Температура в камере сгорания бензинового двигателя – Какая температура в камере сгорания бензинового двигателя

Содержание

Правильная рабочая температура двигателя: Бензин- Дизель… Motoran.ru

Стабильность работы любого автомобиля зависит от условий эксплуатации и технических характеристик двигателя внутреннего сгорания. Такой показатель, как рабочая температура двигателя, зависит не только от условий окружающей среды, но и от многих эксплуатационных факторов. Если данный параметр соответствует расчетной величине, т. е. находится в допустимом диапазоне, силовой агрегат обеспечивает максимальную отдачу энергии в течение длительного времени. При оптимальных режимах двигателя внутреннего сгорания создаются лучшие условия для функционирования всех систем автомобиля.

Какая должна быть рабочая температура двигателя

При сгорании топливных смесей в цилиндрах мотора выделяется огромное количество тепла. В камерах сгорания температура достигает более 2000°С. В конструкцию силовых агрегатов включена система охлаждения, элементы которой отводят тепло от рабочих узлов. Благодаря эффективной работе элементов охлаждающей системы ДВС, тепловой режим поддерживается в оптимальных границах от +80 до 90°С. Существуют отдельные типы моторов, для которых нормы расширены до 110°С, чаще всего это механизмы с воздушным охлаждением.

При работе двигателя в оптимальном температурном режиме создаются наилучшие условия для:

  1. Полноценного наполнения цилиндров топливовоздушными смесями.
  2. Стабильности работы силового агрегата во время движения.
  3. Надежной работы механизмов и систем транспортного средства.

Отклонения от нормы температурных режимов силовых агрегатов

Показания температуры внутри двигателя можно увидеть на приборе, расположенном в салоне любого современного автомобиля.

датчик температуры двигателя

К чему приводит превышение нормы рабочей температуры в двигателе? При сверхвысоких температурах технологические тепловые зазоры металлических элементов нарушаются. Это вызывает следующие негативные изменения в работе силового агрегата:

  • ускоренный износ рабочих узлов и деталей;
  • деформации и поломки механизмов;
  • уменьшение мощности двигателя;
  • возникновение детонации;
  • несанкционированное воспламенение горючего.

Что означает понятие – низкая температура двигателя? Если в процессе движения автомобиля стрелка прибора находится ниже рекомендуемого уровня температурного режима, имеются веские основания для тревоги. Непрогретая топливовоздушная смесь конденсируется и оседает на стенках цилиндров. При попадании конденсата в масляный поддон происходит разжижение моторного масла. Технических свойства и характеристики смазочного материала резко ухудшаются. При длительной работе в низком тепловом режиме узлы и детали силового агрегата быстро изнашиваются и приходят в негодность.

Если температура двигателя не поднимается до рабочей, во избежание преждевременного выхода из строя компонентов мотора, водителю необходимо отправить автомобиль на диагностику в ближайший сервисный центр.

Рабочая температура бензинового двигателя

Работа каждого двигателя внутреннего сгорания сопровождается выделением тепла. Рабочие элементы мотора функционируют в условиях высоких температурных режимов.

При опускании поршня в самую нижнюю точку затрачивается большое количество энергии, одновременно с этим выделяется тепло. Элементы силовых агрегатов изготовлены из металла. Как известно, при нагревании данный материал расширяется. При изготовлении узлов и деталей двигателей предусмотрены специальные тепловые зазоры, рассчитанные на нагрев изделий до оптимальных значений. Для предотвращения заклиниваний в конструкцию мотора включена система охлаждения двигателя.

конструкция двигателя

Какая рабочая температура бензинового двигателя является оптимальной? Рабочая температура бензиновых силовых агрегатов как карбюраторного, так и инжекторного, не должна превышать +90°С. Задача охлаждающей жидкости – сохранять постоянную температуру двигателя на должном уровне.

Интересно: Существует понятие «опасная температура двигателя». Для ДВС бензинового типа она составляет 130°С. После достижения предельных значений может произойти заклинивание элементов силового агрегата.

Важно: После включения мотора при дальнейшем движении транспортного средства оператор, постоянно держит под контролем значения рабочей температуры ДВС. Отклонения свидетельствуют о проблемах, появившихся в охлаждающей системе:

  1. Повышение температуры в бензиновом двигателе приводит к закипанию и быстрому испарению ОЖ.
  2. При уменьшении ее количества температура мотора стремительно возрастет.
  3. Под воздействием высоких температур металл начнет деформироваться и расширяться в объеме.
  4. Размеры деталей будут сильно изменены.
  5. В результате, произойдет заклинивание мотора.

Чтобы восстановить работоспособность такого двигателя потребуется дорогостоящий капитальный ремонт автомобиля.

К чему приводит переохлаждение мотора

Такое явление, как переохлаждение также негативно сказывается на качестве работы силового агрегата. Чаще всего это случается зимой или при эксплуатации транспортного средства в сложных климатических условиях крайнего севера.

Рабочая температура двигателя зимой может быть резко снижена в процессе движения авто. При этом потоки охлажденного воздуха обдувают радиатор и весь силовой агрегат. В результате, охлаждающая жидкость резко понижает температуру мотора, даже, если он работает на полных нагрузках.

Понижение рабочей температуры мотора опасно по следующим причинам:

  1. При переохлаждении системы питания в карбюраторе обмерзает отверстие жиклера, через которое поступает воздух, в результате свечи зажигания заливаются бензином. Чтобы продолжить движение, водителю придется ждать высыхания свечей.
  2. При минусовых температурах окружающей среды в автомобилях, работающих на воде, охлаждающая жидкость (ОЖ) замерзает в трубках радиатора. Прекращение циркуляции ОЖ приводит к перегреву мотора. Опытные автовладельцы устанавливают специальные тканевые перегородки или защитные жалюзи на решетку радиатора.
  3. Ухудшение качества или отсутствие отопления салона автомобиля в зимний период может привести к нарушениям управления транспортным средством.

Рабочая температура дизельного двигателя

Поддержание рабочей температуры дизеля является необходимым условием для оптимального функционирования механизмов и систем транспортного средства. Принцип действия дизельного мотора принципиально отличается от бензинового. Здесь топливная смесь не готовится заранее. Первым в камеру попадает воздух. При сильном сжатии воздушная масса разогревается до +700°С. В момент топливного впрыска происходит взрыв с последующим равномерным сгоранием образовавшейся смеси. В результате чего, поршень перемещается в нижнюю мертвую точку.

температура дизельного двигателя

Температура дизеля зависит от следующих факторов:

  • тип мотора;
  • период задержки воспламенения топливовоздушной смеси;
  • качество, равномерность сгорания топлива.

Считается, что оптимальная рабочая температура двигателя должна находиться в пределах 70 – 90°С. Допустимый максимум для дизельных силовых агрегатов, работающих под усиленными нагрузками, равен +97°С, не более.

Совет: Если дизельный двигатель исправен, перед началом движения рекомендуется прогреть охлаждающую жидкость до температуры не менее +40°С. При сильных морозах за бортом автомобиля мотор может начинать прогреваться только при движении. На первых порах рекомендуется включить пониженную передачу. В дальнейшем, нагрузка на движок должна повышаться постепенно, только после поднятия температуры хотя бы до 80°С.

Краткое описание принципа действия системы охлаждения

В данную систему входят следующие рабочие элементы:

  1. Расширительная емкость.
  2. Радиатор охлаждения.
  3. Патрубки верхний и нижний.
  4. Рубашки охлаждения блока цилиндров.
  5. Соединительные шланги.
  6. Насос ОЖ.
  7. Термостат.
  8. Радиатор отопителя салона.
  9. Охлаждающая жидкость.

Схема работы системы охлаждения силового агрегата:

схема охлаждения двигателя

Как видно из схемы, в охлаждающей системе происходят следующие процессы:

  • Охлаждающая жидкость под воздействием насоса в принудительном порядке проходит по шлангам, трубкам и прочим магистралям.
  • Она эффективно омывает каждый цилиндр ДВС.
  • Цилиндры, в частности камеры сгорания, являются источниками основного тепла, выделяемого силовым агрегатом.
  • Вокруг каждого цилиндра расположены специальные технологические полости под названием «рубашки охлаждения».
  • Рубашки охлаждения сообщаются между собой посредством подготовленных каналов. Через данные полости охлаждающая жидкость циркулирует в постоянном режиме.
  • Благодаря движению ОЖ, тепловая энергия отводится от двигателя внутреннего сгорания в радиатор через верхний патрубок.
  • Проходя сквозь лабиринты тонких трубок радиатора, жидкость охлаждается при помощи естественного обдува или воздушных потоков, создаваемых вентилятором.
  • Далее ОЖ продолжает круговое движение через нижний патрубок охлаждающего радиатора.

Методы восстановления нормальной температуры ДВС

При обнаружении завышения данного параметра, прежде всего, нужно остановить автомобиль, заглушить мотор и начать обследование:

  1. Убедиться в достаточном объеме антифриза в системе охлаждения.
  2. При необходимости восполнить необходимое количество.
  3. Жидкость заливается непосредственно в радиатор охлаждения (при этом необходимо соблюдать осторожность, чтобы не обжечься горячим составом).
  4. Осмотреть систему, чтобы исключить возможные протечки.
  5. Продиагностировать радиатор на предмет герметичности.

Если восполнение объема антифриза не дало ожидаемого результата, температура двигателя продолжает подниматься, это означает, что мотор нуждается в компьютерной диагностике в условиях специализированного сервисного центра.

Среди наиболее частых отказов в системе охлаждения ДВС можно выделить следующие пункты:

  • сбои в работе клапана термостата;
  • поломки электрического вентилятора;
  • чрезмерное засорение трубок радиатора;
  • поломка клапана крышки расширительного бачка;
  • протечки в корпусе насоса;
  • нарушение герметичности системы.

вентиляторы охлаждения

Тепловой режим двигателя считается оптимальным при его значениях, находящихся в пределах от +80 до +90 °С. При таких условиях мотор работает стабильно. При этом обеспечена существенная экономия горючего материала, детали и узлы силового агрегата получают минимальный износ, независимо от нагрузок на двигатель и особенностей работы транспортного средства.

Важно: Чтобы рабочая температура ДВС находилась в заданных пределах, необходимо проводить регулярную диагностику системы охлаждения силового агрегата.

motoran.ru

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-850С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем укарбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.{jcomments on}

www.autoezda.com

Температура в камере сгорания дизельного двигателя и давление

Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал  и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.

Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.

Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.

После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.

Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.

Читайте в этой статье

Камеры сгорания дизельных двигателей и особенности работы такого ДВС

Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:

  • неразделенная камера сгорания дизельного мотора;
  • разделенная камера сгорания дизельного ДВС;

Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.

Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.

Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.

Как сгорает топливо в дизельном двигателе

Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.

В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.

Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.

Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.

В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.

Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.

Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:

  • Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.

Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.

Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.

  • Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.

Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.

  • Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.

Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.

  • Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.

Как видно, давление в камере сгорания дизельного двигателя играет первостепенную роль для реализации самовоспламенение топлива. Что касается впрыска, необходимо, чтобы солярка подавалась в строго определенный момент, в нужном количестве, а также качественно распылялась.

Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя  повышается,  возникает риск детонации, топливо не сгорает в полном объеме и т.д.

Частые проблемы дизелей: момент впрыска и компрессия

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Что в итоге

С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.

По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск,  подавая дизтопливо до 10 раз за один рабочий такт мотора.

Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.

Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.

Читайте также

krutimotor.ru

Устройство двигателей внутреннего сгорания

Изучение устройства двигателей внутреннего сгорания.

Разновидности двигателей внутреннего сгорания в двигателях, применяемых для привода современных строительных машин, тепловая энергия сгоревшего топлива преобразуется в механическую работу. Так как топливо сгорает внутри цилиндров двигателей, то они называются двигателями внутреннего сгорания.

Современные двигатели внутреннего сгорания с возвратно-поступательно движущимися поршнями классифицируются по следующим признакам:

1. способу смесеобразования — на двигатели с внешним смесеобразованием /карбюраторные и газовые/ и внутренним /дизельные/;

2. способу воспламенения рабочей смеси на двигатели с принудительным воспламенением от электрической искры /карбюраторные и газовые/ и с воспламенением от сжатия /дизели/;

3. способу осуществления рабочего цикла — на четырех — и двухтактные;

4. числу цилиндров — на одно — и многоцилиндровые;

5. расположению цилиндров — на одноцилиндровые /линейные/ и двухрядные или V — образные, у которых угол между цилиндрами мень­ше 180°. Если угол равен 180°, двигатель называется оппозитным;

6. охлаждению — на двигатели с водяным и воздушным охлаждением.

На строительных машинах применяются четырехтактные многоцилиндровые карбюраторные и дизельные двигатели.

Во время работы четырехтактного двигателя внутреннего сгорания в его цилиндре протекают четыре процесса: 1/ впуск в цилиндр горючей смеси /в карбюраторный двигатель/ или воздуха /в дизельный двигатель/t 2/ сжатие рабочей смеси или воздуха; 3/ рабочий ход — воспламенение рабочей смеси и расширение продуктов сгорания; 4/ выпуск из цилиндра продуктов сгорания.

Совокупность этих последовательных, периодически повторяющихся процессов называется рабочим циклом двигателя.

Принципиальное отличие рабочего цикла дизеля от карбюраторного двигателя состоит в способе смесеобразования и воспламенения смеси. В цилиндр дизеля в такте впуска поступает воздух, который подвергается сжатию в такте сжатия до 3,5…4,5 МПа, что повышает температуру воздуха до 600.„.700 °С. В конце такта сжатия впрыскивается жидкое топливо, которое, перемешиваясь с нагретым воздухом, воспламеняется и сгорает.

В карбюраторном же двигателе рабочая смесь в конце такта сжатия сжимается до 0,7…1,2 МПа, а температура повышается до 300…400 °С, при этом между электродами свечи проскакивает электрическая искра и рабочая смесь воспламеняется.

Дизельный двигатель по сравнению с карбюраторным имеет следующие преимущества: более высокий КПД — 27-35% /для карбюраторных двигателей 20-24%/; высокую степень сжатия, обеспечивающую более экономичный расход топлива на единицу работы /на 20-25% меньше, чем у карбюраторного двигателя/; обладает лучшей приемистостью и развивает большой крутящий момент при малой частоте вращения; работает на тяжелых сортах топлива, которые менее опасны в пожарном отношении.

Основные недостатки дизельного двигателя по сравнению с карбюраторным: большая масса, приходящаяся на единицу мощности; тихоходность /максимальная частота вращения коленчатого вала не превышает 3000 об/мин, у карбюраторных — до 6000 об/мин/; более трудный пуск при низких температурах окружающей среда, что вызывает необходимость установки дополнительных систем подогрева и пуска двигателя.

Кривошипно-ползунный механизм

Кривошипно-ползунный механизм служит для восприятия силы давления газов, преобразования прямолинейного возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Кривошипно-ползунный механизм

Рис. Схема кривошипно-ползунного и распределительного механизмов: 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — поршневой палец; 5 — поршневые кольца; 6, 9 — клапаны /впускной и выпускной/; 7 — пружина; 8 — коромысло; 10 — гильза; 11 — водяная рубашка; 12 — штанга; 13 — распределительный вал; 14 — маховик; 15 — шестерни привода распределительного вала

Механизм газораспределения

Механизм газораспределения должен удовлетворять следующим ос­новным требованиям: своевременно открывать и закрывать впускные и выпускные клапаны; обеспечивать возможно лучшее наполнение цилиндров горючей смесью и очистку от отработавших газов; надежно изолировать внутреннее пространство цилиндров от окружающей среды во время тактов сжатия и рабочего хода.

Для лучшего наполнения цилиндров двигателя воздухом /для дизелей/ или горючей смесью /для карбюраторных двигателей/ и более полной очистки их от отработавших газов клапаны открываются и закрываются не в тот момент, когда поршень находится в мертвых точках, а с некоторым опережением при открытии и запаздыванием — при закрытии.

Периоды открытия и закрытия клапанов выраженные в углах пово­рота коленчатого вала, называются фазами газораспределения.

Их соблюдение обеспечивается формой и взаиморасположением кулачков на распределительном валу.

Система охлаждения.

При работе двигателя температура газов в камере сгорания достигает 2000…2400 °С, а средняя температура цикла 800…1000 С. Вследствие этого поршни, головки цилиндров, цилиндры и клапаны сильно нагреваются. Чрезмерный перегрев двигателя приводит к разжижению и сгоранию масла, нарушению нормальных зазоров между сопряженными деталями, уменьшению наполнения цилиндров горючей смесью, а следовательно, к снижению мощности двигателя, нарушению рабочего процесса и разрушению отдельных деталей.

Для нормальной работы двигателя необходимо непрерывно отводить излишнюю теплоту от перегреваемых деталей. Это осуществляется системой охлаждения. Излишнее охлаждение неблагоприятно отражается на работе двигателя. Испарение топлива ухудшается, поэтому оно горит медленнее, мощность двигателя падает, снижается экономичность, а износ цилиндров и поршневых колец увеличивается.

Для нормальной работы двигателя необходимо поддерживать его температуру при любых условиях и режимах работы в определенных пределах.

Чтобы обеспечить нормальный тепловой режим двигателя, применяют жидкостное или воздушное охлаждение. При воздушном охлаждении теплота отдается непосредственно воздуху через ребристые стенки блока цилиндров и головки блока. Жидкостная система охлаждения основана на интенсивной Циркуляции жидкости, которая обеспечивается центробежным насосом. Насос нагнетает жидкость /воду или антифриз-жидкость, замерзающую при низкой температуре/ в водяную рубашку двигателя, из которой нагретая жидкость вытесняется в радиатор. Охлажденная жидкость по патрубкам поступает в насос.

Схема системы охлаждения

Рис. Схема системы охлаждения: 1 — радиатор; 2 — выпускной патрубок; 3 — термостат; 4 — гильза цилиндра; 5 — головка цилиндров; б — блок цилиндров; 7 — водяная рубашка; 8 — крыльчатка водяного насоса; 9 – вентилятор.

Система смазки

При работе двигателя в его сопряженных деталях возникает трение, вызывающее износ и нагрев деталей и требующее затрат некоторой части мощности двигателя. При введении между трущимися поверхностями слоя смазки характер трения и износа резко изменяется, так как молекулы масла под влиянием силы молекулярного притяжения распространяются по трущимся поверхностям и смазывают их.

Долговечность и безотказная работа двигателя зависят от качества и чистоты применяемого масла.

Система смазки двигателя — это совокупность механизмов и приборов, обеспечивающих очистку масла и его бесперебойную подачу в необходимом количестве при определенной температуре и давлении к трущимся поверхностям.

Схема системы смазки

Рис. Схема системы смазки: 1 — масляный картер; 2 — маслоприемник; 3 — шестеренчатый насос; 4 — маслопровод; 5 — фильтр; 6 — главный масляный канал.

Примечание. Все остальные детали смазываются маслом, вытекающим из зазоров, или посредством разбрызгивания.

Масло, поступающее в зазоры между трущимися поверхностями, не только уменьшает потери на трение, но и охлаждает и удаляет продукты износа и мелкие частицы нагара и защищает трущиеся поверхности от коррозии.

В зависимости от способа подвода масла к трущимся поверхностям деталей применяются такие системы смазки: разбрызгиванием, под давлением и комбинированные, в которых часть деталей смазывается под давлением, а остальные — за счет разбрызгивания масла.

Система питания.

Источником энергии в двигателях внутреннего сгорания является горючая смесь, образуемая парами топлива, тщательно перемешанными с воздухом в определенных пропорциях. Смешиваясь с остаточными газами в цилиндре двигателя, горючая смесь образует рабочую.

Состав горючей смеси должен соответствовать определенному режиму работы двигателя и подразделяется на богатую, обогащенную, нормальную, обедненную и бедную.

В качестве топлива для карбюраторных двигателей применяют бензин, обладающий хорошей испаряемостью, а для дизельных двигателей с внутренним смесеобразованием — дизельное топливо, являющееся продуктом перегонки тяжелых фракций нефти с определенной вязкостью.

Система питания служит для хранения, подачи и очистки топлива, воздуха, приготовления горючей смеси нужного состава на разных режимах работы двигателя, отвода наружу продуктов сгорания .

Система пуска двигателей.

Одним из основных требований, предъявляемых к двигателям внутреннего сгорания, является быстрота и надежность пуска. Пуск осуществляется принудительным вращением коленчатого вала двигателя от постороннего источника энергии.

Система пуска должна развивать определенную частоту вращения коленчатого вала двигателя, обеспечивающую смесеобразование, наполнение цилиндров свежей смесью, сжатие и воспламенение смеси.

Пусковая частота вращения карбюраторных двигателей колеблется в пределах 30…60 об/мин.

Пуск дизельного двигателя по сравнению с карбюраторным более труден. Это связано с большой степенью сжатия и плохим смесеобразованием из-за малого давления впрыска топлива. Поэтому пусковая частота вращения коленчатого вала двигателя с воспламенением от сжатия должна быть в пределах 200…300 об/мин.

Схема системы питания

Рис. Схема системы питания; 1 — гильза цилиндра; 2 — поршень; 3 — топливный фильтр; 4 — топливопровод; Б — диафрагмовый насос; 6 — топливный бак; 7 — воздушный фильтр; 8 – карбюратор; 9, 10 — клапаны /впускной и выпускной/; 11 — патрубок /выхлопной/; 12 – глушитель.

При пуске холодного двигателя, особенно в зимнее время, прокручивание вала двигателя и его пуск резко затрудняются из-за низкой температуры воздуха в камере сгорания в конце сжатия и эагустевания смазки. Для обеспечения пуска дизелей необходимо подогреть воздух во впускном трубопроводе и в камере сгорания, охлаждающую жидкость в системе охлаждения; применить декомпрессионный механизм.

Существуют следующие основные способы пуска двигателей:

1. от руки /вручную/ — применяется чаще у карбюраторных пусковых двигателей;

2. электрическим стартером — используется в автомобильных и пуско­вых тракторных двигателях. Для пуска дизельного двигателя требуется стартер значительно большей мощности, чем для карбюраторного;

3. вспомогательным бензиновым двигателем /пусковым двигателем/ — распространен на дизелях тракторов;

4. силовым генератором электротрансмиссии. Силовой генератор, приводящий электрические ходовые двигатели трактора с электротрансмиссией, на время пуска двигателя работает в режиме стартера и питается током от аккумуляторных батарей;

5. сжатым воздухом от баллона с давлением 15,0 МПа. Наименьшее давление воздуха в баллоне, обеспечивающее запуск дизеля,- 4,0 МПа.

В аварийных случаях можно запустить двигатель буксировкой на включенной передаче трансмиссии. У машин с электротрансмиссией тяговый электродвигатель при этом работает в режиме генератора, а силовой генератор — в режиме электродвигателя, вращая коленчатый вал дизеля.

Список литературы

1. Брянский Ю. А. и др. Тягачи строительных и дорожных машин. — М.: Высш. шк., 1976. — 360 с.

2. Гуревич A. M., Сорокин E. М. Тракторы и автомобили. — П.: Колос, 1971.

3. Делиховский С. Ф. и др. Устройство и эксплуатация автомобилей.- М.: Изд-во ДОСААФ, 1965. — 214 с.

mehanik-ua.ru

Что лучше, что выгоднее — бензиновый двигатель или дизель?

В среде автомобилистов немало расхожих заблуждений, некоторые из них касаются особенностей бензиновых и дизельных двигателей. Почему-то принято считать, к примеру, что у дизеля больше ресурс, и что у него «лучше» момент на низких оборотах. Попробуем разобраться.
Для начала пройдем короткий ликбез, вспомним особенности моторов обоих типов. Основное и решающее отличие дизельного двигателя от бензинового — в организации рабочего процесса. Именно из-за него конструкции моторов — разные.
1. Бензин
Начнем с бензинового двигателя. Топливовоздушная смесь у него формируется вне цилиндра, во впускном коллекторе (пока непосредственный впрыск оставим за кадром). Пары топлива окончательно перемешиваются с воздухом в конце такта сжатия. В камере сгорания образуется топливная смесь, которая называется гомогенной, с равномерным распределением топлива по объему. От сжатия температура смеси поднимается до 400–500 0С (ниже температуры самовоспламенения бензина). Далее смесь воспламеняется искрой свечи зажигания.
Такая организация рабочего процесса ощутимо сужает возможности двигателей. Во первых, топливо должно иметь высокую испаряемость при температуре окружающей среды, иначе гомогенную смесь к моменту  зажигания не получить, И, значит не будет быстрого и полного ее сгорания. Это резко сужает возможный перечень альтернативных топлив. Во вторых, в двигателе с внешним смесеобразованием есть цикл сжатия топливной смеси. Это сильно ограничивает возможную степень сжатия (ε), а она, между прочим,  сильно влияет на КПД двигателя. Повысить степень сжатия не дает детонация. Поднять детонационный порог помогает высокое октановое число бензина, сокращение времени распространения фронта пламени и снижение температуры топливного заряда. В современных моторах удается достичь степени сжатия примерно около 11 единиц и, скорее всего, эта величина — предельная. В третьих, способность к воспламенению и сгоранию гомогенной смеси находится в узком диапазоне соотношения воздуха к бензину, с коэффициентом избытка воздуха 0,8< λ<1,2. То есть смесь не может быть ни слишком богатой, ни слишком бедной. Это значит, что регулировать мощность можно только меняя количество поступающей в двигатель смеси, одновременно меняя подачу бензина и воздуха. Поэтому в двигаете и имеется дроссельная заслонка, ограничивающая подачу воздуха в двигатель. Ну а система управления дозирует топливо так, чтобы λ.всегда оставалась в заданном диапазоне.
Бытует заблуждение,  что гомогенная смесь вредна мотору. На самом деле, равномерное перемешивание паров бензина с воздухом помогает смеси сгорать более полно.

2. Солярка
У дизеля рабочий процесс организован по-другому, и эта организация нивелировала недостатки бензиновых ДВС. В цилиндре дизеля  сжимается только воздух, причем с высоким, до 30-50 бар, давлением. От сжатия температура воздуха подскакивает до 700–900 оС. Солярка распыляется прямо в камере сгорания,  перед ВМТ поршня. Мельчайшие капли топлива мгновенно испаряются,  образуется  топливовоздушная смесь. Смесь должна образоваться очень быстро, на порядок быстрее, чем в бензиновом двигателе. Поэтому в камере сгорания образуется неоднородная (гетерогенная) топливовоздушная смесь. Что не мешает ей самовоспламеняться и нормально сгорать.
Получается, что дизельный процесс обходится без предварительного приготовления топливной смеси. Это снижает требования к испаряемости, и, стало быть, спектр применяемых видов топлив расширяется. В принципе, теоретически сгодятся  дешевые  нефтепродукты, вплоть до мазута, и даже биотопливо. Многотопливность — серьезное преимущество дизеля. На первый взгляд кажется удивительным, но дизель может  работать и на бензине. Правда, для этого приходится снижать степень сжатия. По крайней мере, некоторые армейские многотопливные двигатели могут работать и на солярке, и на бензине (с особыми присадками), правда,  в ущерб ресурсу.
Сжатие воздуха без топлива дает еще один плюс: устраняется опасность детонации и, стало быть, снимается ограничение по степени сжатия. Степень сжатия дизеля обычно находится в пределах 13<ε<25. Малые значения встречаются у дизелей с наддувом, большие — для атмосферных дизелей с разделенными камерами сгорания. Нижний предел ограничения степени сжатия дизеля задается трудностями с пуском мотора зимой, а верхний ограничивается  прочностью деталей: с увеличением степени сжатия растет и предельное давление в камере сгорания.
Высокое давление в камере сгорания сказывается на конструкции дизеля — детали кривошипно-шатунного и газораспределительного механизмов приходится делать более прочными, тяжелыми, и, значит, растет их инерционность. Как следствие, дизельные моторы по этой причине проигрывают в быстроходности и приемистости (способности быстро набирать обороты). К преимуществам дизеля отнесем большой крутящий  момент в весьма широком диапазоне оборотов, который обусловлен этим же высоким давлением в камере сгорания. Поэтому дизель тяговит и эластичен.
Повышение степени сжатия — один из ключевых способов увеличения КПД мотора, а это значит, что дизель — экономичнее. Из-за степени сжатия КПД дизеля на 10–12% выше, чем у бензинового мотора (0,27–0,42 против 0,22–0,3). При этом по топливной экономичности дизель дает фору бензиновому моторы  процентов на 30-40! В чем причина этого несоответствия? А всё дело — в способе регулирования.Вспомните, в бензиновом двигателе смесь всегда гомогенная, отношение топлива к воздуху — постоянное, и для изменения мощности приходится менять количество всей смеси. Это — количественное регулирование мощности. В дизеле количество поступающего в двигатель воздуха практически не меняется, а мощность регулируется изменением подачи количества топлива, то есть меняется качество смеси. Это — качественное регулирование. Напомним, что с коэффициент избытка воздуха λ у бензинового двигателя не выходит за пределы 0,8< λ<1,2. А вот в дизеле оно может меняться от 1,1–1,2 в режиме максимальной нагрузки до 15–20 на холостом ходу! Потому-то в режиме холостого хода дизель потребляет до смешного мало солярки, или, как говорят водители, «работает на одном воздухе». Смесь же остается бедной во всех режимах!.
Далее. Эффективный КПД замеряют в режиме максимальной нагрузки. Здесь лидерство дизелей невелико. Однако в реальности двигатель автомобиля до 90% времени работает в режиме частичной нагрузки, выдавая четверть максимальной мощности, а то и меньше. Тут-то и проявляются преимущества качественного регулирования, то есть — способность работать на сверхбедных смесях.
Однако гетерогенность смеси отрицательно сказывается на содержании вредных компонентов в выхлопных газах. Бытует заблуждение, что дизель менее токсичен. Не исключено, что оно сложилось в те времена, когда проверяли только угарный газ (СО) и несгоревшие углеводороды (СН). Их в выхлопе у дизеля действительно мало (все по той же причине — процесс протекает в условиях избытка воздуха, окисление получается более полное). Но работа на бедных смесях и более высокая температура в камере сгорания приводят к тому, в выхлопе дизеля почти вдвое больше оксидов азота (NOx), их массовая доля в суммарном выбросе токсичных компонентов — 30-80%! А ведь они чрезвычайно вредны. Но и это не все. При сгорании гетерогенных смесей всегда образуются твердые частицы, в основном это свободный углерод (обычная сажа). Опасность в том, что на частицы сажи адсорбируются канцерогенные соединения — полициклические ароматические углеводороды. Кроме сажи, в рядах твердых частиц имеются несгоревшие частицы топлива и масла, соединения серы и оксиды металлов, добавляемых в топливо и масло в качестве присадок. Всё это и проявляется в виде дымности, вплоть до копоти. Твердые частицы легко переносятся в воздухе и поэтому могут легко подпортить здоровье людей. Самое же неприятное, что от них очень трудно избавиться. Выхлоп бензинового двигателя, в принципе, можно сделать сколь угодно чистым — оптимизацией рабочего процесса и использованием каталитических нейтрализаторов. Для борьбы с дымностью ограничивают нжний предел качества смеси λ на уровне 1,1–1,2.  А с катализаторами у дизелей проблемы, как раз из-за сажи. Она моментально, за сотню километров пробега, выведет его из строя. А эффективный и экономичный сажевый фильтр до сих пор остается мечтой конструкторов.
Есть еще одно заблуждение — о том, что у дизеля больше ресурс. Вроде бы более прочная конструкция и невысокие обороты действительно способствуют меньшему износу. Да и солярка не так активно смывает масляную пленку со стенок цилиндров, как бензин. С другой стороны, у дизеля высокая теплонапряженность камеры сгорания и большие нагрузки, особенно у КШМ. Большой ресурс дизелей — миф, и сформировался он оттого, что дизель устанавливают на коммерческие автомобили, вся конструкция которых заточена под большой пробег, и в том числе — двигатель. Для увеличения ресурса применяются типовые конструкторские решения, и не суть важно, дизельный мотор, или бензиновый. Примером низкоресурсного дизеля может, кстати, служить танковый.
3. Резюме
Итак, как известно, у дизеля нет системы зажигания, равно как дросселя*.  Но отсутствие системы вовсе не говорит о том, что дизель проще. Все как раз наоборот. Дизель пришлось комплектовать предпусковым подогревом со свечами накаливания, кроме того, у дизеля сложная и дорогая система топливоподачи, в которую входит топливный насос высокого давления (ТНВД).
Сложность и высокая точность ТНВД вносит свои недостатки. Это и высокие требования к качеству и чистоте топлива, дорогим обслуживанием и ремонтом. Все эти траты могут свести на нет экономию на расходе топлива. Кстати, из-за того что в режиме максимальных нагрузок дизель вынужден работать на обедненной смеси, да еще и с меньшей частотой вращения, его удельная мощность обычно ниже, чем у бензиновых моторов.
Так какой будет ответ — что выгоднее, дизель или бензиновый мотор? Простого ответа нет. Дизель экономичнее, но реальная выгода видна лишь при больших ежедневных пробегах, особенно по пробкам. .
Дизель тяговит и эластичен, но страдает шумностью и повышенной вибрацией.
Вывод банален: дизель хорошо для интенсивной эксплуатации, то есть — для коммерческих автомобилей. Почему дизель так популярен на Западе, спросите вы. По всей видимости, причина кроется в том, что еще до недавнего времени солярка там стоила существенно дешевле бензина, это во первых. Все же дизель экономичнее, а топливо в Европе — дорогое, это во вторых. Сервисное обслуживание и ремонт дизелей там налажены давно, недостатка в специалистах нет, это в третьих. Солярка, которая продается в Европе, весьма хорошего качества и очень редко бывает причиной поломки двигателя, это в четвертых. Моду на дизели и воздействие рекламы — в пятых. Возможно, есть и другие причины.
Но мы — не Европа, у нас свой путь, даже в выборе моторов.

* В некоторых дизелях заслонка есть, она нужна для того, чтобы в задроссельном пространстве создавалось разрежение, нужное для организации вакуумного привода различных устройств автомобиля. Но чаще встречается вакуумный насос с приводом от распредвала.
** Любопытно, что степень сжатия 11–13 — граница, разделяющая бензиновые и дизельные моторы.

arkan.people.zr.ru

Правильная рабочая температура двигателя: бензинового и дизельного

Для автомобиля рабочая температура двигателя, в зависимости от типа двигателя: бензинового или дизельного она может отличаться. Зная правильные показатели, можно сделать вывод исправно ли работает двигатель, понять не слишком низкая температура или высокая.

В бензиновых вариантах в камере сгорания рабочая температура двигателя может подниматься до 2000 градусов, это считается нормальным: только так топливная смесь будет сгорать оптимально, давая наибольшую мощность. Однако для нормализации температуры каждый автомобиль оснащен системой охлаждения, она нужна для поддержания 90 градусов, иначе все жидкости начнут закипать. Некоторые модели нормально работают при показателях 110 градусов. Обычно это старотипные конструкции, оснащенные только воздушным охлаждением.

Если режим температуры оптимален, цилиндры будут работать лучше, мотор прослужит дольше, при этом будет стабильно запускаться. При нагреве многие элементы могут расширяться, поэтому конструктивно для них предусмотрены специальные тепловые зазоры. При перегреве детали перекрывают допустимые зазоры, трение становится более сильным, некоторые элементы могут перестать двигаться, и тогда мотор заклинит. Менее опасными явлениями являются мелкие поломки, образование зазоров в цилиндрах, из-за чего их мощность падает, наполнение цилиндров происходит плохо. Топливо может начать детонировать в неподходящий момент самостоятельно, что приводит к разрушению конструкции.

температура двигателя

Причины повышения показателя температуры

Существует несколько причин, из-за которых температура двигателя повышается:

  • Наиболее распространенной причиной повышения температуры мотора является неисправность клапана термостата. Его может заклинить в закрытом состоянии.
  • Сломан электрический вентилятор, предназначенный для искусственного охлаждения системы. Выйти из строя может сам моторчик, гидромуфта, нередко перегорает предохранитель. Стоит проверить проводку, возможно, где-то произошел обрыв, если все остальное исправно. Отказать может и датчик температуры, в этом случае его требуется заменить.
  • Стоит проверить радиатор: он периодически забивается разнообразным мусором.
  • В крышке расширительного бачка имеются клапана, они могут неправильно работать или забиться.
  • Пробой прокладки блока цилиндра или трещина на его корпусе
  • Кроме этого, помпа может начать протекать и вызывать повышение термальных условий.
  • Дополнительные механизмы могут иметь собственные ремни, при ослаблении натяжки которых возникают разнообразные проблемы.
  • Система охлаждения в исправном состоянии должна быть герметично, но при ее разгерметизации температура мотора может резко повышаться.

Многих интересует, какая рабочая температура двигателя должна быть минимально. В некоторых случаях мотор не перегревается, а, наоборот, не греется до рабочей температуры, это не так опасно, однако в этом случае не стоит ожидать от силового агрегата эффективной работы. Дело в том, что топливо не будет сгорать до конца, тяга станет слабой. Конденсат от топливной смеси попадет сначала на стенки цилиндров, затем в картер. Последнее приводит к разжижению масла и ухудшению его свойств. Из-за этого смазываться и очищаться детали изнутри будут хуже, что приведет к их повышенному износу. Больше всего страдает от этого ЦПГ, распредвал и вкладыши коленвала, могут выйти из строя и балансировочные валы.

Если игнорировать прогрев, в зимний период на внутренних поверхностях ЦПГ будет образовываться увеличенное количество конденсата, который будет попадать в масло. К тому же присадки, содержащиеся в смазочном материале, вступают в реакцию только при определенных температурах, поэтому при придвижении на небольшие расстояния на непрогретом автомобиле вы создаете для мотора повышенную нагрузку, так как автомасло почти не выполняет своих функций и не может эффективно смазывать детали.

Более густая смазка с трудом попадает в отдаленные места конструкции, для работы деталей мотора требуется прикладывать больше усилий, что приводит не только к повышенному износу частей, но и к повышению расхода топлива. Мощность тоже упадет, так как цилиндры не смогут нормально функционировать. Причины того, что двигатель не нагревается до рабочей температуры, могут быть следующими:

  • Клапан термостата заклинило, и он остался в открытом положении.
  • Частое совершение поездок на непрогретом моторе в холодное время.
  • Неисправен датчик температуры или термостат.

Учитывая все факторы, можно сделать вывод, что оптимальная температура двигателя играет огромную роль, так как только в этом случае агрегат может функционировать оптимально, без вреда для каких-либо узлов и потери мощности.

Отличия по типу двигателя

Существуют разные модели, температурный режим которых будет отличаться. Например, встречаются обычные моторы и форсированные, второй тип более сильно греется. Процессы горения в них происходят иначе, поэтому клапан термостата срабатывает в разное время. Кроме этого, у разных моделей устанавливаются различные системы охлаждения, работающие с конкретной скоростью и интенсивностью.

охлаждение двигателя

От того, как настроен и когда срабатывает датчик температуры, зависит момент включения вентилятора с электроприводом. Обратите внимание на то, что модели авто с инжектором и карбюратором имеют разные настройки, и термостат даже для одной и той же машины, но с разной системой питания требуется свой. Этот прибор напрямую влияет на нагрев двигателя, поэтому выбору в случае замены требуется уделить особенное внимание.

Система охлаждения может быть открытой или закрытой в зависимости от конструкции силового агрегата. Открытый тип охлаждения сообщается с атмосферным воздухом, это означает, что он может и покидать ее, но уже в парообразном состоянии. Многие типы охлаждающей жидкости закипают при температуре 100 градусов. Если система закрытая, она оснащается специальными клапанами, которые связывают конструкцию с атмосферным воздухом. Они находятся в радиаторе и могут быть в крышке расширительного бачка. Если в системе резко повышается давление, она имеет возможность выпустить пар через эти клапана.

При закрытой системе антифриз может закипать не при 100 градусах, а при более высокой температуре – 110-120 градусов. Однако опасность такой системы заключается в том, что при ее разгерметизации мотор резко закипает. Это может произойти, например, при отказе клапанов. Все жидкости устремляются наружу, при этом давление в системе образуется высокое, что может вызвать ее серьезные повреждения.

Для современных моторов, которые в угоду экологии имеют несколько другую конструкцию, при которой тепловой режим двигателя становится больше, требуется применять специальные масла на синтетической основе. Они не только сами не закипают при всяких температурах и не оставляют нагар, но и способствуют лучшему охлаждению системы. При их использовании поддерживается стабильная рабочая температура бензинового двигателя.

Чтобы тепловой режим мотора для полного сгорания топлива выдерживался в требуемом качестве, нужны и другие масла, так как нередко использующаяся продукция просто не может обеспечивать полноценную защиту при высоких температурах. Это отрицательно сказывается на ресурсе силовых установок, не рассчитанных работать в подобных температурных режимах. Оптимальный тепловой режим в пределах 85-90 градусов обеспечивает экономию топлива и минимальный износ деталей в различных условиях и режимах работы. Для поддержания системы охлаждения всегда в рабочем состоянии рекомендуется периодически проходить диагностику для беспроблемной эксплуатации вашего автомобиля.

Рабочая температура дизельного двигателя

Дизельные агрегаты имеют другую конструкцию, поэтому температура в камере сгорания при их работе в несколько раз ниже. Температура работы зависит от того, какого типа сам двигатель. При работе температура сначала значительно повышается, потом снижается, так как горючая смесь начинает воспламеняться быстрее. Она сгорает раньше, процесс становится более плавным и полноценным, почти не остается невоспламенившейся жидкости. За счет этого рабочая температура становится стабильной, больше делается КПД двигателя, сами выхлопы становятся менее токсичными.

Специалисты считают, что для дизельных конструкций нормальной температурой можно считать 70-90 градусов в зависимости от модели самого мотора. Под нагрузкой температура работы мотора может подниматься до 97 градусов, но дальнейшее ее повышение может вызвать серьезный вред для системы. Существует и обратная перегреву проблема, когда агрегат не прогревается до нужной температуры. Как и у бензинового варианта, у него начинают возникать разнообразные проблемы.

правильная температура двигателя

Например, при прогреве, когда система работает на холостом ходу, нужно дать ей нагреться хотя бы до 40-50°С, прежде чем начать движение. Это позволит ей работать оптимально, снизить износ деталей. Кроме этого, требуется следить за оборотами: они должны достичь 2 000 или 2500 оборотов в минуту. После этого нужно подождать, пока система прогреется до 80°С, это будет значить, что силовой агрегат можно использовать в полную силу. Особенно эта рекомендация актуальна для холодного времени года, так как многие дизели испытывают зимой проблему с запуском, применяют специальный электроподогрев.

Если мотор не достигает рабочей температуры, его КПД сильно снижается. Это отражается на тяге автомобиля в целом, он начинает хуже разгоняться, медленно едет, расход топлива при этом значительно повышается. Это может происходить по следующим причинам:

  • Термостат вышел из строя;
  • Резко ухудшилась компрессия;

Если использовать такой автомобиль под нагрузкой, например, при езде по бездорожью или перевозке грузов, смесь будет сгорать не полностью, начнет появляться нагар на стенках камеры сгорания, топливные форсунки засорятся, сажевый фильтр быстро выйдет из строя, износ системы увеличится.

Например, при засорении форсунок солярка не будет сгорать полностью, ее расход увеличится чисто из-за того, что часть топлива будет выливаться через выхлопную трубу, так и не сгорев. Опасно данное явление тем, что догорает топливо, уже находясь на поверхности поршней, что вызывает их прогорание, засорение камер сгорания. Пострадать от этого может и впускной клапан, уменьшится компрессия, кроме этого, запустить такой двигатель на холодную будет проблематично.

В заключении

Важно обращать внимание на то, какая должна быть рабочая температура двигателя. Как перегрев, так и понижение показателей могут существенно навредить системе, поэтому важно вовремя обращать на это внимание и принимать меры по восстановлению, пока поломка не превратилась в серьезную проблему, исправление которой обойдется в круглую сумму.

vmasla.ru

Процесс сгорания топлива в двигателе

При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.

Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.

Сгорание рабочей смеси в двигателях с искровым зажиганием

О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.

Индикаторная диаграмма карбюраторного двигателя

Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.

Процесс сгорания условно делят на три фазы.

Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.

Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.

Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.

От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.

Продолжительность первой фазы зависит от ряда факторов.

Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.

На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.

Влияние степени сжатия

При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.

Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.

Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.

Влияние угла опережения зажигания

Влияние угла фз, опережения зажигания

Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.

Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.

При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.

Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.

Влияние состава рабочей смеси

Состав рабочей смеси оценивается коэффициентом избытка воздуха а. Состав влияет на скорость сгорания, количество выделяемого тепла, вследствие чего изменяются давление и температура газов в цилиндре. Минимальное значение угла опережения зажигания, периода задержки воспламенения и максимальное давление в цилиндре достигаются при а =0,85…0,9. При этом значении коэффициента избытка воздуха двигатель развивает максимальную мощность. По мере обеднения состава смеси (а>0,9) изменяется величина оптимального значения Фз, уменьшается величина максимального давления сгорания.

Для каждого двигателя принят свой оптимальный состав рабочей смеси, при котором на данном режиме достигается минимальный удельный расход топлива. Для двигателей со степенью сжатия около 8 при почти полном открытии дроссельной заслонки экономичный состав смеси получается при и =1,15…1,2. Для каждого скоростного и нагрузочного режима работы двигателя с искровым зажиганием существует также свое оптимальное значение угла опережения зажигания. Поэтому в конструкции таких двигателей предусмотрено устройство, обеспечивающее автоматически в зависимости от режима работы двигателя оптимальное значение ф3.

Влияние частоты вращения коленчатого вала

Влияние частоты вращения n и угла фз

Рис. Влияние частоты вращения n и угла фз, опережения зажигания на характер индикторных диаграмм карбюраторного двигателя: а — угол фз — неизменный на всех скоростных режимах; б — углы ф2 и ф3 — подобраны для каждого скоростного режима: 1 — n = 1000 об/мин; 2 — n = 2000 об/мин; 3 — n = 3000 об/мин.

При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.

Детонация

В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.

Основные причины появления детонации:

  • применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
  • повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
  • увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.

На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.

Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.

Преждевременное воспламенение рабочей смеси

В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.

Воспламенение от сжатия при выключенном зажигании

При работе двигателей наблюдаются случаи, когда после того, как выключено зажигание, двигатель продолжает некоторое время работать. Объясняется это тем, что при прикрытой дроссельной заслонке температура рабочей смеси в конце такта сжатия повышается и смесь самовоспламеняется, если частота вращения коленчатого вала прогретого двигателя составляет 300…400 об/мин. Чтобы предотвратить это явление, в конструкцию карбюратора вводят устройство, которое автоматически прекращает подачу топлива при выключении зажигания.

Сгорание рабочей смеси в дизелях

Индикаторная диаграмма дизеля

Рис. Индикаторная диаграмма дизеля: Q1 , Q2 и Q3 — фазы сгорания топлива; Фвц — угол опережении впрыска топлива.

Топливо впрыскивается в камеру сгорания дизеля за несколько градусов угла фвп поворота коленчатого вала до прихода поршня в в.м.т. К этому времени воздух в камере сжимается до 3…4 МПа и нагревается в результате этого до 450…550°С. Заканчивается подача топлива после в.м.т. На участке 1…2 давление в камере изменяется за счет сжатия воздуха поршнем — горение топлива еще не началось. Температура в камере немного понижается вследствие ввода в камеру холодного топлива. Затем топливо самовоспламеняется, пламя начинает распространяться по камере, и давление, начиная от точки 2, повышается за счет горения топлива. Угол фвп между началом впрыска (точка 1) и в.м.т. называется углом опережения впрыска. Угол Qi между началом впрыска и моментом начала подъема давления (точка 2) называется периодом задержки воспламенения. В этот период топливо под действием температуры и вихревых движений в камере переходит из жидкого состояния в газообразное, появляются отдельные очаги самовоспламенения.

Период сгорания топлива в цилиндре дизеля условно делят на три фазы:

  • первая фаза Q1 — фаза быстрого сгорания. Начинается в момент начала повышения давления (точка 2) и кончается в момент достижения максимального давления в цилиндре (точка 3). В этот период выделяется около 30% общего тепла, заключенного во впрыскиваемом в цилиндр дизеля топливе;
  • вторая фаза Q2 — фаза замедленного горения (участок 3…4). Она заканчивается в момент достижения максимальной температуры в цилиндре (точка 4). К этому периоду выделяется 70…80% тепла;
  • третья фаза Q3 — фаза догорания. Условно она заканчивается в пределах 70° угла поворота коленчатого вала после в.м.т. К этому периоду выделяется около 97% тепла. Процесс является наиболее экономичным, если давление цикла в дизеле достигает своего максимума при повороте коленчатого вала на 6…10° после в.м.т.

Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.

Экономичность цикла зависит от характера и продолжительности протекания процесса подготовки топлива к самовоспламенению (период Qi — задержки самовоспламенения) и характера сгорания (первая Q1, вторая Q2 и третья Q3 фазы сгорания).

Период задержки воспламенения

За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.

Рассмотрим влияние каждого фактора на величину Qi.

Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.

Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.

Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.

Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.

Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.

Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.

Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.

Средняя скорость нарастания давления на участке 2…3 определяет жесткость работы дизеля. Ее считают нежесткой, если средняя скорость нарастания давления дельта_Р/дельта_ф не превышает 0,5 МПа на 1° угла поворота коленчатого вала.

Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.

Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.

ustroistvo-avtomobilya.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *