислый газ, дизельные двигатели экологически чище бензиновых.

Камеры сгорания дизелей могут выполняться непосредственно в днище поршня — там делается выемка особой формы — или в ряде случаев используют предкамеры (или форкамеры, как это говорят на родине двигателя). Первый вариант — самый экономичный, второй считался оптимальным в прежние годы. Сейчас, когда экономичность, во многих случаях, считается решающей, от предкамерных вариантов снова отказываются.

Рабочий процесс в дизеле может протекать, как и в бензиновом двигателе, в два или четыре такта. Подавляющее большинство дизелей — четырехтактные. Двухтактные проще реверсировать, поэтому они распространены на морских судах, где применяется жесткая связь с гребным валом. Камеры сгорания в двухтактных дизелях не разделяются из-за очевидных проблем с продувкой форкамеры.

Конструкция дизельного двигателя зависит от его мощности и назначения. Наиболее мощные двигатели, применяемые на судах и некоторых электростанциях, имеют крейцкопф — устройство для снижения боковых сил на поршень. Все мощные дизели имеют сложно устроенное дно, потому, что подвергаются высокой температуре.

Часть, обращенная в цилиндр, делается стальной, а остальная часть поршня (юбка) — алюминиевой. Кроме того, в поршне сделаны канавки для системы масляного охлаждения.

Типы дизельных двигателей различаются и по расположению цилиндров. Бывает рядовое, V-образное и даже такое, при котором цилиндры располагаются с разворотом на 180 градусов. Это зависит от тех условий, которые имеются на месте установки двигателя. Например, на современном грузовике или автобусе, скорее всего, будет применен двухрядный дизель, установленный под полом кабины водителя. Как устроен дизельный двигатель, будет зависеть и от наличия наддува.

Турбонаддув дизелей

Мощность дизельного двигателя, без увеличения расхода топлива, можно повысить при помощи турбокомпрессора. Тогда можно использовать еще неплохой кусочек диаграммы цикла Карно. Эксплуатация дизельного двигателя с турбокомпрессором имеет то преимущество, что используя энергию выхлопных газов можно раскрутить турбину, и на том же валу установить другую турбину — компрессор.

Этот компрессор будет нагнетать воздух, поступающий через впускной коллектор, увеличится заряд воздуха в цилиндрах, и, таким образом, мощность двигателя заметно возрастет. (Работу таких двигателей легко узнать по характерному свисту в момент раскручивания турбины.)

Плюсы и минусы дизелей

Преимущества дизельного двигателя — это высокий и постоянный крутящий момент в сочетании с высокой экологичностью выхлопных газов (это относится, правда, только к современным двигателям). Также вне конкуренции их высокий КПД, самый высокий среди ДВС. Известны дизели (MAN) дающие свыше 50%, (что считалось «теоретическим» максимумом). Там использован максимум всех современных достижений. Экономичность достигает до 40%, если провести сравнение с бензиновыми.

Проблемы дизельных двигателей, а без них техники не бывает, заключаются в тяжелом пуске, из-за высокой степени сжатия (до 25 в современных двигателях), на автомобилях приходится ставить мощный стартер и аккумулятор. Большая точность изготовления деталей насосов высокого давления и форсунок затрудняет обслуживание.

Дизели крайне чувствительны к механическим загрязнениям топлива, для очистки которого приходится применять даже центрифугу в составе топливной аппаратуры. При равном объеме в литрах, дизельный двигатель уступает бензиновому по мощности, при равной мощности дизель тяжелее. Дизельный двигатель требует более качественных сплавов для своего изготовления и заметно дороже бензинового.

И все же, сравнивая преимущества и недостатки дизельного двигателя, можно сделать выбор в пользу дизеля. Особенно этому способствует технический прогресс в области электроники и блоков управления двигателями. Система «общая магистраль» (common rail) и электромагнитные форсунки позволяет сильно упростить ТВНД, а блок управления доводит экономию топлива до максимума, поскольку работает на любых переходных режимах и успевает все отследить.

Отличия между дизельным и бензиновым двигателем, какой лучше выбрать

Автомобилисты на форумах и в реальной жизни часто спорят, какой двигатель лучше — дизель или бензин. У каждого водителя собственный ответ на вопрос: кому-то важен уровень шума, кто-то учитывает расход топлива, кто-то смотрит на содержание вредных веществ в выхлопном газе. Мы сравним бензиновые и дизельные двигатели по их главным параметрам.

Принципы работы бензинового и дизельного двигателя

Забежим вперед: дело в свече зажигания. В бензиновых двигателях она установлена, в дизельных — нет. Первые работают на бензине, вторые — на дизельном топливе.

Бензиновый двигатель. Он формирует воздушно-топливную смесь после основного такта сжатия. ВТС полностью занимает отдельно взятый цилиндр. Температура внутри него редко превышает 510-520 градусов Цельсия. Коэффициент сжатия обычно меньше 10, часто — 9. Устройства с коэффициентом сжатия 11 встречаются редко. Из-за сравнительно низкой температуры воздушно-топливной смеси обязательно устанавливают свечу зажигания, которая воспламеняет ее.

Дизельный двигатель отличается более высокими характеристиками. Температура воздушно-топливной смеси превышает 500 градусов Цельсия, достигает 750-910 градусов Цельсия. Коэффициент сжатия часто составляет 24-25 единиц. Из-за таких характеристик воздушно-топливная смесь воспламеняется самостоятельно: ей не нужна дополнительная «стимуляция» свечой зажигания.

На что смотреть при сравнении дизельного и бензинового двигателей

  • Мощность мотора;
  • эксплуатация зимой;
  • расход топлива;
  • шумовые показатели;
  • экологичность выхлопа;
  • долговечность;
  • обслуживание;
  • стойкость к низкокачественному топливу;
  • стоимость топлива.

Мощность мотора

Бензиновые двигатели мощнее, чем дизельные. Стоит посмотреть объявления о продаже подержанных авто или зайти на официальные сайты автоконцернов, чтобы убедиться в этом. Например, Mercedes-Benz в одной из моделей предлагает потребителям два типа двигателя:

  • бензиновый с 136 лошадиными силами;
  • дизельный с 75 лошадиными силами.

При этом мощность — не главный определяющий параметр качества при сравнении. Она косвенно влияет на характеристики самого автомобиля, но в большинстве случаев служит абстрактной цифрой. Например, оба двигателя в моделях Mercedes-Benz способны легко развивать скорость до 120 км/ч, не оказывая негативного воздействия на ходовую часть.

Бензиновый двигатель мощнее. Но преимущество нивелируется серьезным недостатком — неровной тягой. Дизель, несмотря на невысокую мощность, радует автовладельцев идеально ровной тягой на любых оборотах — малых и больших. Поэтому, если важен ровный ход, не раздумывайте, что лучше — бензин или дизель. Выбирайте второй вариант.

Эксплуатация зимой

В северных регионах страны особое внимание уделяется возможностям транспортного средства при эксплуатации в холодное время года, когда столбик термометра опускается ниже 0. В этом случае бензиновый двигатель лучше — он устойчив к низким температурам. Сегодня есть зимние виды бензина, но многие продолжают пользоваться обычным летним топливом, и это не влияет на скорость движения, долговечность запасных частей и другие параметры.

Дизельные двигатели восприимчивы к резким скачкам температуры воздуха или сильным морозам. Но их восприимчивость можно устранить, спокойно эксплуатировать машину с дизелем даже в мороз -30 градусов Цельсия. Этого легко достигнуть за счет заправки специальными зимними или арктическими видами топлива. Они не густеют при экстремальной температуре воздуха, работают так же эффективно. Улучшить работу дизельного двигателя можно еще за счет установки современной системы обогрева в автомобиль.

Дизель восприимчив к морозам, но не боится влаги, конденсата, воды. Это обусловлено тем, что электроэнергия требуется только для запуска агрегата — в работе электричество не нужно. Поэтому дизель часто устанавливают на внедорожники, которые могут двигаться почти в любых экстремальных условиях, в том числе и по воде.

Расход топлива

Раньше считалось, что дизель экономичнее бензина, в первую очередь из-за несоразмерной стоимости топлива. Солярка стоила намного дешевле бензина. Сегодня цены почти сравнялась, но дизельные двигатели все равно потребляют меньше топлива. Это обусловлено высоким коэффициентом сжатия воздушно-топливной смеси.

Показатели КПД дизельного мотора примерно на 40% выше из-за увеличенной в 2 раза степени сжатия. Поэтому владельцы первой группы моторов утверждают, что их автомобиль потребляет на 20% меньше топлива, чем аналогичные транспортные средства на бензине. Вторая группа тоже бывает достаточно экономичной, особенно в случае с небольшими автомобилями — например, с машиной Daewoo Matiz с расходом около 4-5 литров на 100 километров. Но дизельные агрегаты все равно более экономичны.

Шумовые показатели

Единственное, в чем дизель до сих пор далеко отстает от бензина — шумовые характеристики. Он работает громче. Впрочем, некоторые видят в этом плюс — якобы работа мотора на низких оборотах напоминает мурчание кошки, поэтому успокаивает и помогает сосредоточиться. Однако многим такой «рев» не нравится.

Бензиновые двигатели работают тихо, без сильных перепадов громкости звука, почти незаметно. Ценители тишины, которые ездят на дизеле, просто обустраивают качественную шумоизоляцию в автомобиле. Так работу мотора почти не слышно — уровень шума совпадает с уровнем шума от бензинового аналога.

Экологичность выхлопа

Современные стандарты «Евро-4» или «Евро-5» обязывают всех производителей тщательно следить за химическим составом топлива, чтобы уменьшить содержание вредных веществ в выхлопном газе. Дизель более экологичен — двигатель тоже выбрасывает выхлопные газы, но они менее вредны по сравнению с продуктами отхода бензиновых аналогов.

Именно экологичностью выхлопа частично обусловлена популярность агрегатов на солярке в Европе. Во Франции каждое третье транспортное средство работает на дизтопливе. В Австрии у дизеля 50% автомобильного рынка. И эти показатели ежегодно растут. Даже автоконцерны, которые раньше выпускали транспортные средства преимущественно на бензине, сегодня предлагают потребителям альтернативный вариант — каждую модель с двумя типами двигателей.

Долговечность

О долговечности двух типов мотора можно судить теоретически. Срок службы всех агрегатов под капотом зависит от ответственности автовладельца — чем чаще он проводит техническое обслуживание автомобиля и заменяет устаревшие запасные части, тем лучше и дольше проработает мотор.

Если говорить теоретически, дизельные двигатели более долговечны. Это частично обусловлено тем, что солярка более маслянистая, поэтому выступает дополнительным смазывающим средством. Детали истираются дольше и работают лучше. К тому же в бензиновых агрегатах более жесткие головка блока цилиндров, блок, коленчатый вал, функциональные узлы цилиндропоршневой группы.

При одинаковом уходе за автомобилем — например, моделью BMW с высоким расходом топлива на 100 километров — дизель прослужит дольше. Например, есть модели, с пробегом больше 400 000 километров без капитального ремонта мотора. А МАЗы и КАМАЗы, эксплуатирующиеся с прошлого века, иногда наматывают более 3 000 000 километров в общей сложности благодаря повышенному ресурсу дизеля.

Обслуживание

Если сравнивать обслуживание двух типов агрегатов без оглядки на их срок службы, бензиновый мотор выгоднее дизельного. С ними чаще работают российские мастера, потому что пока автомобили на дизеле занимают всего 7-10% от общего рынка. Это влечет за собой снижение цен на ремонт бензинового мотора — в автомастерских берут меньше за то, с чем уже знакомы. Кроме того, дизель отличается сложной конструкцией, поэтому мастера реже берутся за его восстановление. Дополнительно новый топливный насос для него иногда стоит, как автомобиль с пробегом.

Еще на большинстве автозаправок продают солярку невысокого качества. Под видом арктического или зимнего топлива предлагают летнее, которое застывает при любой температуре ниже нуля градусов по Цельсию, добавляют разные присадки, пытаясь искусственно повысить качество, а иногда даже разбавляют дизтопливо водой или другими веществами. Бензин качественнее. Поэтому на таких типах мотора реже требуется замена масла и фильтров по сравнению с дизелем.

Стойкость к низкокачественному топливу

Общее качество бензина в среднем по стране выше, чем качество дизтоплива. Это частично обуславливает стоимость обслуживания. Кроме того, бензиновые агрегаты более стойкие к низкокачественному топливу. Они легче переносят разбавленное топливо, некачественные присадки, подмену топлива на марку с более низким октановым числом. Дизель реагирует на низкое качество очень чувствительно — значительно ускоряется износ деталей мотора.

Проблему с чувствительностью легко решить. Достаточно заправляться на проверенных станциях или покупать большие объемы топлива самостоятельно. Спрашивайте сертификаты качества на топливо, визуально проверяйте его цвет, обращайте внимание на запах.

Стоимость топлива

В прошлом веке солярка стоила почти в два раза дешевле бензина. Низкая цена частично зависела от того, что дизелем комплектовались преимущественно сельскохозяйственные большие машины с высоким потреблением топлива. Сегодня стоимость за литр почти сравнялась, например:

  • исторический минимум бензина АИ-92 и обычного дизеля составляет 0,349 и 0,359 евро соответственно;
  • исторический максимум АИ-92 и солярки составляет 0,676 и 0,810 соответственно;
  • за последний год стоимость бензина и дизеля повысилась на 5.37% и 7.27% соответственно.

В 2017 году цена на оба вида топлива подбирается к 40 рублям. Поэтому особой разницы между двумя типами моторов больше нет. Но дизель остается экономичнее благодаря эффективному сжиганию топлива — об этом мы писали выше.

Сравните все характеристики бензина и дизеля и сделайте свой выбор. Подумайте, какие параметры важны вам. Если хотите долговечный и экономичный мотор с более экологичным выхлопом, выбирайте дизель. Если хотите мощный, тихий, устойчивый к низкокачественному топливу и зиме агрегат, не требующий дорогостоящего обслуживания, выбирайте из бензиновых движков.

А чтобы ресурс мотора всегда радовал вас, покупайте топливо у ООО «Компании «Нипетойл». Мы продаем сертифицированное топливо, привозим его сами по Москве и области, предлагаем оптовую стоимость. Позвоните нам, и мы расскажем подробнее о продуктах, условиях покупки, оплаты, доставки.

Русский Дизель. Производство дизельных двигателей размерности 23/2х30, ДР 30/50 и запасных частей

«Русский дизель». Двигатели размерности 23/2х30, 40/46 и 30/50

ООО «Кингисеппский машиностроительный завод» производит дизельные двигатели и дизель-генераторные установки единичной мощности от 3,45 до 8 мВт. Основной специализацией предприятия является изготовление дизель-генераторов и силовых судовых и корабельных установок мощностью до 10000 л.с. на базе дизельных двигателей размерности 23/2х30 «Русский дизель».

Модельный ряд двигателей размерности 23/2Х30 «Русский дизель»

Модельный ряд дизельных двигателей  размерности 23/2х30 производства Кингисеппского машиностроительного завода:

Модельный ряд двигателей размерности 23/2Х30

«58» 16ДПН23/2х30 мощность 4500 л.с.: 58Д-4А  58Д 58А 58Е-7А

«61» 16ДПН23/2х30 мощность 6000 л.с: 61Б, 61В

«67» 12ДРПН23/2х30 мощность 7000 л.с.: 67Е 67Б 67И 

«68» 18ДПН23/2х30 мощность 8000 л.с.: 68Е  68Г 68Б 68В

«70» 18ДРПН23/2х30 мощность 6000 л.с.: 70Б

«78» 18ДРПН23/2х30 мощность 7990 л.с.: 78Г 78И

«82» 18ДПН23/2X30 мощность 6790 л.с.: 82А

«85» 18ДПН23/2X30 мощность 8300 л.с.: 85Д

«86» 18ДРПН23/2х30 мощность 8000 л.с.: 86Б

«88» 18ДПН23/2х30 мощность 8850 л.с.: 88Г


Судовой дизельный двигатель размерности 23/2х30 «Русский дизель»

Судовые автоматизированные дизель-генераторы на базе двигателей 23/2х30 «Русский дизель»

Судовые автоматизированные дизель-генераторы СДГ-5000 состоят из дизеля 68Г и синхронного генератора. Дизели 68Г является двухтактными, нереверсивным, простого действия с противоположно движущимися поршнями, с двумя рядами вертикально расположенных цилиндров, с четырьмя коленчатым валами, которые объединяются со встроенным мультипликатором (главной передачей), с прямоточно-щелевой продувкой, с газотурбинным наддувом и промежуточным охлаждением воздуха.

Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики.

Основными конструктивным отличием дизеля 705 от дизеля 68Б является главная передача, передаточное отношение которой обеспечивает другие выходные оборот дизеля. Дизели 70Б и 70Б-6 реверсивные, при этом дизель 70Б реверсируются как с местного поста, так и с пульта ДАУ.


Габаритный чертеж дизель-генератора на базе двигателя 16ДПН23/2х30

Система автоматизированного управления

Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики. Работы по усовершенствованию дизелей 64Г, входящих в состав ДГ-4000 продолжаются. В частности, создан форсированный вариант 64ГФ с повышением мощности установки с 3,5 МВт до 4 МВт. Были выпущены модификации, работающие на природном газе – 61ГА и 64ГА, готовится дизель 96ГА, работающий на дизельном топливе и природном газе. Модификации ДГ совершенствуются по мере изменений потребностей народного хозяйства.

Модификация АСД-6300 мощность 7 МВт и АСД-5600 мощность 5,6 МВт предназначены для установок резервного электроснабжения с ограниченным временем пуска. Дизель комплектуется приводным газотурбонагнетателем, что позволяет без дополнительных энергозатрат обеспечить готовность дизеля к приему нагрузки в течение 15 секунд после получения команды на пуск, а также обеспечивает устойчивую работу при внезапных набросах нагрузки, минимизируя провалы по частоте и напряжению.

  

Автоматизированные дизель-генераторы (дизельные электростанции) переменного тока с дизелями 18ДПН23/2Х30 предназначены для использования в качестве постоянных или аварийных (резервных) источников электроэнергии и благодаря малому времени пуска применяются на атомных электростанциях и у других потребителей, где прекращение подачи электроэнергии недопустимо.

Дизель-генераторы ДГ-4000 мощностью 3,5 МВт и АДГ-5000 мощностью 5 МВт используется как постоянные источники электроэнергии.

В состав дизель-генераторов (электростанций) входят и комплектно поставляются только отечественные комплектующие:

•  стационарный дизель 18ДПН23/2Х30;

•  синхронный генератор типа СБГД/ СГДМ с бесщеточной системой возбуждения и устройством управления;

•  система автоматического управления;

•  сигнализации и защиты;

• вспомогательное оборудование, обеспечивающее работу дизеля (насосы, фильтры, терморегуляторы и т. п.), поставляемое в виде комплектных блоков;

•  глушитель и трубопроводы всасывания и выхлопа;

•  бак расширительный и система подогрева воды и масла;

•  баллоны пускового и управляющего воздуха;

•  блоки осушки воздуха;

•  компрессор высокого давления собственного производства завода.

Система автоматического управления, сигнализации и защиты выполнены в виде отдельных шкафов управления дизелем, генератором и агрегатом в целом и обеспечивают автоматический пуск при исчезновении напряжения во внешней сети или по сигналу диспетчера.

На панелях шкафов управления размещены измерительные приборы и световая сигнализация, а также устройство ручного управления агрегатом при необходимости.

 

Двигатель размерности 23/2х30 «Русский дизель» готов к отгрузке

Система автоматизированного управления, сигнализации и защиты оповещает о состоянии дизель-генератора и соответствии фактических значений контролируемых параметров заданиям, обеспечивает автоматическое и автоматизированное управление пуском и остановом дизель-генератора, автоматическое пополнение расходных ёмкостей топлива, масла и охлаждающей жидкости; автоматизированный и экстренный останов; ручной запуск и останов; защиту дизель-генератора по предельно допустимым параметрам дизеля и генератора.

Генератор предназначен для работы на АЭС в качестве резервного или аварийного источника электропитания систем безопасности во время аварийного расхолаживания, отвечает ОПБ 88/97 и относится к классу безопасности 2О и ответствует категории сейсмостойкости I по ПНАЭГ-5-006-87, поставляется в страны с умеренным и тропическим климатом.

Все дизель-генераторы могут работать параллельно между собой, а также с энергосистемами различной мощности  и в параллель с сетью.

 

Процесс монтажа двигателей размерности 23/2х30 «Русский дизель»

Характеристики дизель-генераторной станции на базе двигателя размерности 23/2X30 позволяют обеспечивать работу на номинальной мощности на выходных клеммах генератора без ограничения по времени, и работу с 10% превышением номинальной мощности в течение двух часов с периодом повторного нагружения через 24 часа.

Изготовление запасных частей к двигателям размерности 23/2х30

ООО «Кингисеппский машиностроительный завод» успешно изготавливает запасные части, необходимые при техническом обслуживании и ремонте дизелей типа ДПН и ДРПН размерности 23/2×30 следующих заводских марок: 64Г, 67Е, 67И, 58Д-А, 58Д-Р, 58В, 61В-А, 64Г, 68Б, 68Г,  70Б, 78Г, 86, 82, 85, 88Г.

Процесс изготовления секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель»

  

Стержни для литья секции газовыхлопа 80-002-051         Элемент газовыхлопа 23/2х30 после отливки

     

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» до мех. обработки   

  

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» в сборе, процесс токарной обработки секции газовыхлопа

 

Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» после отливки

 

 

Новые секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель» на складе, упакованы и готовы к отгрузке

Процесс производства 68-014-002 Фланца втулки рабочего цилиндра «Русский дизель»

  

68-014-002 Фланец втулки рабочего цилиндра

 

Обработка заготовки воротника на станке с ЧПУ                                Заготовки воротников для втулки рабочего цилиндра

Процесс производства топливных насосов высокого давления на двигатель «Русский дизель»

 

Корпусы топливных насосов после после обработки на станках с ЧПУ


Топливные насосы высокого давления собраны и  готовы к монтажу на двигатель

Процесс производства втулки рабочего цилиндра 68-014-134 «Русский дизель»

  

 

Заготовка втулки рабочего цилиндра 68-014-134 на двигатель 23/2х30 «Русский дизель»

Заготовка – центробежная отливка

  

 

  

Токарная и фрезерная обработки втулки рабочего цилиндра на двигатель 23/2х30 «Русский дизель»



Втулки рабочего цилиндра 68-014-134 после токарной, фрезерной, сверлильной и слесарной обработки
Новые втулки рабочего цилиндра 68-014-014 в сборе

    

Процесс производства 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»

 

Заготовки 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»

 

Обработка 68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» на станке

 

68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» готовы к сборке на ВРЦ 68-014-014

Теплообменное оборудование на двигатель размерности ДР 30/50 ДПРН 23х2/30 ЧН 40/46 «Русский дизель»

 

Новые воздухоохладители на дизель 68Б, 68Г, 70Б «Русский дизель»

Обработка втулки рабочего цилиндра 68-014-001 Русский Дизель from Kingiseppsk Machinery Plant on Vimeo. 

Производство втулки рабочего цилиндра на двигатель Русский Дизель from Kingiseppsk Machinery Plant on Vimeo.

 

Втулки рабочего цилиндра 68-014-014 и кольца для двигателя Русский Дизель размерности ДР 30/50, ДПРН 23х2/30, ЧН 40/46

 

 

Изготовление поршня на двигатель размерности 6 ДР 30/50, ДПРН 23х2/30, ЧН 40/46

  

Остов дизеля 78-012-001 Русский Дизель                    Процесс сборки двигателя размерности 23/2х30

Модернизационные доработки дизельного двигателя размерности 23/2Х30

Модернизация затронула процессы смесеобразования и сгорания топлива. Это позволило повысить цилиндровую мощность дизеля, систему наддува воздуха. Изменена конструкция форсунок, оптимизирован график впрыска топлива для различных режимов работы. Изменена конструкция камеры сгорания. Всё это позволило повысить КПД дизеля и снизить удельный расход топлива. На дизеле могут применяться два вида топливных систем.

На дизелях применяется топливная система разделённого типа с механическим приводом топливовпрыскивающего плунжера (в ТНВД) и гидравлически управляемой иглой распылителя в форсунке (по два ТНВД и две форсунки на цилиндр) Система CommonRail или разделённая система с индивидуальными ТНВД, с управлением цикловой подачей и опережением впрыска, быстродействующими электроклапанами слива из плунжерной полости. В последней системе используется обычная современная форсунка, ТНВД упрощенной конструкции, и как следствие имеющий большую надежность, а также быстродействующий клапан с электрическим приводом.

Управление дизелем производится с электронного (пневматического) пульта дистанционного автоматизированного управления, расположенного вне дизеля. На дизеле предусмотрен резервный пост управления и переключатель для перевода управления с дистанционного пульта на резервный пост и наоборот.

На водяной и масляной системах установлено оборудование автоматического регулирования температуры.

Система автоматического управления, защиты и сигнализации обеспечивает контроль:

•за параметрами работы двигателя;

•за сигнализацией достижения контролируемыми параметрами предельных величин;

•за аварийной остановкой при достижении аварийных параметров;

•за автоматическим пуском и остановкой дизеля по команде дежурного;

•за управлением оборотами и нагрузкой при работе на ВРШ или при работе в генераторном режиме.

На двигатель устанавливается гидромеханический регулятор скорости (на судовых машинах) или электронно-гидравлический (на генераторных машинах).

Предприятием успешно проведены конструкторские работы и расчёты по созданию машин размерности 23/2х30 нового мощностного ряда. Данные исследований мы готовы предоставить по запросу заказчика.

Применение в автоматизированной системе управления современного программного обеспечения даёт неоспоримые преимущества:

• интуитивность и простота в эксплуатации;

• масштабируемость и гибкость;

• диагностика и предотвращение аварий;

• обработка данных и архивирование;

• контроль безопасности и доступа;

• надёжность.

Для работы с автоматизированной системой необходимо первоначальное обучение.

 

Предприятие ООО «Кингисеппский машиностроительный завод» завершает активную работу по подготовке к выпуску новой номенклатуры модернизированных дизельных двигателей повышенной мощности.  Благодаря установленной системе турбонаддува, электронной управляемой топливной системе, цифровой системе управления и другим техническим доработкам, описанным выше, мощность двигателей составит от 10800 л.с. до 14500 л.с.(от 6 до 12 Мвт).

Следует отметить, что по специальному заказу предприятием изготавливаются дизели типа 23/2х30, работающие на тяжёлом топливе и природном газе. 

Как работает дизельный двигатель

Содержание статьи
 

  1. Введение
  2. Сравнение дизельных и бензиновых двигателей
  3. Система впрыска дизельного топлива
  4. Дизельное топливо
  5. Улучшение качества дизельного топлива и Биодизель
  6. Узнать больше
  7. Читайте также » Статьи про все типы двигателей

В данной статье описаны основные процессы, связанные с внутренним сгоранием топлива, рассказывается о четырёхтактном цикле, а также обо всех подсистемах, благодаря которым происходит работа двигателя. 
 
История дизеля начинается с изобретения бензинового двигателя. В 1876г. Николаус Август Отто изобрел и запатентовал бензиновый двигатель. В основе работы его модели лежал четырехтактный цикл сгорания топлива, также известный как «Цикл Отто», который используется в большинстве современных автомобильных двигателей. На первых порах бензиновый двигатель не обладал большой эффективностью, как и его основные конкуренты, например, паровой двигатель. В таких двигателях лишь 10% топлива реально использовалось для движения автомобиля. Остальное же топливо производило бесполезное тепло.
 
В 1878г. на занятиях в Высшей политехнической школе в Германии (аналог инженерного колледжа) Рудольф Дизель узнал о низком КПД бензиновых и паровых двигателей. Эта проблема вдохновила его на создание более производительного двигателя. Спустя много лет, в 1892г. Дизель запатентовал одноименный «Мощный двигатель внутреннего сгорания».
 
Но если дизельные двигатели более эффективные, почему бензиновые более популярные? Представляя себе дизельный двигатель, Вы, скорее всего, подумаете об огромном грузовике, который извергает черный грязный дым и сильно шумит. Именно по этим причинам в США автомобилистам и не нравится дизель. Несмотря на то, что этот тип двигателя превосходно подходит для перевозки грузов на большие расстояния, дизельные автомобили редко покупают для повседневной езды.  Однако прогресс не стоит на месте, и идет модернизация дизельного двигателя для уменьшения загрязнения атмосферы и снижения уровня шума.
 
Если Вы еще не знаете, то, скорее всего, Вам будет интересно сперва узнать, «Как работает автомобильный двигатель», чтобы иметь общее представление о процессе внутреннего сгорания топлива. Когда прочитаете, возвращайтесь на эту страницу и узнаете все о секретах работы дизельного двигателя и последних инновациях.
 
КПД 4,5-литрового двигателя Duramax V-8 на 25% выше по сравнению с бензиновыми, при этом выхлопы намного чище. 
 
Рудольф Дизель, изобретатель дизельного двигателя.
 



Сравнение дизельных и бензиновых двигателей
 
По большому счету, дизельные и бензиновые двигатели имеют схожее устройство. И те, и другие являются двигателями внутреннего сгорания, преобразующие химическую энергию топлива в механическую. Эта механическая энергия перемещает поршни вверх-вниз внутри цилиндров. Поршни соединяются с коленвалом, и их линейное движение преобразуется в круговое движение, которое необходимо для вращения колес.
 
Как дизельный, так и бензиновый типы двигателей преобразуют топливо в энергию посредством серии взрывов или сгораний. Основное различие дизельных и бензиновых двигателей состоит в том, как происходят эти взрывы. В бензиновых двигателях подаваемая смесь топлива и воздуха сжимается во время хода поршня и воспламеняется искрой свечи. В дизельном же двигателе сначала происходит сжатие воздуха, затем происходит подача топлива. Нагреваемый при сжатии воздух воспламеняет топливо.
 
Ниже представлена анимация, наглядно демонстрирующая цикл дизеля. Сравните с анимацией цикла бензинового двигателя для того, чтобы увидеть основные различия.
 
В дизельном двигателе, как и в бензиновом, используется четырехтактный цикл сгорания топлива. Четыре такта работы:
 
Такт впуска — Впускной клапан открывается, происходит впуск воздуха и движение поршня вниз. ­
Такт сжатия — Поршень движется вверх, сжимая воздух.
Рабочий такт — Как только поршень достигает верхней точки, происходит впуск и возгорание топлива, при этом поршень движется вниз.
Такт выпуска — Поршень снова движется вверх, выталкивая продукты сгорания через выпускной клапан.
 
Необходимо помнить, что в дизельных двигателях не используются свечи зажигания, т.к. происходит впуск и сжатие воздуха, затем впрыск топлива непосредственно в камеру сгорания (прямой впрыск). В дизельном двигателе возгорание топлива происходит за счет тепла сжатого воздуха. В следующем разделе статьи представлен процесс впрыска дизельного топлива.
 

Компрессия
 
Выполняя расчеты, Рудольф Дизель предположил, что более высокий уровень сжатия топливной смеси способствует повышению эффективности и мощности. Это происходит при сжатии воздуха поршнем в цилиндре, в результате чего увеличивается концентрация воздуха. Дизельное топливо обладает высокой энергоемкостью, поэтому увеличивается вероятность реакции с концентрированным воздухом. Иными словами, чем ближе молекулы воздуха расположены друг к другу, тем больше количество молекул кислорода, с которыми происходит реакция топлива. Рудольф оказался прав — компрессия в бензиновом двигателе происходит при соотношении от 8:1 до 12:1, в то время как компрессия в дизельном двигателе происходит при соотношении от 14:1 до 25:1.

 



Система впрыска дизельного топлива
 
Существенным различием между дизельным и бензиновым двигателем является процесс впрыска топлива. В большинстве автомобильных двигателей используется впрыск во впускные каналы или карбюратор. При впрыске во впускные каналы, топливо поступает до начала такта впуска (вне цилиндра). В карбюраторе происходит смешивание воздуха и топлива до их попадания в цилиндр. Следовательно, в бензиновом двигателе топливо поступает в цилиндр в течение такта впуска, затем происходит сжатие. Степень сжатия смеси топливо-воздух определяет компрессию двигателя – если воздух слишком сильно сжать, смесь топливо-воздух самопроизвольно воспламеняется, вызывая детонацию. При этом происходит резкое повышение температуры, что может привести к повреждениям двигателя.
 
В дизельных двигателях используется система прямого впрыска топлива — дизельное топливо поступает непосредственно в цилиндр.
 
Дизельная форсунка является наиболее сложной деталью двигателя, которая претерпела многочисленные изменения. Расположение форсунки зависит от конкретного двигателя. Форсунка должна противостоять высокой температуре и давлению внутри цилиндра, распыляя при этом топливо. Равномерное распределение распыленного топлива в цилиндре также представляет собой сложную задачу, для этого на некоторых дизельных двигателях устанавливаются впускные клапаны, камеры предварительного сгорания и другие устройства, способствующие образованию вихревого потока воздуха для улучшения процесса сгорания топлива.
 
