Как работает дизельная форсунка: Как работает и устроена дизельная форсунка

Содержание

Как работает форсунка дизельного двигателя

Устройства и приборы высокого давления

Форсунки дизельного двигателя

Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм
    ;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.
Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.

В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания – Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции – с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.
Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.
Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.

Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (

см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.

Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.
Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

Форсунка дизеля – один из основных составляющих системы питания двигателя, которая напрямую подает топливо в камеру сгорания для получения воздушно-топливной смеси. Эта деталь наиболее сильно подвергается износу и требует периодического обслуживания. От качества ее работы зависит полнота сгорания топлива в цилиндре, запуск, динамика и экономичность мотора, а также токсичность выхлопных газов. Некоторые водители пренебрегают регламентными работами, в результате чего форсунки выходят из строя, требуя ремонта или замены.

Назначение и принцип работы дизельных форсунок

Основная задача форсунки в дизельном двигателе – это распыление топлива при обеспечении герметичности камеры сгорания. Работа систем питания с механическим управлением форсунками происходит в следующем порядке:

  1. Из топливного бака подается горючее к насосу высокого давления.
  2. Насос в необходимой последовательности распределяет и нагнетает топливо в магистрали, ведущие к форсункам.
  3. В форсунке топливо давит на штуцер, а от него расходится по топливным каналам к распылителю, который закрыт иглой с пружиной.
  4. Под воздействием давления игла открывается, и после впрыска закрывается.

В зависимости от способа управления процессом впрыска, дизельные форсунки помимо механических делятся на следующие типы:

  1. Электрогидравлические, характеризуется наличием в конструкции электромагнитного клапана, камеры управления, впускного и сливного дросселя. Принцип их работы основывается на применении давления топлива как во время впрыска, так и при прекращении, с участием электронного клапана, который открывает сливной дроссель по команде с ЭБУ.
  2. Пьезоэлектрические. Отличаются высокой быстротой срабатывания и возможностью многократного впрыска за один цикл. Это осуществляется при помощи пьезоэлемента, воздействующего на корпус толкателя, который открывает переключающий клапан для поступления топлива в магистраль.

Признаки неисправности дизельных форсунок

Неисправности форсунок в дизельном двигателе имеют следующие характерные признаки:

1. При неравномерном распылении (форсунка «льет»):

  • Потеря мощности мотора и наличие сизого дыма из выхлопной трубы;
  • Сильный стук, напоминающий стук шатуна;
  • Неравномерная работа силового агрегата, вызванная нарушением работы отдельных цилиндров.

2. При падении рабочего давления впрыска (по причине усталости пружин или износа дистанционных регулировочных шайб):

  • Наличие сизого или черного дыма из выхлопной;
  • Жесткая работа двигателя.

3. Отсутствие герметичности корпуса форсунки, что проявляется в течи топлива из соединений корпуса.

Проверка дизельных форсунок

При наличии признаков неисправности форсунок, производят их проверку. Проведение процедуры может быть осуществлено как в гаражных условиях, так и на СТО при помощи диагностического стенда. Второй способ наиболее оптимальный, но имеет недостатки в виде высокой стоимости услуг и значительной удаленности сервиса. Существуют следующие способы проверки исправности форсунок:

1. На заведенном дизеле ставят такие обороты, когда сбои его работы слышны особо отчетливо. Форсунки последовательно отключают от магистрали высокого давления, ослабляя накидную гайку крепления на соответствующем штуцере насоса. При отсоединении неисправной форсунки характер работы двигателя не поменяется.

2. Проверка максиметром который выполнен в виде специальной форсунки, имеющей тарировочную шкалу для установки необходимого давления впрыска дизтоплива. Прибор представляет собой контрольный образец, при помощи которого анализируется эффективность распыла и соответствие фактического давления с требуемым в момент впрыска.

3. Проверка при помощи контрольного образца рабочей форсунки, которую сравнивают с остальными. Для этого на топливную аппаратуру устанавливают тройник, при помощи которого одновременно устанавливают рабочую и тестируемую форсунку. Ослабляют затяжки гаек на остальных трубопроводах, ведущих от насоса высокого давления к нетестируемым форсункам, перекрыв подачу топлива. На декомпрессионном механизме ставят максимальную подачу топлива и начинают вращение коленвала мотора. При неисправности форсунка покажет отличия от эталона по моменту начала и качеству впрыска.

Ремонт дизельных форсунок

Загрязнение каналов внутри форсунки, по которым проходит топливо, способствует ухудшению распыления топлива и нарушению образования воздушно-топливной смеси. Максимально равномерную пульверизацию нарушают смолы, содержащиеся в соляре. Проблему нарушения подачи топлива форсунками помогает устранить промывка. Данная процедура обеспечивает удаление загрязнений внутри топливных каналов. Для ее осуществления применяются следующие способы:

1. Чистка при помощи ультразвука. Эффективный способ удаления грязи, который проводится на специальном оборудовании. Снятые форсунки помещают в специальную жидкость и воздействуют ультразвуковыми колебаниями, при которых грязь в сопле разрушается в течение короткого времени.

2. Промывка топливом, содержащим специальные присадки. Наиболее популярен среди автолюбителей, так как не требует применения дорогого оборудования. Представляет собой добавление присадки в топливо, которое при прохождении через форсунку будет растворять отложения. Эффективность метода не доказана.

3. Промывка на стенде при помощи специальных жидкостей. Очищение происходит при высоком давлении за счет циркуляции. Способ отличается надежностью и высокой эффективностью.

4. Ручная промывка, при которой имитируется работа форсунки. Достаточно эффективный и недорогой способ, не требующий применения специального оборудования. Для его проведения форсунки демонтируют вместе с рейкой и фиксируют над емкостью. Подача очищающей жидкости производится по прозрачной силиконовой трубке. Дозатор форсунки активируют электрическим током, подведенным по проводам от аккумулятора. Полная очистка происходит после 5-10 мин. распыления жидкости. Сам процесс состоит из следующих этапов:

  • С форсунки снимают фильтры и резиновые уплотнители, чтобы под воздействием жидкости они не вышли из строя;
  • Организуют герметичное соединение баллона с жидкостью и форсунок через силиконовую трубку;
  • Подводят электропитание от аккумулятора с помощью пары проводов;
  • К разрыву одного провода подводят кнопку для размыкания цепи, второй провод оставляют целым;
  • При нажатии кнопки происходит впрыск, который продолжается до момента равномерного распыления струй жидкости.

Достаточно часто некачественный впрыск происходит по причине засорения или износа сопел форсунки, что достаточно хорошо видно в процессе диагностики неисправностей. Для устранения поломки корпус детали разбирают и тщательно промывают в керосине, наружный нагар удаляют деревянным скребком, а отверстия прочищают мягкой стальной проволокой, диаметр которой меньше отверстия сопла. При увеличении размера сопла более чем на 10 %, или разнице в диаметре отверстий на 5%, распылитель заменяют на новый.

Иногда форсунка может давать течь, которую возможно устранить притиркой иглы к седлу. Течь может возникать и при нарушении уплотнения в торце иглы (уплотняющем конусе). Притирка производится разведенной в керосине пастой ГОИ, при которой избегают ее попадания в зазор между направляющей и самой иглой. После притирки все делали промывают в керосине или чистом дизтопливе, продувают сжатым воздухом, и после сборки снова тестируют на герметичность.

Что бы ваши форсунки служили долго, используйте фильтр дизельного топлива тонкой очистки.

Замена дизельных форсунок

Замена дизельных форсунок производится при полном выходе из строя детали. Процедура, выполненная работниками СТО, достаточно дорогостоящая, но ее можно проделать самостоятельно. Для этого потребуются следующие инструменты:

  1. Динамометрический ключ с удлинителем.
  2. Специальная головка под форсунки.
  3. Рожковый ключ на 17.
  4. Пинцет.

Процедура замены осуществляется в следующем порядке:

  1. Отвинчивание гаек с трубок высокого давления.
  2. Выкручивание самих форсунок (иногда происходит сложно из-за прикипания резьбы).
  3. Демонтаж пинцетом термоизоляционных шайб или их остатков (повторно старые шайбы устанавливать нельзя).
  4. Установка новых термоизоляционных шайб и новых форсунок, которые ввинчивают с необходимым усилием при помощи динамометрического ключа.
  5. Сборка топливной системы в обратном порядке.

Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу. Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров. От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

Форсунки для дизельных двигателей – что это?

В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

По способу управления детали делятся на однопружинные, двухпружинные, с датчиками контроля положения иглы и управляемые пьезоэлектрическими элементами. Кроме всего прочего, схема форсунки дизельного двигателя зависит от способа ее монтажа в головке цилиндров: при помощи фланца, хомута или путем вворачивания в гнездо.

Принцип работы форсунки дизельного двигателя – кратко о сложном

Основное назначение таких деталей заключается в дозировании и распылении топлива, а также герметичной изоляции камеры сгорания. В результате исследований были разработаны насосы-форсунки, которые устанавливаются в каждый цилиндр по отдельности. Принцип работы форсунки дизельного двигателя нового типа заключается в том, что она функционирует от кулачка распределительного вала через толкатель. Подача и слив топлива осуществляется через специальные каналы в головке блока. Дозирование топлива происходит через блок управления, который подает сигналы на запорные электромагнитные клапаны.

Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

Топливные форсунки в большинстве случаев нуждаются в простом уходе, чаще всего, для того чтобы вернуть их в рабочее состояние, достаточно просто их очистить и промыть. Независимо от того, сколько форсунок в двигателе, случается, что при резком нажатии на педаль газа ощущаются рывки и провалы или ощутимо снижается мощность, мотор начинает неустойчиво работать на низких оборотах, значит, произошла закупорка каналов форсунки твердыми смолянистыми отложениями. Что же делать?

Промывка форсунок дизельного двигателя – способы реализации

Загрязнение этого элемента ведет к нарушению распыления топлива и приводит к неправильному образованию воздушно-топливной смеси. В идеале пульверизация должна быть максимально равномерной. Основной источник загрязнения – содержащиеся в топливе смолы. Промывка форсунок дизельного двигателя может устранить все нарушения подачи топлива в цилиндры.

Процесс очистки форсунок предусматривает удаление различных загрязнений в топливных каналах. В настоящее время применяется несколько способов:

  • чистка форсунок дизельных двигателей с помощью ультразвука;
  • промывка форсунок топливом с добавлением специальных присадок;
  • промывка с использованием специальных жидкостей на стендах;
  • промывка вручную.

Для автомобилистов наиболее приемлемым является последний вариант, поскольку он позволяет проводить работы по очистке форсунок в домашних условиях. Однако в запущенных случаях приходится обращаться к услугам автоцентров, где проводится очистка при помощи ультразвука, что является более жестким способом. К данному виду очистки рекомендуется прибегать только в случае, если промывка специальными жидкостями не дала положительного результата.

Принцип работы дизельных форсунок: устройство, как работает


Форсунка (в обиходе механиков и автолюбителей эта деталь часто называется инжектором) – это ключевой элемент современного дизельного двигателя. Ее основная цель – эффективно подавать топливо в камеру сгорания, предварительно дозировав и распылив необходимый объем. С учетом достаточно сложных условий эксплуатации дизельных моторов (высокая температура и давление) от качества изготовления составных элементов инжектора и совершенства конструкции во многом зависит эффективность работы всего силового агрегата. Чтобы контролировать исправность мотора, надо прежде всего понять устройство и принцип работы форсунки дизельного двигателя. Совместно со специалистами центра по обслуживанию моторов постараемся рассмотреть основные моменты, классификацию и различия в конструкции инжекторов.

Назначение

Наличие в конструкции силового агрегата топливных форсунок характерно не только для дизельных, но и для бензиновых двигателей. Это связано с принципом работы установки, в которой предусмотрена эффективная система прямого впрыска топлива в камеры сгорания. Воспламенение топливно-воздушной смеси осуществляется под воздействием высокого давления. На практике эффективность работы у дизельных форсунок гораздо выше, чем у аналогичных бензиновых инжекторов.

Логично предположить, что высокий КПД двигателя, работающего на дизельном топливе, возможна только при использовании качественных комплектующих, способных обеспечивать своевременную подготовку и подачу топливной смеси внутрь камеры сгорания. Вот основные задачи, которые выполняет инжектор:

  • Непосредственный впрыск дизтоплива в камеру сгорания.
  • Дозировка необходимого объема горючего, которое позволяет обеспечить заданную мощность силового агрегата.
  • Распыление топлива, что гарантирует более эффективное и полное сжигание смеси.
  • Герметичность системы.

Причины, которые приводят к ремонту форсунок

Каждый дизельный автомобиль выполняет определенный ряд нагрузок, который приводит к поломке.

Исходя из этого, можно определить ряд основных причин, которые приводят к некорректной работе форсунок:

  • Низкое качество дизельного топлива, что приводит к неправильному образованию воздушно-топливной смеси, а соответственно и выгоранию определенных деталей на форсунках;
  • Применение некачественного моторного масла;
  • Наличие в дизельном топливе различных примесей, что способствует загрязнению внутренних форсунок в режиме постоянной работы, а также высокого давления и скачка температуры;
  • Нарушение температурных режимов в головке и блоке цилиндров ДВС;
  • Наличие в составе дизельного топлива тяжелых углеводородов, что приводит к накапливанию их на корпусе форсунок при каждом запуске и приостановке двигателя. Они образуют смолистые отложения или сажу, что занижает пропускную способность форсунки;
  • Нарушение режимов управления впрыском, со стороны бортовой электроники;
  • Наличие в топливе посторонних веществ, которые под высоким давлением и большой скоростью приводят к износу деталей и образованию эрозии на поверхности топливных форсунок;
  • Несвоевременное или некачественное техническое обслуживание.

Ремонт топливной системы дизельного двигателя

– это сложный и финансово затратный процесс, поэтому лучше проводить периодическую диагностику системы, нежели ремонтировать ее в общем.

Устройство дизельных форсунок

Сегодня производители дизельных авто активно пользуются внушительным количеством инжекторов, различающихся по конструкции и принципу работы. Несмотря на ряд различий, каждое из устройств состоит из одинаковых деталей и элементов. К таковым следует отнести:

  • Корпус, где размещены основные детали и элементы агрегата.
  • Распылитель в форме иглы. Этот элемент отвечает за распределение топлива в надпоршневом пространстве двигателя.
  • Плунжер. Металлический стержень, который за счет движения внутри корпуса создает необходимый уровень давления.
  • Пружина запирания, отвечающая за фиксацию иглы в рабочем положении.
  • Штуцер подвода горючего в дизельную форсунку.
  • Управляющий клапан, позволяющий эффективно решить сразу две задачи – дозировать топливную смесь и устанавливать регулярность впрыскивания в камеру сжигания.
  • Фильтр очистки топлива. Ключевой элемент общей системы очистки в дизельном силовом агрегате.
  • Штуцер обратного отвода. Отвечает за то, чтобы убрать из форсунки остатки топлива, не попавшие в камеру сжигания.

При производстве форсунок изготовители обязательно предусматривает наличие электронного блока управления. В него входят автоматические датчики и приборы контроля, которые непрерывно следят за процессами, протекающими в устройстве, обеспечивают эффективную работу инжектора и силового агрегата в целом.

Закажи звонок

или перезвони 7 (921) 932-25-54

Признаки, которые говорят о неисправности форсунок двигателя

Независимо от того, с какими негативными факторами приходится сталкиваться механизмам в процессе работы, владельцы транспортных средств, должны понимать к чему это может привести.

Отказ в работе форсунок будет проявляться таким образом:

  • Повышенный расход уровня масла в двигателе.
  • Повышенный расход топлива;
  • Нестабильная работа ДВС – толчки, неравномерное вращение коленвала;
  • Потеря мощности при движении – несмотря на нажатие педали газа, автомобиль не набирает или непривычно медленно набирает скорость.

Постоянный контроль и периодический осмотр автомобиля позволит избежать различных непредвиденных ситуаций в работе авто.

Механические форсунки: устройство и принцип работы

Система питания топливом дизельного двигателя с форсунками с механическим управлением – одна из разновидностей, встречающаяся в современных авто. В топливный насос высокого давление поступает горючее из бака, за счет работы подкачивающего насоса создается необходимое давление, которое и прокачивает смесь по топливопроводам.

Насос высокого давления отвечает за распределение и нагнетание топливной смеси в магистрали, которые ведут к механической форсунке. Она открывается для впрыска порции горючего в цилиндры под давлением. После снижения давления механизм закрывается. У простого механического инжектора упрощенная конструкция: корпус, распылитель, игла и одна пружина. Запорная игла свободно двигается по направляющему каналу. Сопло плотно перекрыто в тот момент, когда ТНВД не создает рабочее давление. В нижней части игла опирается на коническое уплотнение распылителя, а прижим осуществляется за счет пружины, закрепленной сверху устройства.

Распылитель – один из ключевых элементов в устройстве механического инжектора. Он может иметь различное количество отверстий и различаться способом регулировки объема топлива в камеры сгорания. У простых дизельных двигателей с разделенной камерой сгорания обычно распылитель имеет одно отверстие и иглу. Более совершенные силовые агрегаты с системой непосредственного впрыска топлива оснащаются форсунками с несколькими распылительными отверстиями – от 2 до 6 в зависимости от модели авто.

Способ и интенсивность подачи топливной смеси напрямую связаны с конструкцией распылителя, т.к. существует два варианта работы:

  • Перекрытие каналов.
  • Перекрываемый объем.

Первый тип предполагает, что подача горючего прекращается за счет перекрытия каждого отверстия иглой форсунки. Во втором случае игла перекрывает не отверстие, а образовавшуюся в нижней части распылителя камеру. Под воздействием давления, нагнетаемого топливным насосом, игла поднимается, а топливо проникает в корпус под образовавшейся ступенькой. В тот момент, когда давление поступаемого топлива становится выше исходного усилия прижимной пружины, игла начинает двигаться вверх, открывая канал распылителя. Топливо под давлением проходит этот участок и распыляется в камеру сгорания в форме факела.

После этого часть горючего, поданного ТНВД, попадает в камеру сгорания. Давление на ступеньке иглы снижается, усилия пружины возвращают ее в исходное рабочее положение и перекрывают канал. Это позволяет исключить поступление дизтоплива в распылитель.

Методика проверки

Проверку топливной части форсунки необходимо начинать с подключения к автономной установке, которая может создать на входе в форсунку рабочее давление. При этом из форсунки не должно капать или литься топливо. При кратковременном подключении форсунки к питанию 12 в (высокоомные форсунки 14-17 Ом, низкоомные — от 2 до 7 Ом через добавочное сопротивление 10-15 Ом) должны раздаваться звонкие щелчки запирающего клапана, втягиваемого магнитным полем соленоида. Если форсунка «не щелкает», то, вероятно, всё внутри забито ржавчиной. Такая форсунка отправляется «в последний путь». Если первичные проверки дают положительный результат, проверяем форму факела и степень распыла топлива, а также производительность форсунки в единицу времени — это обычно 80 — 90 мл. за 30 сек (50 — 60 мл. для малообьёмных двигателей).

Электромеханические форсунки

В дальнейшем производство систем топливоподачи для дизельных моторов только совершенствовалось, что привело к появлению на рынке форсунок, у которых топливная смесь подается в камеру сгорания за счет комбинированного электромеханического воздействия. Различие заключается в том, что в таком инжекторе игла форсунки перемещается не под воздействием давления от ТНВД, а за счет управляемого электромагнитного клапана. Этот элемент контролируется электронным блоком управления двигателя, поэтому без соответствующего сигнала топливная смесь не может попасть в распылитель.

ЭБУ является ключевым элементом системы распределения, который отвечает за момент и длительность топливного впрыска в камеру сгорания. Именно блок управления дозирует количество топлива за счет подачи определенного количества импульсов на клапан. Рабочие параметры импульсов зависят от частоты вращения коленчатого вала, режима работы и температуры силового агрегата и других исходных параметров.

К примеру, в системе топливоподачи Common Rail форсунка электромеханического типа способна осуществлять подачу топливной смеси за счет нескольких раздельных импульсов. За один цикл солярка впрыскивается в камеру сгорания до 7 раз. Такой режим работы дизельной форсунки позволяли существенно увеличить давления впрыска и улучшить КПД системы. За счет того, что топливо подается дозированно, давление газов на поршень меняется плавно. Смесь распределяется по цилиндрам мотора более равномерно, лучше распыляется и эффективнее сгорает.

За счет такого подхода производителям удалось полностью перераспределить задачу по управлению впрыском с традиционного ТНВД на усовершенствованный ЭБУ. Система впрыска с электронным управлением работает более слаженно и точнее, за счет чего дизельный силовой агрегат становится более экономичным, экологичным (топливо сгорает лучше) и одновременно мощным. Уменьшилась степень вибраций и шумов в процессе работы, общий эксплуатационный ресурс мотора стал намного больше.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает.

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Принцип работы насоса-форсунки


Дизельная насос-форсунка – это особенный вид системы питания силового агрегата, в которой отсутствует ТНВД. Принцип работы заключается в том, что насос низкого давления на первом этапе подает топливо напрямую к инжектору, в котором предусмотрена плунжерная пара для создания необходимого рабочего давления. В дальнейшем этот элемент приводится к действие за счет прямого воздействия кулачков распределительного вала. Такая система впрыска топлива обеспечивает более эффективное распыление за счет создания повышенного давления.

Как отмечают конструкторы и механики, отсутствие топливного насоса высокого давления не ухудшили характеристики дизельного мотора. Наоборот, силовой агрегат стал более компактным, а часть его мощности перестала расходоваться на постоянное вращение ТНВД. Инжекторы системы насос-форсунки позволяют подавать топливо всего за два импульса благодаря усовершенствованному электрическому клапану.

Общий принцип работы такого механизма схож с механическим инжектором с двумя пружинами. Сначала осуществляется подвпрыск, а потом в цилиндр поступает основная порция топлива. Система максимально точно выбирает момент начала впрыска и эффективнее дозирует горючее. За счет этого обеспечивается экономичный расход топлива, тихий и плавный ход силового агрегата. Содержание токсичных газов в выхлопе заметно ниже, ведь топливная смесь практически полностью сгорает.

Единственным минусом такой системы видится прямая зависимость давления впрыска от частоты вращения коленчатого вала. Специалисты отмечают высокие требования к качеству моторного масла, сложность исполнения конструкции, невозможность самостоятельного ремонта и трудности с техобслуживанием. Соответственно, возрастает цена мотора и затраты на его обслуживание.

Промывка инжектора

Отдельно хотелось бы отметить, что в иномарках с большим пробегом очистка с присадками может полностью вывести всю систему из строя, когда вся грязь из не промываемой системы смывается со стенок топливного бака, и устремляется к фильтру, и далее в форсунки. Сетка на форсунках забивается, и топливо перестаёт поступать. Другой способ — это промывка инжектора без демонтажа, т.е. инжектор, остаётся не разобранным. Сначала отключают бензобак, затем штатный топливный насос и перекрывается канал слива топлива в бак. Одновременно с этим топливо-провод машины соединяется с профессиональным стендом, который подаёт в систему специальную жидкость. Два прогона жидкости с двумя перерывами — по 15-20 минут на каждые 15-20 тыс. километров пробега, и ваша топливная система будет подготовлена к зиме. Ультразвуковой стенд — вот ещё один из способов чистки. Форсунки снимают и помещают в ванну с моющим раствором, где под действием ультразвука даже самые сильные отложения разрушаются. На этом же стенде можно проверить качество чистки. Опыт показал, что ультразвуковой метод наиболее эффективен, и он даже может вернуть к жизни форсунки, которые уже не подлежат ремонту.

Источники: drive2.ru, motorsguide.ru, oils-market.ru.

Почему стоит ремонтировать форсунки у профессионалов?

Как видите, система впрыска топлива в дизельном двигателе – сложный механизм, каждая деталь которого имеет важное значение. Именно поэтому рекомендуем не экспериментировать, а доверить ремонт форсунок опытным специалистам. В нашем сервисном центре имеется диагностическое и ремонтное оборудование, позволяющее устранить неполадки с дизельным мотором любого авто, вне зависимости от года выпуска и комплектации. Работы проводятся в течение 1 дня, с использованием оригинальных комплектующих производителей.

Исторический экскурс

На этапе появления двигателей внутреннего сгорания Рудольф Дизель рассчитывал в качестве топлива применять угольную пыль, вдуваемую через форсунку сжатым воздухом. При сгорании угля с единицы массы получалось мало тепла, что заставило ученного перейти на более высококалорийное топливо. Бензин не получилось применить из-за его взрывоопасности. Предпочтение было отдано керосину.

В 1894 году Рудольфу Дизелю удалось сделать удачный запуск двигателя, топливо в который подавалось при помощи форсунки. Для осуществления впрыска использовался пневматический компрессор. Создаваемое им давление превышало силу, возникающую внутри цилиндра. Из-за этого такой вид двигателя получил название компрессорного дизеля.

Гидравлический впрыск топлива появился чуть позже. Он применяется по сей день, постоянно совершенствуясь. Изобретателем такого способа подачи топлива является французский инженер Сабатэ. Он же предложил делать многократный впрыск. Подавая солярку в несколько этапов, удается получить больше полезной энергии с единицы топлива.

В 1899 году Аршаулов сконструировал дизель с топливным насосом высокого давления, работающий в паре с бескомпрессорной форсункой. Такое техническое решение оказалось успешным, поэтому дизели с ТНВД используются по сей день.

Наиболее современные дизельные системы питания имеют компьютерное управление форсункой и подстраиваются под режим работы двигателя. В зависимости от типа камеры сгорания возможны вариации топливоподачи. Для обеспечения стабильной работы дизеля различного типа смесеобразования появились многодырчатые и штифтовые форсунки.

Диагностика поломки

Выявив симптомы неисправности форсунок необходимо провести их диагностику. Наиболее тщательная проверка проводится при помощи диагностического стенда. С его помощью можно уловить даже наименьшее отклонение в работе системы впрыска.

При отсутствии диагностического стенда можно определить неисправную форсунку следующим методом. Требуется запустить двигатель и довести обороты коленвала до такого значения, при котором отчетливо будет слышна нестабильность работы мотора. После этого требуется поочередно отсоединять форсунки от топливной магистрали. Двигатель будет менять звук работы. При отключении неисправного элемента топливной системы работа мотора не поменяется. Главным недостатком такого способа является невозможность точно определить причину, вызвавшую нарушения в системе впрыска.

Предыдущий способ был предназначен для обнаружения неисправности без снятия форсунок с двигателя, поэтому на точность определения неисправности влияет исправность всех остальных систем автомобиля. Так, например, некачественная свеча зажигания может привести к неправильному определению неисправной форсунки. Для устранения неточностей возможно сравнение работы форсунки с контрольным образцом.


Равномерность факела неисправной и контрольной форсунок

В топливную систему автомобиля устанавливается тройник. К нему подключается проверяемая и контрольная форсунка. К нетестируемым элементам желательно перекрыть подачу топлива. После этого необходимо начать вращать коленвал. Если форсунка неисправна, то ее факел будет отличатся от эталона, как показано на рисунке.

Под давлением обстоятельств

На первый взгляд, современный дизельный ТНВД страшен и сложен. Однако по сравнению с форсункой он куда проще — как конструктивно, так и в ремонте. Его можно разобрать и собрать без применения множества спецприспособлений. Однако требование чистоты в ремзоне никто не отменял, хотя для работ с ТНВД уже не нужно стерильное помещение, какое требуется для форсунок.

Входную диагностику ТНВД проводят на стенде: проверяют производительность насоса и работу его дозирующего блока в различных режимах.

Пул доступных ремонтных запчастей зависит от конструкции ТНВД. Сейчас в нашей стране на легковых автомобилях используются в основном насосы Bosch последних двух поколений: CP3 и CP4.


ТНВД СР3 — последний обладатель жесткого и прочного корпуса в линейке насосов Bosch. У топливных насосов серии CP4 всю нагрузку берут на себя усиленные плунжерные блоки, а корпус выполнен из силумина, он облегченный. Надежность не пострадала, а ремонтопригодность повысилась, потому что блоки можно менять по отдельности.

ТНВД СР3 — последний обладатель жесткого и прочного корпуса в линейке насосов Bosch. У топливных насосов серии CP4 всю нагрузку берут на себя усиленные плунжерные блоки, а корпус выполнен из силумина, он облегченный. Надежность не пострадала, а ремонтопригодность повысилась, потому что блоки можно менять по отдельности.

Насос СР3 появился в начале 2000‑х годов. Его главная конструктивная особенность — невозможность отдельной замены плунжерных пар, поскольку их гильзы вышлифованы непосредственно в корпусе насоса. При повреждении плунжера и зéркала его цилиндра ремонт экономически нецелесо­образен — нужно менять корпус в сборе, а его не поставляют в запчасти. Одна из причин — высокая цена. Зато все остальные компоненты СР3 есть в свободном доступе (по отдельности): вал, подшипники, уплотнения, встроенный подкачивающий насос и дозирующий блок. И заменить их довольно просто.

Насос последнего поколения СР4 появился в 2010 году. Любой его элемент можно обновить. В корпус встроены блоки с плунжерами, заменить которые несложно. Но рядовой потребитель может свободно купить для этого насоса только дозирующий блок, остальные компоненты поставляются исключительно в авторизованные тех. Причем они привязаны к базам данных и технической информации по ремонту.

У CP3 и CP4 нет откровенно слабых мест — при правильной эксплуатации все детали изнашиваются более-менее равномерно. Поэтому список ремонтных операций и запчастей для замены составляется индивидуально в каждом конкретном ­случае — по результатам дефектовки. Помимо одноразовых элементов (например, уплотнителей) желательно по умолчанию обновлять подшипники с обоймами и их упорные кольца.


При обслуживании современной топливной аппаратуры крайне важно выполнять ее прокачку после разгерметизации (например, после замены топливного фильтра). ТНВД СР4 — один из примеров узла, который может не простить пренебрежения этим правилом. При попадании воздуха в насос, особенно под нагрузкой и при довольно высоких оборотах двигателя, кулачок может развернуться поперек плунжера. Это случается и при попытке выгнать воздух из системы с помощью длительной работы стартера. При развороте кулачка начинается быстрый и необратимый износ плунжерной пары с активным образованием металлической стружки, которая расходится по всей топливной системе. Дело уже не ограничится заменой только насоса, в этом случае неминуем более масштабный ремонт.

При обслуживании современной топливной аппаратуры крайне важно выполнять ее прокачку после разгерметизации (например, после замены топливного фильтра). ТНВД СР4 — один из примеров узла, который может не простить пренебрежения этим правилом. При попадании воздуха в насос, особенно под нагрузкой и при довольно высоких оборотах двигателя, кулачок может развернуться поперек плунжера. Это случается и при попытке выгнать воздух из системы с помощью длительной работы стартера. При развороте кулачка начинается быстрый и необратимый износ плунжерной пары с активным образованием металлической стружки, которая расходится по всей топливной системе. Дело уже не ограничится заменой только насоса, в этом случае неминуем более масштабный ремонт.

У ТНВД первым сдается в основном навесное оборудование, в частности дозирующий блок. Заменить его можно в обычном сервисе при условии соблюдения хотя бы элементарной чистоты. Ведь грязь, попавшая внутрь клапана при снятии старого блока и установке нового, может мгновенно прикончить недешевый узел.

Увы, рядовые ремонтники нередко не соблюдают требуемый момент затяжки встроенного в ТНВД подкачивающего насоса. В результате он может перекоситься, и тогда его шестерня начнет контактировать со стенкой корпуса, - а металлическую стружку, которая в этом случае непременно образуется, разнесет по всей топливной системе…

После ремонта ТНВД опять ставят на стенд, чтобы провести выходной контроль по полному тест-плану.

Как проверить форсунки на дизельном двигателе? Сколько это стоит? Ремонт, регулировка, замена по низкой цене

Подавляющее большинство машин имеет двигатель работающий на дизельном топливе (ДТ). Его система питания топливом заметно отличается от бензинового. Без преувеличения можно сказать, что главенствующую роль в ней занимает форсунка. Ее предназначение – подать в цилиндр двигателя дозу ДТ при определенных параметрах. Когда она исправна — двигатель легко заводится и работает ровно на всех оборотах. Но не исключены моменты, когда в ее работе по различным причинам происходит сбой. В этом случае ремонта не избежать.

Признаки неисправности

Достоверно определить техническое состояние и отказ в работе форсунки практически не возможно. Дело в том, что узлы и агрегаты топливной системы тесно связаны между собой. Возникновение неполадки в любом из них сразу сказываются на работе двигателя. Поэтому его реакция на выход из строя любого элемента топливной системы будет примерно одинаковой.

Имеется ряд косвенных признаков, указывающих на возможный выход форсунки из строя:

  • трудный запуск двигателя;
  • ощутимая потеря его мощности;
  • заметный перерасход ДТ;
  • сильное дымление при работе двигателя.

Эти признаки в состоянии заметить даже не опытный автолюбитель. Как он должен поступать дальше, рассмотрим чуть позднее.

Водители-профессионалы могут более точно определять, какая форсунка является нерабочей. Для этого они на ощупь проверяют пульсацию топлива в топливопроводе при работающем двигателе или откручивают накидную гайку штуцера. Таким образом можно узнать, проходит ли ДТ через форсунку.

Внимание! Обнаружив хотя бы один из перечисленных признаков необходимо срочно отогнать машину на СТО для диагностики топливной системы.

Диагностика

Как проверить форсунки на дизеле?

Выявить истинное состояние форсунки и определить возможность дальнейшей эксплуатации сможет диагностика. Процесс диагностики имеет множество нюансов, поэтому она проводится только лишь на специализированных СТО. Работоспособность проверяется на специальных испытательных стендах.

Параметры, подлежащие проверке, таковы:

  • качество распыления топлива;
  • давление топлива при впрыске;
  • функционирование системы отсечки топлива;
  • работа запорного клапана;
  • состояние распылителя.

Насколько сложна диагностика, показывает этот ее далеко не полный список. Кроме этого необходимо учитывать, что каждый из этих параметров для проверки требует специального оборудования.

Если Вас волнует вопрос, как проверить форсунки на дизельном двигателе, обращайтесь в наш автосервис, и мы выполни задачу быстро и качественно. Наш специализированный сервисный центр оснащен самыми современными стендами и приборами по проверке и диагностике. Работу выполняют подготовленные мастера, имеющие многолетний опыт.

Важно! Чем раньше будет выполнена качественная диагностика форсунки, тем выше шанс избежать дорогостоящего ремонта.

Ремонт и регулировка дизельных форсунок

Для начала рассмотрим вопрос ремонта форсунок для дизеля.

В практике существует два вида ремонта – капитальный и замена неисправной форсунки рабочей. При первом виде ремонта вся форсунка полностью разбирается, дефектуется и обнаруженные неисправные детали заменяются новыми. После этого предстоит проверка форсунок дизельного двигателя на испытательном стенде. При соответствии всех проверяемых параметров Техническим условиям (ТУ), форсунка устанавливается в двигатель.

Сложность ремонта заключается во многих аспектах. Осуществить его качественно позволяет наличие знаний, опыта, использование специального инструмента и еще ряд других факторов.

Совет: В отличие от гаражного ремонт на СТО продлит работу не только форсунки, но и всего двигателя.

Ремонт и регулировка форсунок дизельного двигателя

Немаловажным вопросом является и регулировка дизельной форсунки.

Почему ее нужно обязательно регулировать? Основными и главными рабочими частями любой форсунки являются игла и взаимодействующая с ней пружина. От силы давления, создаваемой пружиной будет зависеть количество впрыскиваемого в цилиндр двигателя топлива и его давление во время впрыска. От этих параметров зависит вся работа двигателя. Для того, чтобы их показатели соответствовали требованиям ТУ и проводится регулировка.

При регулировке используется несколько специальных стендов, на которых приводятся в норму:

  • момент впрыска топлива;
  • давление топлива в момент впрыска;
  • гидравлическая плотность плунжерной пары;
  • качество распыления топлива;
  • угол конуса распыляемого топлива;
  • герметичность форсунки.

Становится понятным, что такие работы можно выполнить только на специализированном СТО.

Замена форсунки на дизельном двигателе

Она производится при обнаружении нерабочей. Операция сама по себе простая, но в гаражных условиях ее проводить не рекомендуется. Необходимо помнить, что сама форсунка изготовлена из высокопрочной стали, а головка блока цилиндров (ГБЦ), куда она вкручивается, из сплава алюминия. Достаточно приложить при закручивании чуть-чуть больше усилия, чем требуется, на головке сразу образуется трещина. Она не устраняется. ГБЦ придется менять.

Хотите знать, сколько стоит замена форсунок на дизеле? Затраты на такой ремонт будут внушительными.

Вывод: Любая работа, связанная с ремонтом и обслуживанием форсунок двигателя должна проводиться на специализированном сервисе.

Мы ремонтируем форсунки

И делаем это успешно на протяжении многих лет. Многочисленные отзывы благодарных клиентов – подтверждение сказанного. Наши мастера-профессионалы не только делают качественный ремонт, но и всегда дадут консультацию клиентам по интересующим их вопросам. Высокое и добросовестное качество работ обуславливается гарантией, которую дадут специалисты нашего сервисного центра по окончанию ремонтных работ.

Сервис оснащен самым современным оборудованием по диагностике и ремонту топливной аппаратуры. Демократичные цены не оставляют без внимания ни одного клиента. Наличие скидок и проводимые акции так же делают наш сервис более привлекательным.

Как очистить и отрегулировать дизельные форсунки

20.08.2020

Реклама наших партнеров

Качественный распыл топлива напрямую влияет на эффективность сгорания топливно-воздушной смеси в цилиндре бензинового или дизельного двигателя. Если горючее подается неравномерно или не в заданный момент времени, тогда дизель теряет мощность на разных режимах работы, выхлоп дизеля становится черным, мотор начинает троить и т.д. Дизельный двигатель плохо заводится «на холодную», неустойчиво работает «на горячую».

Такие неисправности в системе питания дизельного двигателя могут привести к дорогостоящему ремонту. Несвоевременная подача топлива в цилиндры приводит к повышенному расходу горючего, перегреву и разрушению поршня, прогару клапанов, выходу из строя сажевого фильтра. Одной из частых причин неисправной работы ДВС является нарушение впрыска по вине топливных инжекторов. Чтобы избежать подобных неприятностей может потребоваться диагностика, промывка и/или ремонт дизельных форсунок.

 

Проверка форсунок дизельного двигателя своими руками

Для определения неисправной форсунки необходимо на заведенном двигателе довести обороты коленвала до такой частоты, когда сбои в работе дизеля заметны наиболее отчетливо. Далее каждую из форсунок последовательно отключают путем ослабления накидной гайки в месте крепления магистралей высокого давления к соответствующим штуцерам насоса. Если отключается «рабочая» деталь, тогда работа двигателя меняется. В момент отключения топливной форсунки, которая заведомо неисправна, никаких явных изменений в работе двигателя не произойдет.

Забитый инжектор можно выявить путем прощупывания топливопровода на предмет толчков, которые возникают в результате пульсации нагнетаемого ТНВД горючего при полной невозможности или только частичной его прокачке через сопло. Следует обратить внимание на штуцер вызывающей подозрение секции. Температура элемента будет выше сравнительно с остальными.

Помните, в процессе проверки и регулировки дизельных форсунок необходимо соблюдать повышенную осторожность! Струя топлива подается под большим давлением. При попадании такой струи на открытые участки кожи возможны глубокие и серьезные раны. Одежда также не является эффективной защитой от струи топлива под высоким давлением!

Экономичность дизеля и эффективность его работы сильно зависит от типа установленных распылителей, которые периодически меняют в процессе чистки, регулировки или ремонта топливной системы дизельного двигателя. Перед монтажом дизельной форсунки на мотор нужно убедиться в подходящей маркировке распылителя. Распылители на всех инжекторах должны быть одинаковыми, пропускная способность не должна отличаться.

Проверка форсунок на давление в момент впрыска, а также анализ эффективности распыла осуществляется при помощи специального прибора под названием максиметр. Максиметр является контрольным образцом в виде специальной форсунки. Такой элемент имеет тарировочную пружину и шкалу, которая нанесена на корпус и колпак. При помощи указанной шкалы становится возможным установить давление начала впрыска солярки.

Вторым способом является наличие контрольной образцовой рабочей форсунки, с которой сравниваются остальные. Данные проверки производят на заведенном дизельном двигателе. Чтобы проверить качество распыла и давление впрыска потребуется демонтаж форсунки и топливопровода с дизельного ДВС. Далее на свободный штуцер топливного насоса высокого давления монтируется специальный тройник, к которому подключают тестируемую деталь параллельно с заведомо исправной контрольной.

Контрольный инжектор предварительно регулируют на оптимальный показатель давления начала топливного впрыска, проверяют на качество распыла. Также необходимо осуществить ослабление затяжки накидных гаек на оставшихся штуцерах ТНВД. Это позволит прервать топливоподачу к другим дизельным форсункам. Последним шагом становится активация декомпрессионного механизма, выставляется максимальная подача горючего. После этого можно начинать вращение коленвала двигателя.

Обе форсунки (контрольная и тестируемая) должны демонстрировать одновременное начало впрыска топлива. Если тестируемый инжектор отклоняется от нормы сравнительно с контрольным образцом, тогда потребуется регулировка дизельной форсунки.  Необходимо отрегулировать давление пружины тестируемой детали.

Для регулировки потребуется отвинтить колпак форсунки и ослабить контргайку. Далее при помощи регулировочного винта нужно установить такую степень затяжки пружины, чтобы оба инжектора в итоге осуществляли впрыск одновременно. Для определения эффективности и качества распыла тестируемой детали необходимо сравнить результат с показателями контрольного образца.

Проверка дизельных форсунок на давление впрыска и качество распыла при помощи контрольного образца займет больше времени по сравнению с использованием заранее подготовленного максиметра. Кроме проверки на двигателе с использованием ТНВД эффективность работы инжектора можно протестировать при помощи специального проверочного (регулировочного) стенда.

 

Очистка форсунок дизельного ДВС

В том случае, если потребовалась промывка дизельных форсунок своими руками, неисправную деталь снимают для осмотра и регулировки. Прежде чем ответить на вопрос, как очистить форсунки дизельного двигателя, следует отметить, что разбор инжектора необходимо осуществлять в условиях максимальной чистоты и освещенности.

Самостоятельно промыть дизельную форсунку можно керосином или качественным дизтопливом без примесей. Далее элементы детали аккуратно обдувают сжатым воздухом, после чего можно осуществить сборку в обратном порядке.

Для того чтобы избежать возможного смешивания составных элементов от разных форсунок, разборку и сборку каждого инжектора лучше производить отдельно или разбирать и собирать детали в порядке очереди. Составные элементы обтираются исключительно чистыми батистовыми салфетками, а также салфетками из бязи.

Если конструктивно предусматривается возможность регулировки подъема иглы, тогда регулировочный винт затягивают до упора. Далее указанный винт немного отпускают, тем самым обеспечивая нужный подъем иглы. Параметры касательно высоты подъема обычно указываются в руководстве по эксплуатации конкретного двигателя.

 

Качество распыла дизтоплива

Нормально работающая форсунка в момент подачи топлива производит одиночный, короткий и «кучный» впрыск, который сопровождается резким звуком. Распространенной ситуацией является то, что отверстия сопла форсунок (распылителя) могут быть частично забиты или изношены. Тогда сопло требует чистки или замены.

В этом случае деталь необходимо закрепить на проверочном стенде и направить соплом в специально подготовленное место. В это место нужно положить чистую бумагу для того, чтобы упростить процесс диагностики. Далее осуществляется резкий впрыск топлива. После этого на бумаге можно увидеть следы или прорывы листа от струй солярки. Общее количество таких следов после впрыска должно быть идентичным сравнительно с общим количеством отверстий в конструкции распылителя. Если следов на бумаге меньше, тогда некоторые отверстия забиты и требуется очистка сопла (распылителя) дизельной форсунки.

Следы солярки на бумаге должны иметь одинаковую сгущенность, а также располагаться на равном удалении от центра. Важной функцией инжектора является не только подача, но и обеспечение максимально равномерного распыла дизтоплива по окружности.

Отверстия прочищают после разбора инжектора. Осуществлять чистку без разбора элемента не рекомендуется по причине того, что грязь и отложения останутся внутри. Распылитель и остальные детали необходимо тщательно промывать в керосине. Образовавшийся нагар, который находится снаружи составных элементов, аккуратно удаляется деревянным скребком. Сами отверстия прочищаются небольшим куском тонкой и мягкой стальной проволоки.

Обратите внимание, что диаметр проволоки обязательно должен быть меньше диаметра отверстий сопла минимум на 0,1 мм. Если сопловые отверстия получат увеличение их суммарного сечения или будет нарушена правильная форма отверстий, это приведет к снижению скорости выхода топлива из форсунки. Качество распыла автоматически ухудшится.

Распылитель подлежит замене, если диаметр отверстий сопла увеличен всего на 10% от максимально допустимого. Также поводом для замены сопла выступает и разница в диаметрах отверстий на 5%. После чистки или замены распылителя осуществляется обратная сборка форсунки.

 

Диагностика и регулировка дизельных форсунок

Частой проблемой является нарушение плотности посадки иглы форсунки в направляющей втулке. Если плотность уменьшена, тогда существенно больше топлива протекает через образовавшийся зазор между иглой и втулкой. Для исправного инжектора допускается протечка горючего не более 4% от общего количества топлива, которое подается в цилиндр двигателя. Общее количество топлива, которое сливается из разных форсунок за каждый отдельный промежуток времени, не должно существенно отличаться. Выявить отклонения от нормы можно при помощи следующих действий:

необходимо затянуть пружину форсунки так, чтобы параметр давления открытия иглы совпадал с тем, который указан в технической литературе по эксплуатации конкретного дизельного двигателя;

следующим шагом становится создание заведомо большего давления топлива, чем указанное в документации по эксплуатации ДВС. Затем нужно замерить при помощи секундомера время, за которое давление упадет на 50 кгс/см2 от рекомендуемого;

Оптимальное время падения давления указано в технической документации по эксплуатации мотора. Зачастую требуется не менее 15 секунд для полностью новых форсунок. Для детали с пробегом данный показатель находится в рамках 5 секунд.

Если наклонить направляющую иглу на угол около 45 градусов, тогда игла должна выйти из нее не более чем на треть от длины направляющей. Игла должна выходить свободно, под собственным весом и при учете любого поворота вокруг оси. Указанную пару втулка-игла меняют в случае существенных отклонений в работе. Отдельная замена иглы без замены направляющей втулки не рекомендуется, так как данные элементы подгоняются друг к другу с высокой точностью.

Регулировка давления подъема иглы форсунки достигается путем изменения силы натяжения пружины. Максимально допустимое отклонение находится в рамках до 10 кгс/см2. Показатель величины такого давления указан в инструкции по эксплуатации ДВС.

 

Течи горючего из топливной форсунки

Также дизельные инжекторы могут давать как незначительную, так и обильную течь. В первом случае потребуется ремонт, во втором можно обойтись способом притирки иглы к седлу. Форсунки текут по причине нарушения уплотнения в области торца иглы, который еще называется уплотняющим конусом.

Проверку плотности притирки торца можно проверить путем плавного и поэтапного наращивания давления горючего. Конец распылителя должен оставаться полностью сухим при достижении такого показателя, который составляет до 10 кгс/см2 меньше, чем необходимое давление впрыска.

В том случае, если замечено подтекание дизельной форсунки, тогда осуществляется аккуратная притирка иглы к седлу. Для этого используется тонкая шлифовальная паста ГОИ, которую дополнительно разводят с керосином. В процессе притирки необходимо избегать попадания пасты в зазор, который присутствует между иглой и направляющей втулкой. По окончании все элементы промываются в керосине или чистой солярке, затем их обтирают соответствующими салфетками. Далее необходимо обдуть все части сжатым воздухом и произвести повторную проверку на наличие течи.

 

 

Источник: krutimotor.ru

Реклама наших партнеров

Акционные товары

Изучаем вместе, как работают насос-форсунки

С развитием и распространением дизельных двигателей, к ним начали выдвигать все большие и большие требования, выражающиеся в увеличении удельной мощности мотора, увеличении давления впрыска и улучшении процесса смесеобразования. Немаловажным фактором также являются компактные размеры самого устройства и соблюдение экологических норм. Все это, вместе с бурным развитием электроники, поспособствовало созданию индивидуальных насос-форсунок и отдельных насосных секций для каждого цилиндра дизельного двигателя, оборудованного электронным блоком, который и управляет его работой.

1. Как работает насос-форсунка?

Система впрыска топлива, снабженная насос-форсунками, устанавливается на дизельных двигателях внутреннего сгорания и была разработана еще в конце 30-х годов ХХ века. Впервые такую систему применили на морских, железнодорожных и грузовых дизельных моторах, характеризующихся сравнительно низкой скоростью. Главной особенностью таких силовых агрегатов является наличие отдельного впрыскивающего топливного насоса, использующегося для каждого цилиндра мотора и обладающего очень короткими напорными линиями к форсунке. В движение такие насосы приводятся механическим путем, при помощи толкателя и буферов.

В корпусе насос-форсунки объединены насос высокого давления, сама форсунка, дозирующий клапанный узел и силовой привод, благодаря которым данный элемент имеет преимущества в сокращении продолжительности движения топливной жидкости, находящейся под высоким давлением, а также в увеличении гидравлической эффективности и уменьшении своей массы.

Представители последнего поколения насос-форсунок обладают большим рабочим давлением впрыска (до 2500 бар) и способны мгновенно реагировать на команды управляющего блока, в задачу которого входит сбор и анализ текущей информации, поступающей от внешних датчиков. Именно эти данные определяют требуемые количественные и временные характеристики впрыска топлива, что дает возможность получения оптимальных значений мощности при заданном режиме работы, существенно экономит топливную жидкость, обеспечивает минимальные выбросы в атмосферу и способствует снижению уровня шумности от работающего силового агрегата. Кроме того, насос-форсунка достаточно компактна, за счет чего в головке двигателя образуется дополнительное свободное пространство, использующееся для установки других деталей двигателя.

Конструкция насос-форсунки позволяет обеспечить эффективное образование топливно-воздушной смеси, для чего в процессе впрыска предусмотрены фазы предварительного, основного и дополнительного впрыска топлива. Предварительный впрыск помогает достичь плавности сгорания смеси в ходе основного впрыска, обеспечивающего качественное смесеобразование при разных рабочих режимах мотора, а дополнительный служит для очистки сажевого фильтра от накопленных отложений сажи (процесс регенерации).

Процесс работы насос-форсунки проходит следующим образом:

1) Кулачок распредвала посредством коромысла перемещает плунжер вниз, и топливо начинает перетекать по каналам форсунки. В момент закрытия клапана топливо как бы отсекается, и его давление начинает возрастать, а при достижении показателя в 13 мПа игла распылителя преодолевает усилие пружины, вследствие чего происходит предварительный впрыск топлива.

2) Как только клапан открывается, предварительный впрыск прекращается, а топливо переходит в питающую магистраль, и его давление снижается. В зависимости от рабочих режимов силового агрегата, может производиться один или два предварительных впрыска.

3) При продолжении движения плунжера вниз происходит основной впрыск. Клапан опять закрывается, и давление топлива снова возрастает. Достигнув значения в 30 мПа, игла распылителя преодолевает силу давления топлива, и усилие пружины поднимается вверх, вызывая основной впрыск. Чем выше будет давление, тем большее количество топлива сожмется, а значит, в итоге получится больший впрыск в камеру сгорания. Наибольшее количество топлива (что способствует максимальной мощности двигателя) впрыскивается при давлении в 220 мПа. Завершение этапа основного впрыска происходит с открытием клапана, причем давление топлива падает, а игла распылителя закрывается.

4) Дополнительный впрыск топлива происходит при дальнейшем движении плунжера вниз, а принцип действия устройства на этом этапе аналогичен основному впрыску и обычно производится в два захода.

2. Типичные неисправности насос-форсунок, их диагностика и устранение

Автовладельцам, на автомобилях которых установлена описанная система впрыска топлива, наверняка не раз приходилось иметь дело с проблемами, относящимися к следующим группам: проблемы с запуском мотора или полный рабочий отказ агрегата, перерасход топливной жидкости, нестабильная работа мотора, повышенный уровень «дымности» выхлопных газов и потеря мощности. Все эти признаки указывают на нарушения работы в EUI или EUP-секциях – наиболее распространенных видах насос-форсунок в странах Европы и СНГ (в том числе и Украины).

Среди причин нарушения точной работы указанных элементов можно выделить несколько наиболее частых, а чтобы лучше понять их, надо сказать, что составляющие элементы механической части управления насос-форсункой – это отдельные «родственники» деталей газораспределительного механизма, который функционирует в головке блока двигателя внутреннего сгорания. Разница только в природе рабочего тела, в роли которого, в данном случае, выступает не воздушная смесь, а дизельное топливо, находящееся под высоким давлением и обладающее определенными физическими свойствами.

К наиболее типичным неисправностям электронной насос-форсунки относят неисправности клапанного узла (встречаются примерно в 63% случаев), проблемы в работе распылителя (примерно 30% случаев), поломки электромагнитной части (5%) и выход из строя плунжера, пружины или корпуса (2%).

Другими словами, наиболее частой причиной неисправности насос-форсунок есть разрушение клапанного механизма и его механические повреждения. Этой причине следует уделять особое внимание, так как клапан при закрытии отсекает топливо, то есть на седло клапана и отсекающую кромку тарелки клапана создается достаточно большая нагрузка. Однако, надо сказать, что указанный механизм отличается достаточно высоким уровнем надежности, конечно, при условии применения качественного топлива. Точность изготовления элементов описанного механизма может достигать 0,25 мкм, с зазорами прецизионных узлов в 1,5-2 мкм, а чтобы лучше представить себе данную величину, достаточно отметить, что толщина волоса человека составляет около 50 мкм.

На следующем месте по частоте выхода из строя находится распылитель, нарушения в работе которого сказываются на «дымности» двигателя, существенном увеличении расхода топлива и общем ухудшении экологических показателей. Зачастую, проблемы с распылителем не влияют на мощностные характеристики силового агрегата, а замена этой составляющей не составит особой сложности.

Далее, в списке характерных причин поломки насос-форсунок находятся неполадки в электромагнитной части управления работой механизма. Поломка данного узла вызывает неточности в работе насос-форсунки на определенном рабочем режиме мотора, вплоть до полного прекращения его деятельности. Правда, благодаря надежности деталей этой части и при соблюдении водителем требований производителя относительно применяемого топлива, поломки такого рода встречаются достаточно редко.

На последнем месте по частоте проявления находятся неполадки в работе плунжера, связанные с механическими разрушениями, а также разрушение пружины и корпуса детали. В принципе, ничего сложного в восстановлении работоспособности форсунки нет, ведь так же, как и капитальный ремонт силового агрегата, капремонт указанной детали основывается на восстановлении рабочих поверхностей всех трущихся элементов и уплотняющих фасок, но вот только допуски и посадки всех деталей насос-форсунок измеряются в микронах.

Все виды ремонтных работ принято начинать с диагностики ремонтируемого устройства, и насос-форсунка в этом вопросе не исключение. После ее демонтажа проводится соответствующее тестирование детали на специальном стенде. Для осуществления процесса, на форсунку устанавливают новый распылитель, а затем стенд «гоняет» ее на разных рабочих режимах силового агрегата: на холостом ходу, номинальном режиме (условное передвижение транспортного средства с крейсерской скоростью) и при разгоне.

Если установка нового распылителя будет способствовать «недоливу» положенной порции топлива (до 10%), значит, клапан и плунжерная пара пока находятся в нормальном состоянии, и можно будет обойтись лишь заменой распылителя, что позволит автомобилю спокойно ездить еще 100 000 километров. Более 10% «недолива» свидетельствуют о критическом износе клапана, а при самом худшем варианте развития событий неисправной может оказаться еще и плунжерная пара (когда клапан не держит те самые 1500 кг/кв.см, в результате чего цилиндр недополучает топливо). В таком случае, избежать капитального ремонта форсунки уже не получится.

Восстановление работоспособности пары трения клапан-втулка выполняется следующим путем. Втулку расшлифовывают до следующего ремонтного размера (принятые стандарты подразумевают увеличение диаметра на 50 мкм, чего более чем достаточно для удаления всей выработки). Сам клапан покрывают хромом, после чего его шлифуют до нужного размера. Вместе с ним шлифовке поддаются и поверхности втулки и клапана. Аналогичным образом восстанавливается и плунжер, но только он покрывается не хромом, а нитратом титана, путем вакуумного напыления. Нитрат титана обладает вдвое меньшим коэффициентом трения по стали, нежели сама сталь и вдвое большей микротвердостью поверхности. Таким же составом покрывается и клапан.

3. Преимущества и недостатки насос-форсунок

Среди преимуществ использования насос-форсунок выделяют следующие:

1) Данные элементы позволяют впрыскивать топливо под давлением больше 2000 бар, благодаря чему распыление топливной жидкости выполняется более эффективно, а значит, и сгорает полнее. Поэтому моторы с установленными на них насос-форсунками отличаются высокими мощностными характеристиками и экономичностью.

2) Кроме того, учитывая, что давление в системе с насос-форсункой и давление впрыска регулируется при помощи кулачкового механизма распредвала, энергия привода должна применяться только по отношению к области впрыска. Такие системы являются более отказоустойчивыми, нежели их аналоги без насоса и без рампы, поэтому появление проблем в работе насос-форсунок совсем не означает остановку двигателя.

3) Наличие высокого давления гарантирует более тонкое распыление топливной жидкости, а небольшие капли означают меньший объем по отношению к площади поверхности, что само по себе может вызвать появление меньшего количества сажи.

4) Дизельный мотор, обустроенный насос-форсунками, обеспечивает наиболее «горизонтальную» полку крутящего момента.

5) Помимо этого, моторы с такой системой впрыска работают значительно тише аналогичных устройств с механическими форсунками и гораздо компактнее их.

Однако, в описанной системе есть и свои минусы. Основной из них – это необходимость использования качественного топлива, так как любые примеси в виде воды, грязи или использование суррогатного топлива для нее губительны. Вторым серьезным недостатком является высокая стоимость самой насос-форсунки, а ремонт данного узла практически невозможен в «домашних условиях», из-за чего автовладельцам приходится сразу покупать новые детали.

Также стоит учитывать тот факт, что кулачковая зависимость чаще всего вызывает впрыск лишь тогда, когда кулачок задействует насос, а значит, диапазон возможных моментов впрыска обусловлен определенным диапазоном вокруг ВМТ (верхней мертвой точки), что не может обеспечить плавность хода. Поскольку момент и количество впрыска не могут постепенно меняться, то такой процесс является ограниченным. Более того, для соблюдения стандартов EURO 4, температуру выхлопных газов также не получится быстро изменить.

Если резко выполнить восстановление давления в системе впрыска с насос-форсункой, то необходимая при этом движущая энергия будет применяться только лишь в области впрыска. Соответственно, высокие динамические нагрузки, возникающие в результате роста давления, требуют определенного размера распредвала и соответствующую конструкцию его привода. Привод должен быть оборудован широким зубчатым ремнем или цилиндрическим зубчатым колесом, так как высокая жесткость на растяжение и низкая демпфирующая способность цепных приводов в условиях предельных нагрузок часто приводят к их разрыву.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Устройство форсунок дизельных двигателей: Тысячу раз в минуту

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Форсунки – элементы системы питания дизельных двигателей, которые обеспечивают поступление топлива непосредственно в камеру сгорания каждого цилиндра. Форсунка распыляет топливо в форме факела в надпоршневом объеме, а также участвует в процессе дозирования его продачи. И все это происходит с частотой от 400 до 2500 раз в минуту.

По своей конструкции все дизельные форсунки в зависимости от способа управления делятся на механические и электромеханические.

Проверенная механика

Работа классического дизеля основана на тех же принципах, что и сто лет назад, в эпоху создателя этого типа моторов Рудольфа Дизеля. Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль механической форсунки каждого цилиндра. Такие форсунки открываются исключительно «по команде» высокого давления в топливной магистрали и закрываются при его снижении.

Обычная механическая форсунка состоит из корпуса, распылителя с иглой и одной пружины (однопружинная). Игла свободно перемещается в пределах направляющего канала распылителя, обеспечивая в закрытом состоянии надежную герметизацию сопла. В нижней части она упирается в коническое уплотнение распылителя, к которому прижимается расположенной сверху пружиной.

Для преобразования энергии давления топлива, созданного ТНВД, в усилие подъема иглы на ее поверхности предусмотрена ступенька. Топливо подается в специальный объем корпуса непосредственно под ступенькой иглы. Когда давление превышает усилие пружины иглы, она поднимается вверх. При этом обеспечивается открытие каналов распылителя и происходит впрыск топлива. После того, как вся поданная насосом порция горючего проходит через распылитель в камеру сгорания, давление начинает падать, и игла под воздействием усилия пружины опускается. Подача топлива при этом прекращается. Давление впрыска топлива составляет 400 – 600 кг/см2.

Варьируя параметры форсунок (геометрию каналов распылителя и их количество, жесткость пружины и др.) и тем настраивая их на оптимальный режим работы, конструкторы научились управлять процессом сгорания топлива.

В некоторых двигателях (например, версиях TDI моделей Mercedes, VW, BMW, Audi и пр.) одна из форсунок может быть оснащена датчиком подъема иглы. Положение иглы важно «знать» блоку управления моторами с электронно управляемыми топливными насосами.

В особую группу форсунок следует выделить двухпружинные. Они имеют более сложную конструкцию, но зато точнее, чем классические однопружинные, управляют процессом топливоподачи. Благодаря этому снижаются жесткость процесса сгорания и шум. Положительный эффект обеспечивается двухступенчатым подъемом иглы, во время которого поочередно преодолевается сопротивление каждой из двух пружин. На холостом ходу и при малых нагрузках работает только первая ступень, «подкармливая» двигатель небольшим количеством топлива. На мощностных режимах поступают две порции топлива: сначала малая (до 20% общего объема), затем большая. Это смягчает, продлевает и делает более полным процесс сгорания. Кроме того, уменьшились расход топлива и токсичность отработавших газов. Давления открытия ступеней отличаются незначительно, например, у дизелей с разделенной камерой сгорания* составляют 130 и 180 кг/см2. Давление впрыска основной порции – порядка 800 – 1000 кг/см2.

Сегодня доля двухпружинных конструкций составляет около четверти от общего количества. Такие форсунки применяли в дизелях с непосредственным впрыском**, пока их не потеснила система питания Commоn Rail.

Эпоха электроники

В современных дизелях топливо подается с помощью электромеханических форсунок, у которых за открытие и закрытие иглы отвечает управляемый электроклапан. Пока ему не будет дана команда от ЭБУ, топливо не поступит к распылителю. Бортовой компьютер определяет момент начала впрыска и его продолжительность, тщательно дозируя горючее длиной импульсов в зависимости от частоты вращения коленвала, нагрузки, положения педалей, температуры двигателя и других факторов. Такая особенность позволяет электронике управлять подачей топлива с высокой точностью, в благоприятном режиме с точки зрения экономичности и экологичности.

Электромеханические форсунки в дизелях с системой питания типа Common Rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Этим удалось добиться более плавного нарастания давления газов на поршень и более качественного сгорания топлива, что в итоге снизило шум и количество вредных компонентов в выхлопе. Давление впрыска в данных системах питания удалось повысить до 1600 кг/см2. При этом еще больше улучшилась точность дозирования и равномерность распределения топлива по цилиндрам.

Един в двух лицах

Во второй половине 90-х годов некоторые дизели стали оснащать еще одной разновидностью системы питания – без ТНВД. Его функции переложили на насос-форсунки. Подкачивающий насос подает к ним топливо под небольшим давлением. Каждая форсунка снабжена своей плунжерной парой, которую приводят в действие кулачки распределительного вала. Преимуществ у таких систем питания несколько. Во-первых – большее давление топливоподачи (от 1200 до 2050 кг/см2), что обеспечивает более качественое распыление. Во-вторых, отсутствие громоздкого ТНВД с отдельным приводом и инерционных систем распределения горючего. Все это способствовало повышению точности начала впрыска и дозировки.

Насос-форсунки оборудованы электроклапаном и могут работать в двухимпульсном режиме. Как и в предыдущих случаях, это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, смягчает работу мотора и снижает токсичность выхлопа. Негативная особенность насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии даже по сравнению с Common Rail.

* Разделенная камера сгорания – камера, состоящая из двух полостей – надпоршневой и вспомогательной в головке блока или в самом блоке. Применяется для увеличения энергии воздушных потоков
** Непосредственный впрыск в дизелях – подача топлива в камеру сгорания, состоящую из одного надпоршневого объема

 Распылители

Одна из наиболее ответственных деталей форсунки – распылитель. Они отличаются количеством распылительных отверстий и способом регулирования топливоподачи. Предкамерные и вихрекамерные дизели (т.е. с разделенной камерой сгорания), как правило, оснащают распылителями с одним отверстием и иглой. На конце их иглы может быть штифт. Такие форсунки называют штифтовыми (1). Благодаря тому, что штифт иглы большую часть цикла находится в отверстии, появляется возможность подавать основную часть топлива в короткое время в конце цикла, после полного подъема иглы. Таким образом обеспечивается благоприятный режим сгорания и более мягкая работа дизеля.

На дизели с непосредственным впрыском (с неразделенными камерами сгорания) устанавливают форсунки с несколькими распылительными отверстиями (от двух до шести). Есть два типа многоструйных распылителей: с перекрываемыми отверстиями (2) и закрытым объемом (3). В первых для прекращения подачи топлива игла перекрывает непосредственно каждый канал распылителя, т. е. контактирует с каждым отверстием. В форсунках с закрытым объемом игла не перекрывает само отверстие – она «глушит» небольшой объем в самом низу распылителя. Из-за остатка топлива в этом объеме, которое впоследствии испаряется, возникают проблемы со снижением токсичности отработавших газов.

Игорь Широкун
Фото Bosch

Как работают форсунки на авто. Топливные форсунки: устройство и принцип действия

Топливными форсунками оснащаются современные инжекторные системы в большинстве дизельных и бензиновых двигателей.

Фото: clauretano (flickr.com/photos/clauretano/)

Виды форсунок

По методу впрыска современные топливные форсунки делятся на три вида — электромагнитные, электрогидравлические и пьезоэлектрические.

Электромагнитные форсунки

Такой вид форсунок зачастую устанавливают в бензиновые двигатели . Подобные форсунки имеют простое и понятное устройство, состоящее, собственного говоря, из клапана электромагнитного типа, распылительной иглы и сопла.

Принцип работы электромагнитных форсунок также довольно прост. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой.

Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение.

Электрогидравлические форсунки

Следующий вид форсунок применяется в дизелях, а также в двигателях с топливной системой Common Rail. Электрогидравлические форсунки в отличие от предыдущего вида имеют более сложное устройство, основными элементами которого являются дроссели (впускной и сливной), электромагнитный клапан и камера управления.

В основе работы такого типа форсунок лежит использование высокого давления топливной смеси как в момент впрыска, так и при его остановке. На начальном этапе электромагнитный клапан закрыт, а игла форсунки максимально прижата к своему седлу в камере управления. Прижимной силой является сила давления топлива, которая направлена на поршень, расположенный в камере управления.

Одновременно с этим с другой стороны топливо давит и на иглу, но поскольку площадь поршня заметно больше, чем площадь иглы, то в виду этой разницы сила давления на поршень больше, чем сила давления на иглу, которая плотно прижимается к седлу, перекрывая доступ топливу. В это время подача топлива не осуществляется.

Полученный сигнал от блока управления запускает клапан с одновременным открытием сливного дросселя. Происходит вытекание топлива из камеры управления в сливную магистраль. Дроссель впуска в это время препятствует тому, чтобы давление в камере сгорания и во впускной магистрали быстро выровнялось.

При этом, по мере снижения давления на поршень ослабевает его прижимное усилие, а поскольку давление на иглу не изменяется, то она поднимается, и в этот момент происходит впрыск топлива.

Пьезоэлектрические форсунки

Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются на дизельных ДВС с системой подачи топлива Common Rail. Конструктивно такие форсунки состоят из пьезоэлемента, толкателя, переключающего клапана, а также иглы.

Пьезофорсунки работают по принципу гидравлического механизма. Изначально игла размещается в седле при воздействии на нее высокого давления ТС. При поступлении электрического сигнала на пьезоэлемент, происходит его изменение в размере (его длина увеличивается), за счет чего пьезоэлемент буквально толкает поршень толкателя, который в свою очередь давит на поршень переключающего клапана.

Это приводит к открытию переключающего клапана, через него топливо устремляется в сливную магистраль, давление в верхней части иглы снижается и за счет не изменившегося давления снизу, игла поднимается. При подъеме иглы происходит впрыск топлива.

Основным преимуществом такого вида форсунок является их скорость срабатывания (до 4 раз быстрее, чем в клапанной системе), что позволяет обеспечить многократный впрыск за один рабочий цикл двигателя. При этом объем подаваемого топлива зависит от двух параметров — от продолжительности воздействия на пьезоэлемент, и от давления топлива в рампе.

Преимущества и недостатки форсунок

И в завершении хотелось бы сказать несколько слов о том, какие же преимущества и недостатки имеются у топливных форсунок, если сравнивать их с карбюраторами .

Преимущества топливных форсунок:

  • Экономия при расходе топлива благодаря точной системе дозирования;
  • Минимальный уровень токсичности двигателей, оснащенных топливными форсунками;
  • Возможность увеличения мощности силового механизма до 10%;
  • Простота и легкость при запуске в любую погоду;
  • Возможность улучшения динамических показателей любого автомобиля;
  • Отсутствие необходимости в частой замене и чистке

Недостатки форсунок:

  • Возможные сбои в работе или серьезные поломки в результате использования топлива низкого качества , которое губительно сказывается на чувствительном механизме форсунок.
  • Высокая стоимость ремонта и замены форсунки в целом и отдельных ее элементов.

Схемы подготовлены по материалам Volkswagenag.com

Неисправности инжектора (форсунок) встречаются как на , так и на двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда , теряет мощность, расходует много топлива и т.п.

Читайте в этой статье

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого , поломки , вышедшей из строя свечи зажигания или неисправной катушки до , проблем с и т.д. Наряду с этим одним из главных признаков неисправности форсунок является , а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Как самому очистить форсунки без снятия с двигателя

В процессе диагностики частой причиной неустойчивой работы мотора является то, что инжекторные форсунки забились. Существует несколько способов очистки форсунок, среди которых может использоваться механический, ультразвуковой или очистка при помощи специальных химических составов.

В ряде случаев заливка в топливный бак специальной присадки-очистителя инжектора достаточно для того, чтобы нормализовать работу всей системы. Также рекомендуется с определенной периодичностью раскручивать мотор до высоких оборотов и разгонять автомобиль до 110-130 км/ч. на ровных отрезках пути. В таком режиме нужно проехать 10-20 километров. Продолжительная работа форсунок под нагрузкой позволяет реализовать так называемую самоочистку.

Напоследок добавим, что перечисленные выше способы очистки позволяют удалить только незначительные загрязнения. Серьезно забитый инжектор необходимо чистить механически, составами под давлением или ультразвуком. Что касается промывки форсунок, специалисты рекомендуют промывать инжектор каждые 30-40 тыс. пройденных километров.

Чистку инжектора стоит делать для профилактики, а не после появления признаков неисправности. Если автомобиль эксплуатируется в режиме городской езды на топливе сомнительного качества, тогда интервал профилактических мер следует сократить применительно к индивидуальным условиям эксплуатации.

Читайте также

Когда и для чего нужно снимать топливные форсунки с двигателя. Снятие форсунок на бензиновом и дизельном моторе: особенности процесса демонтажа.

  • Чистка инжектора автомобиля без снятия форсунок. Способы очистки форсунок со снятием на кавитационном стенде. Ультразвуковая и гидродинамическая кавитация.


  • Предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

    Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

    В зависимости от способа осуществления впрыска различают следующие виды форсунок: электромагнитная, электрогидравлическая и пьезоэлектрическая.

    Электромагнитная форсунка

    Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях , в т.ч. оборудованных системой непосредственного впрыска . Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

    Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

    Электрогидравлическая форсунка

    Электрогидравлическая форсунка используется на дизельных двигателях , в т.ч. оборудованных системой впрыска Common Rail . Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

    Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.

    По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

    Пьезоэлектрическая форсунка

    Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

    Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана ), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

    Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

    В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

    Количество впрыскиваемого топлива определяется:

    • длительностью воздействия на пьезоэлемент;
    • давлением топлива в топливной рампе.

    Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над . Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

    • механические;
    • электромеханические;

    Читайте в этой статье

    Принцип работы механической форсунки

    Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К подается горючее из . За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

    Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

    Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

    Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

    Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

    Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

    • распылитель с возможностью перекрытия каналов;
    • распылитель с перекрываемым объемом;

    В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

    Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

    Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

    Инжектор с двумя пружинами

    На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

    Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает.

    Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

    Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

    Электромеханическая дизельная форсунка

    Дальнейшее развитие систем топливоподачи дизельного привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

    Блок управления отвечает за момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

    В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

    Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

    Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше.

    Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

    Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков . Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска.

    Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

    Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

    Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

    Читайте также

    Неисправности форсунок дизеля, проверка и самостоятельное выявление проблем. Очистка сопла форсунок дизельного двигателя, регулирование давления впрыска.

  • Особенности работы и причины неисправностей дизельных форсунок. Как самостоятельно выполнить снятие, дефектовку, разборку и ремонт форсунок дизельного ДВС.


  • Мало кто знает, что в автомобиле есть форсунки. Даже если кто-то и знает, то большая часть из них не знает о том, что это такое, для чего они предназначены и по какому принципу осуществляется работа. На самом деле, топливная форсунка находится в автомобиля. Она предназначена для того, чтобы вовремя подавать топливо в камеру сгорания двигателя. Форсунка устроена так, что она создает топливную смесь путем смешивания бензина и воздуха.

    Строение

    Как уже было сказано, основной задачей форсунки является вовремя подать нужное количество бензиновой смеси в камеру сгорания под нужным давлением. Следует обратить внимание на то, что бензиновая смесь нужна только бензиновому двигателю, а дизельному двигателю и смесь нужна дизельная. Перед тем, как попасть в камеру сгорания двигателя, бензин и воздух смешиваются в определенном количестве. После того, как получается эта смесь, она попадает в камеру сгорания.

    Для того, чтобы под давлением отправить правильное количество топливной смеси в цилиндры двигателя, предусмотрен специальный клапан, который во время открытия набирает топливо и выдавливает эту смесь в цилиндры.

    Существуют разные виды форсунок, их различает лишь принцип работы и привод клапана. Сегодня есть три вида форсунок. Основной вид из них — это форсунка с электромагнитным клапаном. Этот вид наиболее распространен на бензиновых двигателях, потому что конструкция этого устройства и принцип работы настолько просты, что их всего лишь потребуется промывать время от времени.

    Принцип работы основан на том, что в корпусе форсунки расположена специальная обмотка, которая создает разряжение в определенный момент по сигналу электронного блока, который знает, сколько нужно отправить бензина в камеру сгорания.

    Во время этого напряжения, игла поднимается из посадочного места и направляет нужное количество топлива, используя большое давление, в камеру сгорания. Давление в топливной рампе держится на постоянном уровне. Если двигателю необходимо больше топлива, насос поднимает давление автоматически.

    Второй вид — это электрогидравлические форсунки. Этот вид наиболее распространен среди дизельных двигателей. Это устройство начинает работу по сигналу электронного блока, знающего сколько бензина требуется мотору. Здесь топливо попадает в камеру сгорания за счет изменения давления на поршни.

    Существует еще один вид форсунок, но он встречается только на дизельных двигателях с установленной топливной системой Common Rail. Такие форсунки имеют преимущества перед другими видами в скорости срабатывания и в качестве давления. Благодаря этому топливо может поступать в камеры сгорания под определенным давлением во время всего цикла, что положительно сказывается на мощности мотора. Принцип работы здесь основан на гидравлике, как и во втором типе.

    Ремонт и замена

    Как уже было сказано, форсунки часто забиваются, и из-за этого топливо перестает попадать в двигатель. Для того, чтобы мотор работал правильно и динамично, форсунки нужно постоянно проверять и прочищать, если они засорены.

    Для того, чтобы жиклеры не засорялись нужно заливать в автомобиль только качественное топливо на проверенных заправочных станциях. Жиклеры, это каналы, по которым идет топливо, перед тем как попасть в камеру сгорания. Для того, чтобы уберечь автомобиль от некачественного топлива, в устройстве автомобиля есть специальные фильтры, они находятся в разных частях топливной системы. Фильтры бывают грубой, мягкой и тонкой очистки. Грубой очистке подвергается топливо во время попадания в бак, а фильтр тонкой очистки расположен непосредственно перед попаданием в систему впрыска.

    Сегодня на полках автомобильных магазинов можно встретить различные моющие присадки. Они нужны для того, чтобы промывать жиклеры. Эти присадки нужно добавлять в топливный бак, и они уже сами прочистят все каналы.

    Этот способ подойдет лишь тем, у кого жиклеры засорены несильно, если на вашем автомобиле они засорены настолько, что автомобиль не заводится, то тут нужно воспользоваться другими способами очистки.

    Вторым способом очистки считается очистка без снятия приборов с машины. Для того, чтобы очистить каналы от мусора этим способом, нужно залить в бак промывочное топливо. Затем следует отключить топливный насос и магистрали. После этого подающий проводник топлива подключается к установке, с помощью которой будет проводиться очистка. Эта установка, в свою очередь, будет подавать промывающее топливо, используя высокое давление.

    Третий вид очистки используют, когда уже другие два способа перестали помогать. Здесь требуется снять форсунки с машины и погрузить их в специальный раствор в специальной камере. В этой камере они будут очищаться под ультразвуком, который разрушит весь лишний мусор в теле форсунки.

    Для того, чтобы избежать последних двух способов очистки, следует подливать моющие присадки в бак каждые 2-3 тысячи пройденного расстояния. Они очистят не только жиклеры, но и топливный трубопровод и различные механизмы, которые тоже способны забиваться. Помимо всего этого нужно ухаживать за топливным насосом, который подает топливо в трубопровод, давление в котором постоянно регулируется.

    Подводим итоги

    Сегодня каждый водитель знает о том, что в его автомобиле есть топливная система, но не каждый водитель ухаживает за ней должным образом. Нередко в автосервис привозят автомобили с забитой мусором топливной системой. Для того, чтобы избежать этого, нужно вовремя ухаживать за своим автомобилем.

    Как работает система впрыска Common Rail?

    Индивидуальные решения для гибкого использования топлива


    С повышением уровня технических характеристик систем впрыска также возрастают требования к чистоте и качеству топлива. Таким образом, топливо должно соответствовать заданным значениям вязкости и смазывающей способности, поскольку компоненты насосов высокого давления
    и форсунок смазываются топливом. Он также должен быть свободен от каких-либо загрязнений, которые могут привести к абразивному повреждению при высоких давлениях.Поэтому для обеспечения правильной работы двигателя можно использовать только дизельное топливо, одобренное для данного применения и отвечающее применимым стандартам. По запросу клиента MTU проводит анализы для утверждения других видов топлива в зависимости от конкретного применения в тесном сотрудничестве с брендом Rolls-Royce Power Systems L’Orange или альтернативными поставщиками. При некоторых применениях, например, недостаток смазывающих свойств со стороны топлива можно компенсировать специальными покрытиями на системе впрыска.Кроме того, MTU помогает клиентам при проектировании бака и топливной системы на месте. Это представляет большой интерес, например, для горнодобывающей техники, которая подвергается сильному воздействию пыли.

    Резюме


    mtu постоянно совершенствует свои двигатели, чтобы гарантировать, что они будут соответствовать жестким будущим стандартам выбросов, и в то же время потреблять как можно меньше топлива. С этой целью MTU оптимизирует сгорание топлива в цилиндре с помощью своей системы впрыска топлива Common Rail с электронным управлением в сочетании с другими технологиями, такими как рециркуляция отработавших газов.Благодаря чистому и эффективному сгоранию расходы на системы нейтрализации отработавших газов могут быть сведены к минимуму, а в некоторых случаях полностью устранены. Компания mtu успешно использует системы Common Rail с 1996 года и постоянно совершенствует эту технологию в сотрудничестве с брендом Rolls-Royce Power Systems L’Orange и другими поставщиками. Благодаря своему обширному опыту в области систем впрыска Common Rail, MTU может оптимально использовать потенциал технологии, чтобы сделать двигатели чрезвычайно экономичными и чистыми.

    Как дизель вернул себе ритм

    Новый колесный погрузчик Komatsu WA470-8 может похвастаться 6-процентным увеличением экономии топлива по сравнению с его предшественником.

    В то время как НАСА, возможно, отправило зонд на Плутон, прямо здесь, на Земле, находится еще одно чудо инженерной мысли, почти незамеченное у всех под носом.

    Речь идет о современных дизельных двигателях Tier 4 Final, в которых используются топливные системы Common Rail высокого давления и форсунки с электронным управлением, управляемые электронным модулем управления (ECM).

    Эти системы могут подавать в цилиндры небольшие быстрые всплески топлива со скоростью в некоторых случаях более 6000 раз в минуту. В результате сегодняшние большие дизельные двигатели могут производить больше энергии с меньшим расходом топлива, чем когда-либо прежде, и одновременно сокращать выбросы выхлопных газов более чем на 95 процентов.

    Чтобы дать вам лучшее представление о том, как работают эти современные чудеса инженерной мысли, мы поговорили с Джимом Фиером, вице-президентом по проектированию в Cummins, и Илидио Серра, менеджером службы технической поддержки подразделения послепродажного обслуживания автомобилей Robert Bosch.

    Мы начнем с рассмотрения различий между форсунками старого типа и современными новыми технологиями.

    Механический впрыск

    До введения современных норм выбросов большинство дизельных двигателей полагались на механический впрыск топлива — кулачок распределительного вала, упирающийся в роликовый толкатель, приводил в движение поршень, создававший давление в топливе. В этих системах топливо под давлением проходит по магистрали до тех пор, пока не ударится о пружину форсунки и не откроет ее, позволяя топливу течь в цилиндр.Давление до 15 000 фунтов на квадратный дюйм было возможно, но был возможен только один впрыск за оборот кулачка и один впрыск топлива за цикл сгорания.

    Механический впрыск топлива прост и надежен. Он по-прежнему используется в двигателях меньшей мощности, но не может обеспечить точный контроль, сокращение выбросов и широкий диапазон мощности, необходимые для современных более крупных двигателей Tier 4 Final, в первую очередь двигателей мощностью 74 л.с. и выше.

    Поскольку нормы выбросов становились все более строгими, вносились усовершенствования, включая насосы-распределители, рядные насосы и насос-форсунки, что в конечном итоге привело к повышению давления до 23 000–26 000 фунтов на квадратный дюйм.Многие OEM-производители смогли выполнить требования уровня 3 по выбросам с помощью этих более сложных систем. Но настоящего чуда не произошло до появления топливных систем Common Rail высокого давления (HPCR), которые позволили увеличить давление впрыска до 36 000 фунтов на квадратный дюйм.

    Система Common Rail

    В системе HPCR форсунки получают топливо из единой топливной рампы, похожей на аккумулятор, которая обслуживает все форсунки с общим источником топлива. Топливо, хранящееся в общей топливной рампе, находится под давлением до 30 000+ фунтов на квадратный дюйм в ожидании использования.

    Преимущество здесь в том, что вы больше не зависите от кулачка или топливного насоса для повышения давления топлива в форсунке. Задачи наддува и впрыска, связанные в механические системы, становятся самостоятельными. И чем выше давление, тем лучше распыляется топливо после его распыления в цилиндре.

    Вместо скорости кулачка или топливного насоса, определяющих, когда форсунка открывается и закрывается, система HPCR управляет форсункой с помощью небольшого быстродействующего исполнительного механизма, либо соленоида, либо пьезокристалла, встроенного в форсунку.А поскольку они приводятся в действие электроникой, они могут срабатывать так же быстро, как вы можете включать и выключать электрический ток.

    По словам Фиера, эти форсунки с электронным управлением обеспечивают гораздо лучший контроль времени и количества впрыска по сравнению с механическими системами. «Это значительно способствовало разработке более чистых и экономичных дизельных двигателей», — говорит он.

    Множественные события инъекции

    «Сгорание в дизельном двигателе очень похоже на рецепт выпечки пирога, — говорит Серра.«Если вы правильно отмеряете ингредиенты, устанавливаете правильную температуру и время, вы каждый раз получаете идеальный торт».

    Проблема в том, что рецепт может меняться каждую секунду. Каждый раз, когда вы переключаетесь на другую передачу, поднимаетесь в гору или нажимаете на педаль газа, чтобы максимизировать усилие отрыва, сочетание давлений, температур, событий впрыска и времени меняет рецепт.

    Только системы Common Rail с «мозгами» ECM и сверхбыстрыми форсунками с электронным управлением обладают скоростью и универсальностью, чтобы реагировать на эти изменения и при этом поддерживать параметры выбросов, экономию топлива и выходную мощность.

    Дизель Дайнэмикс

    Цилиндр бензинового двигателя потребляет один впрыск топлива в диапазоне от 40 до 60 градусов вращения коленчатого вала. Горение дизельного двигателя длится намного дольше, от 90 до 120 градусов, говорит Серра. Этот медленный, расширяющийся взрыв дает дизельным двигателям такой крутящий момент, как у пней. Формирование и максимизация эффективности этого дымового шлейфа имеет первостепенное значение.

    Расположение клапана, форма камеры сгорания поршня и конструкция наконечника форсунки — все это влияет на то, как струя циркулирует внутри цилиндра, говорит Серра.Но синхронизация и частота форсунок — это два элемента, которые могут меняться по мере изменения требований к двигателю.

    В типичном сценарии горения HPCR с малой мощностью у вас может быть три события впрыска в следующей последовательности:

    Все начинается с небольшого быстрого пилотного впрыска, чтобы все заработало. При легкой и средней нагрузке на двигатель ранний предварительный впрыск также помогает контролировать образование NOx (загрязняющее вещество, регулируемое Tier 4 Final) и снижать шум — характерный звук «стука» дизельного двигателя на холостом ходу.

    Далее идет полная нагрузка, основной впрыск мощности. Возможны от шести до восьми событий, чтобы изменить сгорание или помочь в дополнительной очистке выбросов.

    Наконец, вы получаете небольшой дополнительный впрыск, чтобы сжечь несгоревшее топливо, оставшееся в цилиндре. Поствпрыски также контролируют содержание твердых частиц в выхлопных газах, обеспечивают дополнительную энергию для систем доочистки и уменьшают запаздывание турбонагнетателя.

    Когда приложение требует высокой мощности, ECM обычно заказывает один длительный впрыск.

    Любители скорости

    Инженеры измеряют скорость этих событий внедрения в микросекундах, что составляет 1/1000 секунды. Для всех инъекций есть окно примерно в 7000 микросекунд, в течение которого:

    Соленоид инжектора или пьезокристаллический привод начинает открываться в течение 100–150 микросекунд после подачи питания.

    При трехкратном впрыске каждый впрыск подает измеренное количество топлива примерно 1225 раз в минуту на холостом ходу (750 об/мин) и до 3300 раз в минуту при номинальной частоте вращения (2200 об/мин).

    В случае с шестью впрысками каждая форсунка может подавать топливо до 6600 раз в минуту при 2200 об/мин.

    После инъекции соленоиду или пьезокристаллу требуется еще от 50 до 100 микросекунд, чтобы вернуться в состояние покоя и рассеять любой электрический заряд.

    Компьютерное управление

    «Электронный модуль управления двигателем управляет всеми аспектами управления топливной системой», — говорит Фиер. «ECM не только содержит электронику, необходимую для приведения в действие регулирующих клапанов и форсунок, но также обеспечивает калибровку и диагностику двигателя.По сути, это мозг двигателя», — говорит он.

    И хотя аппаратное обеспечение большинства топливных систем HPCR может быть схожим, электронная логика, используемая для управления системой, может быть важным отличием производительности различных двигателей, говорит Фиер. По его словам, калибровка двигателя и электронное управление стали более сложными и должны быть полностью интегрированы с системами обработки воздуха, топливными системами, системами доочистки и фильтрации.

    Наконечники инжектора

    Каждая форсунка имеет одну форсунку с набором распылительных отверстий, которые оптимизированы для удовлетворения требований к мощности, а также к характеристикам выбросов, говорит Фиер.Форсунки изготовлены из стали и используют различные методы термообработки, чтобы выдерживать высокие рабочие температуры.

    Поскольку требования к выбросам стали более строгими, способность форсунок подавать равномерное и конкретное распыление топлива в цилиндр стало более важным, говорит Фиер. Впрыскивающая форсунка является составной частью формирования факела в момент сгорания. По его словам, распылительные отверстия форсунок соответствуют корпусу цилиндра, чтобы обеспечить наилучшее распыление топлива и, следовательно, наилучшую удельную мощность, самые низкие выбросы и сниженный расход топлива.

    Чистое топливо

    Хотя материалы, используемые для наконечников форсунок, не претерпели значительных изменений при переходе от механического впрыска к электронному, форсунки в системах HPCR по-прежнему уязвимы для загрязненного топлива, говорит Серра. «Грязь, особенно твердые кварцевые частицы, превращает топливную систему в очень эффективную гидромилку и сокращает срок службы топливной системы и двигателя», — говорит он.

    Когда вы слышите, как люди проповедуют о достоинствах чистого дизельного топлива и хорошей фильтрации, вот почему.Даже наличие воды в топливе при давлении от 30 до 36 000 фунтов на квадратный дюйм и частоте от 5000 до 6000 раз в минуту может значительно ускорить износ наконечника форсунки.

    Безопасность

    В то время как топливо в общей топливной рампе находится под экстремальным давлением, основной риск для механиков, работающих с системой, возникает при работающем двигателе, поскольку большинство двигателей сбрасывают давление в топливной системе в течение нескольких секунд после остановки. Тем не менее, вы всегда должны следовать процедурам, рекомендованным OEM, при прокачке или работе с топливными системами.

    «Новые двигатели требуют, чтобы технические специалисты забыли свои старые диагностические привычки, такие как открытие топливопроводов на работающем двигателе», — говорит Серра.«Старые системы перекачивали только 0,01 унции топлива за такт зажигания на цилиндр при полной нагрузке. Следовательно, максимальное количество топлива, которое вы могли бы получить из одной топливной магистрали, составляло примерно 10 унций топлива при минимальном давлении через минуту.

    «Для двигателя с общей топливной рампой выполнение того же действия привело бы к получению почти одного галлона топлива при значительном распылении», — говорит Серра. «Скорость топлива в пределах нескольких дюймов от места утечки достаточно высока, чтобы проникнуть через кожу или перчатки», — говорит он.

    Диагностика

    Некоторые из современных двигателей могут иметь сотни различных кодов неисправностей для различных состояний и симптомов, но коды неисправностей не всегда решают проблему.«Даже со всеми этими кодами неисправностей для диагностики по-прежнему требуется хорошо обученный техник, который использует систематический подход к диагностике системы двигателя», — говорит Серра. «Нет замены опыту и пониманию причин и следствий в двигателе. Например, код неисправности пропусков зажигания может быть вызван не только неисправной форсункой, но и неисправной системой рециркуляции отработавших газов, регулировкой клапана или системой жгута проводов».

    Серра говорит, что техническим специалистам труднее всего диагностировать жалобы, связанные с отсутствием кода неисправности.Если они не поймут, как должна вести себя вся система, как выглядят нормальные данные и как подходить к диагностике, они будут потеряны, говорит Серра.

    «В старых двигателях с механическим впрыском 95 процентов топливной системы располагалось между ТНВД и форсунками, поэтому диагностика была довольно простой», — говорит Серра. «В двигателе с системой Common Rail топливный насос и форсунки составляют лишь 25 процентов топливной системы. «Я видел случаи, когда технический специалист проводил недели на современном двигателе, не следя за процессом диагностики, заменяя множество дорогих компонентов только для того, чтобы обнаружить, что он пропустил простую неисправность, такую ​​как забитый топливный фильтр.

    Прочность

    По словам Фиера, недавняя разборка и проверка двигателя Cummins Tier 4 показали, что его форсунки HPCR можно ожидать в течение 20 000 часов до капитального ремонта. Предупреждение заключается в том, что это зависит от рабочего цикла, применения, хорошего обслуживания фильтра и чистого топлива.

    «Эти двигатели не требуют плановой замены топливных форсунок в середине срока службы, и ожидается, что они прослужат столько же, сколько и двигатель», — говорит Фиер. «Возможно, более важным, чем срок службы в часах, является общее количество инъекций в течение срока службы системы HPCR, обычно 1 миллиард инъекций.

     

    Как работают форсунки HEUI

    Как работают форсунки HEUI

    Гидравлический электрический насос-форсунка использует взаимосвязь между силой, давлением и площадью для создания относительно высокого давления впрыска топлива из моторного масла под давлением. Этот процесс по своей природе аналогичен концепции рычага, когда сила, приложенная к плечу рычага, умножает крутящий момент, приложенный в фиксированной точке: чем длиннее рычаг, тем больше умножение крутящего момента. Однако в гидравлике плечо рычага заменяется просто разницей в площади плунжера, часто называемой усилителем.

    Визуальное представление процесса интенсификации в типичной топливной форсунке HEUI

    На рисунке выше показано визуальное представление процесса интенсификации, используемого для увеличения выходного давления при заданном входном давлении. В случае форсунки HEUI входное давление представляет собой давление масла в масляной системе высокого давления, а выходное давление представляет собой давление дизельного топлива в корпусе форсунки. Плунжер представляет собой просто поршень, который в таких гидравлических системах обычно называют усилителем.

    В системе 1:1, где поршень со стороны масла и топлива имеет одинаковую площадь, давление топлива будет равно давлению масла. В системе 2:1, где площадь плунжера со стороны масла в два раза больше, чем площадь плунжера со стороны топлива, давление топлива будет в два раза больше давления масла. В системе 7:1 (которое является коэффициентом усиления для типичного инжектора Power Stroke HEUI объемом 7,3 л) площадь плунжера на масляной стороне в семь раз превышает площадь плунжера на топливной стороне — это приводит к давлению топлива, равному в семь раз больше, чем давление масла.

    Наукой, стоящей за процессом, является взаимосвязь между силой, давлением и площадью. Вы можете вспомнить, что давление (P) равно силе (F), деленной на площадь (A), к которой приложена сила (P=F/A). Следовательно, сила должна равняться давлению, умноженному на площадь, на которую действует давление (F=P/A). С помощью этих формул мы можем выразить процесс математически:

    F P = гидравлическая сила, приложенная к усилителю
    P O = давление масла
    A O = площадь усилителя на масляной стороне форсунки
    P F = давление топлива
    A F усилителя на топливной стороне форсунки

    • F P = P O A O

    Давление, оказываемое моторным маслом на плунжер, равно произведению давления моторного масла на площадь плунжера со стороны масла.

    • P F = F P /A F

    Давление топлива равно силе, оказываемой плунжером на топливо, деленной на площадь плунжера со стороны топлива.

    • A O = 7A F или альтернативно A F = A O /7

    Площадь плунжера со стороны масла в семь раз больше, чем площадь плунжера со стороны топлива (как в случае с форсункой HEUI на 7.3L Power Stroke).

    • P F = 7(P O A O )/A O , что сокращается до P F = 7P O

    Подставив уравнения в (1), (2) и (3) и сократив уравнение, мы получим, что в этом случае давление топлива в 7 раз превышает давление масла.

    Диаграмма форсунки HEUI

    Типичное событие впрыска форсунки HEUI происходит следующим образом:

    1) Электромагнитный соленоид в верхней части форсунки активируется модулем привода форсунки (IDM) после того, как модуль управления трансмиссией (PCM) подает команду на впрыск.

    2) После срабатывания соленоида подпружиненный тарельчатый клапан на масляной стороне системы открывается — масло под высоким давлением заполняет полость и оказывает усилие на плунжер мультипликатора.

    3) Плунжер усилителя воздействует на топливо, содержащееся в топливной полости форсунки.

    4) Как только давление топлива станет достаточно большим, чтобы преодолеть усилие пружины на клапане форсунки, клапан форсунки поднимается со своего места, и топливо распыляется через форсунку и впрыскивается в камеру сгорания.

    5) После отключения соленоида давление масла падает, тарельчатый клапан возвращается в закрытое положение, клапан форсунки возвращается в закрытое положение, а полость форсунки снова заполняется дизельным топливом.

    Обзор масляной системы высокого давления

    Топливная форсунка — это лишь небольшая часть системы впрыска, которая включает в себя масляный насос высокого давления (HPOP), регулятор давления впрыска (IPR), модуль привода форсунки (IDM) и различные датчики, передающие информацию в систему управления силовым агрегатом. модуль (ПКМ).

    Масляный насос высокого давления — HPOP является сердцем системы впрыска HEUI, создавая и поддерживая давление в масляном контуре высокого давления. HPOP подает моторное масло под высоким давлением к каждой форсунке, и давление в этой системе определяет рабочее давление топлива. Давление масла зависит от нагрузки двигателя, а не обязательно от частоты вращения двигателя. Для 7,3-литрового Power Stroke рабочее давление находится в диапазоне от 500 до ~ 3000 фунтов на квадратный дюйм. Для 6,0-литрового Power Stroke рабочее давление находится в диапазоне от 500 до 3600.Это соответствует максимальному давлению топлива 21 000 фунтов на квадратный дюйм и 26 000 фунтов на квадратный дюйм соответственно. В обоих двигателях используется гидравлический насос с наклонной шайбой. Из-за обширного масляного контура высокого давления двигатели с системами HEUI обычно имеют относительно большой объем моторного масла.

    Модуль драйвера форсунки — В то время как PCM управляет событиями впрыска, IDM — это то, что фактически запускает соленоиды форсунки. IDM способен подавать напряжение, необходимое для активации соленоидов форсунок.На 6,0-литровом Power Stroke это устройство называется модулем управления впрыском топлива (FICM).

    Регулятор давления впрыска — IPR представляет собой клапан с электронным управлением, который регулирует давление масла в масляном контуре высокого давления. Положение клапана изменяется в зависимости от различных параметров, в том числе нагрузки двигателя и частоты вращения. Когда системе требуется увеличение давления масла, регулятор закрывается. Как только система достигнет максимального давления, IPR откроется, позволяя стравить избыточное давление.

    Датчик давления управления впрыском — Датчик ICP представляет собой датчик давления, который передает фактическое гидравлическое давление масляного контура высокого давления на PCM. Среди прочего, он используется для контроля прав интеллектуальной собственности.

    Топливный насос низкого давления (подкачивающий насос) — Топливный насос низкого давления, обычно называемый в дизельных двигателях подкачивающим насосом, просто подает топливо на каждую форсунку. Топливо подается к каждой форсунке при относительно низком давлении (не более 100 фунтов на квадратный дюйм).

    Преимущества системы впрыска HEUI

    Принимая во внимание, что система впрыска HEUI давно устарела и была заменена современной технологией Common Rail высокого давления, система впрыска HEUI была усовершенствована для того периода, когда она была разработана. Многие преимущества форсунок HEUI больше не существуют по сравнению с современными системами впрыска. Однако по сравнению с механическими системами впрыска 1980-х и 1990-х годов внедрение форсунок HEUI дало следующие преимущества:

    Расширенный контроль событий впрыска — Одним из основных преимуществ системы впрыска HEUI является неограниченный контроль событий впрыска, что еще не было реализовано в дизельном секторе.В традиционной механической системе впрыска синхронизация впрыска и ширина импульса форсунки определяются настройками насоса форсунки и/или расположением распределительного вала. Хотя нагнетательные насосы часто в некоторой степени регулируются, характеристики событий нагнетания относительно фиксированы. Системы HEUI, однако, управляются электронным способом, и событиями и характеристиками впрыска можно управлять динамически на основе различных параметров. Система впрыска HEUI была разработана для того, чтобы отказаться от форсунок, управляемых распределительным валом, которые не обладали такой гибкостью.

    Более высокое давление впрыска, улучшенное распыление топлива — Системы впрыска HEUI на 7,3-литровом и 6,0-литровом двигателях с рабочим ходом достигают максимального давления 21 000 фунтов на кв. дюйм и 26 000 фунтов на кв. дюйм соответственно. Для сравнения, модели International 6,9 л и 7,3 л IDI работают при давлении впрыска ниже 2000 фунтов на квадратный дюйм. Грузовики, оснащенные 5,9-литровым двигателем Cummins 12v, работали при давлении топлива менее 5000 фунтов на квадратный дюйм. Между тем, современные двигатели с общей топливной рампой имеют давление впрыска около отметки 30 000 фунтов на квадратный дюйм. Система HEUI, представленная в 1994 году, обеспечила значительное улучшение давления впрыска топлива.

    Преимущество более высокого давления впрыска заключается в лучшем распылении топлива и, следовательно, в более эффективном сгорании. Распыление — это процесс, при котором жидкое дизельное топливо испаряется через сопло форсунки, принимая форму мельчайших капелек, взвешенных в воздухе. Полное распыление очень желательно в любом процессе сгорания, так как оно способствует более полному и более эффективному сгоранию.

    Повышенная топливная экономичность, пониженные выбросы — Повышенное распыление, более высокое давление впрыска и гибкость управления впрыском приводят к повышению топливной экономичности и снижению выбросов.Строгие нормы выбросов в Соединенных Штатах являются основным фактором проектирования (и модернизации) двигателей производителями США. Переход от механической системы впрыска 7,3 л IDI к системе HEUI 7,3 л Power Stroke оказался очень выгодным с точки зрения соответствия требованиям к экономии топлива, производительности и выбросам, учитывая, что производство двигателя будет продолжаться до 2003 модельного года.

     

    Как работает инжектор дизельного топлива?

    Как работает инжектор дизельного топлива?

    Что управляет топливной форсункой дизельного двигателя?  В большинстве дизельных двигателей топливные форсунки установлены в головке(ах) цилиндров двигателя, а наконечник или сопло форсунки распыляет топливо непосредственно в камеру сгорания.Топливо подается к форсункам через распределитель с портовым управлением; это механическое устройство контролирует время и количество топлива, поступающего на каждую форсунку.

    Какова функция топливной форсунки в дизельном двигателе?  В дизельном двигателе функция топливной форсунки соответствует

    .

    Целью системы впрыска топлива является подача топлива в цилиндры двигателя, при этом точно контролируя момент впрыска, распыление топлива и другие параметры.

    Каковы обычные типы дизельных форсунок?  Объяснение. Типы дизельных форсунок: форсунки с одним отверстием, форсунки с несколькими отверстиями и форсунки с длинным штоком.

    Как работает инжектор дизельного топлива? – Связанные вопросы

    Какое давление выдает дизельный инжекторный насос?

    Современные насосы впрыска дизельного топлива находятся под давлением — даже больше, чем то, что когда-то считалось «нормальным». Около 15-20 лет назад насосы топливных форсунок обычно перерабатывали топливо в системе под давлением от 10 000 до 15 000 фунтов на квадратный дюйм (фунтов на квадратный дюйм).

    Как дизель впрыскивается в цилиндр?

    Впрыскиваемое топливо воспламеняется в результате реакции на сжатый горячий воздух в цилиндре, что является более эффективным процессом, чем в двигателе внутреннего сгорания с искровым зажиганием.Дизельный двигатель получает энергию за счет сжигания топлива, впрыскиваемого или распыляемого в сжатый горячий воздух внутри цилиндра.

    Каковы требования к системе впрыска дизельного топлива?

    iii) Надлежащий контроль скорости впрыска: Во время сгорания достигается желаемая схема выделения тепла. iv) Надлежащее распыление топлива на очень мелкие капли. v) Надлежащая форма распыления для обеспечения быстрого смешивания топлива и воздуха. vi) Равномерное распределение капель топлива по камере сгорания.

    Как воздух подается к форсунке топливной форсунки?

    Размер жиклера определяется доступным давлением топлива на входе и максимальным расходом топлива, требуемым двигателем. Топливо выбрасывается через эту форсунку в камеру давления окружающего воздуха внутри узла форсунки. С помощью воздушного коллектора эти форсунки вентилируются до давления воздуха на входе в инжектор.

    В каком двигателе используется форсунка?

    Форсунка, устройство для впрыска жидкого топлива в двигатель внутреннего сгорания.Этот термин также используется для описания устройства для подачи питательной воды в котел. В дизельных двигателях топливо должно быть в сильно распыленной форме для правильного сгорания.

    Для чего нужен инжектор?

    Функцией топливной форсунки является распыление топлива в камеру сгорания двигателя внутреннего сгорания. Впрыск топлива стал основной системой подачи топлива в автомобилях, начиная с середины 1980-х годов. Струя от топливной форсунки может быть непрерывной или прерывистой.

    Что произойдет, если дизельная форсунка выйдет из строя?

    Форсунки дизельного топлива со временем изнашиваются и не закрываются полностью. Когда это происходит, они вызывают утечку, что приводит к снижению давления топлива в топливной рампе. Это может привести к проблемам с запуском или его полному отсутствию, а также к дымному выхлопу.

    Плохо ли эксплуатировать дизель с неисправной форсункой?

    Хотя проблемы с топливными форсунками обычно являются предупреждением, длительное вождение автомобиля с засоренной или неисправной топливной форсункой может вызвать проблемы.Повышенный расход топлива. Заметное увеличение дымности выхлопной трубы и выбросов. Грубый холостой ход и рывки при разгоне.

    Как проверить момент впрыска топлива?

    Тест на линии роста волос — это метод проверки фаз газораспределения топливного насоса путем поиска угла поворота коленчатого вала, когда маркировка на плунжере и его корпусе совпадают. При нахождении блока в ВМТ обе метки на плунжере и его корпусе совпадают; метка угла поворота коленчатого вала на маховике покажет точное положение впрыска топлива на временной диаграмме.

    Какой тип форсунки не используется в дизельном топливном инжекторе?

    Пояснение: Форсунка с кольцевым отверстием используется в камерах сгорания открытого типа, а форсунка с одним или несколькими отверстиями не используется. Объяснение: Размер отверстия в форсунке с одним отверстием обычно меньше 0,2 мм для лучшего разбрызгивания топлива.

    Какие бывают 3 типа дизельного топлива?

    Дизельное топливо подразделяется на 3 различных класса: 1D (№1), 2D (№2) и 4D (№4). Разница между этими классами зависит от вязкости (свойства жидкости, вызывающего сопротивление потоку жидкости) и температуры застывания (температуры, при которой жидкость будет течь).Топливо № 4, как правило, используется в тихоходных двигателях.

    Существуют ли разные виды дизельного топлива?

    Стандартное дизельное топливо (иногда называемое дизельным топливом) бывает двух марок: дизельное топливо №1 (или 1-D) и дизельное топливо №2 (или 2-D). Точно так же, как бензин оценивается по октановому числу, дизельное топливо оценивается по цетановому числу, которое показывает, насколько легко оно воспламеняется и как быстро оно сгорает. Большинство дизельных автомобилей используют топливо с рейтингом от 40 до 55.

    Что вызывает отказ насоса дизельных форсунок?

    Одной из основных причин отказа насоса форсунки является чрезмерное накопление отложений.Существует два типа отложений: отложения внутри форсунки и отложения снаружи форсунки. Внешние отложения на форсунках возникают из-за не полностью сгоревшего топлива, которое часто скапливается вокруг отверстий форсунок.

    Что такое хорошая компрессия в дизельном двигателе?

    Что такое хорошая компрессия в дизельном двигателе? Хорошая компрессия дизельного двигателя находится в диапазоне от 275 до 400 фунтов на квадратный дюйм. Обычно вы не хотите, чтобы разница между цилиндрами превышала 10%.

    Почему дизельные двигатели называются двигателями CI?

    Дизельный двигатель, названный в честь Рудольфа Дизеля, представляет собой двигатель внутреннего сгорания, в котором воспламенение топлива происходит за счет повышенной температуры воздуха в цилиндре вследствие механического сжатия; таким образом, дизельный двигатель представляет собой так называемый двигатель с воспламенением от сжатия (двигатель с воспламенением от сжатия).

    Сколько типов форсунок существует?

    Типы впрыска топлива, используемые в новых автомобилях, включают четыре основных типа: Одноточечный впрыск или впрыск через корпус дроссельной заслонки. Порт или многоточечный впрыск топлива. Последовательный впрыск топлива.

    Сколько обычно используются системы впрыска топлива на дизельных электростанциях?

    Объяснение: На дизельных электростанциях наиболее часто используются три системы впрыска топлива: i) Система впрыска Common Rail. ii) Индивидуальная система впрыска насоса.в) Дистрибьютор.

    Что такое топливный насос в дизельном двигателе?

    Дизельный насос, который обычно называют насосом для впрыска дизельного топлива, представляет собой довольно сложную механическую часть оборудования. Это механизм, который используется для перекачки топлива из топливного бака в карбюратор, поэтому он работает так, как следует из названия.

    Какова цена топливной форсунки?

    В зависимости от марки и модели вашего автомобиля средняя стоимость полной замены топливной форсунки составит от 800 до 1450 долларов.Если у вас есть знания, чтобы сделать замену самостоятельно, одни только детали стоят от 600 до 1200 долларов, а стоимость рабочей силы составляет всего от 200 до 250 долларов.

    Где используется топливная форсунка?

    В системах насос-линия-форсунка и во многих насосных системах топливная форсунка служит главным образом держателем форсунки. В системах Common Rail топливная форсунка также обеспечивает функцию дозирования топлива. Он включает в себя электронный клапан, который измеряет количество топлива, впрыскиваемого в камеру сгорания.

    Что такое взлом инжектора?

    Dll Injector Hacker — это инструмент для внедрения DLL в процессы или программы.Dll Injector Hacker был специально разработан для внедрения хаков для многих игр, включая Halo, Counter-Strike, Swat, Nova, Mount Blade, Star Wars и т. д. Он был разработан, чтобы быть простым в использовании, легким, эффективным и незаметным.

    Дизельные топливные форсунки Common Rail (CRD)

    Последние новости

    Дизельные топливные форсунки Common Rail (CRD)

    Эти форсунки можно разделить на два основных типа.

    • Электромагнитные форсунки CRD
    • Пьезоэлектрические форсунки CRD

    Это относится к средствам приведения в действие инжектора.

    Электромагнитный тип

    Что необходимо знать техническому специалисту об этом типе инжектора?

    • Упрощенная эксплуатация:  При активации блоком управления двигателем дизельного двигателя электромагнитный соленоид в верхней части форсунки позволяет внутренней гидравлике высокого давления поднимать иглу со своего места, и происходит впрыск.Как только соленоид отключается, внутреннее гидравлическое давление прижимает иглу к гнезду, и впрыск прекращается. Многократные впрыски могут происходить в одном цикле зажигания цилиндра, чтобы контролировать взрывное сгорание для снижения выбросов и шума.
    • Давление топлива в топливной рампе и внутренней гидравлической системе форсунки сильно различается в зависимости от условий вождения и эксплуатации, что требует от ECM изменения времени открытия форсунки (пожалуйста, помните о требованиях безопасности из-за высокого давления топлива).
    • Для первоначального запуска впрыска требуется высокое рабочее напряжение и ток. Как правило, «Напряжение открытия» от 60 до 100 В.
    • На форсунке расположен порт возврата дизельного топлива, который может помочь в диагностике. Подробности о PlusQuip EQP-107 см. здесь, включая короткий фильм о тестировании обратного потока дизельного топлива.
    • Типичное значение сопротивления электрической цепи электромагнитного клапана составляет прибл. 1 Ом или меньше. (полезно для идентификации)
    • Для корректной работы CRD необходимы процедуры постфитинга;
      • QR-код каждой форсунки необходимо ввести в ECM.
      • Пилотный впрыск. Также на некоторых системах.

    Типовые инструкции по кодированию обычно поставляются с новым инжектором CRD. Для этой процедуры также требуется подходящий сканер.

    Примечание : Загрязнение топлива является основной причиной преждевременного выхода из строя. Установка новых форсунок, когда топливо все еще загрязнено, приведет к повреждению новых форсунок. Топливная система должна быть тщательно очищена.

    Пьезоэлектрический тип

    Что необходимо знать техническому специалисту об этом типе инжектора?

    • Упрощенная эксплуатация: внутренняя конструкция пьезоинжектора зависит от электромагнитного типа. Стек внутренних полупроводников расширяется при активации (вместо соленоида), что приводит к более быстрому открытию инжектора. Это позволяет увеличить количество операций до и после основного впрыска для цикла сгорания в отдельном цилиндре, что приводит к более плавному, чистому и тихому двигателю.Большинство производителей в настоящее время используют этот тип форсунок на новых автомобилях.
    • Давление в топливной рампе/рабочее давление форсунки, как правило, выше в этой системе, что обеспечивает более тонкое распыление топлива.
    • Типичное рабочее напряжение и ток в большинстве систем могут находиться в диапазоне 100–400 В и от минус 20 до +20 ампер.
    • Изменение полярности форсунки с помощью ECM может потребоваться во многих системах для втягивания полупроводников для быстрого прекращения впрыска. Предупреждение . Не рекомендуется отсоединять жгут проводов форсунки от форсунки при работающем двигателе, поскольку форсунка «может» продолжать впрыскивать топливо и вызывать повреждение двигателя.
    • Типичные значения сопротивления внутренней пьезоэлектрической системы находятся в диапазоне от 150 кОм до 210 кОм (опять же, для идентификации используйте полное значение)
    • Для этого типа инжекторной системы по-прежнему требуются процедуры постустановки
    • .
    • Подобно электромагнитному типу, возвратный топливный порт по-прежнему требуется для этих типов пьезофорсунок.(полезно для тестирования)

    Примечание: Загрязнение топливом также повредит эти форсунки.

    Какое будущее у пьезоинжектора?

    Некоторые модели Volvo и Toyota (только в качестве примера) теперь оснащены форсунками CRD, в которые встроен топливный бак. датчик давления и температуры, который обеспечивает точное количество впрыска в зависимости от конкретного цилиндра. Чем больше полезной информации, тем более эффективной будет работа двигателя.

    Последние новости

    Электронные дроссельные заслонки (TBO)

    Двойные системы впрыска бензина — Технический совет

    Датчики скорости вращения колес — больше, чем просто ABS

    PAT расширяет диапазон датчиков выбросов

    Обновление линейки инжекторов Racing & Performance

    Катушки не катушки!

    Icon Series Range Ряд

    Уровень масла и датчики температуры масла

    Неудачные датчики температуры воздуха

    Ti Автомобильные датчики насос

    Ti Automotive Mustang Performance Pump

    Новый значок серии Hose Hose Range

    Неполадки реле на автомобиле

    Испытательное оборудование и инструменты

    Датчики топливной рампы (FRS)

    Неисправность вторичного зажигания

    Проверка электрических топливных насосов

    Рабочие характеристики топливных рамп и фильтров

    Проверка электрических датчиков угла поворота CAM 2 Проверка клапана 3 9001 Электромагнитные клапаны (EVS)

    Электронные дроссельные заслонки

    Высокопроизводительные топливные элементы и расширительные баки

    Поиск неисправностей Регуляторы давления топлива (FPR)

    Проверка приводов регулируемых фаз газораспределения (VCA)

    Проверка датчиков положения педали акселератора (APS)

    Диагностические датчики угла поворота коленчатого вала (CAS)

    Регуляторы и датчики производительности

    Дифференциальные датчики скорости вращения колес (WSS)

    Датчики массового расхода воздуха — пленка горячего нагрева Датчики (PMS)

    производительность Топливные форсунки

    топливные форсунки (GDI)

    DENSO Speed ​​Plugs

    производительность топливные насосы

    выключатели вентилятора

    (CFS)

    датчики температуры воды (WTS)

    Датчики температуры (OTS)

    Воздушные фильтры BMC

    Баночки мигалки

    Датчики давления выхлопных газов (EPS)

    Переключатели рулевого управления с усилителем

    Датчики температуры охлаждающей жидкости (CTS)

    Регулируемые впускные коллекторы (VIM) и впускные клапаны

    Датчики уровня масла (OLS)

    Датчики положения дроссельной заслонки (TPS)

    Датчики температуры воздуха (ATS)

    Зажигание – конденсаторы, наборы контактов, крышки распределителя и роторы

    Аксессуары для топливной системы (FSA)

    Датчики MAP (MAP)

    Реле (REL)

    Датчики и датчики Холла (HAL)

    3 Топливная рейка 9 Датчики (FRS)

    Датчики скорости (SPS)

    Новая линейка топливных насосов серии ICON

    Новая линейка шлангов серии ICON

    Продолжается расширение диапазона рабочих характеристик

    Расширение ассортимента кислородных датчиков PAT Инструменты

    Электрические топливные насосы (EFP)

    Соленоиды электрических клапанов (EVS)

    Датчики угла кулачка (CAM)

    Модули зажигания (MOD)

    Компоненты для обслуживания форсунок

    Датчики температуры выхлопных газов

    Датчики детонации

    Катушки зажигания

    Топливные форсунки (бензиновые)

    Приводы изменения фаз газораспределения (VCA) Масляный клапан es

    Датчики положения педали акселератора (APPS)

    Клапаны рециркуляции отработавших газов (EGR)

    Перемещение распределительного центра в Сиднее

    Датчики скорости вращения колес (WSS)

    Комплекты высоковольтных проводов зажигания (ILS)

    Клапаны управления всасыванием 900s (SCV)

    Датчики массового расхода воздуха (MAF)

    Датчики угла поворота коленчатого вала (CAS)

    Регуляторы давления топлива (FPR)

    Датчики давления масла

    Датчики кислорода в отработавших газах

    Включение световых индикаторов

    Дистрибьюторы

    Дизельные топливные форсунки Common Rail (CRD)

    Регулятор холостого хода

    Открытие нового распределительного центра в АДЕЛАИДЕ

    Открытие новых распределительных центров в ПЕРТЕ и ДАРВИНЕ

    Новый каталог топлива от Premier Auto Trade

    Воздушные фильтры BMC Расширение

    Новая линейка топливных форсунок MVP

    PAT Разработка программ по запросу

    Новый Pr emium Упаковка для PAT

    Новый ассортимент продукции, выпущенный PAT

    Расширение ассортимента испытательного оборудования PlusQuip

    Новый каталог Raceworks

    Новые датчики температуры выхлопных газов

    Новые торговые каталоги от Premier Auto Trade

    Новый распределительный центр 9001 2 Другие европейские детали от Premier Auto Trade

    Новый тестер тока предохранителей PlusQuip

    PAT Накачан!

    Катушки не катушки!

    Новая электронная система рециркуляции отработавших газов PlusQuip, корпус дроссельной заслонки и приводной тестер

    Новое поколение высокопроизводительных продуктов!

    Новые комплекты катушек зажигания и проводов

    Запуск программы датчиков скорости вращения колес

    Запуск программы проводов зажигания Premier

    Катушки зажигания — катушки не катушки!

    Запуск тестеров батарей PlusQuip

    Premier Auto Trade Supporting Local Racing

    Овальная труба Airbox (OTA) для приложений 4WD от BMC Air Filters

    Воздушные фильтры BMC ТЕПЕРЬ ДОСТУПНЫ от Premier Auto Trade

    Premier Катушки зажигания

    3 MAP-

    3 MAP-

    MAP-

    и KNS-021 Теперь снова в наличии

    Воздушный фильтр BMC сотрудничает с Premier Auto Trade

    Premier Auto Trade открывает дистрибьюторский центр в Южной Австралии

    Ассортимент датчиков кислорода с прямой посадкой Hits 700

    Типы автомобильных электромеханических реле / ​​Неисправности / Диагностика

    Запуск инструментов и оборудования PlusQuip

    Комплект для ремонта топливопровода PlusQuip

    Комплект для обслуживания топливной форсунки PlusQuip

    E85 High Performance with Premier Auto Trade

    Тестирование систем рециркуляции отработавших газов (часть 2)

    Топливный модуль Delphi и серия катушек зажигания

    Компоненты для обслуживания топливных форсунок от Premier Auto Trade

    Older News…

    Система рядного впрыска дизельного двигателя — MATLAB & Simulink

    В этом примере показана встроенная многоэлементная система впрыска дизельного топлива. Он содержит кулачковый вал, подкачивающий насос, 4 встроенных насоса форсунок и 4 форсунки.

    Модель

    Описание системы впрыска

    Система впрыска дизельного топлива, моделируемая этой моделью, показана на схеме ниже.

    Рисунок 1. Схематическая диаграмма системы впрыска

    Структура системы воспроизведена из H.Heisler, Vehicle and Engine Technology (второе издание), 1999 г., и классифицируется как рядная многоэлементная система впрыска. Он состоит из следующих основных узлов:

    Кулачковый вал несет пять кулачков. Первый — эксцентриковый кулачок для приведения в действие подъемного насоса. Остальные четыре предназначены для привода плунжеров насоса. Кулачки установлены таким образом, что насосные элементы подают топливо в порядке зажигания и в нужный момент рабочего цикла двигателя.Подкачивающий насос подает жидкость на вход насос-форсунок. Каждый элемент насоса состоит из плунжера с кулачковым приводом, нагнетательного клапана и узла регулятора. Назначение регулятора — контролировать объем топлива, подаваемого плунжером в цилиндр. Это достигается вращением плунжера с винтовой канавкой относительно сливного отверстия. Более подробно все системные блоки будут описаны в следующих разделах.

    Целью моделирования является исследование работы всей системы.Цель определяет степень идеализации каждой модели в системе. Если бы целью было, например, исследование нагнетательного клапана или форсунки, количество учитываемых факторов и объем рассматриваемого элемента были бы другими.

    Примечание: Модель системы не представляет собой какую-либо конкретную систему впрыска. Все параметры были назначены на основе практических соображений и не представляют каких-либо конкретных параметров производителя.

    Кулачковый вал

    Модель кулачкового вала состоит из пяти моделей кулачков. Имеется четыре кулачка параболического профиля и один эксцентриковый кулачок. Каждый кулачок содержит маскированную подсистему Simulink®, которая описывает профиль кулачка и генерирует профиль движения для источника положения, построенного из блоков Simscape™.

    Моделирование профиля кулачка

    Профиль движения создается как функция угла вала, который измеряется блоком Angle Sensor из библиотеки Pumps and Motors.Датчик преобразует измеренный угол в значение в диапазоне от нуля до 2*pi. После определения угла цикла он передается подсистеме Simulink IF, которая вычисляет профиль. Кулачок, приводящий в движение плунжер насосного элемента, должен иметь параболический профиль, под которым толкатель перемещается вперед и назад с постоянным ускорением следующим образом:

    В результате при начальном угле выдвижения толкатель начинает двигаться вверх и достигает верхнего положения после поворота вала на дополнительный угол выдвижения .Толкатель начинает обратный ход при начальном угле отвода , и для завершения этого движения требуется угол отвода . Разница между начальным углом втягивания и ( начальным углом выдвижения + углом выдвижения ) устанавливает угол задержки в полностью выдвинутом положении. Профиль реализован в подсистеме Simulink IF.

    Последовательность запуска моделируемого дизельного двигателя предполагается следующей: 1-3-4-2. Последовательность работы кулачка показана на рисунке ниже.Углы выдвижения и возврата установлены равными пи/4. Угол задержки с полностью выдвинутым толкателем установлен на 3*pi/2 рад.

    Профиль эксцентрикового кулачка рассчитывается по формуле

    , где e — эксцентриситет.

    Источник положения

    Модель источника положения, которая генерирует положение в механическом поступательном движении в соответствии с сигналом Simulink на его входе, состоит из блока Ideal Translational Velocity Source, блока PS Gain и установленного блока датчика поступательного движения. в отрицательном отзыве.Передаточная функция источника положения

    где

    T — Постоянная времени, равная 1/Усиление,

    Усиление — Усиление блока PS Gain.

    Коэффициент усиления установлен на 1e6, что означает, что сигналы с частотами до 160 кГц передаются практически без изменений.

    Подъемный насос

    Модель подъемного насоса поршнево-мембранного типа состоит из блока гидравлических цилиндров одностороннего действия и двух блоков обратных клапанов.Обратные клапаны имитируют впускной и выпускной клапаны, установленные с обеих сторон подъемного насоса (см. рис. 1). Контакт между роликом штока насоса и кулачком представлен блоком Translational Hard Stop. Блок Translational Spring имитирует две пружины в насосе, которые должны поддерживать постоянный контакт между роликом и кулачком.

    Нагнетательный насос

    Рядный нагнетательный насос представляет собой четырехэлементный насосный агрегат. Каждый элемент подает топливо в свой цилиндр.Все четыре элемента идентичны по конструкции и параметрам и смоделированы с помощью одной и той же модели, называемой элементом впрыскивающего насоса. Каждая модель элемента впрыскивающего насоса содержит две подсистемы с именами «Насос» и «Инжектор» соответственно. Насос представляет собой плунжер насоса и механизм управления насосом, а Инжектор имитирует форсунку, установленную непосредственно на цилиндре двигателя (см. рис. 1).

    Плунжер насоса колеблется внутри корпуса насоса, приводимый в движение кулачком (см. рис. 1).Плунжер моделируется блоком гидравлического цилиндра одностороннего действия. Блоки Translational Hard Stop и Mass представляют контакт между роликом плунжера и массой плунжера соответственно. Контакт поддерживается пружиной TS.

    При движении плунжера вниз камера плунжера заполняется топливом под давлением, создаваемым подкачивающим насосом. Жидкость заполняет камеру через два отверстия, называемых входным портом и портом разлива (см. рис. 2, а ниже).

    Рис. 2.Взаимодействие плунжера с регулирующими отверстиями в цилиндре

    После того, как плунжер перемещается в свое верхнее положение, достаточно высокое, чтобы перекрыть оба отверстия от входной камеры, давление на выходе начинает нарастать. При некотором подъеме форсунка в цилиндре двигателя принудительно открывается, и в цилиндр начинает впрыскиваться топливо (рис. 2, б).

    Впрыск прекращается при достижении винтовой канавки, образованной на боковой поверхности плунжера, сливного отверстия, которое через отверстие, просверленное внутри плунжера, соединяет верхнюю камеру с камерой низкого давления (рис. 2, в).Положением винтовой канавки относительно сливного отверстия можно управлять, вращая плунжер с вилкой управления, тем самым регулируя объем впрыскиваемого в цилиндр топлива.

    Модель механизма управления плунжером основана на следующих допущениях:

    1. В контуре управления имеется три регулируемых отверстия: входное, сливное и отверстие, образованное винтовой канавкой и сливным отверстием. Отверстия впускного и сливного отверстий зависят от движения плунжера, а открытие отверстия канавки-сливного отверстия зависит от движения плунжера и вращения плунжера.Для простоты смещение, создаваемое вращением плунжера, представлено как источник линейного движения, объединенного со смещением плунжера.

    2. На рисунке ниже показаны все размеры, необходимые для параметризации отверстий:

    — Диаметр отверстия впускного отверстия

    — Диаметр отверстия сливного отверстия

    — Ход плунжера

    — Расстояние между впускным отверстием и верхним положением плунжера

    — Расстояние между отверстием сливного отверстия и верхним положением плунжера

    — Расстояние между отверстие сливного отверстия и верхний край винтовой канавки

    3.При назначении начальных отверстий и ориентации отверстий верхнее положение плунжера принимается за исходную точку , а движение вверх рассматривается как движение в положительном направлении. Другими словами, ось X направлена ​​вверх. При этих предположениях направления впускного и сливного отверстий должны быть установлены на Открывается в отрицательном направлении , а отверстие желобка-сливного отверстия должно быть установлено на Открывается в положительном направлении , поскольку оно открывается при движении плунжера вверх.В таблице ниже показаны значения, присвоенные начальным отверстиям и диаметрам отверстий.

     Обозначение Имя в файле параметров Значение Примечания
    S ход 0,01 м
    D_inlet_or_diameter 0,003 м
    D_s разлив_или_диаметр 0,0024 м
    h_in -stroke + inlet_or_diameter + 0,001 Впускное отверстие смещено вверх на 1 мм относительно выпускного отверстия
    h_s -ход + разлив_или_диаметр
    h_hg splash_or_diameter Предполагается, что выпускное отверстие полностью открыто в положении верхнего плунжера 

    4.Эффективный ход плунжера равен

    Входное отверстие, как правило, расположено выше, чем сливное отверстие. В примере это расстояние равно 1 мм. Вращением плунжера вы изменяете начальное отверстие канавки-разливного отверстия. Поскольку начальное отверстие является параметром и не может быть динамически изменено, смещение начального отверстия моделируется добавлением эквивалентного линейного смещения элемента управления отверстием. Чем больше эквивалентный сигнал, тем раньше открывается сливное отверстие, тем самым уменьшая объем топлива, подаваемого в цилиндр.Максимальное значение эквивалентного сигнала равно эффективному ходу. При этом значении переливное отверстие все время остается открытым.

    Форсунка

    Модель форсунки основана на блоке гидравлического цилиндра одностороннего действия и блоке игольчатого клапана. Игольчатый клапан закрывается в исходном положении усилием, развиваемым предварительно нагруженной пружиной. Когда усилие, развиваемое цилиндром, превышает усилие пружины, форсунка открывается и позволяет впрыскивать топливо в цилиндр.В примере инжектор настроен на открытие при 1000 бар.

    Результаты моделирования из Simscape Logging

    На приведенных ниже графиках показаны положения и расходы на выходе насоса-форсунки 1 и форсунки 1. Влияние профиля кулачка показано в смещении насоса-форсунки 1. Во второй половине кулачка такта топливо выходит из насоса форсунки и поступает в форсунку. Топливо выходит из форсунки через игольчатый клапан. Инжектор имеет камеру с предварительно нагруженной пружиной, которая временно сохраняет жидкость из насоса и более плавно выталкивает ее из инжектора.

    Диагностика и определение продолжительности впрыска дизельных форсунок Common Rail

    Ссылки

    [1] Gill J., Reuben R., Steel J., Scaife M., and Asquith J., A Study of Small HSDI Diesel Engine Fuel. Неисправности инжекторного оборудования с использованием акустической эмиссии, Journal of Acoustic Emission, 2000, 18, 211–216Поиск в Google Scholar

    [2] Хоффманн О., Хан С. и Риксен Д., Дизельные форсунки Common Rail с износом форсунок: моделирование и Оценка состояния, Технический документ SAE 2017-01-0543, 2017 г. Поиск в Google Scholar

    [3] Саткоски С., Руикар Н., Биггс С. и Шейвер Г., Межцикловая оценка и управление профилями нескольких импульсов для пьезоэлектрической топливной форсунки, Американская конференция по управлению, 2011 г., О’Фаррелл-стрит, Сан-Франциско, Калифорния, США, 29 июня. — 01 июля 2011 г., 965-972Поиск в Google Scholar

    [4] Саткоски С. и Шейвер Г., Пьезоэлектрический впрыск топлива: связь между импульсами и оценка расхода, IEEE/ASME Transaction on Mechatronics, 2011, 16 , 627-642Поиск в Google Scholar

    [5] Баур Р., Чжао К., Блат Дж., Каллаге Ф., Шултальберс М. и Бон С., Оценка свойств топлива в системе впрыска Common Rail с помощью фильтрации Калмана без запаха, Конференция IEEE по приложениям управления (CCA), 2014 г., Антиб, Франция, 8-10 октября 2014 г., 2040-2047Поиск в Google Scholar

    [6] Акияма Х., Юаса Х., Като А., Сайки Т. и др., Точный контроль топлива дизельной системы Common-Rail с помощью OFEM, Технический документ SAE 2010-01-0876, 2010 г. Поиск в Google Scholar

    [7] Изерманн Р., Клевер С., Обнаружение и диагностика неисправностей на основе моделей для систем впрыска Common-Rail, МТЗ, 2010, 22, 344–349Поиск в Google Scholar

    [8] Пайри Ф., Лухан Дж.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *