Для чего нужна дроссельная заслонка на дизеле: Зачем нужна дроссельная заслонка на дизеле?: service_193 — LiveJournal

Содержание

Зачем нужна дроссельная заслонка на дизеле?: service_193 — LiveJournal

Система впуска на дизельном двигателе в целом очень похожа на аналогичную в бензиновом двигателе с непосредственным впрыском топлива. Форсунка брызгает прямо в цилиндр, а воздух подается по «сухим» каналам, которых не касается топливо. Есть, однако, принципиальное отличие.

На бензиновом двигателе водитель через педаль газа управляет положением дроссельной заслонки. От положения дроссельной заслонки зависит количество воздуха, попадающее в цилиндры. Из количества воздуха блок управления рассчитывает количество топлива и впрыскивает его в цилиндр или во впускной коллектор на такте впуска. Потом на такте сжатия блок управления подает искру.

В дизелях ситуация иная. Для работы дизеля дроссель не нужен. Дизель засасывает столько воздуха, сколько может засосать через впуск. А вот количество топлива определяется исключительно нажатием педали газа. На механических системах педаль газа соединена с управляющей рейкой ТНВД и управляет длительностью фазы впрыска (фактически она управляет длительностью фазы повышенного давления — когда оно превышает давление открытия форсунки). На современных системах, конечно, механически педаль никак не связана с ТНВД. Показания датчика положения педали газа подаются на блок управления, а уж тот определяет необходимую длительность впрыска. Впрыск осуществляется близко к верхней мертвой точке на такте сжатия, и все впрыснутое топливо тут же сгорает. Впрочем, есть некоторый верхний предел. Если впрыснуть свыше него — топливо не сгорит, а выйдет через выхлопную трубу черным дымом. Чтобы не превышать это значение, блок управления также отслеживает показания расходомера, датчика температуры и датчика давления во впуске. 

Вся эта система совершенно не требует для своей работы дросселя. Его, тем не менее, на современные дизели ставят. С двумя целями.

Во-первых, в дизелях крайне активно используется рециркуляция выхлопных газов (EGR) — содержание отработавших газов во впуске может составлять и 65%, это совершенно штатная цифра. Заслонка создает перепад давления во впуске, а перепад давления, в свою очередь, позволяет более четко дозировать отработавшие газы.

Во-вторых, в силу описанного принципа работы, дизель подвержен опасности ухода в разнос. Например, если форсунка начнет подтекать топливом в цилиндр — то двигатель начнет набирать обороты, игнорируя указания педали газа. Причем процесс перестанет быть контролируемым — обороты будут нарастать, пока не приключится фатального механического повреждения. Лично я такого не видел, но в описаниях обычно фигурируют поршни, пробившие блок цилиндров. Впрочем, в части самого явления и его последствий ютуб будет красноречивее любых моих слов.

Казалось бы, вопрос решается отсечкой по топливу. Не все, однако, так просто. При определенных условиях в качестве топлива начинает выступать моторное масло. Как минимум, это возможно, если поршневые кольца «сели» и допускают ощутимое попадание масла в камеру сгорания. Таким образом, единственным способом остановить разнос является перекрытие поступления воздуха в цилиндры. Именно это и может сделать дроссельная заслонка. Кстати, по практике многих автосервисов — в отличие от заслонки, это НЕ способна сделать никакая ветошь — ходят истории про засосанные во впуск целые телогрейки, из-за которых все равно приходилось скидывать ГБЦ и вычищать все эти тряпки из мотора.

Заслонка, впрочем, на дизеле значительно проще, чем на бензиновом моторе, потому что столь ювелирное управление ей не требуется. Не сильно погрешу против истины, если позволю себе вольную формулировку: достаточно обеспечивать положения «открыто», «закрыто» и «полуоткрыто». Через это и схема управления у дизельной заслонки гораздо проще.

На этом все, а остальные осколки знаний из моей головы перекочуют в блог в следующих выпусках.

Почему не все дизельные двигатели имеют дроссельные заслонки?

Сюда . ,

Почему тяжелые транспортные средства почти всегда используют дизельные двигатели?

Кто-то написал; «Я могу получить бесчисленное количество Нм крутящего момента от мотоциклетного двигателя и большое передаточное число, но они не используют их в тяжелых транспортных средствах. Таким образом, один только крутящий момент не является ответом».

В ответ; да, я могу понять, как вы могли прийти к такому выводу, так как я люблю / катаюсь на велосипедах, а также имею турбированный двигатель с большим крутящим моментом.

Тем не менее, проще говоря, производство крутящего момента с высокой прочностью и низким трением (последние два, в основном, из-за низких оборотов двигателя и использования конструкторских решений для работы в тяжелых условиях), действительно является основной причиной использования дизельных двигателей. Экстраполируя это, а также ваши предыдущие отзывы о мотоциклах; Если вы посмотрите на двигатели для мотоциклов сравнимого размера / цилиндров с двигателями небольших автомобилей аналогичной мощности, вы увидите, что производители автомобилей часто все же решают принять серьезные конструктивные изменения в своей трансмиссии — вместо того, чтобы просто использовать тот же подход к проектированию двигателей.

Очевидно, что существуют разные соображения, и они сводятся к тому, как крутящий момент проявляется и подается различными конфигурациями двигателя и производителями.

Эти конструктивные изменения обусловлены тем фактом, что автомобильный (и особенно грузовой) двигатель должен создавать больший крутящий момент и, если возможно, больший, если он ниже, в диапазоне оборотов; чтобы обеспечить необходимую тягу для всего (изменяющегося) веса, автомобиль всегда обладает и может нести.

Мотоциклы, с другой стороны, не имеют такого большого потенциала для изменения веса (как автомобили), и поэтому их двигатели не должны быть перегружены такими же конструктивными ограничениями / спецификациями; отсюда их упор на высокие скорости вращения, малый вес, высокую объемную эффективность и KW, а не (конкретно) крутящий момент.

Кроме того, мотоциклы также (в основном, продаются на них) являются машинами, ориентированными на рабочие характеристики, и в любом случае (особенно для машин объемом менее 1000 куб. См) это означает, что они обычно должны вращать свои коленчатые валы с достаточно высокими скоростями, чтобы производить значимый крутящий момент и мощность. Это означает (помимо прочих соображений) конструкции двигателей мотоциклов — в отличие от небольших легковых автомобилей с двигателями — не нужно ставить под угрозу высокие скорости коленчатого вала для низкого крутящего момента; как и большинство автомобильных двигателей, спроектированных — как указано выше, — так как эти автомобильные двигатели просто не будут иметь сравнительно высокие обороты, хотя в противном случае двигатель (в мотоцикле) с такой же мощностью мог бы быть легко сконструирован. Итак, у нас есть тенденция дизайна двигателя для транспортных средств (которые рассчитаны на разный вес), которая выглядит следующим образом; больше * постоянное / высокое значение крутящего момента в более широком диапазоне оборотов, предпочтительно начиная с минимально возможного значения в диапазоне оборотов, а также с эффективностью, надежностью и экономичностью, если это возможно.

Мотоциклетные двигатели выходят из строя по первой * спецификации и, как таковые, они никогда не смогут сделать это по причинам, указанным выше, другим, а также потому, что крутящий момент является продуктом не только процесса сгорания и его возникающих сил, но также и потому, что он является продуктом вращающиеся двигатели / обратный вес; инерционный момент. И мотоциклы (особенно вращающиеся компоненты их двигателей), как правило, довольно легкие — ни в коей мере не для достижения высоких оборотов, которые они должны производить.

Поэтому двигатель / конструкция мотоцикла не только не дает значимых значений (инерционного и составного) крутящего момента, когда это необходимо для выполнения задач тяжелых транспортных средств, но и создаваемый им крутящий момент в значительной степени зависит от силы сгорания, и, как такие (даже при современных подходах к проектированию коробки передач) все еще слишком восприимчивы к изменениям веса и подъема / уклона транспортного средства для требуемых задач.

Это конструктивное ограничение и проблема (связанные с применением мотоциклетных двигателей для тяжелых транспортных средств) в значительной степени и наиболее очевидно проявляются в виде расточки, хода, взаимного веса и пропускной способности крутящего момента.

Попробуйте покататься на мотоцикле по городу, особенно на холмистой местности, к которому прикреплен пассажирский и / или (особенно) прицеп для мотоцикла, и вы не только поймете, насколько нецелесообразно захватывать 4K / об / мин — 5K / об / мин. каждый раз, когда вы хотите взлететь, даже на действительно мощном мотоцикле, вы также увидите, как долго ваше сцепление длится и перестает быть не вонючим.

Тем не менее, (в лучшем случае / по меньшей мере) одинаковые соображения смещения веса — это то, что автомобили должны приспосабливать постоянно и надежно; не говоря уже о грузовиках. Все это возвращает нас к моим предыдущим комментариям о тяжелых транспортных средствах, дизельных двигателях и крутящем моменте; поскольку они достаточно хорошо вырабатывают высокие значения крутящего момента, на низких оборотах двигателя, в широком диапазоне оборотов и делают это достаточно надежно. Помимо тепла, шума и выхлопных газов; двигатели только когда-либо производят крутящий момент и лошадиные силы, и последний является функцией первого.

Надежный и экономически эффективный крутящий момент — вот название игры, и именно поэтому дизели были изобретены, и именно поэтому они в основном используются сегодня в тяжелых транспортных средствах.

Ура,

Джим.

Дроссельная заслонка в карбюраторе, инжекторе и в моновпрыске

Для эффективной работы любого двигателя внутреннего сгорания необходимо обеспечить верное соотношение топлива и воздуха. Но, требования к соотношению топливовоздушной смеси бензинного двигателя во много раз выше, чем для дизельного мотора. Поэтому в бензиновых двигателях необходимо одновременно регулировать подачу воздуха и топлива, тогда как в дизельных достаточно изменения количества горючего. Дроссельная заслонка обеспечивает регулировку количества воздуха, который поступает в цилиндры.

Что такое дроссельная заслонка?

Дроссельная заслонка является частью системы впуска двигателей внутреннего сгорания, которая предназначена для регулировки подачи воздуха, с дальнейшим созданием топливовоздушной смеси. Такая заслонка монтируется в промежутке между впускным коллектором и воздушным фильтром.

Дроссельная заслонка играет роль воздушного клапана. Как только она открывается, то давление, создаваемое во впускной системе становится равным атмосферному, а при ее закрытии, давление уменьшается до степени вакуума.

Существуют два типа привода заслонки: механический и электрический.

Устройство и схема дроссельной заслонки с механическим приводом

  1. патрубок подвода охлаждающей жидкости;
  2. патрубок системы вентиляции картера; 
  3. патрубок отвода охлаждающей жидкости;
  4. датчик положения дроссельной заслонки;
  5. регулятор холостого хода;
  6. патрубок системы улавливания паров бензина;
  7. дроссельная заслонка.

Этот способ регулирования подачи воздуха применяется на карбюраторных автомобилях. Дроссельная заслонка и педаль газа имеют тесную связь, выполненную в виде металлического троса. Все элементы заслонки представляют собой единый блок, который включает в себя: регулятор холостого хода, датчик положения дроссельной заслонки, заслонка, закрепленная на специальном валу и корпус.

Корпус имеет отдельные патрубки для циркуляции системы охлаждения, которая подключается к системе охлаждения двигателя автомобиля. Также, встроена система вентиляции картера и улавливания паров бензина.

Регулятор холостого хода обеспечивает равномерное вращение коленчатого вала на время пуска двигателя и его прогрева, в то время как, дроссельная заслонка закрыта. В состав регулятора входит шаговый электродвигатель и специальный клапан. Они регулируют количество поступающего воздуха независимо от положения дроссельной заслонки.

Дроссельная заслонка в карбюраторе

Дозирование топлива в карбюраторе производится на основе эффекта Вентури – поток с малой плотностью, но  высокой скоростью движения увлекает за собой более плотные частицы. Во время работы двигателя на холостых оборотах, наполнение цилиндров топливовоздушной смесью минимально. Движение воздуха через щель между заслонкой и корпусом карбюратора увлекает за собой топливо из поплавковой камеры.

Топливный жиклер ограничивает количество бензина, которое выходит к дроссельной заслонке и смешивается с воздухом. Когда водитель нажимает на педаль газа, сопротивление движению воздуха сокращается, скорость возрастает, это приводит к усилению влияния эффекта Вентури. Благодаря такой конструкции карбюратор при любом положении дроссельной заслонки обеспечивает равное соотношение топливовоздушной смеси.

В моновпрыске

По конструкции моновпрыск похож на карбюратор – топливовоздушная смесь образуется в смесительной камере. В отличие от карбюратора, состав смеси регулируется электроникой. Дроссельная заслонка регулирует количество воздуха, которое поступает в цилиндры. Датчики массового расхода воздуха (ДМРВ), положения дроссельной заслонки (ДПДЗ) и положения коленчатого вала (ДПКВ) поставляют контроллеру всю необходимую информацию для расчета количества топлива. По команде контроллера форсунка с электрическим управлением впрыскивает необходимое количество топлива, которое смешиваясь с воздухом, образует топливовоздушную смесь.

В инжекторе

В инжекторе используется тот же способ управления топливом, что и в моновпрыске. Разница в том, что топливовоздушная смесь формируется во впускном коллекторе (инжекторные системы) или непосредственно в цилиндре (системы прямого впрыска). Дроссельная заслонка в инжекторных двигателях точно также регулирует количество воздуха, как в карбюраторных или моновпрысковых моторах.

Заслонка с электрическим приводом

В настоящее время, автомобили комплектуются дроссельной заслонкой со встроенным электродвигателем. Это позволяет достигнуть самого минимального расхода топлива и сделать управление автомобилем безопасным и экологичным.

Среди особенностей электрической заслонки можно отметить полное отсутствие механической связи дросселя и педали газа, так как вместо троса, теперь, стоит электронный блок управления. Кроме того, регулировка холостого хода выполняется только дроссельной заслонкой.

Электронный блок сам подбирает частоту вращения коленчатого вала без участия водителя при любых режимах работы двигателя.

Что дает чистка дроссельной заслонки и как настроить дроссель

19.05.2021

Реклама наших партнеров

Дроссельная заслонка или дроссель является узлом, который служит для регулировки количества воздуха, попадающегося в цилиндры ДВС. От степени нажатия на педаль акселератора будет зависеть то, насколько сильно открывается указанная заслонка. На современных инжекторных авто электронный блок управления двигателем (ЭБУ) определяет положение дроссельной заслонки и объем поступающего в силовой агрегат воздуха при помощи датчиков, после чего подает управляющий сигнал на форсунки/бензонасос для подачи необходимого количества топлива, которое будет пропорционально количеству поступающего воздуха.

Чистка дроссельной заслонки на инжекторе бензинового мотора, а также чистка дроссельной заслонки на дизеле является необходимой процедурой, так как загрязнение данного узла приводит к нестабильной работе двигателя. При загрязненном дросселе силовой агрегат может неровно работать на холостом ходу, обороты плавают, реакции на нажатие педали газа могут быть замедленными, увеличивается расход топлива, возникают провалы при разгоне и т.п. В нашей статье мы поговорим о том, что предполагает чистка дроссельной заслонки самостоятельно, как правильно отрегулировать дроссельную заслонку (настройка дроссельной заслонки, обучение, адаптация), а также какую жидкость для чистки дроссельной заслонки нужно использовать.

 

Загрязняется дроссельная заслонка: причины

В процессе эксплуатации автомобиля загрязнения дросселя является неизбежными. При этом на исправном ДВС даже без регулярной очистки грязь, которая приводит к определенным проблемам, возникает к 25-40 тыс. км. пробега. Процесс может быть ускорен по следующим причинам:

  1. Использование воздушных фильтров низкого качества или потеря герметичности во впуске. Например, достаточно того, чтобы в корпусе воздушного фильтра появилась трещина или возникли дефекты патрубка для подачи воздуха.
  2. Еще одной причиной ускоренного загрязнения дросселя считается система принудительной вентиляции картерных газов. Некоторые модели авто с указанной системой устроены так, что газы из картера вместе с частичками моторного масла подаются не во впускной коллектор, а в патрубок, по которому подается воздух. Указанный патрубок находится как раз перед дросселем. Определенное количество масла задерживается маслоуловителем, в то время как остатки накапливаются на заслонке.

В результате по причине налипшего масла и пыли заслонка плохо закрывается, устройство может подклинивать. Именно поэтому заслонку рекомендуется чистить в целях профилактики каждые 10 тыс. км, то есть во время плановой замены масла и фильтров.

 

Средство для чистки дроссельной заслонки

Для того чтобы почистить дроссельную заслонку, отлично подойдет средство для чистки карбюратора (так называемый «карбиклинер»). Данные составы позволяют эффективно отмыть грязь и отложения всего за несколько минут. Чистка дроссельной заслонки предпочтительна со снятием, что позволяет отмыть отложения, после чего они не окажутся в цилиндрах двигателя. После нанесения очистителя необходимо воспользоваться мягкой кисточкой или щеткой, которой аккуратно снимаются остатки грязи, затем дроссельный узел дополнительно продувается воздухом из компрессора.

 

После чистки дроссельной заслонки плавают обороты

Итак, казалось бы, вся процедура окончена. Заслонка была прочищена очистителем, воздушный фильтр заменен на новый, датчики обратно подключены, то есть все собрано и затянуто. Теперь можно переходить к запуску двигателя. Если мотор заводится после чистки дроссельной заслонки и дальше нормально работает, тогда процедуру можно считать успешной.

Следует добавить, что так бывает не всегда. Многие сталкиваются с тем, что после чистки дроссельной заслонки высокие обороты двигателя держатся постоянно и не падают.  Также многие водители замечают, что после чистки дроссельной заслонки увеличился расход топлива. Вероятной причиной может быть ошибка в подключении какого-либо датчика при обратной сборке, но это случается редко.

Чаще всего после очистки дроссель нужно также дополнительно калибровать и настраивать, о чем знают не все или делают это неправильно. Другими словами, большие обороты ХХ после чистки дроссельной заслонки являются наглядным примером и одновременно ответом на распространенный вопрос, нужно ли обучать дроссельную заслонку после чистки данного узла. Давайте разбираться.

Начнем с того, что чистую дроссельную заслонку в ряде случаев действительно нужно адаптировать (обучать). Обычно адаптация заслонки дросселя чаще необходима тогда, когда перед этим производилась чистка электронной дроссельной заслонки. С механической заслонкой проблем меньше, но они тоже имеются. В системах с электронным дросселем ЭБУ самостоятельно выставляет положение заслонки, в механических системах происходит выставление регулятора холостого хода.  Если проще, после снятия слоя грязи положение очищенной заслонки меняется, но ЭБУ об этом не знает и продолжает подавать топливо в соответствии с предыдущими параметрами до чистки. Для решения задачи необходимо выставить обороты ХХ при помощи диагностического оборудования, так как имеется возможность сбросить предыдущие параметры.

Также можно попробовать обучить дроссель вручную. Простейшим способом обучения без диагностического оборудования или сканера для адаптации является откручивание минусовой клеммы с АКБ от нескольких секунд до 10 минут (в зависимости от марки и модели авто). Это позволяет сбросить настройки, то есть выполняется сброс имеющейся адаптации и возврат к заводским настройкам. После подсоединения клеммы к аккумулятору и повторного запуска ДВС холостые обороты должны стабилизироваться.

Отметим, что подобный способ работает на ограниченном числе автомобилей. В подобном случае можно воспользоваться еще одной возможностью обучить дроссельный узел без компьютера. Данный способ подходит для целого ряда ТС различных производителей. Рассмотрим такую адаптацию на примере японского авто марки Ниссан.

  • Сначала мотор нужно прогреть до рабочей температуры, после чего следует заглушить двигатель.
  • Далее понадобится выждать 5-10 секунд, затем включить зажигания на 3 секунды.
  • Теперь на педаль газа нужно нажать до упора и сразу отпустить. Это делается 5 раз, нужно успеть за 5 секунд (одно нажатие в секунду). Интервал следует засекать по секундомеру, чтобы не сбиваться.
  • После последнего нажатия следует подождать 7 сек., после чего педаль газа снова нажимается «в пол» и удерживается в таком положении до того момента, пока на приборной панели не начнет моргать «чек», а далее эта лампочка загорится постоянно.
  • После момента, кода check стал постоянно гореть, нужно выждать еще 3 секунды. Теперь педаль газа можно отпускать.
  • Далее двигатель нужно завести, холостые обороты должны прийти в норму.

Добавим, что во время проведения такой адаптации дроссельной заслонки важно точно выдерживать время на каждом этапе, а также укладываться во все временные отрезки. В этом случае можно говорить об успешном проведении обучения. Также рекомендуется уточнить особенности и возможность ручной адаптации для конкретной модели авто.

 

После чистки дроссельной заслонки загорелся «чек»

На некоторых автомобилях заслонка имеет напыление, так как покрыта специальной молибденовой краской, нанесенной по периметру заслонки. Если чистить заслонку слишком активно, тогда существует риск удаления этого покрытия. Без него нормальная работа дросселя нарушается. Краску можно приобрести отдельно, после чего покрытие следует восстановить. Еще одним нюансом может быть естественный износ дроссельной заслонки, то есть поверхность изнашивается сама по себе с учетом того, что происходит открытие и закрытие. На торцах скопившаяся грязь стачивает заслонку, после чего появляется зазор. До очистки зазор забит отложениями, но после их удаления выработка немедленно дает о себе знать.

Если зазор большой, тогда в работе управляющих систем регулировки холостого хода происходит сбой. В норме чрез заслонку, которая находится в закрытом положении, идет небольшое количество воздуха. Воздух также в минимальном количестве проходит чрез небольшой зазор, который имеется между торцами «пятачка» и стенками дроссельного узла. Такой воздух учитывается ЭБУ во время регулировки ХХ, регулятор ХХ выставляет нужный шаг и обороты все равно поддерживаются в заданных пределах.

Такова упрощенная схема работы регулятора холостого хода, который сильнее перекрывает или больше открывает канал для подачи воздуха на холостых и поддержания работы ДВС на заданных оборотах. А теперь давайте представим, что через увеличенный зазор между заслонкой и стенками идет слишком много воздуха. Вполне очевидно, что обороты холостого хода будут увеличены. ЭБУ в свою очередь будет через регулятор ХХ осуществлять попытки удержания оборотов в заданных пределах. Другими словами, на РХХ будет подан сигнал, в результате чего количество шагов будет уменьшено для подержания, например, 800 об/мин.

Другими словами, РХХ условно уменьшит количество шагов с 25 до 5, после чего обороты станут нормальными. Такая корректировка будет возможна до того момента, пока остается запас по количеству шагов регулятора.  Если же регулятор полностью перекроет канал, то есть выставит шаги в положение ноль, а обороты все равно будут на отметке около 1000 об/мин, тогда ЭБУ определит ошибку дроссельного узла и на приборной панели загорится «чек». Фактически, блок управления выявит ошибку системы регулировки холостого хода. В этом случае неисправным может оказаться не только регулятор, но и сама заслонка, что приводит к необходимости замены заслонки или сразу всего дроссельного узла.

 

Подведем итоги

Как видно из всего вышесказанного, чистка дроссельной заслонки, форсунок, контроль состояния фильтров, свечей зажигания и другие подобные действия находятся в списке базовых операций, которые желательно регулярно выполнять на каждом ТО. Что касается чистки дроссельного узла, данная процедура проводится максимально каждые 50 тыс. км. (рекомендуется каждые 25-40 тыс.), делается аккуратно и при помощи спецсредств, так как заслонка может иметь особое покрытие для плавной работы узла.

Также следует быть готовым к тому, что потребуется дополнительное оборудование для последующей адаптации. Если стало заметно, что после чистки дроссельной заслонки увеличился расход топлива, тогда необходимо обратить внимание на работу системы ХХ, проверить дроссельный узел и регулятор холостого хода.  Обратите внимание, если вы не уверены в своих силах, а также не имеете определенных навыков и соответствующего оборудования, тогда лучше обратиться к специалистам.

Напоследок добавим, что если на автомобиле установлена роботизированная коробка передач, тогда чистку и последующую адаптацию дроссельной заслонки оптимально осуществлять параллельно обучению «робота». Указанные действия в совокупности дают более ощутимый результат, двигатель лучше реагирует на педаль газа, а трансмиссия работает мягче, задержки, рывки и толчки при переключении передач минимизируются.

 

 

Источник: krutimotor.ru

Реклама наших партнеров

Акционные товары

Отключение дроссельной заслонки Audi A6 C7 3.0 TDI 272 л. с. Дизель

STAGE 1 +58 л. с./+120 Нм

Отключение дроссельной заслонки Audi A6 C7 3.0 TDI 272 л. с. / 580 Нм (Дизель). Возможны два варианта: с увеличением или без увеличения мощности. Тюнинг-прошивка stage 1 позволяет увеличить значения максимальной мощности и крутящего момента на 58 л. с. и 120 Нм. Отключение дроссельной заслонки проводится путём замены штатной программы управления двигателем на модифицированную.

* Представленные значения мощности и крутящего момента могут отличаться от реальных. Результат зависит от технического состояния автомобиля. Гарантия не распространяется на автомобили старше 5 лет и / или с пробегом более 100 тысяч километров. Часть опций может быть недоступна на конкретном автомобиле.

Дроссельная заслонка (далее ДЗ) способ управления работой бензинового двигателя. Регулируя угол заслонки, блок управления изменяет количество топливной смеси, поступающей в бензиновый двигатель. В случае с дизелем работа происходит по обратному принципу: мощность регулируется путём изменения количества впрыскиваемого форсунками топлива. Получается, что дроссельная заслонка не участвует в процессе дозирования топливо-воздушной смеси. Иными словами: расход воздуха дизельного двигателя не ограничивается. 

Зачем на дизельном двигателе дроссель?

На дизельном двигателе дроссельная заслонка выполняет две функции:

  • Для остановки или, как принято говорить, глушения двигателя. Если при заведенном двигателе повернуть ключ зажигания в положение «0», ЭБУ подает сигнал на закрытие дроссельной заслонки, перекрывая подачу воздуха. Одновременно с этим происходит отключение подачи топлива. Если при этом не ограничить поступление воздуха, двигатель будет глушиться грубо, с появлением вибраций и посторонних шумов. В современных дизельных двигателях ДЗ может сделать остановку двигателя более мягкой, вовремя перекрывая подачу воздуха.
  • Для функционирования системы рециркуляции отработавших газов EGR. Регулируя положение ДЗ, ЭБУ контролирует соотношение свежей порции воздуха и уже отработанных газов, поступающих через клапан EGR для обеспечения оптимального уровня нейтрализации вредных веществ в выхлопных газах авто.

Отключение дросселя

Программное отключение дроссельной заслонки позволяет избежать появления ошибок. Часто ремонт и замена дроссельной заслонки может стоить дорого, особенно если неисправность появилась на коммерческом автомобиле — маршрутном такси, фургоне или грузовике. 

Дроссельная заслонка – устройство, признаки, причины неисправности и ремонт — Словарь автомеханика

Дроссельная заслонка (ДЗ), в сокращенном виде можно встретить просто

дроссель – составная часть двигателя, с помощью которого происходит управление приходом воздуха во впускной коллектор. Само понятие дроссель иногда применяется некорректно. К примеру, в авиационной технике принято называть дросселем устройство, меняющее тягу ДВС, но корректное его название — рычаг тяги.

Устройство и работа дроссельной заслонки

В системе создается пониженное давление, и его изменение зависит от того, насколько у двигателя высоки обороты. В результате открывания дроссельная заслонка регулирует приход воздуха и суммарный объём смеси, поступающие в цилиндры. Когда ДЗ открывается, в коллектор приходит большее количество воздуха, а форсунки, срабатывающие от сигналов устройства контроля, впрыскивают большее количество топлива.

В реальности ДЗ — это клапан, повышающий давление в системе до атмосферного, когда он открыт, и понижающий до вакуума, когда закрыт.

Дроссельный узел устроен следующим образом: в корпусе-трубе смонтирована ось, а за её середину крепится заслонка округлой формы. ДЗ вращается на оси от привода. Поэтому поперечный разрез трубы, открытый для прохождения воздуха периодически возрастает и уменьшается.

В двигателях дизельного типа ДЗ отсутствуют. В них используется другой принцип – регулируемое поступление топлива.

В той конструкции, которая была изобретена для работы карбюраторных двигателей, привод ДЗ был механическим. Ось приводилась в движение тросом, прикреплённым к педали акселератора. Когда появились инжекторы, такая конструкция очень долго не претерпевала никаких изменений. И когда конструкторы разработали привод с электрическим двигателем, место педали заменила электронная система управления, которая подаёт в блок ДЗ управляющий сигнал.

Устройство дроссельного узла

ДЗ с механическим приводом довольно часто используется в недорогих авто, например, автомобили выпусков до 2003 года. Механическая дроссельная заслонка проста и дешева в изготовлении, и это гарантирует её применение почти уже 150 лет. Но современный электронный блок уже не повинуется воле водителя в полном объем, подобно в случае с механической ДЗ. Водитель может регулировать количество бензина и воздуха, попадающих в двигатель при помощи несколько датчиков:

  • положения ДЗ;
  • положения педали газа;
  • датчик-выключатель на педалях сцепления и газа и т.п.

Датчики и устройство электронного контроля вместе с электроприводом ДЗ дают возможность оптимально управлять расходом топлива в различных режимах движения, а также и поддерживать на определённом уровне холостой ход двигателя.


Наиболее часто встречающиеся неисправности

Основную неисправность дроссельной заслонки вызывает сам атмосферный воздух проходящий через неё при работе ДЗ. Во время движения мельчайшие частицы пыли могут проникать даже через превосходный воздушный фильтр. Также загрязнение может вызывать и масляная пыль, проникающая через систему вентиляции картера. Пыль и масло смешиваются и образуют на ДЗ достаточно твёрдый налет. Со временем этот налёт покрывает края пластины, и ДЗ перестает закрываться до конца. По причине загрязнения дроссельной заслонки автомобили наиболее часто попадают в ремонт.

Типичные признаки загрязнения ДЗ:

    Частая причина неправильной работы узла дроссельной заслонки — загрязнение заслонки.

  1. трудности запуска двигателя;
  2. нестабильный холостой ход;
  3. рывки при движении, когда скорость меньше 20 км/ч.

Способы устранения неисправностей

Обычно все проблемы с дроссельным узлом решает чистка дроссельной заслонки. Чтобы очистить ДЗ, обычно можно просто отсоединить патрубок воздушного фильтра. После этого нужно брызнуть на ДЗ аэрозолем для очистки карбюраторов или инжекторов. Данное вещество растворит налёт. И после этого налёт можно удалить простой ветошью или бумажной салфеткой.

Чтобы решить более серьёзные неисправности, нужно снять узел дроссельной заслонки, затем извлечь резиновые уплотнители и снова побрызгать этим же аэрозолем. Если ДЗ механическая, и в ней не предусмотрена встроенная электроника, то будет разумно опустить ее на ночь в сосуд с бензином.

Стоит помним что прежде чем чистить дроссельный узел нужно убедится в том что чистка ему не навредит, поскольку есть заслонки которые категорически противопоказано чистить!

На любой СТО можно почистить ДЗ довольно быстро и относительно недорого. Стоимость работы может зависеть от её сложности и степени загрязнения системы.

Если же проблема с дросселем касается не механического управления, а электронного, то проблемы решаются после диагностики, возможно неисправность ДЗ решится после настройки или замены датчика положения дроссельной заслонки.

Связанные термины

причины загрязнения и способы защиты механизма

В статье рассмотрены особенности работы дроссельных заслонок различных типов, причины их загрязнения, способы очистки и профилактические меры защиты от износа с помощью специальных покрытий.

Попадание масла в дроссельную заслонку – достаточно распространенная проблема автомобилистов. Она свидетельствует о том, что существуют неисправности узла, которые обязательно требуют устранения.

На поверхностях заслонки со временем образуется плотный слой загрязнений, из-за которого она перестает плотно закрываться. Неполное перекрытие подачи воздуха приводит к тому, что обороты ДВС начинают «плавать», и работа силового агрегата становится нестабильной.

В данной статье рассмотрены особенности работы дроссельных заслонок различных типов, причины их загрязнения, способы очистки и профилактические меры защиты.

Функции и разновидности дроссельных заслонок

Дроссельная заслонка – это элемент топливной системы бензинового двигателя, располагающийся между воздушным фильтром и впускным коллектором. Данный механизм служит для регулировки подачи воздуха, участвующего в создании топливно-воздушной смеси, а также для поддержания необходимых оборотов коленвала на холостом ходу.

В зависимости от типа привода выделяют механические, электромеханические и электрические заслонки.

Механические используются на старых автомобилях и современном бюджетном транспорте. Такие заслонки приводятся в действие при помощи гибкого стального троса. Чем сильнее водитель нажимает на педаль акселератора, тем шире открывается заслонка. На холостом ходу за подачу воздуха в двигатель отвечает регулятор холостого хода (РХХ).

Электромеханическая заслонка также управляется тросом. Однако вместо дополнительных каналов она оснащена стандартным электрическим мотором, редуктор которого соединяется с осью заслонки. Электронный блок управления (ЭБУ) позволяет регулировать работу двигателя на холостых оборотах, однако в других режимах снова задействован трос. 

Практически все современные автомобили оснащены электронной дроссельной заслонкой. Механизм управления в ней полностью автоматизирован. Присутствует электродвигатель с редуктором, который соединен с осью заслонки и управляется ЭБУ во всех режимах работы двигателя.


Масло в дроссельной заслонке: причины и последствия

Масло в дроссельной заслонке – вполне стандартное явление, сопровождающее работу двигателя. Однако таковым оно является до определенного момента. Несоблюдение регламента по очистке заслонки (примерно каждые 30-50 тысяч км пробега) ведет к накоплению масляных отложений, которые могут вызвать неисправности дроссельного узла и самого двигателя.

Сильное загрязнение заслонки маслом определяется не только путем ее визуального осмотра, но и без разборки узла.

О наличии проблем свидетельствуют сложности при запуске двигателя, провал оборотов на холостом ходу (вплоть до остановки силового агрегата), замедленная реакция автомобиля на нажатие педали акселератора.

Интенсивное образование масляного нагара свидетельствует о возможных неисправностях двигателя, например:

  • Негерметичности впускной системы, из-за чего подсос грязного воздуха увеличивается
  • Загрязнении воздушного фильтра, через который проходит загрязненный воздух
  • Неисправности системы вентиляции картерных газов, вследствие чего масло попадает во впускной коллектор и фильтр, а также образует налет на дросселе

Чистка дроссельной заслонки

Очистить дроссельную заслонку под силу любому автовладельцу, так как операция достаточно проста и стандартна. Потребуется отвертка, гаечные ключи, чистая ветошь, мягкая щетка и очиститель.

Чтобы достать дроссельный узел, необходимо снять патрубок, соединяющий его с корпусом воздушного фильтра, отключить разъем питания датчиков и достать управляющий трос, идущий от педали акселератора. Затем следует отсоединить трубку с охлаждающей жидкостью, шланги адсорбера и вентиляции картерных газов. В последнюю очередь снимаются крепления дроссельного узла, и сам он вынимается из посадочного места. Регулятор холостого хода так же снимается и промывается от нагара.

Перед началом работ по очистке заслонки следует удалить из узла все резиновые уплотнители во избежание их разрушения под действием чистящих средств.

Очищать следует не только саму заслонку и колодец, где она располагается, но и каналы поступления добавочного воздуха, так же накапливающие загрязнения.

Чаще всего заслонка подвергается замачиванию в очистителе, особо сильный нагар удаляется ветошью или мягкой щеткой (наждачную бумагу или металлические предметы использовать категорически не рекомендуется).

Для очистки дроссельной заслонки лучше всего применять специальные очистители на основе органических растворителей, газов-вытеснителей и функциональных добавок. К примеру, очиститель металла MODENGY.

Очиститель металла MODENGY быстро и без остатка испаряется, не требует замачивания узла, отлично удаляя с него масляные и другие загрязнения химического происхождения в течение нескольких минут.

После очистки дроссельный узел собирается в обратной последовательности, двигатель запускается для настройки регулятора холостого хода (РХХ). Правила настройки для механической и электронной заслонок отличаются.

С АКБ двигателя, оснащенного механической заслонкой, на 15 минут снимаются клеммы. Через указанное время они возвращаются на место, и в течение 10 минут автомобиль работает на холостом ходу. Затем двигатель глушится на 10 секунд и снова запускается до достижения рабочей температуры. Транспортное средство готово к эксплуатации.

Двигатель с электронной заслонкой прогревается, а затем глушится на 10 секунд. После этого на 3 секунды включается зажигание, производится 5 нажатий на педаль газа. Еще через 7 секунд педаль выжимается до упора и фиксируется до того момента, пока надпись на приборной панели «Check Engine» не будет гореть постоянно. Спустя несколько секунд после этого педаль отпускается, двигатель заводится.


Способы защиты и увеличения срока службы дроссельной заслонки

Производители автокомпонентов наносят на колодцы дроссельных заслонок специальное молибденовое покрытие. Однако в процессе работы двигателя или при неаккуратной очистке дроссельного узла оно истирается и разрушается.

Для восстановления заводского покрытия или нанесения защитного слоя «с нуля» существуют специальные материалы на основе дисульфида молибдена – антифрикционные твердосмазочные покрытия.

Они выпускаются как в жидком виде, так и в аэрозольных баллонах.

В России инновационные твердосмазочные покрытия выпускает компания «Моденжи». Все они прошли испытания на соответствующих узлах и механизмах, многие успешно применяются на отечественных промышленных предприятиях, заменяя дорогостоящие импортные аналоги и традиционные, но менее эффективные смазочные материалы.

На различных деталях двигателя – дроссельных заслонках, поршнях, резьбовых и шлицевых соединениях, подшипниках скольжения – отличные результаты демонстрирует покрытие MODENGY Для деталей ДВС.

Для случаев частного применения предусмотрена удобная аэрозольная фасовка данного материала.

Из баллона состав распыляется на поверхность заслонки (и, при необходимости, колодца) с расстояния 15-20 см. Наноситься, как правило, несколько слоев с промежуточной сушкой в течение 10 минут. Покрытие полностью высыхает за 12 часов без использования какого-либо нагревательного оборудования (печей полимеризации и т.п.).

Качественная обработка заслонки подразумевает предварительную очистку ее поверхности Специальным очистителем-активатором MODENGY. Оно удаляет загрязнения, обезжиривает и обеспечивает наилучшую адгезию покрытия.


Дроссельная заслонка с защитным покрытием подвержена намного меньшему износу, чем обычная. Антифрикционный материал максимально снижает трение контактирующих поверхностей, защищает их от коррозии и химически агрессивных веществ, к числу которых относятся моторные масла.

Дроссельная заслонка | Mein Autolexikon

Обычно дроссельная заслонка должна регулировать подачу воздуха или смеси для двигателя внутреннего сгорания. В зависимости от концепции двигателя это служит разным целям.

Дроссельная заслонка устанавливается в системе впуска воздуха двигателя внутреннего сгорания. Угол открытия клапана определяет, сколько свежего воздуха или воздушно-топливной смеси поступает в цилиндры (например, карбюраторные двигатели). В двигателях старого поколения дроссельная заслонка соединена непосредственно с педалью акселератора и управляется механически через кабель.Для более новых автомобилей существуют различные принципы работы:

Электронные приводы дроссельной заслонки:

Электродвигательные приводы дроссельной заслонки:

В случае электромоторных приводов дроссельной заслонки положение дроссельной заслонки регулируется механически через тросик акселератора. Электронный блок дроссельной заслонки передает положение дроссельной заслонки блоку управления двигателем в виде электрического сигнала. Эта информация сравнивается с другими актуальными данными от различных датчиков управления двигателем.Блок управления двигателем постоянно рассчитывает оптимальное положение дроссельной заслонки для потребления и выбросов выхлопных газов и отправляет эту информацию обратно на дроссельную заслонку в виде электрического управляющего сигнала. Затем положение дроссельной заслонки настраивается с помощью серводвигателя.

Электронные приводы дроссельной заслонки:

У электронных приводов дроссельной заслонки нет прямого соединения с педалью акселератора. Желаемая нагрузка водителя улавливается электронной педалью акселератора (электроприводом дроссельной заслонки).Система управления двигателем постоянно сопоставляет этот сигнал со всеми другими доступными данными от датчиков двигателя, используя полученную информацию для расчета оптимального положения дроссельной заслонки для преобладающей ситуации. Электронный привод дроссельной заслонки управляется исключительно с помощью управляющего сигнала от системы управления двигателем и с помощью серводвигателя.

Клапаны управления подачей воздуха:

Если в дизельных двигателях используются дроссельные заслонки, их обычно называют клапанами управления подачей воздуха.Клапаны управления воздухом могут быть со встроенной управляющей электроникой или без нее. Как указано выше, клапаны управления воздухом дросселируют всасываемый воздух во впускной системе дизельных двигателей с помощью электродвижущих средств для достижения точной управляемой рециркуляции выхлопных газов и предотвращения неудобной тряски, которая в противном случае могла бы возникнуть при выключении двигателя.

Серводвигатели воздушной заслонки:

Серводвигатели воздушной заслонки представляют собой электрические приводы со встроенным датчиком положения и дополнительной встроенной электроникой.Они облегчают непрерывную регулировку заслонок впускного трубопровода или направляющих лопаток турбокомпрессора, например, и, посредством более точного управления, могут заменить обычные пневматические приводы, которых уже недостаточно для выполнения сложных требований.

Разъяснение инженерной мысли: бензин против дизельных двигателей

В чем разница между бензиновыми и дизельными двигателями? Вот все, что вам нужно знать

Бензиновые и дизельные двигатели работают в основном в одном и том же четырехтактном цикле: впуск, сжатие, мощность, выпуск.Однако они отличаются тем, как выполняется этот цикл и как они увеличивают выходную мощность. Давайте посмотрим на четыре основных различия между бензиновыми и дизельными двигателями:

  1. Искра и сжатие
  2. Дроссельная заслонка против без дроссельной заслонки
  3. Соотношение воздух-топливо
  4. Торможение двигателем

1.Искра против сжатия

Возможно, самая большая разница между бензиновыми и дизельными двигателями заключается в том, как они воспламеняют воздух и топливо во время рабочего такта. Чтобы понять разницу, нам нужно понять температуру самовоспламенения (SIT), то есть температуру, при которой воздушно-топливная смесь воспламеняется без использования свечи зажигания (исключительно из-за тепла).

При сжатии воздуха повышается его давление и, следовательно, его температура. Дизельные двигатели имеют высокую степень сжатия, что значительно нагревает воздух, так что при впрыске топлива воздух находится выше SIT, и, таким образом, топливо сгорает при впрыске в цилиндр.

Все, что вам нужно знать о детонации за 3 минуты

Бензиновые двигатели, с другой стороны, должны поддерживать температуру в камере сгорания ниже SIT, поскольку свеча зажигания (а не топливные форсунки) определяет угол опережения зажигания.Это означает, что у бензиновых двигателей будет более низкая степень сжатия, чем у дизельных двигателей. Например, VW Golf TSI 2015 года (турбобензин) имеет степень сжатия 9,6: 1, а VW Golf TDI 2015 года (турбодизель) имеет степень сжатия 16,2: 1.

Управление бензиновым двигателем на предмет детонации может быть немного сложным, потому что даже если в начале воспламенения температура смеси ниже SIT, зона, наиболее удаленная от искры, начнет повышать давление и нагреваться (поскольку фронт пламени приближается).Искра должна воспламенить всю топливную смесь, прежде чем любые карманы самовозгораются, чтобы обеспечить плавное сгорание.

2. Дроссель против дроссельной заслонки

Хотя это уже не относится ко всем современным дизелям, обычно большое различие между бензиновыми и дизельными двигателями заключается в том, что у дизельных двигателей отсутствует дроссельная заслонка.Когда вы нажимаете педаль акселератора в дизеле, вы просто приказываете топливным форсункам впрыснуть больше дизельного топлива. Чем больше впрыскивается топлива, тем больше мощности создается, а это означает больше выхлопа, больше воздуха из турбонагнетателя, а выходная мощность продолжает расти.

В некоторых дизельных двигателях реализованы регуляторы дроссельной заслонки, позволяющие регулировать давление во впускном коллекторе на более высоком уровне, что помогает увеличить объем рециркуляции выхлопных газов. Добавление дроссельной заслонки также помогает выключить двигатель, так как вы можете уменьшить количество впускаемого воздуха для более плавного падения оборотов двигателя.

Бензиновые двигатели, с другой стороны, требуют корпуса дроссельной заслонки. Когда вы нажимаете на педаль газа (название которой не соответствует действительности), вы просто открываете дроссельную заслонку и позволяете большему количеству воздуха поступать в двигатель. Больше воздуха означает, что форсунки подают больше топлива, а больше топлива означает большую мощность.

3.Соотношение воздух-топливо

Понимание того, что дизели создают больше мощности за счет впрыска большего количества топлива, может вызывать недоумение без понимания того, что дизели имеют больший диапазон соотношений воздух-топливо, при котором может происходить сгорание. И бензин, и дизельное топливо имеют очень похожие стехиометрические соотношения воздух-топливо (соотношение, при котором весь кислород и топливо используются полностью, около 14.5-15: 1), но у них очень разные диапазоны, в которых они могут работать.

В случае углеводородов, входящих в состав бензина, сгорание возможно в диапазоне отношения воздух-топливо от 6: 1 до 25: 1. Большинство бензиновых двигателей будет поддерживать это соотношение в пределах от 12: 1 до 18: 1 (турбины иногда будут немного ниже), поскольку это диапазон, в котором можно найти наибольшую мощность, а также наиболее эффективное сгорание.

Дизельные двигатели

, напротив, работают с гораздо более высокими передаточными числами, обычно с соотношением воздух-топливо от 18: 1 до 70: 1.Звучит странно, но это связано с тем, как смешиваются воздух и топливо. В бензиновом двигателе воздух и топливо обычно хорошо перемешиваются перед воспламенением искры. В дизелях (с прямым впрыском) есть очаги горючих смесей, а затем участки слишком богатые или слишком бедные. Возгорание происходит везде, где есть карманы с приемлемым соотношением воздух-топливо.

4.Торможение двигателем

Когда вы отпускаете педаль акселератора в транспортном средстве, которое находится на передаче, двигатель теперь замедляет автомобиль — это торможение двигателем. Для бензиновых двигателей этот процесс довольно прост, потому что, когда вы отпускаете педаль акселератора, корпус дроссельной заслонки закрывается, создавая вакуум между корпусом дроссельной заслонки и цилиндрами.Этот вакуум (в результате такта впуска) помогает замедлить автомобиль, а также снижает эффективность трансмиссии (трение).

Однако в дизельном двигателе, поскольку нет корпуса дроссельной заслонки, торможение двигателем не может осуществляться путем создания разрежения во впускном канале. Важно понимать, что почти вся энергия, используемая для сжатия воздуха во время такта сжатия, возвращается обратно в трансмиссию во время рабочего такта (воздух сжимается, а затем разжимается с небольшими потерями энергии).

Если вы не можете тормозить с помощью дроссельной заслонки, а ход сжатия не замедляет автомобиль, как работает торможение двигателем в дизеле? Решение на самом деле очень простое и очень умное. Когда цилиндр находится около верхней мертвой точки во время такта сжатия, выпускной клапан открывается, чтобы позволить этому сжатому воздуху выйти. Теперь, когда энергия не возвращается к кривошипу, сила сжатия может использоваться для замедления транспортного средства. Причина, по которой торможение двигателем в дизельных двигателях настолько слышно, заключается в том, что вы слышите, как сжатый воздух выходит из выхлопной трубы.

Щелкните здесь, чтобы получить дополнительные сведения от Engineering Explained!

Дизель с предварительной заслонкой и дроссельной заслонкой

Дизель Предварительная заслонка:

  • Предназначен для дизельных двигателей, используется для увеличения разрежения в выпускном коллекторе и увеличения потока системы рециркуляции ОГ.
  • Помогает избежать «стряхивания»
  • Помогает регенерировать каталитические нейтрализаторы за счет увеличения количества выхлопных газов в двигателе

Корпус дроссельной заслонки:

  • Ключевой элемент управления соотношением воздух / топливо в бензиновых двигателях
  • Регулирует количество воздуха, поступающего в камеру сгорания двигателя.

Устранение неисправностей

  • Плохое ускорение
  • Потеря мощности двигателя
  • Автомобиль попадает в безвыходный режим
  • Возможные причины выхода из строя:
    • Поврежден регулирующий дроссель, что привело к заеданию клапана
    • Загрязнения накапливаются на клапане, вызывая закупорку главного дыхательного пути

Тестирование:

Хотя проверить корпус дроссельной заслонки / предварительную заслонку дизельного двигателя сложно, есть несколько промежуточных шагов, которые можно предпринять перед использованием сканирующего прибора.

  1. Проверьте все предохранители, подключенные к детали. Если предохранитель перегорел, его необходимо заменить. В случае неисправности убедитесь, что у нового предохранителя не более высокий номинал предохранителя, чем у предыдущего предохранителя.
  2. Затем убедитесь, что вся подключенная проводка надежна и не повреждена. На этом этапе вы можете проверить наличие электрического тока с помощью вольтметра. Если ток отсутствует, это говорит о том, что проблемой будут жгуты проводов, поскольку деталь получает питание для срабатывания, когда она получает сигнал от БД.
  3. После проверки проверьте шланг, подсоединенный к детали. Если есть трещины или слабые уплотнения, это повлияет на воздушный поток, поступающий в деталь. Если есть утечки, это само по себе может привести к тем же симптомам, что и неисправный корпус дроссельной заслонки / предварительная заслонка.
  4. Последняя проверка — осмотр самой детали. Если внутренние стены кажутся маслянистыми или обугленными, это ограничит поток воздуха. В случае обугливания деталь необходимо заменить. Очистка детали не рекомендуется, так как это повредит уплотнение и повлияет на скорость потока.

Другие компоненты, которые необходимо проверить:

  • Клапан рециркуляции ОГ — неисправный клапан рециркуляции ОГ может вызвать непостоянный поток к корпусу дроссельной заслонки
  • Клапан регулировки холостого хода — на старых автомобилях неисправный клапан может привести к нерегулярной работе на холостом ходу
  • Электромагнитный клапан — в случае неисправности он может не привести в действие компоненты с пневматическим управлением, такие как клапан рециркуляции ОГ
  • .

Коды общих ошибок

  • P0505 Неисправность системы управления холостым ходом

Общие проблемы: отключите воздушный поток

Эта статья впервые появилась в номере за июль 2017 года.

Если честно, я подумал, что потребуется немного больше времени, чтобы добраться до такой конкретной проблемы в этой ежемесячной статье. В конце концов, это называется «Общие проблемы». Не то чтобы в этом месяце тема редко встречалась. Это всего лишь одно приложение, имеющее довольно специфическое приложение, о котором вы, возможно, не сразу придумаете. Без лишних слов, в чем дело с дроссельной заслонкой на 6,7-литровом Cummins?

Дроссельная заслонка находится между впускным рожком и остальной частью системы рециркуляции выхлопных газов грузовика.Когда компьютер хочет рециркулировать выхлопные газы обратно через систему рециркуляции отработавших газов, он закрывает дроссельную заслонку, чтобы выпустить часть воздуха через клапан рециркуляции отработавших газов. Как вы могли догадаться, это заставляет ваш двигатель работать значительно хуже, чем обычно. В конце концов, вы бы предпочли дышать свежим чистым воздухом или дымкой, насыщенной сажей? Ваш двигатель чувствует то же самое!

Только гонка

Следует сразу сказать, что это огромная ответственность для гоночных грузовиков, которые выполняют гораздо больше работы за более короткое время, чем грузовики, разрешенные для использования на улицах.Именно по этой причине компания Sinister Diesel разработала комплект для удаления дроссельной заслонки для двигателей Cummins объемом 6,7 л. Есть еще одна проблема со штатной дроссельной заслонкой. Из-за того, что через него проходит очень много сажистых выхлопных газов, он может забиться отложениями сажи. Это само по себе достаточно плохо, но особенность здесь в том, что эти отложения могут привести к тому, что «дроссельная заслонка» застрянет в закрытом положении. Это означает, что даже если он должен быть открытым и нормально пропускать воздух, это не так.

Еще один отказ от ответственности: этот комплект предназначен исключительно для внедорожного, а не уличного использования. Это часть системы рециркуляции отработавших газов, которая, очевидно, является частью системы выбросов. Возиться с этим на уличных грузовиках — плохая новость. Sinister объясняет, как работает комплект для удаления дроссельной заслонки. «Когда система рециркуляции отработавших газов удалена, альтернативного источника всасываемого воздуха при закрытии дроссельной заслонки нет. Чтобы обойти это, работа дроссельной заслонки обычно полностью кодируется для большинства настроек без EGR, а сам привод остается отключенным.Иногда дроссельная заслонка может непреднамеренно переместиться в положение полностью или частично закрытого положения, что приводит к прекращению подачи воздуха в ваш Cummins и его удушению. Это может привести к потере мощности, полной остановке двигателя или даже к катастрофическим повреждениям, если это произойдет на более высоких оборотах. Стандартный дроссельный клапан Cummins объемом 6,7 л, даже когда он открыт и отключен от сети, препятствует плавному прохождению воздуха через воздухозаборник ».

Простой подход

Установить новую дроссельную заслонку несложно.Стандартный клапан относительно открыт, поэтому вам не нужно копаться в моторном отсеке, чтобы получить к нему доступ. Просто снимите зажим для шланга снизу и выверните четыре болта, и все готово. Новый клапан представляет собой буквально короткую металлическую трубку, которая перекрывает зазор между воздушным рожком и остальной частью выхлопной системы. Вы снова прикручиваете его, подсоединяете хомут для шланга, и все готово.

Однако остается последний шаг. Чтобы грузовик работал, не пугаясь и не закидывая вас кодами, необходимо установить новый тюнинг.Поскольку очень многое изменилось в системе выбросов (у вас больше нет EGR), вы будете постоянно светиться индикаторами «Check Engine», если не обновите настройки. И еще одно последнее замечание: это обновление действительно мало что сделает для стандартного движка. Он разработан, чтобы максимально раскрыть потенциал сильно модифицированного двигателя. Это не значит, что вам следует расстраиваться; просто знайте, во что вы ввязываетесь, если решите прыгнуть.

Источники

Sinister Diesel

888-966-6543

www.sinisterdiesel.com

Cummins Turbo Technologies представляет выпускной дроссельный клапан

Утечка масла в турбонагнетателе — это режим отказа, который может привести к снижению производительности, расходу масла и несоблюдению требований по выбросам. Последняя инновация Cummins в области масляных уплотнений снижает эти риски за счет разработки более надежной системы уплотнения, которая дополняет другие ведущие инновации, разработанные для турбокомпрессоров Holset®.

Новый взгляд на технологию масляных уплотнений от Cummins Turbo Technologies (CTT) отмечает девять месяцев выхода на рынок.Революционная технология, на которую в настоящее время подана международная заявка на патент, подходит для применения на автомобильных дорогах и внедорожниках.

Представленная в сентябре 2019 года на 24-й конференции по нагнетанию в Дрездене в техническом документе «Разработка улучшенного динамического уплотнения турбокомпрессора», технология была разработана в рамках исследований и разработок Cummins (НИОКР) и впервые была предложена Мэтью Пурди, руководителем группы по разработке подсистем. в CTT.

Исследование было проведено в ответ на запросы заказчиков, которым требовались двигатели меньшего размера с большей удельной мощностью и меньшими выбросами, а турбокомпрессор оставался одним из наиболее важных компонентов трансмиссии транспортного средства.В связи с этим Cummins неизменно стремится предоставлять клиентам высочайшее качество, постоянно исследуя инновационные способы улучшения характеристик турбокомпрессора и рассматривая улучшения, которые влияют на долговечность, а также на производительность и снижение выбросов. Эта новая технология еще больше увеличивает возможности масляного уплотнения, предлагая клиентам широкий спектр преимуществ.

Каковы преимущества новой технологии масляных уплотнений?

Новая технология уплотнения для турбонагнетателей Holset® позволяет снижать скорость с турбонаддувом, уменьшать габариты, предотвращать утечку масла в двухступенчатых системах и позволяет снизить выбросы CO2 и NOx для других технологий.Эта технология также улучшила терморегуляцию и надежность турбокомпрессора. Кроме того, благодаря своей надежности он положительно повлиял на частоту технического обслуживания дизельного двигателя.

Другие ключевые элементы также были приняты во внимание, когда технология уплотнения находилась на стадии исследований и разработок. К ним относятся возможность оптимизации диффузора ступени компрессора и стремление к более тесной интеграции между системой дополнительной обработки и турбокомпрессором, интеграция, которая уже была предметом значительных исследований и разработок Cummins и составляет значительную часть концепции интегрированной системы.

Какой опыт у Cummins в области исследований такого типа?

Компания Cummins имеет более чем 60-летний опыт разработки турбокомпрессоров Holset и использует собственные испытательные центры для проведения строгих испытаний и многократного анализа новых продуктов и технологий.

«Многофазная вычислительная гидродинамика (CFD) использовалась для моделирования поведения масла в системе уплотнения. Это привело к гораздо более глубокому пониманию действующей физики взаимодействия нефти и газа. Это более глубокое понимание повлияло на усовершенствование конструкции, чтобы предоставить новую технологию уплотнения с непревзойденными характеристиками », — сказал Мэтт Франклин, директор по управлению продуктами и маркетингу.

Благодаря такому строгому режиму испытаний, конечный продукт в пять раз превзошел первоначальные цели проекта по герметичности.

Какие дальнейшие исследования ожидают клиенты от Cummins Turbo Technologies?

Непрерывные инвестиции в исследования и разработки технологий с дизельным турбонаддувом демонстрируют стремление Cummins поставлять ведущие в отрасли дизельные решения для автомобильных дорог и внедорожников.

Для получения дополнительной информации об усовершенствованиях технологии Holset подпишитесь на ежеквартальный информационный бюллетень Cummins Turbo Technologies.

Стратегия управления дросселированием всасывания на основе активной регенерации сажевого фильтра: Ingenta Connect

Дизельные двигатели широко применяются в области транспорта и производства из-за их лучших энергетических и топливных экономических характеристик. Однако дизельный двигатель выделяет огромное количество твердых частиц (ТЧ), которые представляют большую угрозу для здоровья человека и окружающей среды. Как эмиссия правила постепенно ужесточаются, необходимо строго контролировать выбросы твердых частиц из дизельного топлива с помощью возможной технологии последующей обработки.Дизельный сажевый фильтр (DPF) считается наиболее эффективным средством снижения выбросов твердых частиц из дизельного топлива. Ядром регенерации DPF является контроль температуры на входе DPF. Регенерация DPF в основном делится на активную и пассивную регенерацию, температура регенерации в основном контролируется управлением воздухом и стратегией впрыска для активной регенерации. Управление воздухом происходит в основном за счет изменения впускного дроссельного клапана. для управления потоком всасываемого воздуха с последующим контролем температуры выхлопных газов, что важно для согласования и улучшения низкотемпературных характеристик системы последующей обработки, но изменение потока всасываемого воздуха неизбежно повлияет на характеристики двигателя.Итак, стратегия управления управления воздухом необходимо глубоко изучить. Чтобы получить стратегию управления дросселированием впуска, основанную на температуре активной регенерации сажевого фильтра во всей рабочей зоне дизельного двигателя, были разработаны три типичных рабочих условия, включая низкоскоростную легкую нагрузку (рабочее состояние A: 1250 об / мин, нагрузка 25%), среднескоростная средняя нагрузка (рабочее состояние B: 2000 об / мин, нагрузка 40%) и высокоскоростная тяжелая нагрузка (рабочее состояние C: 3000 об / мин, нагрузка 70% ), а также влияние открытия впускной дроссельной заслонки на насосные потери, тепловое состояние выхлопных газов, характеристики сгорания в цилиндрах и выхлопных газов. дизельного двигателя.Результаты экспериментов показали, что эффект дросселирования усиливался, поток всасываемого воздуха постепенно уменьшался в различных рабочих условиях с увеличением открытия дроссельной заслонки, что приводило к ухудшению сгорания в цилиндре, снижение максимального давления сгорания, увеличение BSFC, CO, NO X и дымовыделения. Однако уменьшение потока всасываемого воздуха задерживало время начала сгорания, увеличивало период задержки зажигания и увеличивало температуру сгорания, а также выхлоп. температура, которая эффективно ингибировала образование HC.Когда открытие впускного дроссельного клапана было уменьшено до 20%, степень уменьшения потока всасываемого воздуха была больше в условиях низкой скорости небольшой нагрузки, скорость повышения температуры выхлопных газов была более значительной и составляла 63%, в то время как в условиях большой нагрузки температура выхлопных газов немного повысилась, но насосные потери увеличились до 19,2%, что серьезно ухудшило экономичность топлива. На основании результатов экспериментов открытие впускного дроссельного клапана было установлено соответственно 35% -45%, Диапазон 50% -60% и 70% -80% в соответствии с потенциалом повышения температуры выхлопных газов и ухудшением характеристик в рабочих условиях A, B, C в этом документе.Более того, стратегия дросселирования впуска была дана в рамках всех рабочих условий в зависимости от температуры выхлопных газов. Распределение двигателя, при котором легкие нагрузки принимали большее отверстие впускной дроссельной заслонки, с увеличением нагрузки открытие дроссельной заслонки постепенно увеличивалось до полностью открытого состояния.

Нет ссылок на эту статью.

Нет дополнительных данных.

Нет статьи СМИ

Без показателей

Почему не все дизельные двигатели имеют дроссельные заслонки?

Сюда..

Почему в тяжелых транспортных средствах почти всегда используются дизельные двигатели?

Кто-то написал; «Я могу получить бесчисленные Нм крутящего момента от двигателя мотоцикла и большого передаточного числа, но они не используют их в тяжелых транспортных средствах. Так что крутящий момент сам по себе не является ответом».

В ответ; да, я могу понять, как вы могли прийти к такому выводу, так как я люблю / езжу на велосипедах, а также имею один с турбонаддувом и большим крутящим моментом.

Тем не менее, попросту говоря, производство крутящего момента с высокой прочностью и низким коэффициентом трения (последние два в основном связаны с низкими оборотами двигателя и использованием подходов к проектированию силовых агрегатов для тяжелых условий эксплуатации) действительно является основной причиной использования дизельных двигателей.Экстраполируя это, а также ваш предыдущий отзыв о мотоциклах; Если вы посмотрите на двигатели мотоциклов сравнимого размера / цилиндров с двигателями небольших автомобилей аналогичной мощности, вы увидите, что производители автомобилей часто все же решают внести серьезные конструктивные изменения в свои трансмиссии, а не просто использовать тот же подход к проектированию двигателей.

Итак, очевидно, что существуют разные соображения, и они сводятся к тому, как крутящий момент проявляется и передается различными конфигурациями двигателей и производителями.

Эти конструктивные изменения связаны с тем, что двигатель легкового автомобиля (и особенно грузовика) должен обеспечивать больший крутящий момент и, если возможно, больше, если это возможно, в более низком диапазоне оборотов; чтобы обеспечить необходимую тягу для всего (изменяющегося) веса, который сам автомобиль всегда имеет и может нести.

Мотоциклы

, с другой стороны, не обладают таким большим потенциалом для изменения веса (как автомобили), и поэтому их двигатели не должны быть ограничены теми же конструктивными ограничениями / спецификациями; отсюда их акцент на высоких скоростях вращения, малом весе, высоком объемном КПД и кВт, а не (конкретно) на крутящем моменте.

Кроме того, мотоциклы также в основном (продаются на них) являются машинами, ориентированными на производительность, и в любом случае (особенно для мотоциклов менее 1000 куб. производят значительный крутящий момент и мощность. Это означает (среди прочего), что конструкции двигателей мотоциклов — в отличие от легковых автомобилей с малым двигателем — не должны идти на компромисс с высокими оборотами коленчатого вала для низкого крутящего момента; как и большинство автомобильных двигателей, сконструированных — как указано выше — так как эти автомобильные двигатели просто не будут иметь сравнительно высокие обороты, даже если в противном случае двигатель той же мощности (на мотоцикле) мог бы быть легко спроектирован.Итак, у нас есть тенденция проектирования двигателей для транспортных средств (которые рассчитаны на различный вес), которая гласит: больше * постоянное / высокое значение крутящего момента в большем диапазоне оборотов, предпочтительно начиная с минимально возможного в этом диапазоне оборотов, и с эффективностью, надежностью и экономичностью, если это возможно.

Мотоциклетные двигатели

выходят из строя по первой * спецификации, и поэтому они никогда не могут этого сделать по причинам, указанным выше, а также по другим причинам, а также потому, что крутящий момент является продуктом не только процесса сгорания и его результирующих сил, но и потому, что он является продуктом двигатели вращающиеся / возвратно-поступательные; инерционный момент.И мотоциклы (особенно вращающиеся компоненты их двигателей) обычно довольно легкие — ни в коей мере не для достижения высоких оборотов, которые им необходимы.

Следовательно, двигатель / конструкция мотоцикла не только не может обеспечить значимые значения (инерционного и составного) крутящего момента там, где он необходим для выполнения задач тяжелых транспортных средств, но и создаваемый им крутящий момент в значительной степени зависит от силы сгорания, и как таковой (даже с учетом современных подходов к проектированию коробки передач) все еще слишком чувствителен к изменениям веса и подъема / уклона транспортного средства для выполнения требуемых задач.

Это конструктивное ограничение и проблема (связанная с применением двигателей мотоциклов к тяжелым транспортным средствам) в значительной степени и наиболее очевидно проявляется как проблема диаметра отверстия, хода, обратного веса и диапазона крутящего момента.

Попробуйте ездить на мотоцикле по городу, особенно если он холмистый, с прикрепленным к нему пассажирским и / или (особенно) мотоциклетным прицепом, и вы не только увидите, насколько непрактично захватывать 4K / об / мин — 5K / об / мин каждый раз, когда вы хотите взлететь, даже на действительно мощном мотоцикле — но вы также увидите, как долго ваше сцепление работает и перестает пахнуть.

Тем не менее (в лучшем / по крайней мере) одни и те же соображения смещения веса — это именно то, что автомобили должны постоянно и надежно выдерживать; не говоря уже о грузовиках. Все это возвращает нас к моим предыдущим комментариям о тяжелых транспортных средствах, дизельных двигателях и крутящем моменте; поскольку они достаточно хорошо обеспечивают высокие значения крутящего момента на низких оборотах двигателя в широком диапазоне оборотов, и они делают это также достаточно надежно.

Добавить комментарий

Ваш адрес email не будет опубликован.