В некоторых дизельных двигателях используются свечи накаливания. В холодном двигателе процесс сжатия воздуха не всегда может обеспечить температуру, необходимую для воспламенения топлива. Свеча накаливания представляет собой электрически нагреваемую проволоку (аналогичные проволоки используются в тостерах), которая повышает температуру камеры сгорания, что способствует запуску даже холодного двигателя. По словам высококвалифицированного специалиста по тяжелому оборудованию Клэя Бротертора:
 
Все функции современных дизельных двигателей контролируются электронной системой управления, которая представляет собой блок датчиков для измерения всех показателей, от оборотов двигателя, температуры масла и охлаждающей жидкости до точного положения поршня (верхней мертвой точки). Свечи накаливания редко используются в больших двигателях. Электронная система управления отслеживает температуру окружающего воздуха, задерживая запуск двигателя в холодную погоду. При этом впрыск топлива происходит позже, чем обычно. Воздух в цилиндре сжимается сильнее, создавая больше тепла, что способствует запуску.
В небольших двигателях и двигателях без сложной электронной системы управления используются свечи накаливания для решения проблемы холодного запуска.
 
Необходимо помнить, что механическая конструкция не является единственным отличием дизельного двигателя от бензинового. Само топливо также отличается.
 
 


Дизельное топливо
 
Сырая нефть является естественным природным образованием. В процессе переработки нефти может быть получено несколько видов топлива, включая бензин, авиационное топливо, керосин и, конечно же, дизель.
 
Если сравнить бензиновое и дизельное топливо, можно легко найти отличия. Они имеют разный запах. Дизельное топливо более тяжелое и маслянистое. Дизель испаряется значительно медленнее бензина – его точка кипения значительно выше, чем у воды. Дизель напоминает жидкое масло.
 
Испарение дизеля происходит медленнее, т.к. он тяжелее. Он содержит больше атомов углерода в более длинных цепочках, чем бензин (цепочка бензина C9h30, тогда как у дизеля уже C14h40). Для производства дизеля требуется меньше очистки, поэтому он дешевле бензина. Однако с 2004г. спрос на дизельное топливо увеличился по нескольким причинам, включая активное развитие промышленности и строительства в Китае и США [Источник: Управление по энергетической информации министерства энергетики США].
 
Энергетическая плотность дизеля значительно выше, чем у бензина. В среднем, 1 галлон (3,8 л) дизельного топлива содержит 155×106 Дж (147000 БТЕ), в то время как 1 галлон бензина содержит123×106 Дж (125000 БТЕ).

Энергетическая плотность и эффективность дизельных двигателей объясняют экономный расход топлива, по сравнению с аналогичными бензиновыми двигателями.
 
Дизельное топливо используется в различных сферах деятельности. Помимо грузовиков, несущихся по шоссе, оно также незаменимо в лодках, автобусах, поездах, кранах, фермерском хозяйстве, автомобилях аварийно-спасательных служб и силовых генераторах. Дизель настолько важен для экономики, что без него промышленность и сельское хозяйство мгновенно пострадали бы из-за больших инвестиций в альтернативное топливо с низкой мощностью и эффективностью. Около 94 % грузоперевозок в поездах, фурах и на кораблях зависят от дизеля.
 
Что касается вопросов экологии, у дизельного топлива есть свои преимущества и недостатки. Среди преимуществ следует отметить тот факт, что дизель выпускает незначительное количество угарного, углекислого газов и углеводородов, которые способствуют глобальному потеплению. К недостаткам можно отнести высокое количество выделяемых азотных соединений и сажи, которые становятся причиной кислотных дождей, смога и плохого самочувствия. На следующей странице представлена информация о последних разработках по устранению недостатков дизеля.
 



Улучшение качества дизельного топлива и Биодизель
 
Во время нефтяного кризиса 1970-х гг., автомобильные компании Европы начали рекламировать дизельные двигатели для коммерческого транспорта как альтернативу бензиновым. Те, кто попробовал перейти на дизельные двигатели, были разочарованы — двигатели работали очень громко, возвращаясь домой, водители обнаруживали, что автомобили полностью покрыты сажей, из-за которой в крупных городах образовывался смог.
 
Однако за последние 30-40 лет были значительно улучшены показатели двигателей и чистота топлива. Прямой впрыск топлива контролируется сложными компьютерами, благодаря чему увеличивается КПД двигателей, снижается количество вредных выбросов. Высокоочищенный дизель, такой как топливо со сверхнизким содержанием серы, позволяет уменьшить количество вредных выбросов и выйти на уровень экологически чистого топлива. Среди других технологий следует отметить сажеуловитель с постоянной регенерацией, в котором используются фильтры и каталитический нейтрализатор отработавших газов. Происходит сжигание сажи и снижение выбросов угарного газа и углеводородов до 90% [Источник: Форум дизельных технологий]. Благодаря постоянному ужесточению экологических стандартов топлива, Европейских Союз подталкивает автомобильную промышленность к решению вопроса снижения выбросов. 
 
Скорее всего, все слышали о биодизеле. Отличается ли он от обычного дизеля? Биодизель является альтернативным топливом или присадкой для дизельных двигателей, использование которых не предполагает значительных изменений конструкции двигателя. Биодизель не является продуктом переработки нефти, он получается из растительных масел или животных жиров после химического изменения. (Интересный факт: Рудольф Дизель изначально планировал использования масла семян овощей в качестве топлива для своего изобретения.) Биодизель добавляют в обычный дизель или используют в качестве отдельного топлива. 
 
 

Дизельный двигатель

Определение 1

Дизельный двигатель — поршневой двигатель внутреннего сгорания, который работает по принципу самовоспламенения распылённого топлива от воздействия, разогретого при сжатии воздуха.

История

В $1893$ году Рудольф Дизель разработал двигатель с немного измененным принципом проектирования и эксплуатации, чем ранее известный двигатель внутреннего сгорания. Изобретатель преследовал цель в том, чтобы сделать более эффективную машину, которая основана на общей концепции двигателя внутреннего сгорания. В $1893$ году он выиграл патент на конструкцию «дизеля».

В $1897$ году Рудольф Дизель построил первый двухцилиндровый дизельный двигатель, который был удостоен Гран — при на выставке в Париже.

Конструкция двигателя, которая была разработана Дизелем, очень ненадежна и сложна в эксплуатации за счет использования впрыска топлива в цилиндр с помощью сжатого воздуха. Система впрыска требуется наличия многоступенчатого компрессора с возможностью производить достаточно высокое воздушное давление. Современные материалы и технологии обеспечивают адекватную долговечность и надежность работы компрессора, расширение, это не малые габариты и вес двигателя, а также увеличилось количество движущихся частей, которые требуют периодического технического обслуживания.

К $1898$ году, Дизель заработал миллионы. Его двигатели были использованы для силовых трубопроводов, легковых и грузовых автомобилей, а также морских судов. Они скоро будут использоваться в шахтах, нефтяных месторождениях, заводах, и заокеанском судоходстве.

Замечание 1

В $1936 $году «Mercedes-Benz» впервые применили дизельный двигатель в серийном автомобиле с пассажирами.

Готовые работы на аналогичную тему

Принцип работы

В дизельном двигателе, сначала воздух поступает в камеру сгорания. Воздух затем сжимается с коэффициентом сжатия обычно между $15$: $1$ и $23$ :$1$. Эта высокая степень сжатия приводит к тому, что температура воздуха повышается. Приблизительно в верхней части такта сжатия, топливо впрыскивается в сжатый воздух в камере сгорания. Это может происходить в пустоте в верхней части поршня или в предкамере в зависимости от конструкции двигателя. Топливный инжектор гарантирует, что топливо разбивается на мелкие капли, и что оно распределяется равномерно. Сгорание происходит при практически постоянном давлении в начальной части рабочего хода. Начало парообразования вызывает задержку перед зажиганием и характерный дизельный звук стука, когда пар достигает температуры воспламенения и вызывает резкое увеличение давления над поршнем. Когда сгорание завершено, газы сгорания расширяются, когда поршень опускается, далее высокое давление в цилиндре приводит в движение поршень вниз, и обеспечивает подачу питания на коленчатом валу.

Также высокий уровень сжатия, позволяет сгоранию происходить без отдельной системы зажигания, высокая степень сжатия значительно повышает эффективность двигателя.

Основные преимущества

Дизельные двигатели имеют ряд преимуществ по сравнению с другими двигателями внутреннего сгорания:

  • Они сжигают меньше топлива, чем бензиновый двигатель, выполняющий ту же работу, из-за более высокой температуры сгорания двигателя и большей степени расширения. Бензиновые двигатели, обычно, на $30$% эффективнее, в то время как дизельные двигатели могут конвертировать более 45% энергии топлива в механическую энергию.

  • У них нет высокого напряжения системы электрического зажигания, что приводит к высокой надежности и легкой адаптации к влажной среде.

  • Долговечность дизельного двигателя, как правило, примерно вдвое больше, чем бензинового двигателя, в связи с увеличением прочности используемых деталей.

  • Дизельное топливо дистиллируется непосредственно из нефти.

  • Они вырабатывают меньше тепла в режиме охлаждения и выхлопа.

История дизельного двигателя и кто его изобрел — Diesel Power Gear

Ожидается, что мировой рыночный спрос на все типы дизельных двигателей будет расти беспрецедентными темпами до 2025 года. Другими словами, дизельные двигатели никуда не денутся в ближайшее время.

Но как долго они существуют? Кто изобрел дизельный двигатель? Если вы когда-нибудь задумывались об истории дизельного двигателя, мы собираемся рассказать вам.

И даже загадочная смерть.

Начало

Дизельный двигатель был изобретен во время промышленной революции немецким инженером. Рудольф Дизель вырос во Франции, но во время франко-германской войны уехал в Англию. После войны он вернулся в Германию, чтобы изучать конструкцию двигателя.

В 1880-х годах все самые значительные изобретения были связаны с паром. Паровые двигатели использовали много угля, были очень дорогими и крайне неэффективными. Крупные компании могли себе их позволить, в то время как малые предприятия изо всех сил пытались не отставать.

Изучая термодинамику, Дизель обнаружил, что может создать двигатель внутреннего сгорания меньшего размера, который будет преобразовывать всю теплоту в работу. Этот двигатель оказался революционным среди паровых машин и конных экипажей 19 века.

Середина

Следующие несколько лет Рудольф Дизельс работал над своими проектами. Среди них был двигатель на солнечной энергии, двигатель внутреннего сгорания и двигатель, который теоретически мог превращать 75% тепла в энергию.

Он решил доказать свою теорию о том, что его двигатель может быть эффективен на 75%. Хотя ему не удалось добиться такого замечательного результата, он получил двигатель с КПД 25%, что было вдвое лучше, чем у любого из его соперников.

Проблема первых дизельных двигателей в том, что они оказались ненадежными. В то время как многие люди купили его двигатели, многие в конечном итоге вернули их и потребовали возмещения. Это привело Дизеля в финансовую яму, из которой он никогда не смог выбраться.

Дизель добился успеха в вооруженных силах, потому что дизельное топливо было тяжелее и с меньшей вероятностью взрывалось.В 1904 году французская армия начала использовать дизельные двигатели на своих подводных лодках.

Конец

В 1913 году Рудольф Дизель направлялся на встречу с британским флотом, чтобы договориться об установке его двигателей на их подводных лодках. Где-то над Ла-Маншем Дизель вышел за борт.

Некоторые считают, что он прыгнул из-за финансовых проблем. Другие думали, что его бросили.

Некоторые из наиболее популярных теорий вокруг его смерти включают:

  1. Другие страны не хотели, чтобы его патенты использовались для помощи британскому правительству.
  2. Крупные нефтяные компании почувствовали угрозу, потому что верили в использование растительного масла.
  3. Угольные магнаты были обеспокоены тем, что пар становится неактуальным.
  4. Немецкие военные опасались, что он поделится своими новыми и смертоносными конструкциями подводных лодок.

История дизельного двигателя

История дизельного двигателя полна инноваций и загадок. К сожалению, Дизеля не было рядом, чтобы увидеть реальный размах своего изобретения.

Со временем армии стали использовать их для всего, от поездов до лодок и грузовиков. Помимо использования в военных целях, дизельные двигатели используются для питания трубопроводов, гидротехнических сооружений, гражданских автомобилей и грузовиков, морских судов, заводов и многого другого.

Дизельные двигатели

изменили то, как работает мир, поскольку они позволяют создавать более крупные лодки, более мощные двигатели и расширять торговлю за границей.

Теперь есть энтузиасты дизельных двигателей. Если вы оказались одним из таких энтузиастов, приходите к нам.У нас есть все новейшее и самое лучшее оборудование для вашего грузовика с дизельным двигателем.

Дизельный двигатель

против бензинового двигателя: в чем отличия

Если вы думаете о покупке нового автомобиля и не можете выбрать между дизельным и газовым двигателем, вы можете сравнить различия в каждом двигателе. Знание различий, плюсов и минусов каждого из них поможет вам решить, какой автомобиль подходит именно вам. В течение некоторого времени широко известно, что дизельные двигатели имеют большой пробег, часто обеспечивая более чем на 25% лучшую экономию топлива, чем их бензиновые аналоги.Однако, хотя они могут быть более экономичными, дизель не обеспечивает высокоскоростных характеристик. Дизельные двигатели часто медленнее, мощнее, но и долговечнее.

Оба двигателя работают по одному и тому же принципу, используя соотношение впуска, сжатия и мощности, выхлопа и соотношения воздух-топливо. Здесь мы исследуем их сходства и различия между дизельным и газовым топливом:

На впуске:

Газовые двигатели подают в камеру сгорания и воздух, и топливо, в то время как дизельные двигатели забирают в камеру сгорания только воздух.

Сжатие и питание:

Хотя оба двигателя сжимают или сжимают воздух в небольшой карман, что приводит к взрыву, основное различие между ними заключается в том, как происходит взрыв. В газовых двигателях свеча зажигания используется для воспламенения воздушно-топливной смеси, заставляя поршень опускаться. Для дизеля, когда поршень приближается к верхней части такта сжатия, воздух в камере значительно сжимается, вызывая его сильное нагревание, что приводит к воспламенению дизельного топлива, когда оно вводится топливными форсунками.

Выхлоп:

На обоих двигателях открывается клапан, и поршень выталкивает отработавшие газы из цилиндра через выхлопные системы.

Корпус дроссельной заслонки:

Транспортные средства, работающие на газе, оснащены корпусом дроссельной заслонки, а дизельные двигатели — нет. При нажатии на педаль акселератора дроссельная заслонка или дроссельная заслонка, расположенная между впускным воздушным фильтром и впускным коллектором, открывается, позволяя большему количеству воздуха поступать в двигатель. Компьютер автомобиля определяет, что для увеличения скорости и мощности необходимо впрыскивать больше топлива.В дизельных двигателях нажатие на педаль акселератора напрямую регулирует количество топлива, подаваемого в двигатель.

Соотношение воздух-топливо:

В то время как газовые двигатели имеют ограниченное соотношение воздуха и топлива, дизельные двигатели могут работать в широком диапазоне . Однако нажатие педали газа на дизельном двигателе снижает соотношение воздуха и топлива. Впрыскивается больше топлива по сравнению с всасываемым воздухом, что увеличивает мощность двигателя. Черное облако дыма, которое вы часто видите из дизельного двигателя, является результатом образования сажи, когда двигатель работает с низким соотношением воздуха и топлива.

Общие проблемы, возникающие с дизельными двигателями, и их причины включают:

  • Проблемы при запуске — могут быть связаны с плохой компрессией двигателя.
  • Синий дым из двигателя. Синий дым из выхлопной трубы указывает на то, что двигатель сжигает собственное масло, вероятно, из-за изношенных цилиндров или переполнения масляной камеры.
  • Потеря мощности двигателя — также вызвана плохой компрессией двигателя. Это также может означать, что поршневые кольца, клапаны или прокладки головки блока цилиндров изношены и нуждаются в замене.
  • Повышенный расход масла. Если вы обнаружите, что часто доливаете масло в двигатель, вероятно, существует утечка, требующая немедленного устранения. Если утечка связана с неисправными поршневыми кольцами или гильзами цилиндров, игнорирование утечки может привести к дорогостоящему и обширному ремонту.
  • Стук в двигателе — со временем из-за загрязнения масла или проблем с синхронизацией двигатель может издавать стук. Это часто вызвано поврежденными уплотнениями, подшипниками или изношенной юбкой поршня.

Если вы решите, что автомобиль с дизельным двигателем вам подходит, вам нужно будет найти сервисный центр, которому вы доверяете, чтобы обеспечить ремонт и плановое техническое обслуживание.Дизельные технологии часто меняются, и EPA продолжает оказывать давление на производителей транспортных средств, чтобы они производили автомобили с низким уровнем выбросов, включая дизельные двигатели. Важно найти сервисный центр, который разбирается в уникальных аспектах дизельных автомобилей и грузовиков, а также в том, как правильно их обслуживать и ремонтировать. Вот тут-то и приходит на помощь Sun Devil Auto. Наши сервисные центры оснащены самым современным специализированным оборудованием для обеспечения надлежащего обслуживания каждого автомобиля. Наши сертифицированные техники ASE обучены всем тонкостям работы дизельного двигателя, обеспечивая все, от замены масла до капитального ремонта двигателя.У нас есть несколько мест в районе Метро-Феникс, чтобы служить вам. Узнайте больше обо всех услугах, которые мы предлагаем для дизельных двигателей, или свяжитесь с одним из наших многочисленных офисов и поговорите с нашим опытным персоналом.

Дизельный двигатель — New World Encyclopedia

Дизельный двигатель, построенный компанией MAN AG в 1906 году.


Дизельный двигатель представляет собой двигатель внутреннего сгорания, в котором используется воспламенение от сжатия , в котором топливо воспламеняется при впрыске в воздух в камере сгорания, сжатый до температуры, достаточно высокой для воспламенения.Напротив, в бензиновых двигателях используется цикл Отто, в котором топливо и воздух обычно смешиваются перед поступлением в камеру сгорания и воспламеняются от свечи зажигания, что делает воспламенение от сжатия нежелательным (детонация двигателя). Двигатель работает по циклу Дизеля, названному в честь немецкого инженера Рудольфа Дизеля, изобретшего его в 1892 году на основе двигателя с горячей колбой и на который он получил патент 23 февраля 1893 года.

Двигатель

Diesel предназначен для использования различных видов топлива, включая угольную пыль и арахисовое масло.Он продемонстрировал это на выставке 1900 Exposition Universelle (Всемирная выставка) с использованием арахисового масла.

Патент Рудольфа Дизеля 1893 года на конструкцию его двигателя.

Как работают дизельные двигатели

При сжатии любого газа повышается его температура — метод воспламенения топлива в дизельных двигателях. Воздух всасывается в цилиндры и сжимается поршнями со степенью сжатия до 25:1, что намного выше, чем в двигателях с искровым зажиганием. Ближе к концу такта сжатия дизельное топливо впрыскивается в камеру сгорания через форсунку (или распылитель).Топливо воспламеняется от контакта с воздухом, который в результате сжатия нагрет до температуры около 700–900 градусов по Цельсию (°C) (1300–1650 по Фаренгейту (°F)). Возникающее в результате сгорание вызывает повышенный нагрев и расширение в цилиндре, что увеличивает давление и перемещает поршень вниз. Шатун передает это движение на коленчатый вал для преобразования линейного движения во вращательное движение для использования в качестве мощности в различных приложениях. Подача воздуха в двигатель обычно регулируется механическими клапанами в головке блока цилиндров.Для увеличения выходной мощности большинство современных дизельных двигателей оснащены турбокомпрессором, а в некоторых производных — нагнетателем для увеличения объема всасываемого воздуха. Использование доохладителя/промежуточного охладителя для охлаждения всасываемого воздуха, который был сжат и, таким образом, нагрет турбонагнетателем, увеличивает плотность воздуха и обычно приводит к повышению мощности и эффективности.

В холодную погоду запуск дизельных двигателей может быть затруднен, так как холодный металл блока цилиндров и головки отводит тепло, образующееся в цилиндре во время такта сжатия, что препятствует воспламенению.В некоторых дизельных двигателях используются небольшие электрические нагреватели, называемые свечами накаливания внутри цилиндра, которые помогают воспламенять топливо при запуске. Некоторые даже используют резистивные сетчатые нагреватели во впускном коллекторе для нагрева впускного воздуха до тех пор, пока двигатель не достигнет рабочей температуры. Нагреватели блока цилиндров (электрические резистивные нагреватели в блоке цилиндров), подключенные к коммунальной сети, часто используются, когда двигатель выключен на длительное время (более часа) в холодную погоду, чтобы сократить время запуска и износ двигателя. Дизельное топливо также склонно к «парафинизации» в холодную погоду, что означает затвердевание дизельного топлива до кристаллического состояния.Кристаллы накапливаются в топливе (особенно в топливных фильтрах), что в конечном итоге приводит к нехватке топлива в двигателе. Для решения этой проблемы используются маломощные электронагреватели в топливных баках и вокруг топливопроводов. Кроме того, большинство двигателей имеют систему «проливного возврата», с помощью которой любое избыточное топливо из топливного насоса и форсунок возвращается в топливный бак. После прогрева двигателя возврат теплого топлива предотвращает образование парафина в баке. В последнее время топливная технология улучшилась, так что благодаря специальным присадкам образование парафина больше не происходит во всех климатических условиях, кроме самых холодных.

Важным компонентом всех дизельных двигателей является механический или электронный регулятор, который ограничивает скорость двигателя, контролируя скорость подачи топлива. В отличие от двигателей с циклом Отто, поступающий воздух не дросселируется, и дизельный двигатель без регулятора скорости может легко превысить скорость. Системы впрыска топлива с механическим управлением приводятся в действие зубчатой ​​передачей двигателя. В этих системах используется комбинация пружин и грузов для управления подачей топлива в зависимости от нагрузки и скорости. Современные дизельные двигатели с электронным управлением контролируют подачу топлива и ограничивают максимальное число оборотов в минуту (об/мин) с помощью электронного модуля управления (ECM) или электронного блока управления (ECU).ECM/ECU получает сигнал частоты вращения двигателя от датчика и управляет количеством топлива и моментом начала впрыска с помощью электрических или гидравлических приводов.

Контроль времени начала впрыска топлива в цилиндр является ключом к минимизации выбросов и максимальной экономии топлива (эффективности) двигателя. Время обычно измеряется в единицах угла поворота коленчатого вала поршня до верхней мертвой точки (ВМТ). Например, если ECM/ECU инициирует впрыск топлива, когда поршень находится на 10 градусов перед ВМТ, считается, что начало впрыска или момент времени соответствует 10 градусам до ВМТ.Оптимальное время будет зависеть от конструкции двигателя, а также от его скорости и нагрузки.

Опережение начала впрыска (впрыск до того, как поршень достигнет ВМТ) приводит к более высокому давлению и температуре в цилиндре и более высокому КПД, но также приводит к более высоким выбросам оксидов азота NOx из-за более высоких температур сгорания. С другой стороны, задержка начала впрыска приводит к неполному сгоранию и выделению видимого черного дыма из твердых частиц (PM) и несгоревших углеводородов (HC).

Хронология ранней истории

  • 1862: Николаус Отто разрабатывает свой угольный двигатель, похожий на современный бензиновый двигатель.
  • 1891: Герберт Акройд Стюарт из Блетчли совершенствует свой масляный двигатель и сдает Хорнсби из Англии в аренду права на производство двигателей. Они строят первые двигатели с холодным пуском и воспламенением от сжатия.
  • 1892: Двигатель Hornsby № 101 построен и установлен на гидроузле. Сейчас он находится в музее грузовиков MAN в Северной Англии.
  • 1892: Рудольф Дизель разрабатывает свой двигатель типа тепловой машины Карно, который сжигает угольную пыль. Его нанял гений холодильного дела Карл фон Линде, затем мюнхенский производитель чугуна MAN AG, а затем швейцарская компания Sulzer по производству двигателей. Он заимствует у них идеи и оставляет наследство всем фирмам.
  • 1892: Джон Фрёлих строит свой первый сельскохозяйственный трактор с масляным двигателем.
  • 1894: Витте, Рид и Фэрбенкс начинают производство масляных двигателей с различными системами зажигания.
  • 1896: Хорнсби производит дизельные тягачи и железнодорожные двигатели.
  • 1897: Winton производит и управляет первым построенным в США газовым автомобилем; позже он строит дизельные заводы.
  • 1897: Mirrlees, Watson & Yaryan построили первый британский дизельный двигатель по лицензии Рудольфа Дизеля. Сейчас он выставлен в Музее науки в Южном Кенсингтоне, Лондон.
  • 1898: Буш устанавливает двигатель типа Rudolf Diesel на своей пивоварне в Санкт-Петербурге.Луи. Это первое в Соединенных Штатах. Рудольф Дизель совершенствует свой двигатель с запуском от сжатия, патентует и лицензирует его. Этот двигатель, изображенный выше, находится в немецком музее.
  • 1899: Дизель передает лицензию на свой двигатель строителям Burmeister & Wain, Krupp и Sulzer, которые становятся известными строителями.
  • 1902: Ф. Рундлоф изобретает двухтактный картерный двигатель с продувкой горячей колбы.
  • 1902: Компания Forest City начала производство дизельных генераторов.
  • 19:03: Корабль Gjoa пересекает заполненный льдом Северо-Западный проход с помощью керосинового двигателя Dan.
  • 1904: Франция построила первую дизельную подводную лодку, Z.
  • 1908: Bolinder-Munktell начинает производство двухтактных двигателей с горячим термометром.
  • 1912: Построен первый дизельный корабль MS Selandia. SS Fram, флагман полярного исследователя Амундсена, переоборудован под дизель AB Atlas.
  • 1913: Fairbanks Morse начинает производство полудизельного двигателя модели Y.Подводные лодки ВМС США используют блоки NELSECO.
  • 1914: Немецкие подводные лодки оснащены дизелями MAN. Военная служба подтверждает надежность двигателя.
  • 1920-е годы: рыболовный флот переходит на масляные двигатели. Появляются дизели Atlas-Imperial of Oakland, Union и Lister.
  • 1924: Появление первых дизельных грузовиков.
  • 1928: Канадские национальные железные дороги используют маневровый дизель на своих складах.
  • 1930-е годы: Клесси Камминс начинает с голландских дизельных двигателей, а затем строит свои собственные грузовики и роскошный автомобиль Duesenberg на гоночной трассе Дейтона.
  • 1930-е годы: Caterpillar начинает производство дизельных двигателей для своих тракторов.
  • 1933: Citroën представил Rosalie, легковой автомобиль с первым в мире коммерчески доступным дизельным двигателем, разработанным совместно с Гарри Рикардо.
  • 1934: General Motors запускает исследовательский центр дизельных двигателей GM. Компания производит дизельные железнодорожные двигатели — Pioneer Zephyr — и основывает General Motors Electro-Motive Division, которая становится важным производителем двигателей для десантных кораблей и танков во время Второй мировой войны.Затем GM применяет эти знания для контроля над рынком, выпуская свои знаменитые Green Leakers для автобусов и железнодорожных двигателей.
  • 1936: Mercedes-Benz выпускает дизельный автомобиль 260D. ATSF открывает дизельный поезд Super Chief.
  • 1936: Дирижабль «Гинденбург» оснащен дизельными двигателями.

Впрыск топлива в дизельных двигателях

Системы раннего впрыска топлива

Современный дизельный двигатель представляет собой сочетание творений двух изобретателей.Во всех основных аспектах он соответствует оригинальной конструкции Diesel, в которой топливо воспламеняется при сжатии при чрезвычайно высоком давлении внутри цилиндра. Однако почти во всех современных дизельных двигателях используется так называемая система впрыска твердого топлива, изобретенная Гербертом Акройдом Стюартом для его двигателя с горячим термометром (двигатель с воспламенением от сжатия, который предшествует дизельному двигателю и работает немного иначе). Твердый впрыск — это когда топливо поднимается до экстремального давления с помощью механических насосов и доставляется в камеру сгорания с помощью форсунок, активируемых давлением, в почти твердой струе.Оригинальный двигатель Дизеля впрыскивал топливо с помощью сжатого воздуха, который распылял топливо и нагнетал его в двигатель через сопло. Это называется инъекцией воздушной струи. Размер газового компрессора, необходимого для питания такой системы, делал ранние дизельные двигатели очень тяжелыми и большими для их выходной мощности, а необходимость привода компрессора еще больше снижала выходную мощность. Ранние морские дизели часто имели вспомогательные двигатели меньшего размера, единственной целью которых было приводить в действие компрессоры для подачи воздуха в инжекторную систему главного двигателя.Такая система была слишком громоздкой и неэффективной для использования в дорожных автомобилях.

Твердотопливные системы впрыска легче, проще и допускают гораздо более высокие обороты, поэтому повсеместно используются в автомобильных дизельных двигателях. Системы воздушного дутья обеспечивают очень эффективное сгорание в условиях низкой скорости и высокой нагрузки, особенно при работе на некачественном топливе, поэтому в некоторых крупных судовых двигателях используется этот метод впрыска. Воздушный впрыск также повышает температуру топлива в процессе впрыска, поэтому его иногда называют впрыском горячего топлива.Напротив, впрыск твердого топлива иногда называют впрыском холодного топлива.

Поскольку в подавляющем большинстве современных дизельных двигателей используется впрыск твердого топлива, приведенная ниже информация относится к этой системе.

Механический и электронный впрыск

В старых двигателях используется механический топливный насос и узел клапана, который приводится в движение коленчатым валом двигателя, обычно от ремня ГРМ или цепи. В этих двигателях используются простые форсунки, которые в основном представляют собой очень точные подпружиненные клапаны, которые открываются и закрываются при определенном давлении топлива.Узел насоса состоит из насоса, который нагнетает топливо, и дискового клапана, который вращается со скоростью, равной половине частоты вращения коленчатого вала. Клапан имеет одно отверстие для подачи топлива под давлением с одной стороны и по одному отверстию для каждой форсунки с другой. Когда двигатель вращается, тарелки клапанов выстраиваются в линию и подают порцию топлива под давлением к форсунке в цилиндре, который вот-вот войдет в рабочий такт. Клапан форсунки принудительно открывается под давлением топлива, и дизель впрыскивается до тех пор, пока клапан не сместится, и давление топлива в этой форсунке не прекратится.Скорость двигателя контролируется третьим диском, который поворачивается всего на несколько градусов и управляется рычагом дроссельной заслонки. Этот диск изменяет ширину отверстия, через которое проходит топливо, и, следовательно, как долго форсунки остаются открытыми до прекращения подачи топлива, что контролирует количество впрыскиваемого топлива.

В более современном методе используется отдельный топливный насос, который постоянно подает топливо под высоким давлением к каждой форсунке. Затем каждая форсунка имеет соленоид, который управляется электронным блоком управления, что позволяет более точно контролировать время открытия форсунки, которое зависит от других условий управления, таких как частота вращения двигателя и нагрузка, что приводит к повышению производительности двигателя и экономии топлива.Эта конструкция также механически проще, чем комбинированная конструкция насоса и клапана, что делает ее в целом более надежной и менее шумной, чем ее механический аналог.

Как механические, так и электронные системы впрыска могут использоваться как с прямым, так и с непрямым впрыском.

Непрямой впрыск

Дизельный двигатель с непрямым впрыском топлива подает топливо в камеру вне камеры сгорания, называемую форкамерой, где сгорание начинается, а затем распространяется в основную камеру сгорания, чему способствует турбулентность, создаваемая в камере.Эта система обеспечивает более плавную и тихую работу, а поскольку сгоранию способствует турбулентность, давление в форсунках может быть ниже, что во времена систем механического впрыска позволяло работать на высоких скоростях, подходящих для дорожных транспортных средств (обычно до скорости около 4000 об / мин). Во время разработки высокоскоростного дизельного двигателя в 1930-х годах различные производители двигателей разработали свой тип камеры предварительного сгорания. Некоторые, такие как Mercedes-Benz, имели сложную внутреннюю конструкцию. Другие, такие как камера предварительного сгорания Lanova, использовали механическую систему для регулировки формы камеры в зависимости от условий запуска и работы.Однако наиболее часто используемой конструкцией оказалась серия вихревых камер «Комета», разработанная Гарри Рикардо, в которой использовалась сферическая камера, состоящая из двух частей, с узким «горлом» для создания турбулентности. Большинство европейских производителей высокоскоростных дизельных двигателей использовали камеры типа Comet или разработали свои собственные версии (Mercedes много лет оставался с собственной конструкцией), и эта тенденция продолжается с нынешними двигателями с непрямым впрыском.

Прямой впрыск

В современных дизельных двигателях используется один из следующих методов прямого впрыска:

Распределительный насос прямого впрыска

Первые воплощения дизелей с непосредственным впрыском использовали роторный насос, очень похожий на дизели с непрямым впрыском; однако форсунки были установлены в верхней части камеры сгорания, а не в отдельной камере предварительного сгорания.Примерами являются такие автомобили, как Ford Transit, Austin Rover Maestro и Montego с их двигателем Perkins Prima. Проблема с этими транспортными средствами заключалась в резком шуме, который они издавали, и выбросах твердых частиц (дыма). Это причина того, что в основном этот тип двигателя был ограничен коммерческими автомобилями, за исключением легковых автомобилей Maestro, Montego и Fiat Croma. Расход топлива был примерно на 15–20 процентов ниже, чем у дизелей с непрямым впрыском топлива, чего для некоторых покупателей было достаточно, чтобы компенсировать дополнительный шум.

Прямой впрыск Common Rail

В более старых дизельных двигателях ТНВД распределительного типа, регулируемый двигателем, подает топливо к форсункам, которые представляют собой просто форсунки, через которые дизельное топливо впрыскивается в камеру сгорания двигателя.

В системах Common Rail отсутствует ТНВД-распределитель. Вместо этого насос сверхвысокого давления хранит резервуар с топливом под высоким давлением — до 1800 бар (180 МПа, 26 000 фунтов на кв. Дюйм) — в «общей топливной рампе», по сути, в трубке, которая, в свою очередь, разветвляется на управляемые компьютером клапаны форсунок, каждый из которых из которых содержит прецизионно обработанное сопло и поршень, приводимый в действие соленоидом или даже пьезоэлектрическими приводами (в настоящее время, например, используются Mercedes в их высокой выходной мощности 3.0L V6 дизель с общей топливной рампой).

Большинство европейских автопроизводителей имеют дизельные двигатели Common Rail в своих модельных рядах, даже для коммерческих автомобилей. Некоторые японские производители, такие как Toyota, Nissan и недавно Honda, также разработали дизельные двигатели с системой Common Rail.

Агрегат прямого впрыска
Блок прямого впрыска

также впрыскивает топливо непосредственно в цилиндр двигателя. Однако в этой системе форсунка и насос объединены в один блок, расположенный над каждым цилиндром.Таким образом, каждый цилиндр имеет собственный насос, питающий собственную форсунку, что предотвращает колебания давления и обеспечивает более равномерный впрыск. Этот тип системы впрыска, также разработанный Bosch, используется Volkswagen AG в автомобилях (где она называется «Pumpe-Düse System», буквально «система насос-форсунка»), а также Mercedes Benz (PLD) и большинством крупных компаний. производители дизельных двигателей для больших коммерческих двигателей (CAT, Cummins, Detroit Diesel). Благодаря недавним улучшениям давление насоса было увеличено до 2050 бар (205 МПа), что обеспечивает параметры впрыска, аналогичные системам Common Rail.

Опасность травмы при подкожной инъекции

Поскольку многие системы впрыска топлива дизельных двигателей работают при чрезвычайно высоком давлении, существует риск получения травмы при подкожном впрыскивании топлива, если топливную форсунку снять со своего места и эксплуатировать на открытом воздухе.

Типы дизельных двигателей

Ранние дизельные двигатели

Рудольф Дизель планировал, что его двигатель заменит паровой двигатель в качестве основного источника энергии для промышленности. В качестве таких дизельных двигателей в конце 19-го и начале 20-го веков использовалась та же базовая схема и форма, что и для промышленных паровых двигателей, с цилиндрами с длинным каналом, внешним клапанным механизмом, крестообразными подшипниками и открытым коленчатым валом, соединенным с большой маховик.Меньшие двигатели будут построены с вертикальными цилиндрами, в то время как большинство промышленных двигателей среднего и большого размера будут построены с горизонтальными цилиндрами, как и паровые двигатели. В обоих случаях двигатели могли быть построены с более чем одним цилиндром. Самые большие ранние дизели напоминали паровой двигатель с поршневым двигателем тройного расширения, имея высоту в десятки футов с вертикальными цилиндрами, расположенными в линию. Эти ранние двигатели работали на очень низких скоростях — отчасти из-за ограничений их инжекторного оборудования с воздушным дутьем, а отчасти из-за того, что они были совместимы с большей частью промышленного оборудования, предназначенного для паровых двигателей — диапазоны скоростей от 100 до 300 об / мин были обычным явлением.Двигатели обычно запускались путем подачи сжатого воздуха в цилиндры для вращения двигателя, хотя двигатели меньшего размера можно было запустить вручную.

В первые десятилетия двадцатого века, когда большие дизельные двигатели впервые устанавливались на корабли, двигатели имели форму, аналогичную распространенным в то время составным паровым двигателям, с поршнем, соединенным с шатуном через крейцкопф. несущий. Следуя практике паровых двигателей, были сконструированы четырехтактные дизельные двигатели двойного действия для увеличения выходной мощности, с сгоранием, происходящим с обеих сторон поршня, с двумя комплектами клапанного механизма и впрыском топлива.Эта система также означала, что направление вращения двигателя можно было изменить на противоположное, изменив синхронизацию форсунок. Это означало, что двигатель можно было соединить напрямую с гребным винтом без коробки передач. Несмотря на то, что дизельный двигатель двойного действия производил большую мощность и был очень эффективным, основная проблема заключалась в обеспечении хорошего уплотнения в месте, где шток поршня проходил через дно нижней камеры сгорания к подшипнику крейцкопфа. К 1930-м годам оказалось, что устанавливать турбокомпрессоры на двигатели проще и надежнее, хотя крейцкопфы по-прежнему используются для уменьшения нагрузки на подшипники коленчатого вала и износа цилиндров в больших длинноходных соборных двигателях.

Современные дизельные двигатели

Существует два класса дизельных и бензиновых двигателей: двухтактные и четырехтактные. Большинство дизелей обычно используют четырехтактный цикл, а некоторые более крупные дизели работают по двухтактному циклу, в основном огромные двигатели на кораблях. В большинстве современных локомотивов используется двухтактный дизель, соединенный с генератором, который вырабатывает ток для привода электродвигателей, что устраняет необходимость в трансмиссии. Для достижения рабочего давления в цилиндрах двухтактные дизели должны использовать наддув от турбокомпрессора или нагнетателя.Двухтактные дизельные двигатели идеально подходят для таких применений из-за их высокой удельной мощности — с вдвое большим количеством рабочих ходов на один оборот коленчатого вала по сравнению с четырехтактными двигателями они способны производить гораздо большую мощность на рабочий объем.

Обычно ряды цилиндров используются в количестве, кратном двум, хотя может использоваться любое количество цилиндров, если нагрузка на коленчатый вал уравновешена для предотвращения чрезмерной вибрации. Рядный 6-цилиндровый двигатель наиболее распространен в двигателях средней и большой мощности, хотя также распространены V8 и рядный 4-цилиндровый двигатель.Двигатели малой мощности (обычно считаются двигателями объемом менее 5 литров) обычно являются 4- или 6-цилиндровыми, причем 4-цилиндровый тип является наиболее распространенным типом, используемым в автомобилях. Также были произведены 5-цилиндровые дизельные двигатели, представляет собой компромисс между плавностью хода 6-цилиндрового двигателя и компактными размерами 4-цилиндрового двигателя Дизельные двигатели для небольших заводских машин, лодок, тракторов, генераторов и насосов могут быть 4-, 3-, 2-цилиндровыми. , с одноцилиндровым дизельным двигателем, оставшимся для легкой стационарной работы.

Стремление улучшить удельную мощность дизельного двигателя привело к созданию нескольких новых цилиндров, позволяющих извлекать больше мощности из заданной мощности. Двигатель Napier Deltic с тремя цилиндрами, расположенными в форме треугольника, каждый из которых содержит два поршня противоположного действия, а весь двигатель имеет три коленчатых вала, является одним из наиболее известных. Компания Commer van из Соединенного Королевства разработала аналогичную конструкцию для дорожных транспортных средств. Двигатель Commer имел три горизонтальных рядных цилиндра, каждый с двумя поршнями противоположного действия, и двигатель имел два коленчатых вала.Хотя обе эти конструкции преуспели в производстве большей мощности при заданной мощности, они были сложными и дорогими в производстве и эксплуатации, и когда в 1960-х годах технология турбокомпрессора улучшилась, это оказалось гораздо более надежным и простым способом извлечения большей мощности.

Следует отметить, что еще до 1949 года компания Sulzer начала экспериментировать с двухтактными двигателями с давлением наддува до шести атмосфер, в которых вся выходная мощность отводилась от выхлопной турбины. Двухтактные поршни приводили в движение поршни воздушного компрессора, образуя объемный газогенератор.Противоположные поршни были соединены рычагами вместо коленчатых валов. Несколько таких агрегатов можно было бы соединить вместе для подачи энергетического газа на одну большую выходную турбину. Общий тепловой КПД был примерно в два раза выше, чем у простой газовой турбины. (Источник Modern High-Speed ​​Oil Engines Volume II by CW Chapman, опубликованный The Caxton Publishing Co. Ltd., перепечатанный в июле 1949 г.)

Карбюраторные модели двигателей с воспламенением от сжатия

Простые двигатели с воспламенением от сжатия предназначены для модельных двигателей.Это очень похоже на типичный двигатель со свечами накаливания, который работает на смеси метанола (метилового спирта) и смазки (обычно касторового масла) (и иногда нитрометана для улучшения характеристик) с нитью накаливания для обеспечения воспламенения. Вместо свечи накаливания головка имеет регулируемый контрпоршень над поршнем, образующий верхнюю поверхность камеры сгорания. Этот контрпоршень удерживается регулировочным винтом, управляемым внешним рычагом (или иногда съемным шестигранным ключом).Используемое топливо содержит эфир, который является очень летучим и имеет чрезвычайно низкую температуру воспламенения, в сочетании с керосином и смазкой, а также очень небольшой долей (обычно 2 процента) присадки, улучшающей воспламенение, такой как амилнитрат или предпочтительно изопропилнитрат в настоящее время. Двигатель запускается путем снижения компрессии и настройки обогащения смеси в распылителе с помощью регулируемого игольчатого клапана, постепенно увеличивая компрессию при прокручивании двигателя. Компрессия увеличивается до тех пор, пока двигатель не заработает.Затем смесь можно обеднить и увеличить компрессию. По сравнению с двигателями со свечами накаливания, модельные дизельные двигатели демонстрируют гораздо более высокую топливную экономичность, что увеличивает выносливость в зависимости от количества перевозимого топлива. Они также обладают более высоким крутящим моментом, что позволяет вращать гребной винт большего или большего шага на более низкой скорости. Поскольку сгорание происходит задолго до того, как открывается выпускное отверстие, эти двигатели также значительно тише (без глушителя), чем двигатели со свечами накаливания аналогичного объема.По сравнению с двигателями со свечами накаливания, модельные дизели сложнее дросселировать в широком диапазоне мощностей, что делает их менее подходящими для моделей с радиоуправлением, чем двух- или четырехтактные двигатели со свечами накаливания, хотя эта разница считается менее заметной при использование современных двигателей с портами Шнерле.

Преимущества и недостатки по сравнению с двигателями с искровым зажиганием

Мощность и экономия топлива

Дизельные двигатели

более экономичны, чем бензиновые (бензиновые) двигатели той же мощности, что приводит к меньшему расходу топлива.Обычный запас составляет на 40 процентов больше миль на галлон для эффективного турбодизеля. Например, текущая модель _koda Octavia, использующая двигатели Volkswagen Group, имеет комбинированный рейтинг в евро 38 миль на галлон США (6,2 литра на 100 км (л/100 км)) для 102 базовых лошадиных сил (л.с.) (76 киловатт). (кВт)) бензиновый двигатель и 54 мили на галлон (4,4 л/100 км) для дизельного двигателя мощностью 105 л.с. (75 кВт). Однако такое сравнение не учитывает, что дизельное топливо более плотное и содержит примерно на 15 процентов больше энергии.Скорректировав цифры для Octavia, можно обнаружить, что общая энергоэффективность дизельной версии все еще примерно на 20 процентов выше, несмотря на снижение веса дизельного двигателя. При сравнении двигателей относительно малой мощности для веса автомобиля (таких как двигатели мощностью 75 лошадиных сил (л.с.) для Volkswagen Golf) общее преимущество дизельного двигателя в энергоэффективности снижается еще больше, но все же составляет от 10 до 15 процентов.

Хотя более высокая степень сжатия способствует повышению эффективности, дизельные двигатели гораздо более экономичны, чем бензиновые (бензиновые) двигатели при малой мощности и холостом ходу двигателя.В отличие от бензинового двигателя, у дизеля отсутствует дроссельная заслонка во впускной системе, которая закрывается на холостом ходу. Это создает паразитное сопротивление поступающему воздуху, снижая эффективность бензиновых/бензиновых двигателей на холостом ходу. Из-за более низких тепловых потерь дизельные двигатели имеют меньший риск постепенного перегрева при длительной работе на холостом ходу. Например, во многих приложениях, таких как судостроение, сельское хозяйство и железные дороги, дизели остаются без присмотра в течение многих часов, а иногда и дней. Эти преимущества особенно привлекательны в локомотивах.

Дизельные двигатели без наддува тяжелее бензиновых двигателей той же мощности по двум причинам. Во-первых, требуется дизельный двигатель большего рабочего объема, чтобы производить ту же мощность, что и бензиновый двигатель. По сути, это связано с тем, что дизель должен работать на более низких оборотах двигателя. Дизельное топливо впрыскивается непосредственно перед воспламенением, поэтому у топлива остается мало времени, чтобы найти весь кислород в цилиндре. В бензиновом двигателе воздух и топливо смешиваются на протяжении всего такта сжатия, что обеспечивает полное смешивание даже при более высоких оборотах двигателя.Вторая причина большего веса дизельного двигателя заключается в том, что он должен быть прочнее, чтобы выдерживать более высокие давления сгорания, необходимые для воспламенения, и ударную нагрузку от детонации воспламеняющей смеси. В результате совершающая возвратно-поступательное движение масса (поршень и шатун) и результирующие силы, ускоряющие и замедляющие эти массы, тем больше, чем тяжелее, крупнее и прочнее деталь, и действуют законы убывающей отдачи прочности компонентов. , масса компонента и инерция — все это вступает в игру для создания баланса смещения, оптимальной средней выходной мощности, веса и долговечности.

Тем не менее, именно такое качество сборки позволило некоторым энтузиастам добиться значительного увеличения мощности двигателей с турбонаддувом за счет довольно простых и недорогих модификаций. Бензиновый двигатель аналогичного размера не может обеспечить сравнимое увеличение мощности без значительных изменений, потому что стандартные компоненты не смогут выдерживать более высокие нагрузки, воздействующие на них. Поскольку дизельный двигатель уже создан, чтобы выдерживать более высокие уровни нагрузки, он является идеальным кандидатом для настройки производительности с небольшими затратами.Однако следует отметить, что любая модификация, которая увеличивает количество топлива и воздуха, проходящего через дизельный двигатель, повысит его рабочую температуру, что сократит срок его службы и увеличит требования к интервалу обслуживания. Это проблемы с более новыми, более легкими, высокопроизводительными дизельными двигателями, которые не «перестроены» в степени старых двигателей и вынуждены обеспечивать большую мощность в двигателях меньшего размера.

Добавление турбокомпрессора или нагнетателя к двигателю в значительной степени способствует увеличению экономии топлива и выходной мощности, уменьшая упомянутое выше ограничение скорости всасывания топлива и воздуха для данного объема двигателя.Давление наддува у дизелей может быть выше, чем у бензиновых двигателей, а более высокая степень сжатия позволяет дизельному двигателю быть более эффективным, чем сопоставимый двигатель с искровым зажиганием. Хотя теплотворная способность топлива немного ниже (45,3 МДж/кг (мегаджоулей на килограмм) по сравнению с бензином (45,8 МДж/кг), дизельное топливо намного плотнее, и топливо продается по объему, поэтому дизельное топливо содержит больше энергии на литр или галлон. Повышенная экономия топлива дизельного двигателя по сравнению с бензиновым двигателем означает, что дизель производит меньше углекислого газа (CO2) на единицу расстояния.В последнее время прогресс в производстве и изменения в политическом климате увеличили доступность и осведомленность о биодизеле, альтернативе дизельному топливу, полученному из нефти, с гораздо более низким чистым суммарным выбросом CO2 из-за поглощения CO2 растениями, используемыми для производства. топливо.

Выбросы

Дизельные двигатели

производят очень мало угарного газа, так как они сжигают топливо в избытке воздуха даже при полной нагрузке, и в этот момент количество впрыскиваемого топлива за цикл по-прежнему составляет около 50 процентов от стехиометрического.Однако они могут выделять черную сажу (или, точнее, твердые частицы дизельного топлива) из своих выхлопных газов, которые состоят из несгоревших углеродных соединений. Это часто вызвано изношенными форсунками, которые недостаточно распыляют топливо, или неисправной системой управления двигателем, которая позволяет впрыскивать больше топлива, чем может быть полностью сожжено за отведенное время.

Предел полной нагрузки дизельного двигателя при нормальной эксплуатации определяется «пределом черного дыма», за пределами которого топливо не может полностью сгорать; поскольку «предел черного дыма» все еще значительно беднее стехиометрического, можно получить больше мощности, превысив его, но в результате неэффективное сгорание означает, что дополнительная мощность достигается за счет снижения эффективности сгорания, высокого расхода топлива и плотных облаков дыма. дым, так что это делается только в специализированных приложениях (таких как буксировка трактора), где эти недостатки не имеют большого значения.

Аналогичным образом, при запуске из холодного состояния эффективность сгорания двигателя снижается, поскольку холодный блок двигателя отбирает тепло из цилиндра в такте сжатия. В результате топливо не сгорает полностью, что приводит к сине-белому дыму и снижению выходной мощности до тех пор, пока двигатель не прогреется. Это особенно касается двигателей с непосредственным впрыском, которые менее термически эффективны. При электронном впрыске время и продолжительность последовательности впрыска можно изменить, чтобы компенсировать это.Старые двигатели с механическим впрыском могут иметь ручное управление для изменения времени или многофазные свечи накаливания с электронным управлением, которые остаются включенными в течение периода времени после запуска, чтобы обеспечить чистое сгорание — свечи автоматически переключаются на более низкую мощность, чтобы предотвратить они выгорают.

Частицы размером, обычно называемым PM10 (частицы размером 10 микрометров или меньше), вызывают проблемы со здоровьем, особенно в городах. Некоторые современные дизельные двигатели оснащены сажевыми фильтрами, которые улавливают черную сажу и при насыщении автоматически регенерируются путем сжигания частиц.Другие проблемы, связанные с выхлопными газами (оксиды азота, оксиды серы), можно уменьшить за счет дополнительных инвестиций и оборудования; некоторые дизельные автомобили теперь имеют каталитические нейтрализаторы в выхлопе.

Мощность и крутящий момент

Для коммерческого использования, требующего буксировки, перевозки грузов и других тяговых задач, дизельные двигатели, как правило, имеют более желательные характеристики крутящего момента. Дизельные двигатели, как правило, имеют довольно низкий пик крутящего момента в своем диапазоне скоростей (обычно между 1600–2000 об/мин для двигателя небольшой мощности и ниже для более крупного двигателя, используемого в грузовике).Это обеспечивает более плавный контроль над большими нагрузками при запуске из состояния покоя и, что особенно важно, позволяет дизельному двигателю работать с более высокими нагрузками на низких скоростях, чем бензиновый / бензиновый двигатель, что делает их намного более экономичными для этих приложений. Эта характеристика не столь желательна в частных автомобилях, поэтому в большинстве современных дизелей, используемых в таких автомобилях, используется электронное управление, турбокомпрессоры с изменяемой геометрией и более короткий ход поршня для достижения более широкого распределения крутящего момента в диапазоне оборотов двигателя, обычно достигая пика около 2500–3000 об/мин. .

Надежность

Отсутствие системы электрического зажигания значительно повышает надежность. Высокая долговечность дизельного двигателя также обусловлена ​​его перестроением (см. выше), а также циклом сгорания дизеля, который создает менее резкие изменения давления по сравнению с двигателем с искровым зажиганием, преимущество, которое усиливается за счет более низкие скорости вращения в дизелях. Дизельное топливо является лучшей смазкой, чем бензин, поэтому оно менее вредно для масляной пленки на поршневых кольцах и каналах цилиндров; дизельные двигатели обычно проходят 250 000 миль (400 000 км) или более без ремонта.

Качество и разнообразие топлива

В дизельных двигателях механическая система форсунок испаряет топливо (вместо форсунки Вентури в карбюраторе, как в бензиновом двигателе). Это принудительное испарение означает, что можно использовать менее летучие виды топлива. Что еще более важно, поскольку в дизельном двигателе в цилиндр вводится только воздух, степень сжатия может быть намного выше, поскольку отсутствует риск преждевременного зажигания при условии точного времени процесса впрыска. Это означает, что температура цилиндров дизельного двигателя намного выше, чем у бензинового двигателя, что позволяет использовать менее горючее топливо.

Дизельное топливо представляет собой форму легкого жидкого топлива, очень похожего на керосин, но дизельные двигатели, особенно старые или простые конструкции, в которых отсутствуют прецизионные электронные системы впрыска, могут работать на широком спектре других видов топлива. Одной из наиболее распространенных альтернатив является растительное масло из самых разных растений. Некоторые двигатели могут работать на растительном масле без модификаций, а для большинства других требуются довольно простые модификации. Биодизель — это чистое дизельное топливо, очищенное от растительного масла, и его можно использовать почти во всех дизельных двигателях.Единственными ограничениями для топлива, используемого в дизельных двигателях, являются способность топлива течь по топливопроводам и способность топлива надлежащим образом смазывать топливный насос и форсунки.

Дизель в двигателях с искровым зажиганием

Бензиновый двигатель (с искровым зажиганием) иногда может работать как двигатель с воспламенением от сжатия при нештатных обстоятельствах, явление, обычно описываемое как стук или стук (во время нормальной работы) или дизельный двигатель (когда двигатель продолжает работать после электрическая система зажигания отключена).Обычно это вызвано горячими отложениями углерода в камере сгорания, которые действуют так же, как и свеча накаливания в дизельном двигателе или авиационном двигателе. Чрезмерный нагрев также может быть вызван неправильным опережением зажигания и/или соотношением топливо/воздух, что, в свою очередь, приводит к перегреву открытых частей свечи зажигания в камере сгорания. Наконец, двигатели с высокой степенью сжатия, требующие высокооктанового топлива, могут стучать при использовании низкооктанового топлива.

Характеристики топлива и жидкостей

Дизельные двигатели

могут работать на различных видах топлива, в зависимости от конфигурации, хотя наиболее распространено одноименное дизельное топливо, полученное из сырой нефти.Дизельное топливо хорошего качества можно синтезировать из растительного масла и спирта. Популярность биодизеля растет, поскольку его часто можно использовать в немодифицированных двигателях, хотя производство остается ограниченным. В последнее время биодизель из кокоса, который может производить очень многообещающий метиловый эфир кокоса (CME), обладает характеристиками, которые улучшают смазывающую способность и сгорание, что дает обычному дизельному двигателю без каких-либо модификаций большую мощность, меньше твердых частиц или черного дыма и более плавную работу двигателя. Филиппины являются пионерами в исследованиях CME на основе кокоса с помощью немецких и американских ученых.Дизельное топливо, полученное из нефти, часто называют нефтедизельным топливом , если необходимо различать источник топлива.

Двигатели могут работать с полным спектром дистиллятов сырой нефти, от компримированного природного газа, спиртов, бензина, до мазута, от дизельного топлива до мазута. Тип используемого топлива представляет собой сочетание эксплуатационных требований и затрат на топливо.

Остаточное топливо представляет собой «отбросы» процесса дистилляции и представляет собой более густую, тяжелую нефть или нефть с более высокой вязкостью, которая настолько густая, что ее трудно перекачивать, если ее не нагреть.Остаточные мазуты дешевле чистого, очищенного дизельного топлива, хотя и грязнее. Их основные соображения касаются использования на кораблях и очень больших генераторных установках из-за стоимости большого объема потребляемого топлива, часто составляющего многие метрические тонны в час. В эту категорию можно отнести низкоочищенное биотопливо, чистое растительное масло (SVO) и отработанное растительное масло (WVO). Кроме того, использование низкокачественного топлива может привести к серьезным проблемам с техническим обслуживанием. Большинство дизельных двигателей, которыми питаются такие корабли, как супертанкеры, сконструированы таким образом, что двигатель может безопасно использовать топливо низкого качества.

Обычное дизельное топливо воспламеняется труднее, чем бензин, из-за его более высокой температуры воспламенения, но после возгорания дизельное топливо может быть очень сильным.

Дизельные установки

Использование дизельного двигателя во всем мире очень сильно зависит от местных условий и конкретного применения. Области применения, требующие надежности дизеля и высокого крутящего момента (такие как тракторы, грузовые автомобили, тяжелая техника, большинство автобусов и т. д.), встречаются практически во всем мире (очевидно, что эти применения также выигрывают от улучшенной топливной экономичности дизеля).Местные условия, такие как цены на топливо, играют большую роль в принятии дизельных двигателей — например, в Европе к концу 1950-х годов большинство тракторов были оснащены дизельными двигателями, в то время как в США дизель не доминировал на рынке до 1970-х годов. . Точно так же около половины всех автомобилей, продаваемых в Европе (где цены на топливо высоки), имеют дизельный двигатель, в то время как частные автомобили в Северной Америке практически не имеют дизельных двигателей из-за гораздо более низкой стоимости топлива и плохой репутации.

Помимо их использования на торговых судах и катерах, дизельное топливо также имеет военно-морское преимущество в отношении относительной безопасности дизельного топлива в дополнение к увеличенному запасу хода по сравнению с бензиновым двигателем.Немецкие «карманные линкоры» были самыми большими дизельными боевыми кораблями, но немецкие торпедные катера, известные как E-boats (Schnellboot) времен Второй мировой войны, также были дизельными кораблями. Обычные подводные лодки использовали их еще до Первой мировой войны. Преимуществом американских дизель-электрических подводных лодок было то, что они работали по двухтактному циклу, в отличие от четырехтактного, который использовали другие военно-морские силы.

Mercedes-Benz в сотрудничестве с Robert Bosch GmbH с 1936 года успешно выпускает легковые автомобили с дизельным двигателем, которые продаются во многих частях мира, а в 1970-х и 1980-х годах к ним присоединились другие производители.Затем последовали другие производители автомобилей: Borgward в 1952 году, Fiat в 1953 году и Peugeot в 1958 году.

В США дизель не так популярен в легковых автомобилях, как в Европе. Такие автомобили традиционно воспринимались как более тяжелые, более шумные, имеющие эксплуатационные характеристики, из-за которых они медленнее разгоняются, более закопченные, вонючие и более дорогие, чем аналогичные автомобили с бензиновым двигателем. С конца 1970-х до середины 1980-х подразделения General Motors Oldsmobile, Cadillac и Chevrolet производили маломощные и ненадежные дизельные версии своих бензиновых двигателей V8, что является одной из веских причин такой репутации.Dodge с его всегда известными рядными шестицилиндровыми дизельными двигателями Cummins, устанавливаемыми в пикапах (примерно с конца 1980-х годов), действительно возродил привлекательность дизельных двигателей для легковых автомобилей среди американских потребителей. легковой автомобиль так и не был реализован. Попытка преобразовать бензиновый двигатель в дизельный двигатель оказалась безрассудной со стороны GM. В 1980-х компания Ford Motor пробовала устанавливать дизельные двигатели на некоторые легковые автомобили, но без особого успеха.Кроме того, до введения дизельного топлива со сверхнизким содержанием серы 15 частей на миллион, которое началось 15 октября 2006 г. в США (1 июня 2006 г. в Канаде), дизельное топливо, используемое в Северной Америке, по-прежнему имело более высокое содержание серы, чем дизельное топливо, используемое в Северной Америке. топлива, используемого в Европе, фактически ограничивая использование дизельного топлива промышленными транспортными средствами, что еще больше усугубило негативный имидж. Дизельное топливо со сверхнизким содержанием серы не является обязательным до 2010 года в Соединенных Штатах. Это изображение не отражает последние разработки, особенно когда речь идет об очень высоком крутящем моменте современных дизелей на низких оборотах, характеристики которых аналогичны большим бензиновым двигателям V8, популярным в Соединенных Штатах.Легкие и тяжелые грузовики в Соединенных Штатах годами оснащались дизельными двигателями. После внедрения дизельного топлива со сверхнизким содержанием серы Mercedes-Benz начал продавать легковые автомобили под брендом BlueTec. Кроме того, другие производители, такие как Ford, General Motors, Honda, планировали продавать дизельные автомобили в США в 2008-2009 годах, разработанные с учетом более жестких требований по выбросам в 2010 году.

В Европе, где налоговые ставки во многих странах делают дизельное топливо намного дешевле бензина, автомобили с дизельным двигателем очень популярны (более половины продаваемых новых автомобилей оснащены дизельными двигателями), а новые конструкции значительно сузили разницу между бензиновыми и дизельными автомобилями в упомянутые области.Часто среди моделей с аналогичным обозначением турбодизели превосходят своих родственных автомобилей с бензиновым двигателем без наддува. В одном анекдоте рассказывается о гонщике Формулы-1 Дженсоне Баттоне, который был арестован за рулем дизельного BMW 330cd Coupé со скоростью 230 километров в час (км/ч) (около 140 миль в час (миль/ч)) во Франции, где он был слишком молод. арендовать для него автомобиль с бензиновым двигателем. Баттон сухо заметил в последующих интервью, что фактически оказал BMW услугу по связям с общественностью, поскольку никто не верил, что дизель может ездить так быстро.Тем не менее, BMW уже выиграла гонку «24 часа Нюрбургринга» в 1998 году с дизельным двигателем 3-й серии. Дизельная лаборатория BMW в Штайре, Австрия, возглавляемая Ференцем Аниситсом, занимается разработкой инновационных дизельных двигателей.

Компания Mercedes-Benz, предлагающая легковые автомобили с дизельным двигателем с 1936 года, сделала упор на дизельные автомобили с высокими эксплуатационными характеристиками в своем новом модельном ряду, как и Volkswagen со своими брендами. Citroën продает больше автомобилей с дизельными двигателями, чем с бензиновыми, поскольку французские бренды (также Peugeot) впервые представили бездымные конструкции HDI с фильтрами.Даже итальянская марка Alfa Romeo, известная своим дизайном и успешной историей в гонках, делает упор на дизели, которые также участвуют в гонках.

Несколько мотоциклов были построены с использованием дизельных двигателей, но недостатки веса и стоимости обычно перевешивают повышение эффективности в этом приложении.

В отрасли дизельных двигателей двигатели часто делятся по скорости на три неофициальные группы:

Высокоскоростной
Высокоскоростные (около 1200 об/мин и более) двигатели используются для питания грузовых автомобилей, автобусов, тракторов, автомобилей, яхт, компрессоров, насосов и небольших электрических генераторов.
Среднескоростной
Большие электрические генераторы часто приводятся в движение среднескоростными двигателями (приблизительно от 300 до 1200 об/мин), которые оптимизированы для работы на заданной (синхронной) скорости в зависимости от частоты генерации (50 или 60 Гц) и обеспечивают быструю реакцию на изменения нагрузки. . Среднеоборотные двигатели также используются для судовых двигателей и механических приводов, таких как большие компрессоры или насосы. Самые большие среднеоборотные двигатели, производимые сегодня (2007 г.), имеют мощность примерно до 22 400 кВт (30 000 л.с.).Среднеоборотные двигатели, производимые сегодня, в основном четырехтактные, однако некоторые двухтактные двигатели все еще производятся.
Тихоходный
(также известный как «Медленноскоростной») Самые большие дизельные двигатели в основном используются для питания кораблей, хотя наземных электростанций также очень мало. Эти чрезвычайно большие двухтактные двигатели имеют выходную мощность до 80 МВт, работают в диапазоне примерно от 60 до 120 об/мин, имеют высоту до 15 м и вес более 2000 тонн.Обычно они работают на дешевом низкокачественном «тяжелом топливе», также известном как «бункерное» топливо, которое требует нагрева на корабле для заправки и перед впрыском из-за высокой вязкости топлива. Такие крупные низкоскоростные двигатели разрабатывают такие компании, как MAN B&W Diesel (ранее Burmeister & Wain) и Wärtsilä (которая приобрела Sulzer Diesel). Они необычайно узкие и высокие из-за добавления крейцкопфа. Сегодня (2007 г.) 14-цилиндровый двухтактный дизельный двигатель с турбонаддувом Wärtsilä RT-flex 96C, произведенный лицензиатом Wärtsilä Doosan в Корее, является самым мощным дизельным двигателем, введенным в эксплуатацию, с диаметром цилиндра 960 мм, обеспечивающим 80.08 МВт (108 920 л.с.). Он был введен в эксплуатацию в сентябре 2006 года на борту крупнейшего в мире контейнеровоза Emma Maersk, принадлежащего группе AP Moller-Maersk.

Необычные применения

Самолет

Цеппелины Graf Zeppelin II и Hindenburg приводились в движение реверсивными дизельными двигателями . Направление работы менялось переключением шестерен на распределительном валу. С полной мощности вперед двигатели можно было остановить, переключить и вывести на полную мощность задним ходом менее чем за 60 секунд.

Дизельные двигатели были впервые испытаны на самолетах в 1930-х годах. Ряд производителей построили двигатели, наиболее известными из которых, вероятно, были радиальные двигатели с воздушным охлаждением Packard и Junkers Jumo 205, который был умеренно успешным, но оказался непригодным для боевого применения во время Второй мировой войны. Еще одним интересным послевоенным предложением стал комплекс Napier Nomad. Однако в целом более низкая удельная мощность дизелей, особенно по сравнению с турбовинтовыми двигателями, работающими на керосине, не позволяет использовать их в этом приложении.

Очень высокая стоимость авиационного газа в Европе и достижения в области автомобильных дизельных технологий привели к возрождению интереса к этой концепции. Новые сертифицированные легкие самолеты с дизельным двигателем уже доступны, и ряд других компаний также разрабатывают для этой цели новые конструкции двигателей и самолетов. Многие из них работают на легкодоступном реактивном топливе или могут работать как на реактивном топливе, так и на обычном автомобильном дизельном топливе. Чтобы получить высокое соотношение мощности и веса, необходимое для авиадвигателя, эти новые «авиадизели» обычно являются двухтактными, а некоторые, например, британский двигатель «Даир», используют поршни противоположного действия для увеличения мощности.

Автомобильные гонки

Несмотря на то, что вес и меньшая мощность дизельного двигателя, как правило, не позволяют использовать его в автомобильных гонках, многие дизели участвуют в гонках в классах, которые требуют их, в основном в гонках на грузовиках и буксировке тракторов, а также в тех видах гонок, где эти недостатки менее серьезны, например, гонки с рекордами наземной скорости или гонки на выносливость. Существуют даже драгстеры с дизельным двигателем, несмотря на такие недостатки дизеля, как вес и низкие пиковые обороты.

В 1931 году Клесси Камминс установил свой дизель в гоночный автомобиль, разогнавшись до 162 км/ч в Дайтоне и 138 км/ч в гонке Indianapolis 500, где Дэйв Эванс занял на нем тринадцатое место, завершив всю гонку без пит-стопа. , полагаясь на крутящий момент и эффективность использования топлива для преодоления веса и низкой пиковой мощности.

В 1933 году Bentley 1925 года выпуска с двигателем Gardner 4LW стал первым автомобилем с дизельным двигателем, принявшим участие в ралли Монте-Карло под управлением лорда Говарда де Клиффорда. Это был лучший британский автомобиль, занявший пятое место в общем зачете.

В 1952 году Фред Агабашян выиграл поул-позицию в гонке Indianapolis 500 на 6,6-литровом дизельном автомобиле Cummins с турбонаддувом, установив рекорд скорости круга с поул-позицией — 222,108 км/ч или 138,010 миль/ч. Хотя Агабашян оказался на восьмом месте до того, как дошел до первого поворота, он поднялся на пятое место за несколько кругов и бежал конкурентоспособно, пока плохо расположенный воздухозаборник автомобиля не проглотил достаточно мусора с трассы, чтобы вывести из строя турбонагнетатель на 71-м круге; он финишировал 27-м.

Поскольку дизельные автомобили с турбонаддувом стали сильнее в 1990-х годах, они также участвовали в гонках кузовных автомобилей, а BMW даже выиграла 24 часа Нюрбургринга в 1998 году с 320d против других заводских дизельных автомобилей Volkswagen и около 200 автомобилей с обычным двигателем. . Alfa Romeo даже организовала гоночную серию со своими моделями Alfa Romeo 147 1.9 JTD.

Участники ралли VW Dakar 2005 и 2006 годов оснащены собственной линейкой двигателей TDI, чтобы побороться за первую общую победу на дизеле.Между тем, пятикратный победитель гонки «24 часа Ле-Мана» Audi R8 был заменен Audi R10 в 2006 году, который оснащен двигателем V12 TDI с системой Common Rail мощностью 650 л.с. (485 кВт) и крутящим моментом 1100 Н•м (810 фунт-сила-фут). дизельный двигатель, соединенный с 5-ступенчатой ​​коробкой передач вместо 6-ступенчатой, используемой в R8, чтобы справиться с дополнительным крутящим моментом. Коробка передач считается главной проблемой, так как более ранние попытки других потерпели неудачу из-за отсутствия подходящих трансмиссий, которые могли бы достаточно долго выдерживать крутящий момент.

После победы в гонке «12 часов Себринга» в 2006 году на своем дизельном R10 компания Audi также одержала победу в гонке «24 часа Ле-Мана» 2006 года.Это первый раз, когда спортивный автомобиль может соревноваться за общие победы на дизельном топливе с автомобилями, работающими на обычном топливе или на метаноле и биоэтаноле. Однако значение этого немного уменьшается из-за того, что правила гонок ACO / ALMS поощряют использование альтернативных видов топлива, таких как дизельное топливо.

В 2007 году Audi снова одержала победу в Себринге. У нее было преимущество как в скорости, так и в экономии топлива, по сравнению со всеми остальными, включая Porsche RS Spyder, которые представляют собой специально построенные гоночные автомобили с бензиновым двигателем.После победы в Себринге можно с уверенностью сказать, что в этом году дизельные автомобили Audi снова выиграют гонку «24 часа Ле-Мана» 2007 года. Единственным конкурентом является гоночный Peugeot 908 с дизельным двигателем. Но эта машина не крутила колеса в гонках.

В 2006 году JCB Dieselmax побил рекорд наземной скорости для дизельных автомобилей, разогнавшись до средней скорости более 328 миль в час. В автомобиле использовались «два дизельных двигателя общей мощностью 1500 лошадиных сил (1120 кВт). Каждый из них представляет собой 4-цилиндровый 4,4-литровый двигатель, используемый в коммерческих целях в качестве экскаватора-погрузчика. [1]

В 2007 году SEAT — с SEAT León Mk2 на Oschersleben Motorsport Arena в Германии — стал первым производителем, выигравшим этап серии WTCC на дизельном автомобиле, всего через месяц после объявления об этом. участие в чемпионате мира по кузовным гонкам FIA с Leon TDI Успех SEAT с Leon TDI был продолжен и привел к завоеванию титулов чемпиона FIA WTCC 2009 года (как для водителей, так и для производителей).

В 2007 году Уэс Андерсон управлял дизельным пикапом Chevrolet S-10 мощностью 1250 л.72 секунды на скорости 179 миль в час на четверть мили. [2]

Мотоциклы

Дизельные двигатели с традиционно плохим отношением мощности к весу, как правило, не подходят для использования в мотоциклах, для которых требуется высокая мощность, малый вес и высокая скорость вращения двигателя. Однако в 1980-х годах силы НАТО в Европе перевели все свои машины на дизельное топливо. У некоторых был парк мотоциклов, поэтому для них проводились испытания дизельных двигателей. Использовались одноцилиндровые двигатели с воздушным охлаждением, построенные Ломбардини из Италии, и они имели некоторый успех, достигая производительности, аналогичной бензиновым мотоциклам, и расхода топлива почти 200 миль на галлон.Это привело к тому, что некоторые страны переоборудовали свои велосипеды дизельными двигателями.

Разработка Университета Крэнфилда и калифорнийской компании Hayes Diversified Technologies привела к производству дизельного внедорожного мотоцикла на основе ходовой части трейлового мотоцикла Kawasaki KLR650 с бензиновым двигателем для использования в военных целях. Двигатель дизельного мотоцикла представляет собой одноцилиндровый четырехтактный двигатель с жидкостным охлаждением, рабочим объемом 584 см_ и мощностью 21 кВт (28 л.с.) с максимальной скоростью 85 миль в час (136 км/ч). Hayes Diversified Technologies обсуждала, но впоследствии отложила поставку гражданской версии примерно за 19 000 долларов США.Дорого по сравнению с аналогичными моделями.

В 2005 году Корпус морской пехоты США принял на вооружение M1030M1, мотоцикл для бездорожья, основанный на Kawasaki KLR650 и модифицированный двигателем, предназначенным для работы на дизельном топливе или реактивном топливе JP8. Поскольку другие тактические машины США, такие как внедорожник Humvee и танк M1 Abrams, используют JP8, использование мотоцикла-разведчика, работающего на том же топливе, имело смысл с логистической точки зрения.

В Индии мотоциклы производства Royal Enfield можно купить с одноцилиндровыми дизельными двигателями объемом 650 см_ на базе аналогичных используемых бензиновых двигателей, поскольку дизель намного дешевле бензина и более надежен.Эти двигатели шумные и нерафинированные, но очень популярные благодаря своей надежности и экономичности.

Текущие и будущие разработки

Уже сейчас многие системы Common Rail и насос-форсунки используют новые форсунки, в которых вместо соленоида используются многослойные пьезоэлектрические кристаллы, что обеспечивает более точное управление процессом впрыска.

Турбокомпрессоры с изменяемой геометрией имеют гибкие лопатки, которые перемещаются и пропускают в двигатель больше воздуха в зависимости от нагрузки. Эта технология повышает как производительность, так и экономию топлива.Задержка наддува уменьшается, поскольку компенсируется инерция крыльчатки турбокомпрессора.

Акселерометр пилотного управления (APC) использует акселерометр для обеспечения обратной связи об уровне шума и вибрации двигателя и, таким образом, дает указание ECU впрыскивать минимальное количество топлива, которое обеспечивает тихое сгорание и по-прежнему обеспечивает требуемую мощность (особенно на холостом ходу). )

Ожидается, что в дизельных двигателях с системой Common Rail следующего поколения будет использоваться изменяемая геометрия впрыска, которая позволяет изменять количество впрыскиваемого топлива в более широком диапазоне, а также система изменения фаз газораспределения, аналогичная той, что используется в бензиновых двигателях.

В частности, в Соединенных Штатах, в связи с ужесточением норм выбросов, производители дизельных двигателей сталкиваются с серьезной проблемой. Изучаются другие методы достижения еще более эффективного сгорания, такие как HCCI (воспламенение от сжатия гомогенного заряда).

Факты о современных дизелях

(Источник: Robert Bosch GmbH)

Топливо проходит через форсунки со скоростью около 1500 миль в час (2400 км/ч)

Топливо впрыскивается в камеру сгорания менее чем за 1.5 мс — примерно столько времени, сколько вспыхивает камера.

Наименьшее количество впрыскиваемого топлива составляет один кубический миллиметр — примерно такой же объем, как головка булавки. Самый большой объем впрыска на данный момент для автомобильных дизельных двигателей составляет около 70 кубических миллиметров.

Если коленчатый вал шестицилиндрового двигателя вращается со скоростью 4500 об/мин, система впрыска должна контролировать и обеспечивать 225 циклов впрыска в секунду.

Во время демонстрационной поездки 1-литровый дизельный автомобиль Volkswagen израсходовал всего 0.89 литров топлива на 100 километров (112,36 км / л, 264 мили на галлон {США}, 317 миль на галлон {британский / английский}) — что делает его, вероятно, самым экономичным автомобилем в мире. Система впрыска топлива Bosch под высоким давлением была одним из основных факторов чрезвычайно низкого расхода топлива прототипа. Производственными рекордсменами по экономии топлива являются Volkswagen Lupo 3 L TDI и Audi A2 3 L 1.2 TDI со стандартными показателями расхода 3 литра топлива на 100 километров (33,3 км / л, 78 миль на галлон {US}, 94 миль на галлон {имперский }).Их системы впрыска дизельного топлива под высоким давлением также поставляются Bosch.

В 2001 году почти 36 процентов новых автомобилей, зарегистрированных в Западной Европе, имели дизельные двигатели. Для сравнения: в 1996 году автомобили с дизельным двигателем составляли лишь 15% новых автомобилей, зарегистрированных в Германии. Австрия лидирует в рейтинге регистраций автомобилей с дизельным двигателем с 66 процентами, за ней следуют Бельгия с 63 процентами и Люксембург с 58 процентами. Германия с 34,6% в 2001 году находилась в середине турнирной таблицы.Швеция отстает, в 2004 году только 8 процентов новых автомобилей имели дизельный двигатель (в Швеции дизельные автомобили облагаются гораздо более высокими налогами, чем эквивалентные бензиновые автомобили).

История дизельного автомобиля

Первыми серийными дизельными автомобилями были Mercedes-Benz 260D и Hanomag Rekord, представленные в 1936 году. Citroën Rosalie также производился в период с 1935 по 1937 год с чрезвычайно редким дизельным двигателем (двигатель 11UD объемом 1766 куб. см) только в Familiale. (универсал или универсал) версии. [3]

После нефтяного кризиса 1970-х турбодизели были испытаны (например, на экспериментальных и рекордных автомобилях Mercedes-Benz C111). Первым серийным автомобилем с турбодизелем в 1978 году стал 5-цилиндровый двигатель Mercedes 300 SD с 3,0-цилиндровым двигателем мощностью 115 л.с. (86 кВт), доступный только в Северной Америке. В Европе в 1979 году был представлен Peugeot 604 с турбодизелем объемом 2,3 л, а затем и Mercedes 300 TD с турбонаддувом.

Многие энтузиасты Audi утверждают, что Audi 100 TDI был первым дизельным двигателем с турбонаддувом и непосредственным впрыском, проданным в 1989 году, но это неверно, как и Fiat Croma TD-i.д. был продан с турбонаддувом и непосредственным впрыском в 1986 году, а два года спустя Austin Rover Montego.

Что было новаторским в Audi 100, так это использование электронного управления двигателем, поскольку Fiat и Austin имели чисто механически управляемый впрыск. Электронное управление непосредственным впрыском существенно повлияло на выбросы, плавность хода и мощность.

Интересно отметить, что крупными игроками на рынке автомобилей с дизельными двигателями являются те же компании, которые первыми разработали различные разработки (Mercedes-Benz, BMW, Peugeot/Citroën, Fiat, Alfa Romeo, Volkswagen Group), за исключением Austin Rover. — хотя предок Остина Ровера, компания The Rover Motor Company, производила дизельные двигатели малой мощности с 1956 года, когда она представила 4-цилиндровый дизельный двигатель объемом 2051 см_ для своего Land Rover 4 _ 4.

В 1998 году, впервые в истории гонок, в легендарной гонке «24 часа Нюрбургринга» абсолютным победителем стал автомобиль с дизельным двигателем: заводская команда BMW 320d, BMW E36, оснащенный современным дизельным двигателем высокого давления. технология впрыска от Robert Bosch GmbH. Низкий расход топлива и большой запас хода, позволяющие участвовать в гонках сразу 4 часа, сделали его победителем, поскольку сопоставимые автомобили с бензиновым двигателем тратили больше времени на дозаправку.

В 2006 году новый Audi R10 TDI LMP1, представленный Joest Racing, стал первым автомобилем с дизельным двигателем, выигравшим «24 часа Ле-Мана».Автомобиль-победитель также улучшил рекорд конфигурации трассы после 1990 года на 1 круг, составив 380. Однако это не дотянуло до рекордного расстояния, установленного в 1971 году, более чем на 200 км.

См. также

Примечания

Ссылки

Ссылки ISBN поддерживают NWE за счет реферальных сборов

  • Чаллен, Бернард и Родика Баранесеу. Справочник по дизельным двигателям. 2-е изд. Бистин, Массачусетс: Баттерворт-Хайнеманн, 1999. ISBN 0750621761
  • Демпси, Пол. Как ремонтировать дизельные двигатели. 2-е изд. Нью-Йорк, штат Нью-Йорк: TAB Books, 1990. ISBN 0-830661670-
  • .
  • Макарчук Андрей. Инженерия дизельных двигателей: термодинамика, динамика, проектирование и машиностроение управления. Бока-Ратон, Флорида: CRC Press, 2002. ISBN 0824707028

Внешние ссылки

Все ссылки получены 23 октября 2017 г.

Кредиты

New World Encyclopedia авторы и редакторы переписали и дополнили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с надлежащим указанием авторства. Упоминание должно быть выполнено в соответствии с условиями этой лицензии, которая может ссылаться как на авторов New World Encyclopedia , так и на самоотверженных добровольных участников Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. На использование отдельных изображений, лицензированных отдельно, могут распространяться некоторые ограничения.

ПОСЛЕДНИЕ РАЗРАБОТКИ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Что сделал дизельный двигатель, его возможности развития и будущего применения в автомобильном обслуживании, являются основными темами статьи. Автор утверждает, что при модификации для использования в автомобилях дизельный двигатель не только позволит сжигать более дешевое топливо и обеспечит большую экономию топлива, но и даст немедленную возможность использовать двухтактный цикл; то есть он будет генерировать примерно вдвое большую мощность для механизма равного веса по сравнению с нынешним достижением мощности.Кроме того, двухтактный цикл позволяет частично или полностью отказаться от выпускных клапанов, выпуск через отверстия во всех отношениях лучше, а принцип дизельного двигателя дает возможность создать двухтактный двигатель двойного действия, в котором , теоретически будет доступна мощность в четыре раза больше, чем у нынешнего бензинового двигателя.

Впрыск топлива обеспечивает другие преимущества, такие как устранение разбавления картерного масла и тот факт, что топливо не находится в цилиндре до момента сгорания, а затем непрерывно подается ровно столько топлива, чтобы поддерживать огонь.Но автор говорит, что мы должны рассматривать инжекторные двигатели как несколько более дорогие, чем карбюраторные двигатели в настоящее время, и что возможное конечное использование двухтактного двигателя сделает его менее дорогим.

Прослежено увеличение размера дизельного двигателя, часть его истории и некоторые области применения описаны вместе с иллюстрациями. Таким же образом описывается состояние больших дизельных двигателей, объясняется тепловой поток в этих больших агрегатах и ​​анализируются высокоскоростные двигатели с впрыском топлива, поскольку они уже ворвались в автомобильную область для использования на моторных вагонах и небольших локомотивах. .

В этой стране существует три класса железнодорожных перевозок, к которым применим дизельный двигатель: Автономные вагоны мощностью до 100 л.с. вместимостью от 40 до 80 пассажиров, «ближнемагистральный» агрегат мощностью около 300 л.с. мощности и большой локомотив мощностью 1000 л.с. или большая вместимость для грузовых и пассажирских перевозок для перевозки стандартного автомобильного оборудования. Дизельные двигатели были построены для последних двух классов, но в настоящее время первый класс оставлен для бензиновых двигателей.

Ведутся исследования по приведению дизельного двигателя в соответствие с потребностями в мощности автомобиля, грузовика, трактора и самолета.После описания специальных типов двигателей, использующих принцип дизеля, автор заявляет, что цель статьи состоит в том, чтобы представить положение, которое дизельный двигатель, вероятно, займет в качестве основного двигателя в течение следующих нескольких лет.

Биография Рудольфа Дизеля, изобретателя дизельного двигателя

Двигатель, носящий его имя, открыл новую главу в промышленной революции, но немецкий инженер Рудольф Дизель (1858–1913), выросший во Франции, изначально думал, что его изобретение поможет малому бизнесу и ремесленникам, а не промышленникам.По правде говоря, дизельные двигатели являются обычным явлением в транспортных средствах всех типов, особенно в тех, которые должны тянуть тяжелые грузы (грузовики или поезда) или выполнять большую работу, например, на ферме или на электростанции.

Влияние этого единственного улучшения двигателя на мир сегодня очевидно. Но его смерть более века назад остается загадкой.

Быстрые факты: Рудольф Дизель

  • Occopation: Engineer
  • Известен для: Изобретатель дизельного двигателя
  • Born: Mart 18, 1858, в Париже, Франция
  • Родители: Теодор Дизель и Элизе Стробел
  • Умерли:  29 или 30 сентября 1913 года, Ла-Манш
  • Образование:  Technische Hochschule (Высшая техническая школа), Мюнхен, Германия; Промышленная школа Аугсбурга, Королевский баварский политехнический институт Мюнхена (Политехнический институт)
  • Опубликованные работы: «Theorie und Konstruktion eines rationellen Wäremotors» («Теория и конструкция рационального теплового двигателя»), 1893
  • Супруга:  Флаше (м.1883)
  • Дети: Рудольф младший (1883 г.р.), Хедди (1885 г.р.) и Ойген (1889 г.р.)
  • Примечательная цитата: «Я твердо убежден, что автомобильный двигатель придет, и тогда я считаю дело своей жизни завершенным».

Ранняя жизнь

Рудольф Дизель родился в Париже, Франция, в 1858 году. Его родители были иммигрантами из Баварии. С началом франко-германской войны семья была депортирована в Англию в 1870 году. Оттуда Дизель уехал в Германию, чтобы учиться в Мюнхенском политехническом институте, где он преуспел в инженерии.После окончания учебы он работал инженером-холодильником в Париже, в компании Linde Ice Machine, начиная с 1880 года. Он изучал термодинамику у Карла фон Линде, главы компании, в Мюнхене.

Однако его настоящая любовь заключалась в конструкции двигателя, и в течение следующих нескольких лет он начал исследовать ряд идей. Один из них касался поиска способа помочь малым предприятиям конкурировать с крупными отраслями, у которых были деньги, чтобы использовать мощность паровых двигателей. Другой заключался в том, как использовать законы термодинамики для создания более эффективного двигателя.По его мнению, создание лучшего двигателя поможет маленькому парню, независимым ремесленникам и предпринимателям.

В 1890 году он устроился руководителем инженерного отдела той же холодильной фирмы в ее берлинском офисе, а в свободное время (чтобы сохранить свои патенты) экспериментировал с конструкциями своих двигателей. В разработке его проектов ему помогали Maschinenfabrik Augsburg, которая теперь называется MAN Diesel, и Friedrich Krupp AG, которая теперь называется ThyssenKrupp.

Дизельный двигатель

Сборщик распечаток/Getty Images

Рудольф Дизель разработал множество тепловых двигателей, в том числе воздушный двигатель на солнечной энергии.В 1892 году он подал заявку на патент и получил патент на разработку своего дизельного двигателя. В 1893 году он опубликовал статью, описывающую двигатель внутреннего сгорания со сгоранием в цилиндре. В Аугсбурге, Германия, 10 августа 1893 года основная модель Рудольфа Дизеля, единственный 10-футовый железный цилиндр с маховиком в основании, впервые заработала на собственной мощности. В том же году он получил там патент на двигатель и патент на усовершенствование.

Дизель потратил еще два года на усовершенствования и в 1896 году продемонстрировал другую модель с теоретическим КПД 75 процентов, в отличие от 10-процентного КПД парового двигателя или других ранних двигателей внутреннего сгорания.Продолжались работы по созданию серийной модели. В 1898 году Рудольф Дизель получил патент США № 608845 на двигатель внутреннего сгорания.

Его наследие

Изобретения Рудольфа Дизеля имеют три общих черты: они связаны с передачей тепла естественными физическими процессами или законами, они связаны с заметно творческим механическим проектированием, и изначально они были мотивированы концепцией изобретателя о социологических потребностях — поиском способа дать возможность независимым мастерам и ремесленников, чтобы конкурировать с крупной промышленностью.

Последний гол не совсем удался, как ожидал Дизель. Его изобретение могло быть использовано малым бизнесом, но и промышленники с энтузиазмом восприняли его. Его двигатель сразу же заработал, широко и широко применяя его, что стимулировало быстрое развитие промышленной революции.

После его смерти дизельные двигатели стали обычным явлением в автомобилях, грузовиках (начиная с 1920-х годов), кораблях (после Второй мировой войны), поездах (начиная с 1930-х годов) и т. д., и они используются до сих пор.Современные дизельные двигатели представляют собой усовершенствованные версии оригинальной концепции Рудольфа Дизеля.

Его двигатели использовались для питания трубопроводов, электрических и водяных установок, автомобилей и грузовиков, а также морских судов, а вскоре после этого использовались в шахтах, нефтяных месторождениях, фабриках и трансокеанских судоходствах. Более эффективные и мощные двигатели позволили лодкам стать больше и продавать больше товаров за границу.

К концу 19 века Дизель стал миллионером, но из-за неудачных вложений к концу жизни он оказался в большом долгу.

Его смерть

В 1913 году Рудольф Дизель исчез по пути в Лондон, когда на океанском пароходе возвращался из Бельгии, чтобы присутствовать на «закладке нового завода по производству дизельных двигателей и встретиться с британскими военно-морскими силами по поводу установки его двигателя на их подводные лодки». Канал говорит. Предполагается, что он утонул в Ла-Манше. Некоторые подозревают, что он покончил жизнь самоубийством из-за больших долгов, из-за плохих вложений и плохого здоровья, информация, которая вышла только после его смерти.

Однако тут же начались теории о том, что ему помогли за борт. Газета в то время предположила, что «изобретатель был брошен в море, чтобы остановить продажу патентов британскому правительству», отмечает BBC. Приближалась Первая мировая война, и двигатели Дизеля использовались на подводных лодках и кораблях союзников, хотя последние предназначались в первую очередь для Второй мировой войны.

Дизель был сторонником использования растительного масла в качестве топлива, что поставило его в противоречие с постоянно растущей нефтяной промышленностью и привело, как сообщает BBC, к теории о том, что Дизель был «убит агентами из крупных нефтяных трестов».«Или это могли быть угольные магнаты, как предполагали другие, потому что паровые двигатели работали на тоннах и тоннах угля. Теории годами держали его имя в газетах и ​​даже включали попытку убийства немецкими шпионами, чтобы помешать ему поделиться подробностями разработки. подводной лодки.

Источники

Самый мощный дизельный двигатель в мире

Если бы Семь чудес света были обновлены для 21-го века, двухтактный дизельный двигатель Wartsila-Sulzer RTA96-C с турбонаддувом мог бы составить конкуренцию.Если вы изучаете двигатель внутреннего сгорания во всех его замечательных конфигурациях, то полюбуйтесь на этот набор цифр, описывающих поистине поразительный инженерный подвиг. На сегодняшний день это самый мощный и самый эффективный двигатель в мире.

Разработанный для обеспечения движущей силы различных супертанкеров и контейнеровозов, он выпускается в версиях с рядным расположением цилиндров от 6 до колоссальной версии с 14 цилиндрами. Диаметр цилиндра составляет 38 дюймов, а ход чуть более 98 дюймов.Объем каждого цилиндра составляет 111 143 кубических дюйма (1820 литров), а мощность составляет 7780 лошадиных сил. Полный рабочий объем составляет 1 556 002 кубических дюйма (25 480 литров) для 14-цилиндровой версии.

При длине 89 футов и высоте 44 фута общий вес двигателя составляет 2300 тонн — только коленчатый вал весит 300 тонн.

Максимальная выходная мощность двигателя RTA96C-14 составляет 108 920 л.с. при 102 об/мин, и, что удивительно, при максимальной экономичности тепловой КПД двигателя превышает 50%. Это означает, что более 50% энергии топлива преобразуется в движение.Удельный расход топлива при торможении (BSFC) при максимальной мощности составляет 0,278 фунта/л.с./ч.

Судовладельцам нравится конструкция с одним двигателем / одним гребным винтом, а новое поколение более крупных контейнеровозов нуждалось в более мощном двигателе для их движения. В то время как конфигурации цилиндров двигателей для крупногабаритных контейнерных лайнеров обсуждались с величиной 14, 16 и 18. цилиндров, 14-цилиндровый рядный тихоходный двигатель является первым, предлагаемым любым разработчиком двигателей.

Судовладельцы предпочитают конструкции с одним двигателем и одним гребным винтом, а новое поколение более крупных контейнеровозов (или пост-Панамакс) требовало более мощного двигателя для их приведения в движение.

Двухтактный дизельный двигатель с турбонаддувом RTA96C-14 производится швейцарской компанией Wartsila-Sulzer и на сегодняшний день является самым большим и мощным дизельным двигателем в мире.

Пиковые возможности 14-цилиндрового двигателя RTA96C теперь превышают 80 МВт, что делает его достаточным для одновинтового контейнерного вкладыша Post-Panamax, который является таким же большим, как контейнерные вкладыши, учитывая их большую экономическую эффективность.

Компании Sulzer также удалось увеличить мощность цилиндров с тех пор, как они начали свою первую эксплуатацию в 1997 году, благодаря накопленному опыту технического обслуживания большого количества двигателей RTA96C, находящихся в настоящее время в эксплуатации.Новая номинальная мощность нового двигателя в кВт достигает 68 640 кВт, что на четыре процента больше, чем у первоначального RTA96C.

Несмотря на большую мощность, вырабатываемую этими двигателями, удалось достичь удивительно низкого уровня износа. Диаметральный износ гильзы цилиндра составляет всего около 0,03 мм/1000 часов.

Такой низкий износ цилиндра, возможно, объясняется тем, что шатун крепится к «крейцкопфу», который движется в направляющих каналах, что является принципиальным отличием от большинства автомобильных двигателей, где верхняя часть шатуна прикреплена непосредственно к поршню.Вместо этого в этом двигателе верхняя часть шатуна присоединяется к «крейцкопфу», а затем длинный поршневой шток соединяет крейцкопф с поршнем. Это снижает боковые силы, создаваемые шатуном, и поглощается крейцкопфом, а не поршнем. Боковые силы — это то, что заставляет цилиндры автомобильного двигателя со временем приобретать овальную форму.

Расход топлива при максимальной экономии составляет 0,260 фунта/л.с./час. Для сравнения, большинство автомобильных и малых авиационных двигателей могут достигать показателей BSFC только в 0.Диапазон 40-0,60 фунтов/л.с./ч и диапазон теплового КПД 25-30%.

Проектирование и разработка RTA96C осуществлялись в тесном сотрудничестве с компаниями, участвовавшими на ранних стадиях первого коммерческого проекта: владельцем и оператором P&O Nedlloyd BV, проектировщиком и судостроителем Ishikawajima Harima Heavy Industries Co Ltd (IHI) и производитель двигателей Diesel United Ltd.

Проект начался в марте 1997 года, когда на испытательном стенде Diesel United Ltd, Айой, был запущен первый 11-цилиндровый двигатель.

С тех пор в общей сложности 86 двигателей RT96C с восемью, девятью, десятью, 11 и 12 цилиндрами находятся в эксплуатации или заказаны, 25 из них в настоящее время находятся в эксплуатации.

№ 1435: Рудольф Дизель

Сегодня познакомьтесь с Рудольфом Дизелем. Университет Инженерный колледж Хьюстона представляет это сериал о машинах, которые делают наши цивилизация управляется, и люди, чья изобретательность создал их.

Историк Линвуд Брайант пишет о Рудольфе Дизеле. Дизель считал себя научный гений и Джеймс Уатт позднего девятнадцатый век. Он был тщеславен, сверхчувствителен и немного параноик. Он не завоевал сердца другие производители двигателей.

В 1912 году, через двадцать лет после того, как Дизель задумал свой двигатель, четыре человека написали книги о нем разработка.Дизель написал один и люди Минимизировать свои претензии написали остальные трое. То семена спора, утверждает Брайант, были посеяны в Традиционный взгляд Дизеля на изобретение — что устройство сначала изобретается, затем разрабатывается и наконец улучшено, все в линейной последовательности. Дизель оставил четкие записи о том, что он сделал. Между 1890 и 1893 году он определенно изобрел двигатель, используя свой знание термодинамики.Идея сжигания топливо медленно и при более высоких давлениях, безусловно, его.

Дизель также работал с 1893 по 1897 год в Аугсбургский машиностроительный завод разрабатывает работающий двигатель. За это время ему пришлось сделать гораздо больше теоретические работы и изобретения. По его мнению, он был до сих пор изобретаю двигатель. Люди за пределами процесс видел все это как развитие — грязную работу должен пройти каждый, чтобы сделать хорошо идею в работоспособное оборудование.После 1897 г. Дизель решил, что с ним покончено, и обратился к продвижению двигатель. Но он был еще удручающе не готов к магазин. Потребовалось еще одиннадцать лет улучшение. Тем временем Дизель работал над собой. нервный срыв, продвигающий еще не готовый двигатель.

Дизель рассматривал свои собственные разработки как продолжение изобретательского процесса (поскольку он наверняка было ).Но он рассмотрел все новшества необходимо, чтобы двигатель имел коммерческий успех как не более чем зачистка меньших умов. Он раздражал других конструкторов двигателей, насмехаясь над их работа. Он не понял, что заставило его жизнеспособных двигателей на рынке было много по-настоящему изобретательское мышление очень хороших инженеров.

Дизеля сильно беспокоила критика его роли. при создании двигателя, а в 1913 году он исчез с корабля в Англию.Его тело нашли через десять дней позже. Его смерть вызвала все виды зловещих рассказы о заговорах с целью продажи секретов британцам. Однако совершенно очевидно, что он совершил самоубийство.

У меня есть старая книга о дизельных двигателях, впервые опубликованная в 1912 г. с введением Дизеля. В 4-м издания английский автор с сожалением отмечает, что Dr.Дружба Дизеля «ценилась больше, чем он думал». Во вступлении Дизель говорит, что он «завершил строительство первого коммерчески успешного мотор» в 1897 году. Затем он высокомерно утверждает, что немногие заводы достаточно хороши, чтобы производить его двигатели… что второстепенным производителям не стоит даже пытаться.

Тем не менее, нельзя отрицать, что Дизель был провидцем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *