3 тактный двигатель: Трёхтактный двигатель

Содержание

Трёхтактный двигатель

История бренда «Гарелли» делится на два периода. Довоенный, знаменитый своими «трёхтактными» моторами, и послевоенный, отличающийся большими объёмами производства простых двухтактных мопедов и мотоциклов. Бренд как-то жив до сих пор.


Инженер Адальберто Гарелли (1886–1968) родился в Турине. Получив в 1909 году высшее образование, он нашёл работу в автомобильном концерне «Фиат». В 1911 году он изобрёл и запатентовал двигатель Split single , пригодный для использования на мотоциклах, но дальше опытного образца дело тогда не пошло – «Фиату» двухтактная мотоциклетная тема была совсем не интересна.

Split single – это развитие идеи двухтактного мотора. На шатуне закрепляется длинный поршневой палец, а уже на него «навешиваются» два поршня, по одному с каждой стороны от шатуна. Поршни ходят в параллельных колодцах цилиндров, объединённых одной камерой сгорания, напоминающей своей формой кусок, отрезанный от пончика. Когда поршни идут вверх, под ними в кривошипной камере образуется разрежение, которое заполняется рабочей смесью из впускного коллектора. 

В ВМТ смесь над поршнями поджигается, и на рабочем такте поршни идут вниз. На полпути в стенке цилиндра открывается окно выпуска, куда устремляются выхлопные газы. Во время движения вниз под поршнями образуется повышенное давление, и рабочая смесь через ещё одно открывающееся окно в стенке цилиндра выдавливается из-под поршней в камеру сгорания. Хитрость схемы Гарелли в том, что выпуск идёт из правого цилиндра, а подача смеси – в левый. 

Подаваемая смесь заполняет сначала левый цилиндр, затем переходит и в правый, вытесняя выхлопные газы в окно выхлопа, «продувая» камеру сгорания и заполняя весь рабочий объём. Это позволяет поднять эффективность мотора, а также снять большую мощность при равном объёме по сравнению с обычным двухтактным мотором. «Трёхтактной» её назвали, скорее, в шутку, потому что она объединяет простоту классической двухтактной схемы с упорядоченностью работы четырёхтактного мотора.

Схема инженера Гарелли была несколько доработана инженерами австрийской Puch , которые поставили поршни не на один поршневой палец, а сделали два шатуна на коленвалу подряд, и немецкой DKW , которые добавили третий насосный поршень, исполняющий функции наддува. Схему с двумя параллельными поршнями и одной камерой сгорания убила оптимизация впуска с помощью золотниковых и лепестковых клапанов. Она делала мотор проще, дешевле и надёжнее. Последней компанией, кто применял такие моторы в серийной продукции, была Puch – мотоциклы SGS 250 производили до 1970 года.

Видя свою невостребованность на «Фиате», Адальберто Гарелли решает основать своё дело и регистрирует Garelli S.p.a. В разгар войны к 1914 году мотоцикл с двигателем Split single 350 был готов. На нём были одержаны первые спортивные победы – он выиграл гонку в Мон Сени, и армия одобрила мотоцикл для закупок по госконтракту. Но тут война закончилась, и поторговать с государством не получилось. В результате первые товарные мотоциклы покинули ворота фабрики только в 1919 году. 

Все они оснащались двигателем 350 см3 и выпускались в двух вариантах комплектации – обычный туризм и «север – юг», созданной в честь победы в рейде от Милана до Неаполя, где мотоцикл преодолел 840 км без поломок по итальянским дорогам отвратительного качества со средней скоростью 38 км/ч.

Основатель фабрики постепенно остывает к мотоциклизму, его производственная активность снижается. В 1926 году мотоциклы Garelli в последний раз были замечены на гоночных треках, ведь их 20 л. с. на тот момент уже было недостаточно для побед. В 1928 году удалось подписать контракт с армией, и фабрика переключилась на выпуск иной продукции – компрессоров и генераторов. В 1936 году производство мотоциклов было полностью прекращено. Мотоциклетный бизнес семейным так и не стал – впоследствии в руководстве компании ни детей, ни внуков Адальберто Гарелли не было.

После окончания Второй мировой экономическое положение в проигравшей её Италии было бедственным, что определило спрос на ультрадешёвые транспортные средства. Именно в это время Ducati выстрелила со своим подвесным велосипедным мотором C ucciolo, а Garelli в 1953 году запустил в серию похожий по компоновке 38,5-кубовый Mosquito, позволявший на одном литре бензина проехать 70 км со скоростью 30 км/ч. Объём выпуска этого мотора измерялся миллионами.

Хорошие продажи подвесных моторов активизировали их модернизацию. Добавился маховик, сглаживающий работу, вырос рабочий объём. В 1956 году началось производство собственных шасси – появился 50-кубовый мопед Mosquito 315, который позже стал доступен в 70- и 100-кубовых версиях.

В 1961 году Garelli заключила контракт с компанией Agrati на поставку ей скутерных двигателей с принудительным воздушным охлаждением, которые использовались в мотороллерах Capri . «Капри» и сменившая её «Комо» производились до 1968 года под марками Garelli и Agrati .

Mosquito в 60-х трансформировался в «Серию М», а позднее получил собственное имя Gulp . Моторы выпускались в трёх модификациях. Односкоростной Flex , двухскоростной автоматический Matic и трёхскоростной 3 V с переключением рукояткой на руле. Из удачных моделей конца 60-х можно отметить Tubon , Cyclone , Formuno , Superciclone и Urka . Из 70-х запомнились Katia (1973), Vip (1978) и Noi (1979).

С 80-х производство собственных моторов было свёрнуто, в мопедах и мотоциклах Garelli стали использовать двигатели Minarelli . В это же время активизировалась спортивная активность в чемпионате MotoGP , принёсшая множество побед, титулы чемпионов мира в классе 125 см3 гонщикам Анхелю Нието, Фаусто Грезини и Луке Кадалора, а также пять кубков конструкторов в классах 125 и 50.

В конце 80-х уже чувствующая себя нестабильно «Гарелли» объединяется с Fantic motors в Gruppo FM (аббревиатура от Fabbrica Motocicli), но это не спасло компании от банкротства, признанного в 1992 году. Последними выпускаемыми моделями были Gary Uno и Gary Due .

В 90-е годы под брендом Garelli предпринимались попытки продать в Европе продукцию азиатских производителей, но эти попытки были неубедительными до момента, когда права на торговую марку в 2006 не выкупил брат премьер-министра Италии Пауло Берлускони. Под брендом Garelli из Китая с фабрики Baotian Motorcycle Company поставлялись скутера Cyclone, Vip и Capri, с 2007 года Garelli стала официальным скутером футбольного клуба Милана. Дела вроде бы шли хорошо, в конце «нулевых» даже начала готовиться сделка по покупке известного итальянского бренда Moto Morini , но сделке не суждено было состояться, в 2010 году Garelli аннулировала предложение о покупке. После пяти лет инвестиций компания так и не стала прибыльной, и Пауло Берлускони в июне 2011 года продал Nuova Garelli SpA фонду Abruzzo's Ab Capital.

Под маркой Nuova Garelli можно и сейчас встретить китайские скутера Benzhou, которые пытаются выдать на европейском рынке за местные. Но получается слабо. И дизайном, и качеством они совсем не европейские. В нашей стране марка не представлена совсем.

Готовь сани летом > 6 Декабря 2017 09:09 Денис DEAN Панфёров
Новый двигатель оправдал себя на автомобилях Mazda – Автомобили – Коммерсантъ

Новый двигатель оправдал себя на автомобилях Mazda

Журнал "Коммерсантъ Автопилот" №9 от , стр. 12

&nbspНовый двигатель оправдал себя на автомобилях Mazda



       Двигатели бывают 2-тактные, 4-тактные, а в особый период — 3-тактные. Этот анекдот приписывают преподавателям военной кафедры одного из московских автомобильных вузов. А действительно, сколько тактов может быть в двигателе? Первый — впуск порции смеси в цилиндр, второй — сжатие смеси, третий — воспламенение сжатой смеси и рабочий ход, четвертый — выпуск отработавших газов. И так практически у всех двигателей, как бензиновых, так и дизельных. В немногих оставшихся двигателях тактов 2 ("Автопилот" #3 1994 г.).
       Mazda, назло планете всей выпускающая автомобили с роторным двигателем Ванкеля (Felix Wankel), год назад вновь поразила всех, внедрив в серию 5-тактный двигатель американца Ральфа Миллера (Ralpf H. Miller). Он в конце 40-х годов развил принцип Отто (Nicolaus Otto), автора 4-тактного цикла. Mazda Xedos 9 (или Eunos 800 на японском рынке, или Millenia S — на американском) высшего среднего класса — стилистическое развитие моделей 626 и Xedox 6. Кстати, аэродинамический лидер в своем классе — CD=0,29.
       Как работает двигатель? При первом такте поршень движется вниз от верхней мертвой точки (ВМТ), открывается впускной клапан и в цилиндр поступает топливо-воздушная смесь. Второй такт. Поршень двигается к ВМТ. Если в 4-тактном двигателе в этот момент впускной клапан уже закрыт, то здесь он остается открытым еще на протяжении 1/5 хода поршня, но смесь продолжает поступать в цилиндры под небольшим давлением, которое обеспечивает спиральный нагнетатель Lysholm. Давление поршня дополнительно способствует равномерности заполнения цилиндра. Третий такт — сжатие — начинается со 2/5 хода. Впускной клапан закрыт. Дальше все обычно — поршень достигает ВМТ, сжатую смесь воспламеняют... Четвертый такт рабочий. Газы воздействуют на поршень на протяжении всего его хода от ВМТ к нижней мертвой точке. Пятый такт: через выпускной клапан выходят отработавшие газы, поджимаемые вновь поднимающимся поршнем.

Изобрести мотор — журнал За рулем

иллюстрации из 

архива редакции

РЕВОЛЮЦИОННЫЕ АНТИКИ ДЛЯ ДВС

Идея «поженить» 2-тактные и 4-тактные двигатели зародилась давным-давно. Еще 100 лет назад американский инженер Чарльз Найт предложил конструкцию 4-тактного мотора без клапанов: газообмен осуществлялся через окна в стенках цилиндра, как у 2-тактника. Двойные гильзы, ходившие вверх-вниз, перекрывали окна во время такта сжатия и рабочего хода. На типичных для тех времен оборотах (1500–2500 об/мин) система работала прекрасно, и ее наперебой кинулись покупать производители роскошных машин (Daimler, Minerva, Panhard et Levassor) — ведь моторы системы Knight отличались завидной бесшумностью. Когда же скорости стали выше, механизм ушел на архивную полку в раздел «Технические курьезы».

Интересная, однако, полочка! Время от времени современные инженеры вытаскивают оттуда древние чертежи, выбивают из них пыльѕ Ба, идейка-то здравая! Вот и бесклапанный 4-тактный мотор с распределительной гильзой пригодился. За него принялись конструкторы из английской компании RCV Engines Ltd., «созданной» вокруг этой идеи (RCV — от Rotating Cylinder Valve, «вращающийся цилиндр-клапан»).

Собственно, в названии компании и зашифрована «изюминка», отличающая современную версию от конструкции Чарльза Найта: вместо двух гильз, движущихся вверх-вниз, одна вращающаяся. Ее соединяет с коленвалом шестеренный механизм, причем скорость ее вращения вдвое ниже, чем у коленвала. Как работает такой мотор — вполне понятно из схемы. А в чем выигрыш? Прежде всего, такой моторѕ проще, чем традиционный — с верхним распредвалом и тарельчатыми клапанами. Англичане скромно оценивают: их детище примерно на 20% дешевле в производстве, чем традиционный двигатель сравнимой мощности. Поскольку нет возвратно-поступательно движущихся клапанов, а гильза вращается равномерно, то меньше уровень вибраций. Проходное сечение окон в стенке цилиндра больше, чем у клапанов в головке, — лучше газообмен. Необходимость размещать клапаны больше не влияет на форму камеры сгорания, так что ее можно сделать наивыгоднейшей формы, с большими областями «сквиша» («сквиш-эффект» — это когда при подходе к верхней мертвой точке поршень вытесняет смесь из узких «окраин», и возникающий вихрь интенсивно ее перемешивает). Так что инженеры RCV Engines обещают еще и снижение расхода топлива, а также более чистый выхлоп.

И это не простые обещания. Компания уже выпустила 8500 подобных двигателей, правда, дляѕ авиамоделей, рабочим объемом от 9,5 (именно так!) до 20 смз. Но недавно она получила заказ на разработку подобного мотора рабочим объемом уже 125 смз. Знаете, от кого? От китайцев! Тайваньская компания Motive Power Industries, известная (в том числе и в нашей стране) своими скутерами PGO, ухватилась за идею обеими руками! Первые прототипы показали обнадеживающие результаты.

Принцип работы двухтактного и четырехтактного двигателя

Изобретение двигателя внутреннего сгорания, а также применение его в разных сферах, в том числе и мото — и автотранспорте, позволило значительно упростить жизнь человеку.

Конечно, двигатели внутреннего сгорания, такими какие они есть сейчас, появились не сразу, с момента появления он постоянно совершенствуется.

Хотя на данный момент у этих двигателей лишь модернизируются те или иные составляющие, основная же концепция их остается неизменной.

Цикл работы двигателя, рабочие такты

Появившиеся очень давно двигателя внутреннего сгорания как работающие на бензине, так и дизельном топливе, и применяемые сейчас, делятся на два вида:

  1. Двухтактные;
  2. Четырехтактные.

Как видено из названия сводится различие принципа функционирования двигателя в количестве тактов – движений поршня, за которые он выполняет определенный цикл работ.

Для четырехтактного двигателя определено 4 такта в результате которых один поршень выполняет полный цикл – впуск, сжатие, рабочий ход и выпуск.

В каждом из этих циклов в цилиндре двигателя выполняются определенные процессы. Все они направлены на достижение одной цели – обеспечение преобразования энергии сгорания топлива во вращение коленчатого вала.

Так, при такте впуска в цилиндр подается горючая смесь, состоящая из топлива и воздуха, без которого процесс горения невозможен. Причем образование и подача этой смеси у бензинового и дизельного двигателя отличаются.

Далее идет такт сжатия, при котором поступившая смесь сжимается в объеме. Делается это для того, чтобы в меньшем объеме образовалось больше горючей смеси.

 

Уменьшение объема позволяет при следующем такте обеспечить более высокое КПД при сгорании топлива.

Рабочий ход – единственный из всех тактов, при нем энергия отдается, а не забирается и для него существуют все остальные такты.

После сжатия происходит воспламенение смеси, у бензиновых двигателей – за счет искры, проскакиваемой между электродами свечи накаливания, у дизелей – за счет высокого давления, при котором смесь нагревается настолько, что воспламеняется.

При воспламенении смеси выделяется энергия, которая воздействует на поршень, заставляя его двигаться вниз, при этом выделенная от сгорания энергия передается поршнем на коленвал посредством шатуна.

Выпуск – такт, направленный на очистку полости цилиндра от продуктов горения. После очистки цикл повторяется вновь.

Из всего вышесказанного выходит, что один цикл движения поршня в цилиндре направлен только на получение одного такта – рабочего хода, все остальные такты только помогают получить его, причем для их выполнения задействуется часть энергии, которую отдает такт рабочего хода.

Каждый такт двигателя соответствует определенному движению поршня в цилиндре.

Существуют две крайние точки положения поршня, получивших название мертвых точек.

Одна из них верхняя – выше поршень уже подняться в цилиндре не может, а вторая – нижняя, при которой он ниже не опускается.

Обеспечиваются эти точки кривошипом коленчатого вала, к которому поршень присоединен шатуном.

При движении поршня от одной точки к другой, а затем наоборот, и выполняются такты. То есть, при движении поршня от нижней точки (НМТ) к верхней (ВМТ) могут выполняться два такта – сжатие и выпуск, а при движении наоборот – впуск и рабочий ход.

Имея представление о тактах, можно говорить и о типах двигателей, а их два – 2-тактный и 4-тактный.

У каждого из этих двигателей цикл производится по-разному, что влияет на их конструкцию и многие другие параметры и характеристики.

Конструкция и принцип работы 2-тактного двигателя

2-тактный двигатель нашел наибольшее распространение на малой технике (бензопилы, мотокосы), мотоциклах.

Когда-то существовали даже дизельные 2-х тактные двигатели, устанавливаемые на грузовики, к примеру, МАЗ-200.

МАЗ 200

Интересно, что описанные выше такты у любого двухтактного двигателя никуда не делись, просто они были совмещены.

В итоге это позволяет сократить полный цикл всего в один оборот колен. вала.

Так, при движении поршня от НМТ производится сразу два такта – выпуск и сжатие, а при движении от ВМТ – впуск и рабочий ход.

Достигнуть этого всего возможно при использовании окон в цилиндрах, через которые производится засасывание и перекачивание топливной смеси, а также отвод продуктов горения.

Открытие и закрытие этих окон обеспечивается самим поршнем. Чтобы соблюдалась правильность работы механизма, окна располагаются на разных уровнях в стенках цилиндра.

Чтобы было более понятно, возьмем двигатель мотоцикла «ИЖ Планета 5».

МАЗ 200

Данный мотоцикл укомплектован одноцилиндровым двухтактным мотором.

Цилиндр располагается поверх корпуса двигателя, охлаждение его воздушное, поэтому у него по окружности располагаются ребра охлаждения.

С одной стороны, к цилиндру прикреплен патрубок, идущий от карбюратора, по нему в цилиндр поступает горючая смесь.

Напротив, этого патрубка устанавливается труба отвода отработанных газов.

Вверху цилиндр прикрывает головка, в которой размещена свеча накаливания.

МАЗ 200

Внутри цилиндра располагается поршень, связанный с кривошипом коленчатого вала через шатун. Далее уже он связан со сцеплением и трансмиссией, но это пока неважно.

Для подачи топлива в надпоршневое пространство в двухтактном двигателе задействовано и подпоршневое пространство.

При движении поршня вверх в подпоршневом пространстве создается разряжение, в которое засасывается топливовоздушная смесь через впускное окно.

Подача же из подпоршневого пространства в надпоршневое производится от избыточного давления, которое возникает при движении поршня вниз.

Подача топлива производится через перепускное окно. Выпуск продуктов горения проходит через выпускное окно.

Теперь как все это работает.

Начнем с движения поршня к ВМТ. Находясь в НМТ, поршень обеспечивает открытие перепускного и выпускного окон. Избыточное давление в подпоршневом пространстве выталкивает горючую смесь в надпоршневое пространство.

Двигаясь вверх, поршень перекрывает открытые окна, в результате чего камера сгорания становится герметичной.

МАЗ 200

Доходя до ВМТ, поршень сжимает смесь далее подается искра от свечи накаливания, которая установлена в головке цилиндра.

В это время, поршень двигаясь вверх, открывает впускное окно, через которое смесь поступает в подпоршневое пространство. То есть получается, что в одном такте – движении поршня от НМТ к ВМТ происходит два действия: вначале впуск топлива, затем – сжатие.

После воспламенения топлива, выделенная при этом энергия толкает поршень вниз.

Двигаясь вниз он от ВМТ, поршень открывает сначала выпускное окно. При сгорании объем продуктов горения значительно увеличивается, поэтому они сразу начинают вырываться через это окно.

МАЗ 200

Получается, что при движении поршня вниз вначале выполняется рабочий ход, а после открытия выпускного окна – еще и такт выпуска.

Дальше при движении поршня вниз, он открывает перепускное окно и топливо начинает поступать в надпоршневое пространство – цикл начинает повторяться, при этом на выполнение всего цикла понадобилось только движение поршня сначала вверх, а затем вниз, что соответствует одному обороту колен. вала.

МАЗ 200

Принцип работы 4-тактного двигателя

Теперь о принципе работы 4-тактных двигателей. Опять же возьмем одноцилиндровый двигатель мотоцикла, но на этот раз «Honda CB 125E».

МАЗ 200

У этого мотора тоже цилиндр расположен над картером и имеет воздушное охлаждение.

Внутри цилиндра установлен поршень, связанный с коленвалом посредством шатуна. Сверху цилиндр закрыт головкой.

Конструктивной особенностью этого двигателя является наличие механизма, который обеспечивает подачу смеси и отвод продуктов горения – газораспределительный механизм.

Установлен у этого мотора он в головке блока. Суть работы этого механизма – своевременное открытие впускного и выпускного окон, которые закрыты клапанами.

Работает все по такому принципу. Вначале – такт впуска. Чтобы обеспечить этот такт, поршень должен двигаться от ВМТ вниз. При этом клапан открывает впускное окно, через которое разрежением засасывается топливо в цилиндр.

После достижения НМТ впускное окно клапаном закрывается, поршень в это время начинает двигаться вверх, начинается такт сжатия.

При этом такте оба окна закрыты, цилиндр полностью герметичен, а поршень при движении вверх сжимает горючую смесь, поступившую ранее.

При подходе поршня к ВМТ, когда смесь по максимуму сжата, производится ее воспламенение от искры свечи.

Избыточное давление при сгорании заставляет двигаться поршню вниз – происходит рабочий ход, при котором окна тоже остаются закрытыми.

МАЗ 200

После достижения НМТ, поршень начинает движение вверх, в этот момент клапан открывает выпускное окно и поршень выталкивает через него продукты горения.

В результате получается, что для выполнения тактов впуска и сжатия нужен один оборот колен. вала, а для рабочего хода и выпуска – еще один оборот.

МАЗ 200

Это были принципы работ 2-тактного и 4-тактного двигателей на примере мотоциклов.

Эти принципы используются на всех двигателях внутреннего сгорания – от моторчика авиамодели до мощного 12-цилиндрового мотора танка.

Конструктивные особенности

Помимо различий в принципе работы у этих моторов еще и существуют конструктивные особенности.

2-тактный двигатель конструктивно проще. Механизм газораспределения – это дополнительное оснащение мотора, которое усложняет конструкцию.

У 2-тактного мотора этот механизм отсутствует и его роль выполняет поршень, открывая и закрывая те или иные окна.

Помимо этого, данный двигатель не нуждается в системе смазки. Обусловлено это тем, что в процессе работы задействовано и подпоршневое пространство, где располагается колен. вал.

Но поскольку кривошипно-шатунный механизм требует смазки, то у этого двигателя она производится вместе с топливом, то есть моторное масло добавляет в топливо, и при поступлении топлива в это пространство, имеющееся масло смазывает механизм.

МАЗ 200

У 4-тактных двигателей конструкция включает и механизм газораспределения, и отдельную систему смазки.

Это значительно усложняет конструкцию, однако эти двигателя являются более приоритетными, чем двухтактные из-за ряда эксплуатационных недостатков последних.

МАЗ 200

Эксплуатационные показатели

Теперь об эксплуатационных показателях.

Литровая мощность.

Во многом 2-тактные двигатели по этим показателям лучше. Сказывается затраченная и полученная энергия на осуществление одного рабочего цикла.

У 2-тактного двигателя каждый оборот – это один полный цикл, что обеспечивает больший показатель литровой мощности – отношению объема цилиндра к выходной мощности. В среднем литровая мощность 2-тактного мотора выше, чем у 4-тактного в 1,5 раза.

Удельная мощность.

Еще один показатель, по которому 2-тактный мотор превосходит 4-тактный – это удельная мощность.

Данный показатель характеризует отношение выходной мощности к общей массе двигателя.

Проигрывая в мощностных показателях, 4-тактный двигатель лучше по показателям расхода топлива.

У него подача смеси происходит дозировано, через впускное окно, при этом выпускное – закрыто.

У 2-тактного же мотора существует момент, когда выпускное и перепускное окна оказываются открытыми, при этом поступающее топливо частично выходит через выпускное окно вместе с продуктами горения, то есть, часть топлива не участвует в процессе, а просто вылетает в атмосферу.

Смазка двигателя.

У 4-тактного мотора имеется система смазки, обеспечивающей смазку всех узлов, но при этом масло циркулирует по закрытой системе, потери его незначительны и в основном из-за износа двигателя.

Смазка 2-тактного мотора производится вместе с топливом, а значит, выполнив свою функцию масло попадает в цилиндр, где и сгорает.

Надежность моторов.

По поводу надежности конструкции этих моторов, то здесь довольно интересная ситуация.

Конструктивно 2-тактный мотор проще, а значит и надежнее. Но у 4-тактного мотора есть более совершенная система смазки, которая обеспечивает больший ресурс мотору.

Вот и получается, что оба мотора надежны, но каждый по-своему. А вот по ремонтопригодности 2-тактный мотор все-таки лучше.

Та же совместная смазка вместе с топливом у 2-тактных двигателей сказывается и на экологичности этого мотора. Сгорание масла в большей степени обеспечивает загрязнение атмосферы.

Совмещение рабочих тактов у 2-тактного двигателя сказывается на шумности работы установки, она несколько выше, чем у 4-тактного агрегата.

Зато отсутствие дополнительных систем и механизмов обеспечивает более легкую и менее металлоемкую конструкцию, что сказывается на общей массе установки.

Более сложная конструкция 4-тактной установки играет и положительную роль.

У этих моторов существует возможность модернизации системы питания, применение инжекторных систем с раздельной подачей топлива и воздуха в цилиндры, повышающих мощность и экономичность двигателей.

У 2-тактных моторов возможность совершенствования ограничена все той же смазкой вместе с топливом. Хотя попытки улучшить показатели этих моторов осуществляются постоянно.

Итог

В целом, применение до сих пор имеют оба этих мотора и вряд ли когда-либо откажутся от использования одного из них, оскольку у каждого из них имеются свои преимущества, востребованные в тех или иных условиях.

Четырехтактный двигатель - Energy Education

Рисунок 1. 4-тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [1]

Четырехтактный двигатель является наиболее распространенным типом двигателей внутреннего сгорания и используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы (многие мотоциклы используют двухтактный двигатель). Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня (или четыре хода поршня).Справа (рис. 1) изображен четырехтактный двигатель, а дальнейшее объяснение этого процесса приведено ниже.

  1. Ход впуска: Поршень движется вниз ко дну, это увеличивает объем, позволяя топливно-воздушной смеси проникать в камеру.
  2. Ход сжатия: Впускной клапан закрыт, и поршень движется вверх по камере вверх. Это сжимает топливовоздушную смесь. В конце этого хода свеча зажигания обеспечивает сжатое топливо энергией активации, необходимой для начала сгорания.
  3. Рабочий ход: Когда топливо достигает конца своего сгорания, тепло, выделяемое при сжигании углеводородов, увеличивает давление, которое заставляет газ давить на поршень и создавать выходную мощность.
  4. Ход выпуска: Когда поршень достигает дна, выпускной клапан открывается. Оставшийся выхлопной газ выталкивается поршнем, когда он движется назад вверх.


Тепловая эффективность этих бензиновых двигателей будет варьироваться в зависимости от модели и конструкции автомобиля.Однако в целом бензиновые двигатели преобразуют 20% топлива (химическая энергия) в механическую энергию, при которой только 15% будет использоваться для перемещения колес (остальное теряется на трение и другие механические элементы). [2] Одним из способов повышения термодинамической эффективности в двигателях является более высокая степень сжатия. Это соотношение представляет собой разницу между минимальным и максимальным объемом в камере двигателя (обозначено как ВМТ и BDC на рисунке 2). Более высокое отношение позволит более крупной топливно-воздушной смеси поступать, вызывая более высокое давление, приводя к более горячей камере, которая увеличивает тепловой КПД. [2]

Цикл Отто

Рисунок 2. Реальный процесс отто цикла, который происходит в четырехтактном двигателе. [3] Рисунок 3. Идеальный цикл Отто. [4]

Диаграмма объема давления (PV-диаграмма), которая моделирует изменения в топливно-воздушной смеси, испытывающие давление и объем в четырехтактном двигателе, называется циклом Отто. Изменения в них будут создавать тепло и использовать это тепло для перемещения автомобиля или машины (отсюда и причина того, что это тип теплового двигателя).Цикл Отто можно увидеть на рисунке 2 (реальный цикл Отто) и на рисунке 3 (идеальный цикл Отто). Компонент любого двигателя, использующего этот цикл, будет иметь поршень для изменения объема и давления топливовоздушной смеси (как показано на рисунке 1). Поршень получает движение от сгорания топлива (где это происходит, поясняется ниже) и от электрического наддува при запуске двигателя.

Далее описывается, что происходит во время каждого шага на PV-диаграмме, когда сгорание рабочей жидкости - бензина и воздуха (кислорода), а иногда и электричества изменяет движение поршня:

Реальный шаг цикла от 0 до 1 (идеальный цикл - зеленая линия): Упоминается как фаза впуска , поршень опускается вниз, чтобы увеличить объем в камере, чтобы он мог «впускать» топливно-воздушная смесь.С точки зрения термодинамики это называется изобарным процессом.


Процесс с 1 по 2: На этом этапе поршень будет вытянут, чтобы он мог сжимать топливно-воздушную смесь, попавшую в камеру. Сжатие приводит к небольшому увеличению давления и температуры смеси, однако теплообмен не происходит. С точки зрения термодинамики это называется адиабатическим процессом. Когда цикл достигает точки 2, зажигание зажигания происходит при попадании топлива в свечу зажигания.


Процесс 2–3: Это место, где происходит сгорание из-за воспламенения топлива от свечи зажигания. Сгорание газа завершается в точке 3, в результате чего камера с высоким давлением имеет большое количество тепла (тепловой энергии). С точки зрения термодинамики это называется изохорным процессом.

Процесс с 3 по 4: Тепловая энергия в камере в результате сгорания используется для работы с поршнем, который толкает поршень вниз, увеличивая объем камеры.Это также известно как силовой сток , потому что это когда тепловая энергия превращается в движение для питания машины или транспортного средства.


Фиолетовая линия (процессы 4 к 1 и фаза выхлопа ): В процессе 4 к 1 открывается выпускной клапан, и все отработанное тепло выводится из камеры двигателя. Когда тепло покидает газ, молекулы теряют кинетическую энергию, вызывая снижение давления. [5] Затем фаза выпуска (этапы с 0 по 1) происходит, когда оставшаяся смесь в камере сжимается поршнем для его «истощения» без изменения давления.

для дальнейшего чтения

Ссылки

  1. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  2. 2,0 2,1 Р. Вольфсон, Энергетика, окружающая среда и климат. Нью-Йорк: W.W. Нортон и Компания, 2012, с. 106.
  3. ↑ Фактический и идеальный цикл Отто - Ядерная энергетика ", Nuclear Power, 2018. [Online]. Доступно: https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-cycles/otto-cycle-otto -движок / фактические и-идеальный цикл Отто /.[Доступ: 22 июня 2018 года].
  4. ↑ Wikimedia Commons [Online], доступно: https://en.wikipedia.org/wiki/Otto_cycle#/media/File:P-V_Otto_cycle.svg
  5. ↑ I. Dinçer и C. Zamfirescu, Усовершенствованные системы производства электроэнергии. Лондон, Великобритания: Academic Press является отпечатком Elsevier, 2014, с. 266.
,

Четырехтактный двигатель

Четырехтактный цикл используется в бензиновых / бензиновых двигателях. Правая синяя сторона - это впуск, а левая желтая сторона - это выхлоп. Стенка цилиндра представляет собой тонкий рукав, окруженный охлаждающей жидкостью. Видеомонтаж двигателей Otto, работающих на Воссоединении паровых молотилок в Западной Миннесоте (WMSTR) в Роллаге, штат Миннесота.

Четырехтактный двигатель , также известный как четырехтактный , представляет собой двигатель внутреннего сгорания, в котором поршень совершает четыре отдельных такта - впуск, сжатие, мощность и выпуск - за два отдельных оборота коленчатого вала двигателя, и один единственный термодинамический цикл.

Существует два распространенных типа двигателей, которые тесно связаны друг с другом, но имеют существенные различия в конструкции и поведении. Самым ранним из них является двигатель цикла Отто, который был разработан в 1876 году Николаусом Августом Отто в Кельне, Германия, [1] , после принципа работы, описанного Alphonse_Beau_de_Rochas в 1861 году. Этот двигатель чаще всего называют бензиновый двигатель или бензиновый двигатель, после топлива, которое приводит его в действие. [2] Вторым типом четырехтактного двигателя является дизельный двигатель, разработанный в 1893 году Рудольфом Дизелем, также из Германии.Дизель создал свой двигатель, чтобы максимизировать эффективность, которой не хватало в двигателе Отто. Существует несколько основных различий между двигателем Отто и четырехтактным дизельным двигателем. Дизельный двигатель выполнен в двухтактной и четырехтактной версиях. По иронии судьбы компания Отто Deutz AG производит преимущественно дизельные двигатели в современную эпоху.

Цикл Отто назван в честь двигателя Николая А. Отто 1876 года, который создал успешный четырехтактный двигатель, основанный на работе Жана Жозефа Этьена Ленуара. [1] Это был третий тип двигателя, разработанный Отто. Он использовал раздвижные ворота пламени для зажигания своего топлива, которое представляло собой смесь освещающего газа и воздуха. После 1884 года Отто также разработал магнит, позволяющий использовать электрическую искру для зажигания, которая была ненадежной на двигателе Ленуара.

В настоящее время двигатель внутреннего сгорания (ДВС) используется в мотоциклах, автомобилях, лодках, грузовиках, самолетах, кораблях, тяжелом машинном оборудовании и в своем первоначальном предназначении использовался в качестве стационарной энергии как для производства кинетической, так и электрической энергии.Дизельные двигатели используются практически во всех тяжелых условиях эксплуатации, таких как грузовые автомобили, корабли, локомотивы, генераторы электроэнергии и стационарные установки. Многие из этих дизельных двигателей являются двухтактными с номинальной мощностью до 105 000 л.с. (78 000 кВт).

Четыре цикла относятся к циклам впуска, сжатия, сгорания (мощность) и выхлопа, которые происходят во время двух оборотов коленчатого вала за цикл мощности четырехтактных двигателей. Цикл начинается в Верхняя мертвая точка (ВМТ), когда поршень находится дальше всего от оси коленчатого вала.Цикл относится к полному перемещению поршня от верхней мертвой точки (TDC) к нижней мертвой точке (BDC). (См. Мертвую точку).

    Ход поршня
  1. : на впуске , ход поршня или , ход поршня , поршень опускается от верхней части цилиндра к нижней части цилиндра, снижая давление внутри цилиндра. Смесь топлива и воздуха или просто воздуха в дизельном двигателе нагнетается атмосферным (или большим) давлением в цилиндр через впускной канал.Впускной клапан (ы) затем закройте. Объем воздушно-топливной смеси, которая втягивается в цилиндр, относительно объема цилиндра называется объемным КПД двигателя.
  2. Ход компрессии: при закрытых впускных и выпускных клапанах поршень возвращается к верхней части цилиндра, сжимая воздух или топливовоздушную смесь в камеру сгорания головки цилиндра.
  3. Ход POWER
  4. : это начало второго оборота двигателя. В то время как поршень находится близко к верхней мертвой точке, смесь сжатого воздуха с топливом в бензиновом двигателе зажигается, как правило, свечой зажигания, или топливо впрыскивается в дизельный двигатель, который воспламеняется из-за тепла, выделяемого в воздухе во время такт сжатия.Результирующее сильное давление от сгорания сжатой топливно-воздушной смеси заставляет поршень вернуться вниз к нижней мертвой точке.
  5. Ход ВЫПУСКА: во время хода выпуска поршень снова возвращается в верхнюю мертвую точку, когда выпускной клапан открыт. Это действие удаляет сгоревшие продукты сгорания из цилиндра, вытесняя отработанную топливно-воздушную смесь через выпускной клапан (ы).

История

цикл Отто

Двигатель Отто производства США 1920-х годов

Николаус Август Отто в молодости был коммивояжером в продуктовом концерне.В своих путешествиях он столкнулся с двигателем внутреннего сгорания, построенным в Париже бельгийским экспатриантом Жаном Жозефом Этьеном Ленуаром. В 1860 году Ленуару удалось создать двигатель двойного действия, работающий на газе с эффективностью 4%. 18-литровый двигатель Ленуара смог произвести только 2 лошадиных силы. Двигатель Ленуара работал на осветительном газе, который был сделан из угля, который был разработан в Париже Филиппом Лебоном. [1] [3]

При тестировании точной копии двигателя Ленуара в 1861 году Отто стало известно о влиянии сжатия на заряд топлива.В 1862 году Отто попытался изготовить двигатель, чтобы улучшить низкую эффективность и надежность двигателя Ленуара. Он попытался создать двигатель, который сжимал бы топливную смесь до воспламенения, но потерпел неудачу, поскольку этот двигатель работал не более, чем за несколько минут до его разрушения. Многие инженеры также пытались решить проблему без успеха. [3]

В 1864 году Отто и Евгений Ланген основали первую компанию по производству двигателей внутреннего сгорания NA Otto and Cie (NA Otto and Company) .В том же году Отто и Си удалось создать успешный атмосферный двигатель. [3]

На заводе не хватило места, и в 1869 году он был перемещен в город Дойц, Германия, где компания была переименована в Deutz Gasmotorenfabrik AG (Компания по производству газовых двигателей Deutz). [3] В 1872 году Готтлиб Даймлер был техническим директором, а Вильгельм Майбах был главой по проектированию двигателей. Даймлер был оружейным мастером, который также работал на двигателе Ленуара ранее.

К 1876 году Отто и Лангену удалось создать первый двигатель внутреннего сгорания , который сжимал топливную смесь до сгорания с гораздо более высокой эффективностью, чем любой двигатель, созданный к этому времени. [1]

Готлиб Даймлер и Вильгельм Майбах покинули свои рабочие места в Отто и Си и разработали первый высокоскоростной двигатель Отто в 1883 году. В 1885 году они выпустили первый автомобиль, оснащенный двигателем Отто. Petroleum Reitwagen использовала систему зажигания с горячей трубкой и топливо, известное как Ligroin, чтобы стать первым в мире двигателем с двигателем внутреннего сгорания, использующим четырехтактный двигатель, основанный на дизайне Николауса Отто. В следующем году Карл Бенц выпустил автомобиль с четырехтактным двигателем, который некоторые называют первым в мире автомобилем.

В 1884 году компания Отто, ныне известная как Gasmotorenfabrik Deutz (GFD), разработала электрическое зажигание и карбюратор.

В 1890 году Daimler и Maybach создали компанию, известную как Daimler Motoren Gesellschaft. Сегодня эта компания известна как Daimler-Benz.

Смотрите двигатель Отто для более подробной информации.

Дизельный цикл

Audi Diesel R15 в Ле-Мане

Дизельный двигатель (см. Эту страницу) является техническим усовершенствованием двигателя 1876 года Otto Cycle. Когда Отто понял в 1861 году, что эффективность двигателя можно увеличить, сначала сжав топливную смесь до ее воспламенения, Рудольф Дизель хотел разработать более эффективный тип двигателя, который мог бы работать на гораздо более тяжелом топливе.Двигатели Lenoir, Otto Atmospheric и Otto Compression (как 1861, так и 1876) были разработаны для работы на освещающем газе (угольный газ). С той же мотивацией, что и Отто, Дизель хотел создать двигатель, который давал бы малым промышленным предприятиям собственный источник энергии, чтобы они могли конкурировать с более крупными компаниями, и, как Отто, уходил от требования быть привязанным к муниципальным поставкам топлива. Как и Отто, потребовалось более десяти лет, чтобы создать двигатель с высокой степенью сжатия, который самовоспламенял бы свое топливо, когда это топливо распылялось в цилиндр.Дизель использовал воздушный спрей в сочетании с топливом в своем первом двигателе.

Во время первоначальной разработки один из двигателей лопнул, почти убив дизель. В 1893 году он продолжил работу и в конце концов создал двигатель. Двигатель с высокой степенью сжатия, который воспламеняет свое топливо за счет тепла сжатия, теперь называется дизельным двигателем, независимо от того, является ли он четырехтактным или двухтактным.

Четырехтактный дизельный двигатель использовался в большинстве тяжелых условий эксплуатации на протяжении многих десятилетий. Главной из причин этого является то, что в нем используется тяжелое топливо, которое содержит больше энергии, требует меньше очистки и дешевле в производстве (хотя в некоторых районах мира дизельное топливо стоит дороже, чем бензин).Самые эффективные двигатели Otto Cycle работают с КПД около 30%. Volkswagen Jetta TDI 1.9 литровый двигатель достигает 46%. Он использует усовершенствованную конструкцию с турбонаддувом и непосредственным впрыском топлива. У некоторых корабельных дизелей BMW с керамической изоляцией эффективность превышала 60%.

Audi и Peugeot соревнуются в гонках на выносливость серии Ле-Ман с гоночными автомобилями с дизельным двигателем. Это четырехтактные, четырехклапанные, высокооборотные дизельные двигатели с турбонаддувом, которые доминируют в основном из-за экономии топлива и необходимости делать меньше остановок.

Термодинамический анализ

Чарльз Лоу Идеализированная четырехтактная диаграмма p-V цикла Отто: ход впуска (A) выполняется изобарическим расширением, за которым следует ход сжатия (B), выполняемый адиабатическим сжатием. В результате сгорания топлива образуется изохорный процесс, за которым следует адиабатическое расширение, характеризующее ход мощности (C). Цикл замыкается изохорным процессом и изобарическим сжатием, характеризующим
выхлоп (D) ход.

Термодинамический анализ фактических четырехтактных или двухтактных циклов не является простой задачей. Однако анализ можно значительно упростить, если использовать стандартные воздушные предположения [4] . Результирующий цикл, который очень напоминает фактические рабочие условия, является циклом Отто.

октановые требования

Топливо октановое число

Основная статья: Октан рейтинг
Otto Engines

Во время цикла сжатия двигателя внутреннего сгорания со сжатым зарядом температура топливовоздушной смеси повышается, как описано законом Чарльза, исключительно из-за сжатия газов.Повышение температуры составляет несколько сотен градусов.

Огнеупорная башня, показывающая различный вес различных продуктов.

Топливо, используемое в четырехтактных двигателях, чаще всего представляет собой фракции сырой нефти, каменноугольной смолы, горючего сланца или песков, которые производятся в процессе, называемом крекингом нефти. Температура воспламенения преломленного топлива зависит от его массы. Он отделен, будучи нагреванием и извлекается на различных высотах в огнеупорной башне. Чем больше паров топлива поднимается в башне, тем меньше ее вес и меньше энергии она содержит.При преломлении нефти существует стандартный вес топлива и продуктов, которые отбираются и которые связаны с конкретным извлеченным материалом. Бензин является легким огнеупорным продуктом и называется легкой фракцией. Как легкая фракция имеет относительно низкую температуру вспышки (то есть температуру, при которой она начинает гореть при смешивании с окислителем).

Топливо с низкой температурой вспышки может самовоспламеняться во время сжатия, а также может воспламениться от отложений углерода, оставшихся в цилиндре или головке грязного двигателя.В двигателе внутреннего сгорания самовоспламенение может произойти в неожиданное время. Во время нормальной работы двигателя, когда топливная смесь сжимается, создается электрическая дуга для зажигания топлива. На низких оборотах это происходит близко к ВМТ (верхняя мертвая точка). Когда число оборотов двигателя увеличивается, точка искры перемещается вперед, так что заряд топлива может воспламениться в более эффективной точке сжатия заряда топлива, чтобы позволить топливу начать гореть, даже когда оно все еще находится в сжатом состоянии. Это создает более эффективную мощность, основанную на повышении молекулярной плотности рабочего тела, поскольку это является основой эффективности в двигателе IE со сжатым зарядом.Более плотная рабочая среда (воздушно-топливная смесь) будет испытывать большее тепло, и, следовательно, давление возрастет на меньшее количество, когда его молекулы будут плотнее упакованы вместе.

Мы можем видеть это в двух конструкциях двигателей Отто. Компрессионный двигатель работал с КПД 12%. Двигатель со сжатым зарядом имел КПД 30%. Дизельный двигатель может достигать 70% (лабораторный двигатель Дизеля испытан на 75,6% КПД, VW TDI на 46%).

Проблема с двигателями со сжатым зарядом заключается в том, что повышение температуры сжатого заряда может вызвать предварительное воспламенение.Если это происходит не вовремя и слишком энергично, это может привести к поломке двигателя. Фракции нефти имеют очень разные температуры вспышки (температура, при которой топливо может самовоспламеняться). Это необходимо учитывать при проектировании двигателя и топлива.

В двигателях искра задерживается при запуске двигателя и прогрессирует только до соответствующей величины, основанной на оборотах двигателя. Это определяется лабораторными исследованиями. Поскольку двигатель вращается быстрее, он может принять более раннее зажигание, так как движущийся фронт пламени не успеет быть разрушительным.

В топливе тенденция к преждевременному воспламенению сжатой топливной смеси ограничена химическим составом топлива. Существует несколько сортов топлива для разных уровней производительности двигателей. Топливо изменяется, чтобы изменить температуру самовоспламенения. Есть несколько способов сделать это. Поскольку двигатели спроектированы с более высокими степенями сжатия, результат состоит в том, что предварительное воспламенение намного более вероятно, так как топливная смесь будет сжата до более высокой температуры до преднамеренного воспламенения.Более высокая температура будет более эффективно испарять топливо, такое как бензин, и это является фактором более высокой эффективности двигателя с более высокой степенью сжатия. Более высокие коэффициенты сжатия также означают, что расстояние, которое поршень может протолкнуть для выработки мощности, больше (что называется коэффициентом расширения).

Таким образом, должны быть стандартизированные испытания и стандартная система отсчета, чтобы описать вероятность самовоспламенения топлива. Оценка октана является мерой сопротивления топлива самовоспламенению. Топливо с более высоким числовым октановым числом обеспечивает более высокую степень сжатия, которая извлекает больше энергии из топлива и более эффективно преобразует эту энергию в полезную работу, в то же время предотвращая повреждение двигателя от предварительного зажигания.Топливо с высоким октановым числом также дороже.

Дизельные двигатели

Дизельные двигатели по своей природе не имеют проблем с предварительным зажиганием. Они обеспокоены тем, можно ли начать горение. Описание вероятности воспламенения дизельного топлива называется рейтингом цетана. Поскольку дизельное топливо обладает низкой летучестью, его может быть очень трудно запустить в холодном состоянии. Для запуска холодного дизельного двигателя используются различные методы, наиболее распространенным из которых является использование свечи накаливания.

В некоторых случаях, например, при сжигании отработанного растительного масла, само топливо является твердым, и перед использованием его необходимо нагреть до разжижения.Обычная жалоба заключается в том, что выхлоп может иметь запах картофеля фри.

Принципы проектирования и проектирования

Выходная мощность ограничения

Четырехтактный цикл
1 = TDC
2 = BDC
A: впуск
B: компрессия
C: мощность
D: Выхлоп

Максимальная мощность, вырабатываемая двигателем, определяется максимальным количеством поступающего воздуха. Количество энергии, генерируемой поршневым двигателем, зависит от его размера (объема цилиндра), будь то двухтактный или четырехтактный дизайн, объемного КПД, потерь, отношения воздух-топливо, теплотворной способности топлива. Содержание кислорода в воздухе и скорость (об / мин).Скорость в конечном счете ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускорения. При высокой частоте вращения двигателя могут произойти физическая поломка и тряска поршневого кольца, что приведет к потере мощности или даже разрушению двигателя. Трепет поршневых колец возникает, когда кольца колеблются вертикально в канавках поршней, в которых они находятся. Трепетание колец нарушает уплотнение между кольцом и стенкой цилиндра, что приводит к потере давления и мощности в цилиндре.Если двигатель вращается слишком быстро, пружины клапана не могут действовать достаточно быстро, чтобы закрыть клапаны. Обычно это называется «поплавком клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. На высоких скоростях смазка поверхности стенок поршневого цилиндра имеет тенденцию разрушаться. Это ограничивает скорость поршня для промышленных двигателей до 10 м / с.

Поток впускного / выпускного отверстия

Выходная мощность двигателя зависит от способности впускного (топливовоздушная смесь) и выхлопного материала быстро перемещаться через клапанные отверстия, обычно расположенные в головке цилиндров.Чтобы увеличить выходную мощность двигателя, неровности на впускном и выпускном каналах, такие как дефекты отливки, можно устранить, и с помощью стенда потока воздуха радиусы поворотов отверстий клапана и конфигурацию седла клапана можно изменить, чтобы уменьшить сопротивление. Этот процесс называется портированием, и его можно выполнить вручную или с помощью станка с ЧПУ.

Наддув

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было получать больше энергии за каждый рабочий ход.Это может быть сделано с использованием какого-либо типа устройства для сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема. Чаще всего нагнетатель всегда работает, но были конструкции, позволяющие отключать его или работать с различными скоростями (относительно частоты вращения двигателя). Недостатком механического привода является то, что некоторая часть выходной мощности используется для привода нагнетателя, в то время как мощность теряется в выхлопе высокого давления, поскольку воздух сжимается дважды, а затем получает больший потенциальный объем в процессе сгорания, но он только расширяется. в один этап.

Турбонаддув

Турбокомпрессор - это нагнетатель, который приводится в движение выхлопными газами двигателя посредством турбины. Он состоит из двух частей высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона питается отработавшим газом.

При работе на холостом ходу и на низких и средних скоростях турбина вырабатывает мало энергии из-за небольшого объема выхлопных газов, турбонагнетатель оказывает незначительное влияние, и двигатель работает почти без наддува.Когда требуется намного большая выходная мощность, частота вращения двигателя и открытие дросселя увеличиваются до тех пор, пока выхлопные газы не станут достаточными для «раскрутки» турбины турбокомпрессора, чтобы начать сжимать намного больше воздуха, чем обычно, во впускной коллектор.

Турбокомпрессор

обеспечивает более эффективную работу двигателя, поскольку он приводится в действие давлением выхлопных газов, которое в противном случае (главным образом) было бы потрачено впустую, но существует ограничение конструкции, известное как турбо-запаздывание. Увеличенная мощность двигателя не доступна сразу, из-за необходимости резко увеличить обороты двигателя, для создания давления и ускорения турбины, прежде чем турбина начнет делать любое полезное сжатие воздуха.Увеличенный объем впуска вызывает увеличение выхлопа и ускоряет вращение турбины, и так далее, пока не будет достигнута стабильная работа на высокой мощности. Другая трудность состоит в том, что более высокое давление выхлопных газов заставляет выхлопной газ передавать больше своего тепла механическим частям двигателя.

Соотношение штока и поршня к ходу

Отношение шатуна к ходу - это отношение длины шатуна к длине хода поршня. Более длинный шток уменьшит боковое давление поршня на стенку цилиндра и силы напряжения, увеличивая тем самым срок службы двигателя.Это также увеличивает стоимость и высоту двигателя и вес.

«Квадратный двигатель» - это двигатель с диаметром отверстия, равным его длине хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с перекрёстным квадратом, и наоборот, двигатель с диаметром отверстия, меньшим, чем длина его хода, является двигателем с квадратом.

Valvetrain

Клапаны обычно приводятся в действие распределительным валом, вращающимся с половиной скорости вращения коленчатого вала. Он имеет ряд кулачков вдоль своей длины, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска.Толкатель между клапаном и кулачком является контактной поверхностью, по которой кулачок скользит, открывая клапан. Многие двигатели используют один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как на иллюстрации, в которой каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В других конструкциях двигателя распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с рычагом коромысла, который открывает клапан. Конструкция подвесного кулачка обычно обеспечивает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Зазор клапанов

Зазор клапана - это небольшой зазор между толкателем клапана и штоком клапана, который обеспечивает полное закрытие клапана. На двигателях с механической регулировкой клапана чрезмерный зазор будет вызывать шум в клапанной системе. Обычно зазор необходимо перенастраивать каждые 20 000 миль (32 000 км) с помощью щупа.

Большинство современных серийных двигателей используют гидравлические подъемники для автоматической компенсации износа компонентов клапанной системы. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели

Otto работают примерно на 30%. иными словами, 30% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а оставшаяся часть - потери из-за трения, принадлежностей двигателя и отработанного тепла. [5] Есть несколько способов восстановить часть энергии, потерянной для потери тепла. Использование турбонагнетателя в дизельных двигателях очень эффективно за счет повышения давления поступающего воздуха и, по сути, обеспечивает такое же увеличение производительности, что и увеличение рабочего объема.Компания Mack Truck десятилетия назад разработала турбинную систему, которая преобразовывала отработанное тепло в кинетическую энергию, которая возвращалась в трансмиссию двигателя. Совсем недавно BMW разработала двухступенчатую систему рекуперации тепла, аналогичную системе Mack, которая восстанавливает 80% энергии в выхлопных газах и повышает эффективность двигателей Otto, к которым она применяется, на 15%, приводя двигатель Otto в один ряд с некоторыми дизельными двигателями. двигатели. [6]

В отличие от этого, шеститактный двигатель может преобразовывать более 50% энергии сгорания в полезную энергию вращения.

Современные двигатели часто специально собираются, чтобы быть немного менее эффективными, чем они могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция отработавших газов и каталитические нейтрализаторы, которые уменьшают смог и другие атмосферные загрязнители. Снижение эффективности может быть нейтрализовано с помощью блока управления двигателем с использованием методов бережливого горения. [7]

В Соединенных Штатах, средняя экономия топлива в корпоративном масштабе предписывает, что автомобили должны в среднем достигать 35.5 миль за галлон (миль на галлон) по сравнению с нынешним стандартом 25 миль на галлон. Поскольку автопроизводители надеются соответствовать этим стандартам к 2016 году, могут потребоваться новые способы конструирования традиционного двигателя внутреннего сгорания (ДВС). Некоторые потенциальные решения для повышения эффективности использования топлива для удовлетворения новых требований включают запуск после того, как поршень находится дальше всего от коленчатого вала, известного как верхняя мертвая точка, и применение цикла Миллера. Вместе этот редизайн может значительно снизить расход топлива и выбросы NOx.

См. Также

Рекомендации

Общие источники

Внешние ссылки

,

Как работает 4-х тактный двигатель

Для питания вашего оборудования двигатель с верхним расположением клапанов выполняет повторяющийся четырехэтапный процесс, подробно описанный ниже.

Элемент, который позволяет двигателям внутреннего сгорания работать

  • Air
  • Топливо
  • Сжатие
  • Spark

Шаг 1: Ход впуска

Воздух и топливо поступают в небольшой двигатель через карбюратор. Задачей карбюратора является подача смеси воздуха и топлива, которая обеспечит правильное сгорание.Во время такта впуска открывается впускной клапан между карбюратором и камерой сгорания. Это позволяет атмосферному давлению нагнетать топливовоздушную смесь в отверстие цилиндра при движении поршня вниз.

>> Проблемы с производительностью? Узнайте, как устранить неполадки при ремонте карбюратора и очистить / отремонтировать небольшой карбюратор двигателя.

Шаг 2: Ход сжатия

Сразу после того, как поршень перемещается к нижней части своего хода (нижней мертвой точке), в отверстии цилиндра находится максимально возможная воздушно-топливная смесь.Впускной клапан закрывается, и поршень возвращается обратно в отверстие цилиндра. Это называется такта сжатия процесса 4-тактного двигателя. Воздушно-топливная смесь сжимается между поршнем и головкой цилиндров.

Шаг 3: Инсульт

Когда поршень достигнет вершины своего хода (верхней мертвой точки), он будет в оптимальной точке, чтобы зажечь топливо, чтобы максимизировать мощность вашего наружного силового оборудования. В катушке зажигания создается очень высокое напряжение.Свеча зажигания позволяет отводить это высокое напряжение в камеру сгорания. Тепло, создаваемое искрой, зажигает газы, создавая быстро расширяющиеся, перегретые газы, которые заставляют поршень возвращаться в отверстие цилиндра. Это называется силовым ходом .

Шаг 4: Ход выхлопного газа

Когда поршень снова достигает нижней мертвой точки, открывается выпускной клапан. Когда поршень движется обратно вверх по отверстию цилиндра, он вытесняет отработавшие газы сгорания через выпускной клапан и из систем выпуска.Когда поршень возвращается в верхнюю мертвую точку, выпускной клапан закрывается, и впускной клапан открывается, и процесс четырехтактного двигателя повторяется.

При каждом повторении цикла требуется два полных оборота коленчатого вала, в то время как двигатель создает мощность только во время одного из четырех тактов. Для поддержания работоспособности машины требуется небольшой маховик двигателя. Рабочий ход создает импульс, который толкает инерцию маховика, удерживая его, и коленчатый вал вращается во время тактов выпуска, впуска и сжатия.

,

Двухтактный двигатель - Energy Education

Рисунок 1. Двухтактный двигатель внутреннего сгорания [1]

Как следует из названия, двухтактный двигатель требует только двух поршневых движений (один цикл) для выработки энергии. [2] Двигатель способен вырабатывать мощность после одного цикла, потому что выбросы и впуск газа происходят одновременно, [3] , как показано на рисунке 1. Существует клапан для такта впуска, который открывается и закрывается из-за для изменения давления.Кроме того, из-за его частого контакта с движущимися компонентами, топливо смешивается с маслом для добавления смазки, что позволяет плавно перемещаться.

В целом двухтактный двигатель содержит два процесса:

  1. Ход сжатия: Открывается впускное отверстие, воздушно-топливная смесь поступает в камеру, и поршень движется вверх, сжимая эту смесь. Свеча зажигания зажигает сжатое топливо и начинает рабочий ход.
  2. Рабочий ход: Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло уходит.

Тепловая эффективность этих бензиновых двигателей будет варьироваться в зависимости от модели и дизайна автомобиля. Однако в целом бензиновые двигатели преобразуют 20% топливной (химической) энергии в механическую энергию, при которой только 15% будет использоваться для перемещения колес (остальное теряется на трение и другие механические элементы). [4]

По сравнению с четырехтактными двигателями двухтактные двигатели легче, эффективнее, имеют возможность использовать топливо низкого качества и более экономичны. [2] Следовательно, более легкие двигатели обеспечивают более высокое отношение мощности к весу (больше мощности при меньшем весе). Однако им не хватает маневренности, возможной в четырехтактных двигателях, и они требуют большей смазки. Это делает двухтактные двигатели идеальными для судов (необходимо перевозить много груза) [2] , мотоциклов и газонокосилок, тогда как четырехтактные идеально подходят для автомобилей, таких как легковые и грузовые автомобили.

цикл Отто

Рисунок 2. Реальный цикл отто для двухтактного двигателя. [5] Рисунок 3. Идеальный цикл Отто для бензинового двигателя. [6]

Диаграмма объема давления (диаграмма PV), которая моделирует изменения в топливно-воздушной смеси, испытываемые давлением и объемом в любом бензиновом двигателе, называется циклом Отто. Изменения в них будут создавать тепло и использовать это тепло для перемещения автомобиля или машины (отсюда и причина того, что это тип теплового двигателя). Цикл Отто можно увидеть на рисунке 2 (реальный цикл Отто) и на рисунке 3 (идеальный цикл Отто). Компонент любого двигателя, использующего этот цикл, будет иметь поршень для изменения объема и давления топливовоздушной смеси (как показано на рисунке 1).Поршень получает движение от сгорания топлива (где это происходит, поясняется ниже) и от электрического наддува при запуске двигателя.

Далее описывается, что происходит во время каждого шага на PV-диаграмме, в которой сгорание рабочей жидкости - бензина и воздуха (кислорода), а иногда и электричества, изменяет движение поршня:

Идеальный цикл - зеленая линия: Обозначается как фаза впуска , двухтактный двигатель не проходит эту фазу.Это связано с тем, что четырехтактные двигатели начинаются с втянутого поршня, поэтому его необходимо втягивать для впуска топливовоздушной смеси. Тем не менее, двухтактный двигатель может сразу приступить к заправке топливовоздушной смесью, как это видно из процесса 1-2.

Процесс с 1 по 2: На этом этапе открывается впускной канал, и поршень вытягивается, чтобы он мог сжимать топливно-воздушную смесь, попавшую в камеру. Сжатие приводит к небольшому увеличению давления и температуры смеси, однако теплообмен не происходит.С точки зрения термодинамики это называется адиабатическим процессом. Когда цикл достигает точки 2, зажигание зажигания происходит при попадании топлива в свечу зажигания.

Процесс с 2 по 3: Это место, где происходит сгорание из-за воспламенения топлива от свечи зажигания. Сгорание газа завершается в точке 3, в результате чего камера с высоким давлением имеет большое количество тепла (тепловой энергии). С точки зрения термодинамики это называется изохорным процессом.

Процесс с 3 по 4: Тепловая энергия в камере в результате сгорания используется для работы с поршнем, который толкает поршень вниз, увеличивая объем камеры. Это также известно как силовой сток , потому что это когда тепловая энергия превращается в движение для питания машины или транспортного средства.

Фиолетовая линия (Процесс 4 к 1): В процессе 4 к 1 все отходящее тепло выводится из камеры двигателя. Когда тепло покидает газ, молекулы теряют кинетическую энергию, вызывая снижение давления. [7] Однако в двухтактном двигателе нет фазы выхлопа, поэтому цикл начинается снова (с 1 по 2), позволяя сжимать новую смесь топлива и воздуха.

для дальнейшего чтения

Список литературы

  1. File «Файл: Two-Stroke Engine.gif - Wikimedia Commons», Commons.wikimedia.org, 2018. [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[Accessd: 17 мая - 2018].
  2. 2,0 2,1 2.2 E. Alturki, "Сравнение и применение четырехтактных и двухтактных морских двигателей", Международный журнал инженерных исследований и применений, вып. 07, нет. 04, стр. 49-56, 2017.
  3. ↑ C. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007
  4. Wolf Р. Вольфсон, Энергия, окружающая среда и климат. Нью-Йорк: W.W. Нортон и Компания, 2012, с. 106.
  5. ↑ http://www.citethisforme.com
  6. ↑ Wikimedia Commons [Online], доступно: https: // ru.wikipedia.org/wiki/Otto_cycle#/media/File:P-V_Otto_cycle.svg
  7. ↑ I. Dinçer и C. Zamfirescu, Усовершенствованные системы производства электроэнергии. Лондон, Великобритания: Academic Press является отпечатком Elsevier, 2014, с. 266.
,

Отправить ответ

avatar
  Подписаться  
Уведомление о