Что такое дизельный двигатель: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Содержание

Бензиновый или дизельный двигатель? — Viking Motors

Что выбрать: бензиновый или дизельный двигатель?

Хотя гибридные транспортные средства становятся все более популярными, большинство покупателей по-прежнему делают выбор в пользу дизельного или бензинового автомобиля. Сколько вы ломали голову, пытаясь решить, каким будет ваш следующий железный конь – с бензиновым или дизельным двигателем? Особенно в последнее время, когда развитие технологий все больше стирает разницу и старые убеждения уже не действуют. Мы решили слегка упростить вам жизнь и провести небольшой сравнительный анализ.

Перед тем как приступать к поискам автомобиля, важно знать, с какой целью этот автомобиль приобретается, а еще автомобиль с каким двигателем – бензиновым или дизельным – лучше справится с вашими потребностями и будет доставлять вам радость от езды. Кроме того, следует понять, означает ли низкая покупная цена экономию в более долгосрочной перспективе.

Резвое перемещение по городу или спокойная езда по трассе?

Если ваши поездки обычно ограничиваются пределами города, то бензиновый двигатель – это то, что вам нужно.  Для того чтобы получать от бензинового автомобиля по максимуму, нужно уверенно выжимать обороты и быстро переключать скорости. Дизельные автомобили, напротив, сильны и способны даже с весьма тяжелым грузом вскарабкиваться на довольно крутые склоны. Дизельные машины подходят для езды по шоссе и преодоления больших расстояний. Даже при быстрой езде обороты у них ниже и скорости переключаются реже. Бензиновый автомобиль быстрее разгоняется с места до сотни, однако дизельный лучше ведет себя при обгонах и буксировочная способность у него выше. Против дизеля говорит разве что повышенная вибрация и уровень шума, однако чем новее автомобиль, тем эта разница менее ощутима. Говоря об эстонских зимах, следует учитывать и то обстоятельство, что дизельный двигатель не любит коротких расстояний – поездка должна быть как минимум настолько длинной, чтобы двигатель успел хорошо прогреться.

Покупная цена vs расход топлива

Дизельные автомобили дороже бензиновых, но они позволяют экономить за счет топлива.  Это один из факторов, которые следует помнить при покупке автомобиля. Стоит немного посчитать и изучить показатели расхода топлива – они зависят от того, двигается ли автомобиль в городском цикле или на нем чаще ездят по шоссе. Чем длиннее путь, пройденный дизельным автомобилем, тем быстрее окупятся дополнительные расходы, сделанные при его покупке, ведь дизельное топливо обычно дешевле (за исключением зимнего периода), чем бензин. Кроме того, дизельный двигатель работает на более низких оборотах и расходует меньше топлива – на 15-20% по сравнению с бензиновым мотором. Это экономит не только деньги, но и время, ведь на одном баке вы сможете проехать больше, и вам нужно будет реже останавливаться для заправки. При этом стоит помнить общераспространенное мнение, что лучше всего экономия в случае с дизельным автомобилем проявляется при годовом пробеге 20-25 тысяч километров.

Ремонт, техобслуживание и последующая продажа

Амортизация грозит владельцу автомобиля самыми большими расходами, поэтому стоимость автомобиля в случае последующей продажи играет здесь немаловажную роль. При покупке дизельный автомобиль стоит дороже из-за сложности двигателя и наличия дополнительных систем – давление здесь выше, и детали должны выдерживать большие нагрузки. Как следствие – обслуживание такого автомобиля требует более толстого кошелька. Моторное масло и запчасти будут обходиться дороже. Однако дизельный автомобиль дешевеет медленнее, чем бензиновый, и при последующей продаже за него можно будет выручить более солидную сумму.

Окружающая среда

Если вы заботитесь об окружающей среде, то следует знать, что помимо того, что дизельный автомобиль значительно экономичнее, но при этом не уступает в мощности автомобилю бензиновому, он еще и выделяет меньше СО2 (примерно на 20% меньше), являющегося причиной потепления климата. И все же на этом наш рассказ не заканчивается. Дизельные двигатели вырабатывают больше вредных выбросов NOx. Но поскольку расход топлива у них меньше, то и загрязняющих веществ вырабатывается меньше.

В любом случае окончательное  решение зависит от индивидуальной ситуации. Что лучше – легковой автомобиль с дизельным или бензиновым двигателем – трудно сказать, ведь у каждого автомобилиста предпочтения складываются в зависимости от условий, ожиданий и материальных возможностей. Если нужно перевезти лодку или туристический трейлер, то, конечно, дизельный автомобиль справится с такой задачей лучше и израсходует при этом меньше топлива. Если же вы ищете проворный спорткар, на котором будете совершать непродолжительные поездки, то стоит отдавать предпочтение бензиновому двигателю.

Спроси предложение                                                                   СВЯЖИТЕСЬ С НАМИ

Дизельные двигатели авто — устройство и как работают, из чего состоят, типы дизелей

Всё про устройство и принцип работы современного дизельного двигателя автомобиля — какая конструкция и строение, из чего состоит. Подходит для начинающих автолюбителей и чайников.

Конструкция и строение

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали усилены, чтобы воспринимать высокие нагрузки — ведь степень сжатия дизеля намного выше (19-24 единиц против 9-11 у бензинового мотора). Этим объясняется большой вес и габариты дизельного мотора в сравнении с бензиновым. Принципиально отличие в способах формирования смеси топлива и воздуха, её воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает воздух. В конце такта сжатия, когда он нагревается до температуры 700-800оС, в камеру сгорания форсунками, под большим давлением впрыскивается солярка и почти мгновенно самовоспламеняется.

Смесеобразование в дизелях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы, и каждая частица имела достаточное для полного сгорания количество воздуха. С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания.

В дизелях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление 1, выполненное в днище поршня, способствует созданию вихревого движения воздуха.

Мелко распыленное топливо впрыскивается из форсунки 2 через несколько отверстий, направленных в определенные места углубления. Чтобы топливо полностью сгорало и дизель обладал наилучшими мощностями и экономическими показателями, топливо нужно впрыскивать в цилиндр до прихода поршня в ВМТ.

Самовоспламенение сопровождается резким нарастанием давления — отсюда повышенная шумность и жесткость работы. Такая организация рабочего процесса позволяет работать на очень бедных смесях, что определяет высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность, трудности холодного пуска, проблемы с зимней соляркой. У современных дизелей эти проблемы не столь очевидны.


Дизельное топливо должно отвечать определенным требованиям. Главные показатели качества топлива — чистота, малая вязкость, низкая температура самовоспламенения, высокое цетановое число (не ниже 40). Чем больше цетановое число, тем меньше период задержки самовоспламенения после момента впрыска его в цилиндр и двигатель работает мягче (без стуков).

Типы дизельных двигателей

Существует несколько типов дизельных моторов. Различие в конструкции камеры сгорания.
В дизелях с неразделенной камерой сгорания
— их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применяется на низкооборотных двигателях большого рабочего объема. Это связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией. Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить экономичность, снизить шум и вибрацию.

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Такие двигатели составляют большинство среди устанавливаемых на современные автомобили.

Устройство топливной системы

Важнейшей системой является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД

Предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.

На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.

Форсунки

Они вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе. Тип распылителя определяет форму факела топлива, которая важна для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливный фильтр

Является важнейшим элементом дизельного мотора. Его параметры, такие как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск

Холодный пуск дизеля обеспечивает система предпускового подогрева. В камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900оС, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув и Common-Rail

Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, его ресурс существенно меньше ресурса самого двигателя и не превышает 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


Система Common-Rail. Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи, и снижается шумность работы мотора.

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Пять мифов о проблемах дизельных двигателей — Российская газета

Парк дизельных «легковушек» в России не превышает сегодня и 9% от числа бензиновых машин. Более того, это процент в последние месяцы планомерно снижается ввиду того, что люди все чаще отказываются от покупки транспорта на солярке, который оказывается им не по карману.

Правда и то, что многие отечественные водители по старой памяти относятся к дизельным автомобилям с предубеждением, считая их проблемными. В свою очередь реальные владельцы хвалят дизели за больший крутящий момент на низких оборотах, меньший расход топлива, а также возможность проехать большее расстояние на одном баке в сравнении с бензиновыми аналогами. Давайте разберемся, какие из представлений населения о дизелях являются абсолютными мифами.

Дорогая эксплуатация

С одной стороны, не секрет, что проводить техобслуживание — и прежде всего менять фильтры и масло на транспорте с дизелями — приходится чаще, чем на бензиновых машинах.

К тому же объем масла для заливки в дизельные агрегаты, как правило, больше, чему у бензиновых машин, а «расходники» (фильтры и свечи) дороже, топливный фильтр к тому же требует частой замены.

Эти нюансы несколько увеличивают расходы автовладельцев дизельного транспорта на ТО. Однако нужно понимать, что дизельный мотор потребляет в среднем на 20% меньше топлива, чем бензиновый. Соответственно общие затраты (скажем, по итогам года) будут у дизельных машин либо сопоставимы с таковыми у бензинового транспорта, либо лишь незначительно превышать их.

Повышенные требования к качеству топлива

Действительно, в целом дизельные силовые агрегаты требовательнее бензиновых к качеству топлива.

При этом в большинстве случаев виновником низкого качества солярки является не производитель, а продавец, нарушивший правила транспортировки или хранения. Однако фактически на сетевых АЗС нарваться на некачественное дизтопливо в наши дни малореально.

Проблемой для владельцев может стать заливка в дизельный агрегат летней солярки вместо зимней.

Ведь, как известно, на летнем топливе при температуре 15˚С дизтопливо начинает густеть и автомобиль в мороз попросту не заведется. Это обстоятельство нужно учитывать не только при поиске «правильных» (проверенных сетевых) АЗС, но и после возобновления поездок после длительного перерыва (например, вы поставили машину на прикол ранней осенью, а сели за руль зимой). В целом же для беспроблемного зимнего пуска дизельной машины достаточно, чтобы солярка была без механических примесей и воды.

Сложности с запуском зимой

Утверждение о том, что дизельный двигатель сложнее завести, чем бензиновый при минусовых температурах, верно лишь отчасти. Из-за особенностей конструкции (высокой степени сжатия в поршневой части и более прочных и массивных деталей, необходимых для эффективной прокрутки коленвала стартером) нужно предъявить повышенное внимание состоянию аккумуляторной батареи и свечам накаливания. Желательно, чтобы и то и другое было «свежим».

Кроме того, чтобы быть уверенным в беспроблемном пуске мотора в серьезный минус (ниже минус 35˚С) «дизелеводам» стоит озаботиться либо доустановкой предпускового подогревателя, либо настройкой автозапуска в тех моделях, где это допускается конструкцией.

Понятно, что последние меры несколько увеличат общий расход топлива, зато вы обезопасите себя от того, чтобы не заведетесь в суровый минус. Соответственно, при правильной эксплуатации и продуманной подготовке к зиме проблем с запуском дизельных двигателей не возникает. Ну и, разумеется, нужно помнить о том, что в межсезонье, когда на АЗС возможна пересортица (замена летней солярки на зимнюю), не будет лишним уточнить, какой сорт дизтоплива вам предлагают.

Навязчивый шум

Ввиду особенностей конструкции и алгоритма работы шум от дизельного двигателя на холостых оборотах действительно выше в сравнении с бензиновыми аналогами.

Правда и то, что двигатели на солярке, как правило, отличаются более высокой в сравнению с бензиновыми моторами вибронагруженностью.

Однако эти моменты на 100% верны лишь в отношении не самых современных силовых агрегатов. Чем дизельная машина новее и дороже, тем в большей степени она оснащена виброшумоизолирующей защитой, а также такими ноу-хау, как, к примеру, аккумуляторные топливные системы высокого давления («Common-rail»), снижающих шум прежде всего за счет разделения одного импульса впрыска на несколько.

Загрязняют природу

Все зависит от конкретной марки и года выпуска автомобиля. Принципиально, что поскольку дизель потребляет меньше горючего, соответственно он выбрасывает в атмосферу меньше двуокиси углерода, чем бензиновый двигатель такой же мощности.

Новейшие дизели оборудуются специальными фильтрами, задерживающими до 99% мельчайших частиц, поэтому если вы радеете о защите экологии, смотрите в сторону современных продвинутых моделей.

И мы здесь, разумеется, не рассматриваем проблему маргиналов, которые в гаражах или «серых» сервисах вырезают из топливной схемы дизельных автомобилей нейтрализаторы и удаляют сажевые фильтры. При таком раскладе вред природе дизельного выхлопа действительно возрастает многократно.

Дизельные двигатели

ООО «Компания Дизель» — российский лидер по производству дизельных электростанций (ДЭС) исключительно на основе двигателей европейского / российского производства. Дизельные двигатели – являются ключевым элементом выпускаемых нами дизель-генераторов и силовых приводов. От их качества напрямую зависит надежность и долговечность и потребительские свойства оборудования, которое Вы приобретаете.

Поэтому за 9 лет работы мы рассмотрели, испробовали и протестировали большое количество вариантов, представленных на российском и мировом рынке. Основные критерии, которые мы предъявляли к данному виду комплектующих – это высокое качество сборки (обязательно оригинальная), длительная безотказная работа, топливная экономичность, достаточный диапазон мощностей, по возможности – адаптация к топливу среднего качества, короткие сроки поставок (наличие на складах в России), оптимальная цена.

Нельзя было не учесть высокий спрос среди российских покупателей на дизель-генераторы (ДГУ) на базе отечественных двигателей – крайне простых в обслуживании и ремонте, отлично приспособленных для работы в российских условиях. Для дизельных двигателей зарубежного производства важнейшим критерием также стала развитая официальная сервисная поддержка и доступность оригинальных запчастей в России – чтобы наших покупатели не столкнулись с эксплуатационными проблемами на протяжении всего периода использования дизельных электростанций производства ООО «Компания Дизель».

В результате, сегодня на заводе Компании Дизель под Ярославлем производятся силовое оборудование на основе двигателей 3-х отечественных производителей – ЯМЗ (Россия), ТМЗ (Россия), ММЗ (Беларусь) и дизельных двигателей 6-ти марок зарубежного производства — Scania (Швеция), FPT-Iveco (Италия), John Deere (США, Франция), Perkins (Англия), Volvo Penta (Швеция), Doosan (Южная Корея)

В частности, согласно данному делению, Компанией Дизель сформированы две продуктовые линейки ДЭС:

  • Дизельные электростанции professional (серии ДГУ ЯМЗ, ДГУ ММЗ, ДГУ ТМЗ,). Это оборудование высочайшего уровня сборки от Компании Дизель, отлично приспособленное для выработки электроэнергии в непростых российских условиях – надежное, простое, неприхотливое в эксплуатации. Мощности – от 15 до 400 кВт.
  • Дизельные электростанции Premium (серии ДГУ Scania, ДГУ FPT-Iveco, ДГУ John Deere, ДГУ Perkins, ДГУ Volvo Penta). Это оборудование, собранное по европейским стандартам, из европейских комплектующих – безотказное, очень долговечное (30 000 – 40 000 моточасов), выносливое и экономичное. Это прямой аналог по качеству и функционалу дизельным электростанциям мировых лидеров — Cummins, FG Wilson, Caterpillar, SDMO – по гораздо более «гуманной» цене – без переплаты за бренд и стоимость американской / европейской сборки.

Обращаем внимание, что ООО «Компания Дизель» является единственным в России официальным OEM-производителем электрогенераторов на дизельных двигателях Scania.

По всем перечисленным дизельным двигателям специалисты Компании Дизель готовы оказать полную сервисную поддержку, подобрать и поставить запчасти, «расходники», комплекты ЗИП. Звоните!

Дизельный двигатель — принцип работы

                                                                                                          Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

 

 

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлы турбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Дизельный двигатель: особенности, преимущества, функции

Современные автолюбители обладают большими запросами к технической комплектации транспортного средства. Наряду с экономичностью и долгим сроком эксплуатации сегодня их интересует и наличие дизельного двигателя. Не секрет, что в последние годы на смену привычным бензиновым моторам пришли усовершенствованные дизельные приборы. Но что же представляет из себя дизельный двигатель, какие отличительные особенности и виды он имеет? Об этом мы и поговорим детальнее в данном материале.

Дизельный двигатель – это мотор внутреннего сгорания, который работает в режиме самостоятельного воспламенения при контакте со средой. Первый дизель появился на свет еще в 1897 году. Тогда процесс его функционирования зависел от применения на практике большого количества сжатого воздуха. В отличие от своего предшественника современный агрегат представляет собой компактный прибор, оказывающий влияние на многие показатели работы автомобиля. От качества и вида выбранного вами прибора зависит как мощность машины, так и ее потенциальный ресурс.

 

Виды современных двигателей: HDI, TDI и SDI моторы

 

Дизельные двигатели классифицируются по нескольким признакам. Для начала разберем, что означает аббревиатура в их названиях:

  1. Дизельный двигатель HDI – это собственная разработка крупной автомобильной компанией Peugeot, которая была запатентована еще несколько лет назад. Суть данной технологии сводится к минимизации затрат на техническое обслуживание транспортного средства. Владелец такого мотора может не опасаться возникновения неполадок и проверять состояние своего мотора один раз за 25000-35000 километров пробега. Также при наличии двигателя HDI автолюбитель может не беспокоиться о замене ремней ГРМ. Мотор в состоянии работать даже на холостых оборотах. Сегодня двигатели данной марки пользуются небывалым спросом на рынках многих европейских стран.
  2. Дизельный двигатель TDI – устройство, которое впервые было разработано и внедрено на территории всемирно известного концерна Volkswagen. Двигатель изготовлен с учетом механизма равномерного впрыска и системы турбунаддува. Такие показатели позволяют машине достичь еще большей мощности, имея достаточно высокий коэффициент воздействия. Главной особенностью работы мотора является экологичность и полная чистота выхлопа. Изделия легки в ежедневной эксплуатации: они могут работать в различных климатических условиях.
  3. Дизельный двигатель SDI считается наиболее экономичным вариантом. Современные системы common rail работают по тому же принципу. Они управляются блоком электронного управления, который открывает каждый инжектор электронно, а не механически. Эта технология была детально разработана общими усилиями компаний Magneti Marelli, Centro Ricerche Fiat и Elasis. После того, как Fiat разработал дизайн и концепцию системы, она была продана немецкой компании Robert Bosch GmbH для разработки массового продукта. Это оказалось большим просчетом Fiat, поскольку новая технология стала очень выгодна, но в то время итальянский концерн не имел финансовых ресурсов для завершения работ. Тем не менее, итальянцы первые применили систему common rail в 1997 году на Alfa Romeo 156 1.9 JTD и только потом она появилась на Mercedes-Benz C 220 CDI

 

Виды дизельных двигателей: особенности конструкции камеры сгорания

 

Также дизельный двигатель можно классифицировать в зависимости от того, какую комплектацию имеет камера внутреннего сгорания. К первому типу можно отнести двигатели, которые имеют совместную камеру. В них приятно заливать топливо через небольшой резервуар, расположенный возле поршня. На сегодняшний день они подверглись процессу усовершенствования за счет открытия двухступенчатого впрыска и внедрения электронного управления работой. Сейчас моторы с одной камерой могут функционировать с мощностью в 4500 и более оборотов в одну минуту.

Второй вид включает такое понятие, как вихрекамерные дизельные двигатели. Они встречаются в комплектации легковых авто, а их особенность заключается в наличии разделенной на несколько частей камеры сгорания. В данном случае процесс подачи топлива разнится. Сначала он поступает во вспомогательную камеру, а потом – в цилиндр.

И, наконец, последний вид двигателей – это предкамерные устройства. Их популярность довольно низка из-за наличия форкамеры – прибора, который соединяет цилиндры с каналами.

 

Виды двигателей: необходимость использования насосов

 

После разработки первого насоса, работающего на топливе, специалисты ввели в обиход еще одну классификацию. Исходя из нее, дизельный двигатель бывает двух типов: тот, который использует насосный механизм (ТНВД), и тот, который использует аккумуляторный механизм. Первый вид агрегатов работает за счет соединения отдельно взятой секции насоса с одной форсункой. Второй предполагает отсутствие соединения, как такового. В этом случае топливо передается благодаря насосу во встроенный аккумуляторный блок, который затем обеспечивает полную наполняемость форсунок.

Дизельный двигатель

— обзор

Дизельный двигатель

V

Дизельный двигатель, также известный как двигатель с воспламенением от сжатия, отличается от четырехтактного двигателя SI технологией подачи топлива и, как следствие, процессом сгорания . Общий цикл — четырехтактный (т.е. впуск, сжатие, расширение и выпуск), но в отличие от искрового зажигания, при котором воздушно-топливная смесь втягивается в цилиндр во время такта впуска, только воздух подается в цилиндр во время такт впуска дизельного двигателя.Во время такта сжатия давление и температура воздуха повышаются за счет процесса сжатия. Конструктивно температура воздуха в процессе сжатия выше, чем температура самовоспламенения топлива, предназначенного для использования. Жидкое топливо вводится путем впрыска в цилиндр, когда поршень проходит около верхней мертвой точки. В этот момент цикла топливо самовоспламеняется при входе в цилиндр и горит как диффузионное пламя.

Этот метод подачи топлива дает два очень важных преимущества по сравнению с методами, используемыми в двигателе SI.Во-первых, поскольку во время сжатия в цилиндре находится только воздух, неконтролируемое зажигание не играет роли. Следовательно, очень высокие степени сжатия могут использоваться для обеспечения высокого КПД цикла. На практике необходимы высокие степени сжатия, чтобы обеспечить температуру сжатого воздуха выше, чем температура самовоспламенения используемого топлива. Во-вторых, топливо, впрыскиваемое в цилиндр, начинает гореть, когда попадает в горячие сжатые газы внутри цилиндра. Таким образом, дизельный двигатель не требует дискретного источника зажигания, такого как свеча зажигания.Это позволяет двигателю работать в очень широком диапазоне соотношений воздух-топливо независимо от требований к пределу воспламенения. Кроме того, впрыскивается только топливо, необходимое для выполнения работы, необходимой во время любого заданного цикла двигателя. Поскольку впрыск топлива контролирует работу, производимую двигателем, а не количество воздушно-топливной смеси, подаваемой в двигатель, как в двигателях SI, нет необходимости дросселировать воздух, всасываемый в дизельный двигатель. Это почти исключает потери от дросселирования в дизельном двигателе.Таким образом, потери на дросселирование не снижают эффективность двигателя при частичной нагрузке, как это происходит с двигателем SI.

Проблемы с выбросами выхлопных газов дизельных двигателей в первую очередь связаны с выбросами углеводородов, выбросами твердых частиц, выбросами оксидов азота и запахами. Окись углерода редко представляет собой проблему, поскольку общее соотношение воздух-топливо довольно велико, а частичное окисление несгоревшего топлива в выхлопе невелико.

Выбросы углеводородов и твердых частиц были связаны с плохой конструкцией распылительной форсунки, подтеканием топливной форсунки и чрезмерным смачиванием стенок цилиндра топливом во время впрыска.Однако нет четкого понимания образования УВ и твердых частиц и их последующего выброса. Следовательно, в обозримом будущем дизельные двигатели будут страдать от этих выбросов.

Выбросы оксида азота являются серьезной проблемой для дизельных двигателей. Поскольку локальную температуру сгорания в дизельных двигателях практически невозможно контролировать, NOx по-прежнему будет проблемой выбросов в обычных дизельных двигателях.

Пахучие компоненты выхлопных газов дизельных двигателей обычно представляют собой высокомолекулярные частично окисленные углеводороды.К сожалению, общее знание того, что они собой представляют, не помогло предотвратить их образование в процессе сгорания дизельного двигателя. В результате попыток снизить выбросы углеводородов и твердых частиц были достигнуты определенные успехи в уменьшении запаха выхлопных газов дизельных двигателей; однако появление запаха выхлопных газов дизельного двигателя остается относительно необъяснимым.

Наддув используется как в двигателях SI, так и в дизельных двигателях для увеличения начального давления в цилиндре в начале такта сжатия.Это позволяет двигателю SI данного размера принимать больший объем топливовоздушного заряда, чем это было бы возможно при только атмосферном давлении, приводящем в действие систему. Дизельный двигатель также может развивать большую мощность при наддуве. Наддув может осуществляться компрессорами с приводом от выхлопных газов (турбонаддув) или непосредственно от коленчатого вала (наддув).

Как работают дизельные двигатели?

Вы когда-нибудь с изумлением смотрели, как гигантский грузовик медленно ползет в гору? Возможно нет! Такое случается каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднимается против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться то, что вы видите, весьма примечательно. Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки.На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но вырабатывают больше мощности, более эффективно, работая несколько иначе. Возьмем пристальный взгляд!

Фото: Дизельные двигатели (как в этом локомотиве) идеально подходят для буксировки тяжелых поездов. Это прекрасно сохранившийся (и отполированный до блеска!) British Rail Class 55 («Deltic»), номер 55022, названный Royal Scots Grey, датируемый 1960 годом. Дизельный двигатель Napier Deltic, которым он питается.

Что такое дизельный двигатель?

На фото: типичный дизельный двигатель (от пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Подобно бензиновому двигателю, дизельный двигатель является двигателем внутреннего сгорания. двигатель. Горение — это другое слово для обозначения горения и внутреннего означает внутри, поэтому двигатель внутреннего сгорания — это просто двигатель, в котором топливо сжигается внутри основной части двигателя (цилиндров) где производится энергия.Это сильно отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровой машине на одном конце бойлер, который нагревает воду для получения пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень вперед и назад для перемещения колес. Это внешний горение, потому что огонь находится вне цилиндра (действительно, обычно на расстоянии 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих баллонов.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно исходить откуда производится в цилиндр: все происходит в одном и том же место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают за счет внутреннего сгорания, но в немного разными способами.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, делающая его взрывоопасным, и небольшую электрическую искру от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерирующая мощность, которая толкает поршень вниз по цилиндру и (через коленчатый вал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но попроще.Во-первых, воздух попадает в цилиндр и поршень сжимают его — но гораздо сильнее, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжат примерно до одной десятой от первоначального объема. Но в дизеле В двигателе воздух сжимается от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали ее накачку. Чем дольше вы его использовали, тем горячее становится в ваших руках. Это потому что при сжатии газа выделяется тепло. Представьте себе, сколько тепла создается за счет нагнетания воздуха в 14-25 раз меньшее пространство, чем обычно занимает.Так много тепла, что воздух действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда очень сильно горячее. Как только воздух сжимается, топливный туман распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от мощности водитель хочет, чтобы двигатель работал.) Воздух такой горячий, что топливо мгновенно воспламеняется и взрывается без искры затыкать.Этот управляемый взрыв заставляет поршень выталкиваться из цилиндр, производящий мощность, которая приводит в движение транспортное средство или машину в на котором установлен двигатель. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минута!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели вдвое эффективнее бензиновых — около 40–45 процентов. в лучшем случае эффективен.[2] Проще говоря, это означает, что при том же количестве топлива вы можете пройти гораздо дальше. (или получите больше миль за свои деньги). Есть несколько причин для это. Во-первых, они сильнее сжимаются и работают при более высоких температурах. Фундаментальная теория того, как работают тепловые двигатели, известное как правило Карно, говорит нам, что эффективность двигателя зависит от от высоких и низких температур, между которыми он работает. Дизельный двигатель, работающий через большую разницу температур (более высокая самая высокая температура или самая низкая низкая температура) более эффективна.Во-вторых, отсутствие системы зажигания свечи зажигания делает более простая конструкция, которая может с легкостью сжимать воздух намного сильнее, а также это делает топливо более горячим и полным, высвобождая больше энергии. Есть еще одна экономия на эффективности тоже. В бензиновом двигателе, который не работает на полную мощность, вам понадобится подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на более низкой мощности. Еще одним важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, запирая их атомы вместе (другими словами, дизель имеет более высокую удельную энергию, чем бензин).Дизель тоже лучше смазка, чем бензин, так что дизельный двигатель, естественно, будет работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совершенно разные. Вы это узнаете, если вы когда-либо слышал страшные истории о людях, которые заправили свою машину или грузовик с неподходящим топливом! По сути, дизель — это низкосортный, менее очищенный нефтепродукт, полученный из более тяжелых углеводороды (молекулы, состоящие из большего количества углерода и водорода атомов).Сырые дизельные двигатели без сложной системы впрыска топлива Теоретически системы могут работать практически на любом углеводородном топливе — отсюда популярность биодизеля (вид биотоплива, производимого, среди прочего, вещи, отработанное растительное масло). Изобретатель дизельного двигателя, Рудольф Дизель успешно запускал свои первые двигатели на арахисовом масле и думал, что его двигатель окажет людям услугу, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованная источники энергии. [3] Если бы он только знал!

Фото: Смазка поедет: Джошуа и Кайя Тикелл, пара Защитники окружающей среды, используйте этот трейлер (Green Grease Machine), чтобы сделать биодизельное топливо для своего фургона (прикрепленного спереди) из отработанного кулинарного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит впечатляющих 0,80 доллара за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Достоинства и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, которые широко используются сегодня, можно найти во всем: от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и экономичный. К тому же они безопаснее, потому что дизельного топлива меньше. летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо большие напряжения и деформации, чем в бензиновом двигателе. Вот почему дизельные двигатели должны быть сильнее и тяжелее и почему, надолго время они использовались только для питания больших транспортных средств и машин. В то время как это может показаться недостатком, это означает, что дизельные двигатели обычно более надежны и служат намного дольше, чем бензиновые двигатели.

Фото: Дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксиды азота, оксид углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.Теоретически дизели более экономичны, поэтому они должны использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и меньше способствуют глобальному потеплению. На практике есть некоторые споры о том, правда ли это. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива. лишь немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно лучше выходят. Другое недавнее исследование показывает, что даже новые дизельные автомобили сильно загрязняют окружающую среду.Европейское агентство по окружающей среде, например, отмечает, что даже типичный «чистый» дизельный автомобиль соответствует нормам выбросов EURO 6, производит примерно в 10 раз больше азота оксидное загрязнение, как у сопоставимого автомобиля с бензиновым двигателем. [4] А как насчет выбросов CO2? По данным Британского общества производителей двигателей и трейдеры: «Автомобили с дизельным двигателем внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, изначально стоят дороже, чем бензиновые, хотя их эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор продажи значительно упали. скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязнение.

Нет никаких сомнений в том, что дизельные двигатели по-прежнему будут использоваться в тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы — все зависит от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный толчок к тому, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые предполагаемые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться вытесненными и вовсе. Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизельное топливо может остаться. соперник в автомобилях меньшего размера на многие годы вперед, особенно если их выхлопные газы можно правильно решить.

Кто изобрел дизельный двигатель?

Изображение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, как он изобразил в своем патенте 1895 года.Цилиндр (1) находится вверху. 2) «Плунжер» (как его называют дизель) прикреплен кривошипом и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную скорость вращения двигателя (отключает подачу топлива, если двигатель работает слишком быстро, а затем снова включает ее, когда двигатель снова замедляется). Изображение предоставлено Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: Рудольф Дизель, способ и устройство для преобразования тепла в работу.

Неудивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Роша (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на идею 16 февраля 1862 года, но ему не удается собрать рабочую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: Шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: 22 года, Рудольф Дизель переходит на работу к инженеру по холодильникам Карлу фон. Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель, работающий при более высоких давлениях и температурах, не требующий свечи зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы не дать другим получить от них прибыль.
  • 1893: Дизель создает огромный стационарный двигатель, который работает целую минуту самостоятельно. власти, 17 февраля 1894 года.
  • 1895: Патент на двигатель Дизеля получен в США 16 июля 1895 г.
  • 1898: С помощью Дизеля первый коммерческий двигатель построен в фабрика в Сент-Луисе, штат Миссури, США, автор — Адольфус Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На заводе Diesel в Аугсбурге начинается производство дизельных двигателей. Дизель начинает передавать свои идеи другим фирмам и вскоре становится очень богатый.
  • 1903: Petit Pierre, один из первых дизельных судов, начинает работу на канале Марн-Рейн во Франции.
  • 1912: MS Selandia, первое океанское дизельное судно, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, очевидно, упав за борт корабля «Дрезден» во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или покончил жизнь самоубийством, но ничего не известно. доказано.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., построил один из первых успешных автомобилей с дизельным двигателем и продемонстрировал его эффективность, проехав на нем из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершает революцию в сельском хозяйстве, представив Diesel Sixty, первый гусеничный трактор с дизельным двигателем, созданный на базе популярной модели Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой EMD FT, мощный дизель-электрический локомотив, и отправляет первый (номер 103) в годичное плавание, чтобы продемонстрировать его достоинства.Несомненно, доказывая превосходство дизельного топлива, это звучит как похоронный звон для паровозов.
  • 1970-е: Мировой топливный кризис пробудил возобновление интереса к использованию небольших эффективных дизельных двигателей в автомобилях.
  • 1987: всемирно известный корабль Queen Elizabeth 2 (QE2) переоборудованный девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что сделало его самым мощным торговым судном с дизельными двигателями того времени.
  • 2000: Peugeot представляет первые в мире фильтры твердых частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выбросы сажи сокращаются на 99 процентов.
  • 2015: Volkswagen погрузился в огромный мировой скандал из-за систематического мошенничества при испытаниях дизельных двигателей на выбросы выхлопных газов. Продажи дизельных автомобилей резко упали впервые за много лет.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявляя об этом все новые автомобили будут гибридными или полностью электрическими с 2019 года.

Постоянно повышающаяся эффективность дизельного двигателя

Рудольф Дизель в 1880-х сказал: «Автомобильный двигатель придет, и тогда я буду считать дело своей жизни завершенным.Он ясно знал, насколько важным было его изобретение. Но какое бы суждение ни было о делах всей жизни Дизеля, сам дизель был далек от завершения. Во-первых, его самые ранние двигатели были эффективны только на 26%. Но это было очень-очень давно.

Потенциальный КПД дизельного двигателя стал горячей темой в 2015 году, более века спустя. Это связано с тем, что Агентство по охране окружающей среды США и НАБДД оценивают потенциальную строгость новых нормативов эффективности для дизельных двигателей в рамках предложения «Фаза 2» для транспортных средств большой грузоподъемности.Федеральные агентства имеют право регулировать двигатели тяжелых транспортных средств для достижения максимально возможных улучшений и принимать технологические стандарты, уделяя должное внимание стоимости соблюдения требований, срокам разработки технологий и другим соображениям.

Современные дизельные двигатели с воспламенением от сжатия доминируют в сфере коммерческих грузовых автомобилей с эффективными двигателями, которые преобразуют около 43–44% топливной энергии в работу двигателя, основываясь на двигателях, сертифицированных на 2013–2014 годы. Чтобы соответствовать существующим нормам эффективности и выбросов углерода, тракторные двигатели, вероятно, сократят потребление топлива и выбросы CO2 на 6% с 2010 по 2017 год, или примерно на 1% в год.Сейчас вопрос заключается в том, насколько более эффективные дизельные двигатели получат на следующем этапе регулирования, с 2017 по 2024–2027 годы.

В июньском предложении EPA / NHTSA дизельные двигатели сократят расход топлива и выбросы CO2 на единицу работы на 4,2% с 2017 по 2027 год. Окончательные стандарты, вероятно, будут действовать еще три года, поэтому стандарты будут применяться до 2029 года. или к 2030 году. Это будет означать, что выбросы CO2 двигателями сократятся в среднем на 0.От 3% до 0,4% в год до 2030 года. Как это соотносится с другими цифрами?

Невозможно не задаться вопросом, что бы подумал Рудольф Дизель, узнав, что последние дизельные инновации могут удвоить эффективность его первых дизельных разработок?

На приведенном ниже рисунке показаны существующие стандарты на 2014–2018 годы, предлагаемые стандарты на 2017–2027 годы и технологический потенциал от расширенного внедрения технологий на основе вышеупомянутого исследования WVU в граммах CO2 на тормозную мощность в час.Технологический потенциал на рисунке предполагает, что тракторные двигатели могут достичь улучшения до 7% за счет технологии повышения эффективности с использованием пакета двигателей «2020+» исследований WVU (то есть за счет улучшений за счет снижения трения, паразитных воздействий, турбонаддува, последующей обработки и т. Д. оптимизация горения и расширенные средства управления). Этот потенциал от этих дополнительных технологий примерно вдвое больше, чем агентства включили в предложенное правило на 2027 год.

Кроме того, мы рассматриваем рост проникновения передовых технологий в двигатели в анализе на рисунке.С более широким распространением дополнительных технологий 2020+ и 15% проникновением системы рекуперации отходящего тепла (WHR) органического цикла Ренкина (как предполагают агентства), сокращение выбросов CO2 в масштабах всего парка до 10% в 2027 году станет возможным. С более широким проникновением технологий WHR и US DOE SuperTruck технологический потенциал еще выше. Результаты показывают, что существенно более низкие выбросы CO2, чем предложенные стандартные уровни EPA-NHTSA, технически достижимы в период до 2025 года. Максимальный технологический потенциал всего парка мог бы разумно соответствовать эффективности демонстраций SuperTruck Министерства энергетики США в 2014–2016 годах в период до 2030 года.

Фаза 1 США (2014–2017 гг.) И предлагаемые нормативные стандарты Фазы 2 (2018–2030 гг.), Технологический потенциал, технологический потенциал с увеличенной рекуперацией отходящего тепла (WHR) и демонстрации SuperTruck Министерства энергетики США.

Ожидаемое решение США по стандартам двигателей может быть единственной реальной мерой по значительному повышению эффективности дизельных двигателей на следующие 10–15 лет. По этой причине можно привести веские доводы в пользу того, что они должны продвигать технологические рамки настолько сильно, насколько это возможно на основе новых технологий повышения эффективности.И это решение имеет более широкие последствия для глобальных инноваций, поскольку одни и те же компании продают одни и те же двигатели повсюду. Индия также рассматривает стандарты эффективности двигателей для своих двигателей большой мощности. Те же высокоэффективные двигатели могут использоваться для дизельных грузовиков в Китае, Европе, Мексике и других странах, если в этих регионах будут действовать аналогичные, все более строгие правила.

Система дизельного двигателя | Renesas

Главный MCU RH850 / E2UH 16M 2048 К 400 373, 468 G4MH с LSDC, CAN / CAN FD 10 каналов, Ethernet 1 канал, внешняя шина, ICU * 2, SENT 20 каналов, ATU, GTM, A / D (SAR-AD 96 каналов / 4 блока, DS-ADC 38 каналов / 10 каналов, циклический AD 8 каналов / 1шт), RHSB 4 канала, DFE 20 каналов, Field-BIST, VMON, датчик температуры
RH850 / E2H 12М 1152 К 400 373, 468 G4MH с LSDC, CAN / CAN FD, 6 каналов, Ethernet 1 канал, внешняя шина, ICU * 2, SENT 20 каналов, ATU, GTM, A / D (SAR-AD 96 каналов / 4 блока, DS-ADC 38 каналов / 10 каналов, циклический AD 8 каналов / 1шт), RHSB 3ch, DFE 20ch, Field-BIST, VMON, датчик температуры
RH850 / E2M 768K 400 292, 373 G4MH с LSDC, CAN / CAN FD 5 каналов, Ethernet 1 канал, ICU * 2, SENT 17 каналов, ATU, GTM, A / D (SAR-AD 80 каналов / 4 блока, DS-ADC 26 каналов / 6 блоков, циклический AD 8 каналов / 1 блок) , RHSB 2ch, DFE 16ch, Field-BIST, VMON, датчик температуры
RH850 / E1M-S2 352К 240, 320 252, 304 G3MH с LSDC, CAN / CAN FD 4 канала, ICU * 2, SENT 6 каналов, ATU, A / D (SAR-AD 48 каналов / 2 блока, DS-ADC 8 каналов / 8 блоков), RHSB 2 канала, DFE 16 каналов, VMON
RH850 / E1L 192 К 160, 240 144, 176, 252 G3M с LSDC, CAN 4 канала, ICU * 2, ATU, A / D (SAR-AD 36 каналов / 2 блока, DS-ADC 2 канала / 2 блока), RHSB 1 канал, DFE 16 каналов, VMON
Дополнительный MCU RL78 / F15 128–512 КБ 10–32 000 24–32 48–144 16K Data Flash, таймер управления двигателем, RS-CAN lite, LIN, 10-битный 31-канальный АЦП, 8-битный ЦАП, компаратор, LVD * 1 , IE Bus
RL78 / F14 48–256 тыс. 4K — 20K 24–32 30–100 8K Data Flash, таймер управления двигателем, CAN, LIN, 10-битный 31-канальный АЦП, 8-битный ЦАП, компаратор, LVD * 1 , 150 ° C
RL78 / F13 16–128 тыс. 1–8 000 24–32 20–80 4K Data Flash, таймер управления двигателем, CAN, LIN, 10-битный АЦП, 20 каналов, LVD * 1 , 150 ° C

Газовые и дизельные двигатели | Chrysler Dodge Jeep Ram

округа Митчелл

Если вы подумываете о покупке нового автомобиля, сравните плюсы и минусы автомобилей с дизельным двигателем.Примите во внимание эти факты, чтобы выбрать между дизельным двигателем и бензиновым.



По данным Министерства энергетики США, дизельные двигатели обеспечивают на 30-35 процентов большую экономию топлива, чем сопоставимые бензиновые двигатели. Конструктивно дизельные двигатели работают с более обедненным процессом сгорания, сжигающим меньше топлива, чем при традиционном искровом зажигании. (бензиновый двигатель. Дизельное топливо также имеет более высокую плотность энергии, чем бензин, что означает, что для выработки такой же мощности требуется меньше топлива, что улучшает общую экономию топлива.


За последние десять лет цена на дизельное топливо в среднем почти на 14 центов больше за галлон, чем на неэтилированный бензин. На пике цены на дизельное топливо в среднем на 76 центов за галлон больше, чем на бензин. Исторически сложилось так, что дизельное топливо было дороже за галлон из-за более высоких налогов и экологических ограничений. В настоящее время при более низких ценах на топливо цена на дизельное топливо обычно на 25-50 центов больше за галлон, чем на бензин.

Еще одно преимущество бензина — доступность; есть определенные районы, где на станциях не обязательно есть дизельный насос.Это может снизить производительность водителей, если они будут тратить слишком много времени на поиск мест, где можно заправиться.


Преимущество дизельного двигателя в топливной эффективности, однако, также должно быть сопоставлено с его более высокой ценой. В грузовиках класса 3-4 дополнительные затраты на дизельный двигатель составляют от 5000 до 8000 долларов или больше, чем у его бензиновых аналогов. Разрыв цен на дизельное топливо / бензин почти удвоился за последние несколько лет благодаря технологиям доочистки выхлопных газов, разработанным в соответствии с правилами Агентства по охране окружающей среды (EPA) в отношении выбросов дизельных двигателей.Более прочные компоненты дизельного двигателя также влияют на их более высокую первоначальную стоимость.

Быстрый способ выяснить, сможете ли вы окупить изначально более высокую стоимость дизельного автомобиля, является использование этого практического правила: используйте точку разрыва в 30 000 миль в год. Выше этого числа дизельное топливо обычно имеет финансовый смысл. На пробеге 30 000 миль или ниже бензин — приемлемый и недорогой вариант. Выполните анализ стоимости топлива / сравнительный анализ для конкретного приложения вашего грузовика, чтобы рассчитать период окупаемости, чтобы оценить, будет ли дизельный двигатель обеспечивать экономию затрат в приемлемые сроки.

Со временем регулярное техническое обслуживание дизельного двигателя, как правило, будет стоить больше, чем бензинового двигателя. В дизельном двигателе есть компоненты, которых нет в бензиновом двигателе, или которые требуют более частого обслуживания.

Замена масла в дизельном двигателе стоит дороже и требуется чаще. Фильтры требуется менять чаще. Кроме того, получение доступа к двигателю и его компонентам может занять больше времени, что приведет к увеличению затрат на рабочую силу.

Бензиновые двигатели имеют более длительные интервалы замены моторного масла, свечей зажигания и охлаждающей жидкости двигателя.Запчасти обычно дешевле и доступнее.

Почему ожидается, что дизельные двигатели прослужат значительно дольше, чем сопоставимые бензиновые двигатели?

Дизельные двигатели имеют высокую степень сжатия и высокое давление в цилиндрах и, как следствие, требуют более прочных деталей двигателя — например, блоков и головок цилиндров, клапанов, коленчатого вала и поршней. Это необходимо для снижения более высоких температур двигателя и более высоких степеней сжатия, достигаемых в дизельном двигателе. Кроме того, выхлопная система дизельного двигателя переживет выхлопную систему газового двигателя, потому что выхлоп дизельного топлива не так агрессивен, как выхлоп бензинового двигателя.

Эффективность работы дизельного двигателя как еще один залог его долговечности. Дизель развивает более высокий крутящий момент на гораздо более низкой скорости, поэтому он работает на гораздо более низких оборотах [оборотов в минуту], больший процент времени, чем бензиновые двигатели. А более низкая частота вращения двигателя означает меньшее количество перемещений поршня вверх и вниз, уменьшение количества закрытий клапана и т. Д. Все это происходит много раз, но не так часто, как в бензиновом двигателе, и это влияет на общий срок службы.

Дизельный двигатель — более подходящий выбор, если тяговое усилие имеет решающее значение для вашей работы. Преимущество крутящего момента дизельных двигателей лучше подходит для подъема тяжелых грузов на крутые подъемы. Относительно высокая степень сжатия, необходимая для воспламенения дизельного топлива (дизельное топливо 17: 1 против бензина 9: 1), позволяет дизельному двигателю генерировать весь свой крутящий момент и мощность при более низких оборотах. Это дает вам больше мощности по сравнению с бензиновым двигателем, который вырабатывает больше мощности, чем быстрее он движется.

Несмотря на то, что это соответствует определенным требованиям, использование грузовика с бензиновым двигателем для буксировки тяжелых грузов в большинстве случаев приводит к значительному сокращению срока службы двигателя и увеличению расхода бензина.

Что лучше для перепродажи? Рынок понимает, что у грузовика с дизельным двигателем, пробегающего 150 000 миль, остается гораздо больший оставшийся срок службы, чем у грузовика с бензиновым двигателем с аналогичным пробегом. Следовательно, дизель требует более высокой цены.

Существует множество компаний и отраслей, которым на законных основаниях требуются дизельные грузовики для буксировки и увеличения полезной нагрузки.Многие из этих компаний меньше по размеру и, следовательно, имеют меньший бюджет автопарка — они будут искать подержанные автомобили. Это означает возможность привлечь более широкую базу покупателей, повысить спрос и, следовательно, получить более высокие премии.

Более длительный срок службы, более тяжелые детали, большая мощность = более высокая стоимость при перепродаже.

Источники:

http://www.worktruckonline.com/channel/fuel-management/article/story/2011/11/pros-and-cons-of-gas-vs-diesel-in-class-3- 4-trucks.aspx

http: // www.dummies.com/home-garden/car-repair/diesel-engines/the-pros-and-cons-of-diesel-engines/

https://auto.howstuffworks.com/diesel5.htm

Совершенно новый двигатель Ford EcoBlue — новый дизельный двигатель — чище, экономичнее, больше мощности, больше крутящий момент | Форд Европы

  • Ford представляет новый 2,0-литровый двигатель Ford EcoBlue; первый в новой линейке передовых дизельных двигателей Ford обеспечивает непревзойденный пакет топливной экономичности, производительности и качества.
  • Конструкция из чистого листа снижает трение с помощью инноваций, включая смещенный кривошип, ремень в масле и первое использование компанией Ford модульных распредвалов для повышения топливной экономичности на 13 процентов
  • Первый впускной коллектор Ford с зеркальным отображением и малоинерционный турбокомпрессор из материалов ракетных двигателей помогают обеспечить более чем на 20 процентов более низкий крутящий момент; улучшенная управляемость помогает водителям грузовых автомобилей легко справляться со сложными повседневными сценариями вождения
  • Стандартная обработка выхлопных газов с избирательным каталитическим нейтрализатором способствует улучшенному снижению выбросов NOX.Оптимизированная конструкция двигателя снижает излучаемый шум на 4 децибела на холостом ходу

Загрузить информационный бюллетень (pdf)

БИРМИНГЕМ, Великобритания, 26 апреля 2016 г. — Сегодня компания Ford представила первый новый усовершенствованный дизельный двигатель Ford EcoBlue, который с использованием передовых технологий и инновационного дизайна будет предлагать клиентам оптимизированную топливную экономичность и сниженные выбросы CO2 и NOX *.

Основываясь на лучших в отрасли характеристиках и технологиях отмеченных наградами бензиновых двигателей Ford EcoBoost, линейка дизельных двигателей Ford EcoBlue будет оснащать будущие легковые и коммерческие автомобили компании мощностью от 100 до 240 л.с.

Четырехцилиндровый 2,0-литровый Ford EcoBlue дебютирует в новых коммерческих автомобилях Transit и Transit Custom, предлагая непревзойденный пакет топливной экономичности, производительности и изысканности.

Управляемость улучшена за счет увеличения крутящего момента на 20% при 1250 об / мин по сравнению с исходящим 2,2-литровым дизельным двигателем TDCi эквивалентной мощности, что помогает водителям коммерческих автомобилей легко справляться со сложными повседневными сценариями вождения, такими как вождение в пробке или обгон медленно движущихся транспортных средств.Новый двигатель также улучшает качество легковых автомобилей в коммерческом сегменте, уменьшая излучаемый шум на 4 децибела на холостом ходу.

«Ford EcoBoost установил новый стандарт для бензиновых двигателей — меньших размеров, более эффективных и удивительно эффективных. Эта же навязчивая идея внедрять инновации для клиентов стоит за нашей новой линейкой дизельных двигателей Ford EcoBlue », — сказал Джим Фарли, председатель и главный исполнительный директор Ford of Europe. «Этот новый двигатель повышает топливную эффективность и снижает выбросы CO2 более чем на 10 процентов в Transit, являющейся частью самой продаваемой в Европе линейки коммерческих автомобилей, что снижает затраты для наших клиентов.”

Совершенно новая архитектура двигателя обеспечивает пониженное трение и чистую систему сгорания. Сложные процессы доочистки выхлопных газов обеспечивают сверхнизкие выбросы в соответствии со строгими стандартами Euro Stage VI, которые будут введены в сентябре 2016 года, требуя снижения выбросов NOx на 55% по сравнению со стандартами Euro Stage V.

Передовые технологии включают интегрированную систему впуска с первым применением Ford зеркального отображения для оптимизации дыхания двигателя; турбонагнетатель с низким моментом инерции, изготовленный из материалов ракетных двигателей, предназначенных для работы в условиях высоких температур; и совершенно новая система впрыска топлива под высоким давлением, которая более отзывчива, тише и обеспечивает более точную подачу топлива.

Разработанный командами инженеров Ford в Великобритании и Германии, новый универсальный 2,0-литровый двигатель Ford EcoBlue первоначально будет предлагаться в грузовых автомобилях мощностью 105, 130 и 170 л.с. Этот двигатель, способный развивать мощность более 200 л.с., позже будет использоваться в легковых автомобилях Ford вместе с новыми двигателями EcoBlue, в том числе 1,5-литровым вариантом.

Низкое трение, продуманное сгорание
Чистый лист нового 2,0-литрового двигателя Ford EcoBlue отличается множеством инноваций, снижающих трение и способствующих повышению топливной экономичности на 13 процентов, в том числе:

  • Конструкция кривошипа со смещением 10 мм, которая сводит к минимуму боковую нагрузку на поршень, уменьшая силу трения о стенки цилиндра уменьшенного четырехцилиндрового железного блока
  • Минимальные диаметры подшипников коленчатого вала
  • Ремень в масле для приводных ремней распределительного вала и масляного насоса
  • Оптимизированный клапанный механизм и полностью новый цельный модуль распределительного вала

Ford впервые использует новую зеркальную конструкцию портов для интегрированного впускного коллектора, которая точно контролирует поток воздуха в цилиндры — с потоком воздуха по часовой стрелке для цилиндров номер один и два, и обратным для цилиндров номер три и четыре. .

Такое симметричное расположение обеспечивает равномерное смешивание топлива и воздуха в камерах сгорания всех четырех цилиндров, помогая инженерам более тщательно контролировать процесс сжигания топлива двигателем. При точной настройке процесса сгорания в компьютерных экспериментах использовались измерения более чем 1400 факторов, которые влияют только на характеристики подъема клапана и синхронизации.

«Наша первая в истории конструкция впускного патрубка с зеркальным отображением в сочетании с оптимизированной компоновкой камеры сгорания помогает нам превращать топливо в энергию более эффективно, чем любой дизельный двигатель, который мы когда-либо производили», — сказал доктор.Вернер Виллемс, технический специалист Ford по системам сгорания.

Новые топливные форсунки способны производить до шести впрысков на одно событие сгорания, при этом каждый впрыск занимает всего 250 микросекунд (0,00025 секунды) и обеспечивает подачу 0,8 мг дизельного топлива, что эквивалентно крупинке сахара. Этот крошечный объем топлива впрыскивается через восемь конических отверстий диаметром 120 микрон каждое — шириной с человеческий волос.

Пьезоэлектрическая технология, в которой используются электрически чувствительные кристаллы для точного управления подачей топлива — обычно используемые в двигателях легковых автомобилей премиум-класса — встроена в корпус блока форсунки.Новые форсунки снижают уровень шума; минимальные потери энергии от топливного насоса; более отзывчивая и менее навязчивая работа Auto-Start-Stop; и коррекция калибровки в реальном времени для максимальной топливной экономичности.

Усовершенствованный турбонаддув
Совершенно новый компактный турбонагнетатель был специально разработан для подачи большего количества воздуха при более низких оборотах двигателя по сравнению с прежним 2,2-литровым двигателем TDCi, для легкости и безотлагательности во всем диапазоне оборотов и до 340 Нм крутящего момента при 1250 об / мин.

Аэродинамически усовершенствованное турбинное колесо, изготовленное из сплава Inconel, используемого в экстремальных температурных условиях, таких как ракетные двигатели, уменьшено в диаметре почти на 10 процентов. Рабочее колесо компрессора из аэрокосмического алюминия уменьшено в диаметре на 15%. Уменьшение инерции снижает инерцию и обеспечивает более быстрое ускорение при частоте вращения колес до 240000 об / мин, что способствует улучшению крутящего момента на низких оборотах.

«Один из важных факторов, который мы заметили из отзывов клиентов, — это растущая тенденция водителей« ползать »на своих дизельных автомобилях, включая сцепление, когда двигатель работает на холостом ходу, что делает снижение крутящего момента еще более важным», — сказал Пол Тернер, базовый специалист. технический лидер двигателей Ford of Europe.

Колеса компрессора

изготовлены из цельного материала, а не из литого, что улучшает допуски с точностью до двух или трех микрон — примерно размер одной бактерии — увеличивает срок службы и снижает уровень шума и вибрации. Новый привод турбокомпрессора заменяет червячный привод редуктором, который сокращает время отклика вдвое до 110 миллисекунд — или мгновение ока.

Новый двигатель будет с комфортом соответствовать будущим европейским требованиям к выбросам при поддержке первой стандартизированной системы избирательного каталитического восстановления Ford.Система плотно прилегает к задней части двигателя, что обеспечивает максимальную эффективность и отличные характеристики при холодном вождении. Канал рециркуляции отработавших газов с коротким контуром встроен в головку блока цилиндров, что способствует более компактной конструкции двигателя и помогает оптимизировать охлаждение газов.

Улучшенная доработка
2,0-литровый двигатель Ford EcoBlue станет первым дизельным двигателем для коммерческого транспорта от Ford, отвечающим критериям шума, вибрации и жесткости легкового автомобиля, что способствует повышению привлекательности вождения.

Новый двигатель на холостом ходу излучает вдвое меньше звуковой энергии, чем 2,2-литровый дизельный двигатель TDCi. Оптимизированная по шуму головка блока цилиндров, блок, усиливающая лестничная рама и масляный поддон специально разработаны для снижения чувствительности к активности внутри двигателя, а неплоские сопрягаемые поверхности тщательно спроектированы для обеспечения плотных уплотнений, улавливающих шум внутри двигателя.

«Базовая конструкция двигателя может действовать как дека для движений, происходящих внутри него, как звонок.Поэтому мы пытаемся разработать колокол, который не очень хорошо звонит », — сказал Доминик Эванс, специалист по NVH, Ford of Europe. «Мы разработали все компоненты этого двигателя, влияющие на шум, чтобы они работали тише и плавнее, что привело к созданию самых совершенных дизельных коммерческих автомобилей, которые когда-либо производил Ford».

Литой акустический кожух, обеспечивающий изоляцию головки блока цилиндров из пеноматериала, и передний кожух из звукопоглощающей стали, дополнительно предотвращают передачу шума двигателя в кабину, создавая более тихую среду вождения.Дополнительные меры, принятые для улучшения NVH, включают:

  • Анализ микрогеометрии зубьев шестерни до микронного уровня (0,001 мм) для достижения идеального зацепления для более плавной работы и менее высокочастотного свиста
  • Оптимизированный масляный насос с неравномерно расположенными лопатками, которые снижают частоту шума насоса, чтобы сделать его менее заметным для слушателя.
  • Усовершенствованные топливные форсунки со встроенными пьезостеками, программным обеспечением для смягчения шума и оптимизированным пилотным впрыском

Долговечность коммерческого автомобиля
Новый 2.0-литровый двигатель Ford EcoBlue соответствует высоким международным стандартам прочности грузовых автомобилей Ford для экстремального использования на самых разных рынках, включая Европу, США и Китай.
Эксплуатационные характеристики двигателя были проверены в ходе испытаний на долговечность, эквивалентных 5,5 миллионам км (3,4 миллиона миль), включая 400 000 км (250 000 миль), проведенных реальными клиентами, всесторонний анализ в лабораториях и на испытательных полигонах Ford, а также Оценка CAE на всех этапах разработки.

Масляная система, включая технические характеристики масла, размеры масляного поддона и фильтра, допуски на деформацию отверстия и характеристики поршневых колец, была разработана для продления срока службы масла, а не требующие обслуживания компоненты включают ремень распределительного вала, модуль распределительного вала и водяной насос.

«Мы разработали 2,0-литровый двигатель Ford EcoBlue с учетом отзывов клиентов со всего мира», — сказал Тернер. «Универсальная конструкция позволяет использовать один и тот же блок для приводов на передние и задние колеса, а сложная конструкция и технологии обеспечивают перспективную топливную экономичность и уровень выбросов.”

# #

* Заявленный расход топлива / энергии, выбросы CO2 и запас хода на электричестве измерены в соответствии с техническими требованиями и спецификациями Европейских правил (ЕС) 715/2007 и (ЕС) 692/2008 с последними поправками. Расход топлива и выбросы CO2 указаны для варианта автомобиля, а не для отдельного автомобиля. Применяемая стандартная процедура испытаний позволяет сравнивать различные типы транспортных средств и разных производителей. Помимо топливной экономичности автомобиля, поведение при вождении, а также другие нетехнические факторы играют роль в определении расхода топлива / энергии автомобилем, выбросов CO2 и запаса хода на электротяге.CO2 — основной парниковый газ, вызывающий глобальное потепление.

Изучите автомобильную инженерию у инженеров-автомобилестроителей

Вы когда-нибудь думали о грузовике с дизельным двигателем? Признаюсь, я никогда особо не задумывался об этом. Но чем больше я узнавал о дизеле и его преимуществах по сравнению с бензиновыми двигателями, тем больше у меня интереса вызывали дизельные двигатели.

Дизельный двигатель Ford Power Stroke. Источник: Engine Builder Magazine.

Дизельные двигатели известны своей прочностью.Это большие двигатели для больших автомобилей. Но если вы сделаете инвестиции, вы быстро оцените их превосходную долговечность и топливную экономичность. Итак, если вы хотите стать героем рабочего класса, попробуйте грузовик Super Duty Ford с прочным и надежным дизельным двигателем.

Мы перейдем к делу и скажем вам, что двигатель с турбонаддувом 6,7 л, выпущенный в 2019 году, является последним и лучшим дизельным двигателем Ford из когда-либо созданных. Мы рассмотрим все различные модели Power Stroke и выясним, почему именно 6.7L Turbo стал большим шагом вперед по сравнению со своими предшественниками.

Дизель и бензин

Двигатели

Если вы не знакомы, давайте кратко рассмотрим различия между дизельными и бензиновыми двигателями.

Схема, показывающая зажигание бензиновых, дизельных двигателей и двигателей HCCI. Источник: Capital Reman Exchange.

Оба являются двигателями внутреннего сгорания, которые преобразуют химическую энергию, хранящуюся в химических связях топлива, в механическую энергию.Механическая энергия перемещает поршни внутри цилиндров двигателя. Это, в свою очередь, приводит в движение колеса автомобиля. Химическая энергия преобразуется посредством серии небольших взрывов внутри двигателя (отсюда и «внутреннее сгорание»).

Бензиновые двигатели смешивают топливо с воздухом, сжимаемым поршнями, и, наконец, воспламеняются с помощью свечей зажигания. Дизельные двигатели сначала сжимают воздух, что приводит к его нагреву. (Это закон Бойля, помните? Из школьной химии? Давление прямо пропорционально температуре.) Топливо, впрыскиваемое в сжатый воздух, воспламеняется немедленно, свеча зажигания не требуется.

Топливо

Вы когда-нибудь заливали бензин в свой дизельный двигатель или наоборот? Судя по всему, каждый седьмой человек в какой-то момент своей жизни совершает эту ошибку. Источник: DrivingLine.

Дизель и бензин являются фракционными дистиллятами нефтяного масла. Хотя технические различия между ними немного сложно объяснить, суть в том, что дизельное топливо очищается для впрыска в сжатый воздух, а бензин заставляют сопротивляться воспламенению до появления искры.

Дизель содержит больше химической энергии, чем бензин, и обеспечивает лучшую экономию топлива в целом . Фактически, это одно из самых эффективных видов топлива, доступных сегодня. Эта эффективность также обусловлена ​​принципом работы дизельных двигателей. В то время как бензиновый двигатель просто отводит тепло в виде отработанной энергии через выхлопную трубу, дизельный двигатель может преобразовывать тепло в механическую энергию и использовать ее для питания автомобиля. Он обеспечивает гораздо больший крутящий момент, чем его бензиновый аналог.

Обычно пробег двигателя на 20–30% больше, чем у сопоставимого бензинового двигателя.Дизельные двигатели при определенных обстоятельствах могут даже превзойти экономию топлива гибридных бензиново-электрических транспортных средств.

Однако бензиновые двигатели способны развивать гораздо более высокие максимальные скорости. Это связано с тем, что в то время как дизельные двигатели должны ждать, пока воздух нагреется и воспламенится под давлением, свеча зажигания в бензиновом двигателе может быстро воспламенить топливо и преобразовать химическую энергию в механическую энергию с меньшим сжатием. Поскольку бензиновым двигателям требуется меньшая мощность сжатия, они обычно намного легче, что еще больше способствует их более высокой максимальной скорости.Вот почему бензиновые двигатели предпочтительны в некоммерческих автомобилях, таких как автомобили и мотоциклы.

Сегодня бензин дешевле дизеля. Это во многом объясняется высоким спросом на дизельное топливо среди коммерческих судоходных компаний, бытовых и промышленных генераторов, а также в качестве топочного мазута.

Источники: Авторемонт для чайников; Как это работает.

Двигатели с силовым ходом

Power Stroke — семейство двигателей, производимых компанией Ford с 1994 года.Это один из самых известных и популярных дизельных двигателей Ford. Ford Autoworks в Итаке, штат Нью-Йорк, описал Power Stroke как «критерий», который используют водители грузовиков для измерения мощности и производительности двигателей.

На протяжении многих лет было несколько версий, от оригинального 7.3L до 6.0L, составного турбо 6.4L, и совсем недавно 6.7L Turbo-Diesel Power Stroke. В конце статьи мы также рассмотрим двигатели 3,2 и 3,0 литра.

7.3L рабочий ход

Первые Power Stroke были результатом сотрудничества компаний Ford и Navistar, которые затем стали называться International Truck and Engine Corporation (ITEC).

Первым таким двигателем, появившимся на рынке, был 7.3L. Он по сей день известен как один из самых прочных и надежных дизельных двигателей, когда-либо производившихся.

Power Stroke 7,3 л. Источник: Автомобильный журнал Dust Runners.

Его технические характеристики следующие:

  • Мощность : 275 л.с.
  • Крутящий момент : 505–525 фунт-футов
  • Диаметр цилиндра : 4.11 «
  • Ход : 4,18″
  • Блок : железо
  • Головка : железо
  • Степень сжатия Коэффициент : 17,5: 1

Первоначально представленный в 1994 году в качестве ребрендинга Ford Navistar Турбодизель T444E V8, 7.3L остается предпочтительным выбором для тяги тяжелых грузов. На момент своего дебюта он был более мощным и экономичным, чем любой другой дизельный двигатель.

Однако новые стандарты выбросов вынудили Ford прекратить производство в 2003 году.На смену ему пришли 6.0L, а затем 6.4L, что наконец вдохновило Ford на прекращение сотрудничества с Navistar.

Источники: Truck Trend Network; Автомобильный журнал Dust Runners.

6.0L Рабочий ход

Двигатель с рабочим ходом 6,0 л от Ford и Navistar. Источник: Blackwater Engines.

Это был второй дизельный двигатель, который использовался в грузовиках Ford и фургонах серии E. В то время как 6.0L и 7.3L предлагались одновременно в 2003 году, в конечном итоге 7.3L было снято с производства.

По сравнению с 7.3L, 6.0L лучше справлялся со стандартами выбросов. Он использовался для Ford F-Series (2003–2007), Excursion (2003–2005) и Vans серии E (2004–2010). Его технические характеристики приведены ниже.

  • Мощность : 325 л.с. при 2800 об / мин
  • Крутящий момент : 570 фунт-фут при 1600 об / мин
  • Диаметр цилиндра : 3,74 дюйма
  • Ход : 4,13 дюйма
  • Блок : чугун
  • Головка : чугун
  • Степень сжатия Коэффициент : 18.0: 1

Рабочий ход 6,4 л

Печально известный 6.4L Power Stroke. Источник: Engine Builder Magazine.

Этот двигатель был представлен в 2008 году в ответ на более строгие нормы выбросов и некоторые вопросы, касающиеся надежности 6.0L.

  • Мощность : 350 л.с. при 3000 об / мин
  • Крутящий момент : 650 фунт-фут при 2000 об / мин
  • Диаметр цилиндра : 3,87 дюйма
  • Ход : 4,134 дюйма
  • Блок : чугун
  • Головка : чугун
  • Степень сжатия Коэффициент : 17.5: 1

Хотя он был тише и чище, чем его предшественник, оборудование с дополнительными выбросами значительно снизило экономию топлива и вызвало множество других механических проблем.

Долгие и непростые отношения

Ford и Navistar подошли к концу после того, как двигатели 6L и 6.4L Power Stroke были встречены огромным количеством негативных отзывов покупателей. Фактически, 6,4-литровый двигатель Power Stroke известен среди энтузиастов Ford как один из худших дизельных двигателей, когда-либо задуманных. Его было трудно обслуживать, а ремонт и некоторые проблемы (особенно с трещинами в поршнях) могли полностью разрушить двигатель, если не устранить их немедленно.

Midway Ford Company в Розвилле, Миннесота, ясно дала понять это. «Не покупайте ничего, кроме 6,7 л», — сказали они нам. «6L и 6.4L слишком хлопотны, даже не думайте о покупке, если вы не механик». Оба двигателя имеют множество проблем и по этой причине чрезвычайно дороги в обслуживании. «Если у вас нет много денег, 6,7 л — единственный вариант».

После ядовитой критики и народной реакции на проект 6.4L Ford отказался от Navistar и начал разработку собственных двигателей Power Stroke. Здесь мы рассмотрим некоторые из лучших двигателей Power Stroke, разработанных после Navistar.

6,7 л, рабочий ход

Несмотря на внешнее сходство, 6,7-литровый двигатель сильно отличается от 6-литрового и 6,4-литрового. Представленный в 2011 году и производимый компанией Ford, 6.7L оснащен системой впрыска Common Rail от Bosch и изготовлен из литого алюминия и чугуна с плотным графитом.Графитовый чугун обеспечивает отличную экономию веса, что делает этот двигатель более гладким и мощным. Он имеет больший диаметр цилиндра и ход поршня, чем 6.4L, но с немного меньшей степенью сжатия и более легкими головками. У него 4 толкателя на цилиндр, в то время как у 6.4L было только 2. В целом, 6.7L — это, пожалуй, самый мощный Power Stroke из когда-либо созданных.

В 6.7-литровом двигателе в качестве топливной форсунки используется система Common Rail высокого давления с ТНВД Bosch CP4.2 (форсунки с 8 отверстиями). CP4.2 отличается своей способностью создавать давление впрыска более 30 000 фунтов на квадратный дюйм.6.7L также оснащен системой рециркуляции охлаждаемых выхлопных газов, каталитическим нейтрализатором окисления дизельного топлива, специальным фильтром для дизельного топлива и системой каталитического нейтрализации выхлопных газов.

На протяжении всего срока службы 6,7-литровый двигатель оснащался двумя различными турбонагнетателями. Первым был Garrett GT32 SST, зарядное устройство с изменяемой геометрией без затворов. Этому турбонагнетателю не хватало мощности на низком уровне, и иногда он был склонен к сбоям из-за превышения скорости. С 2015 года на 6.7L используется турбонагнетатель Garrett GT37.Это зарядное устройство более надежно и может поддерживать большую мощность, чем GT32 SST. Хотя ни один из них не может полностью сравниться с выходной мощностью турбонагнетателя 6.4L, большинство водителей Ford согласятся, что их повышенная надежность того стоит.

Новейшая версия этого двигателя, 6,7-литровый турбодизельный двигатель Power Stroke, отличается компоновкой V-8 и следующими характеристиками:

  • Мощность : 450 л.с. при 2800 об / мин
  • Крутящий момент : 925 фунт-фут при 1600 об / мин
  • Диаметр цилиндра : 3.9 дюймов
  • Ход : 4,25 дюйма
  • Блок : чугун с уплотненным графитом (CGI)
  • Головка : литой алюминий с обратным потоком
  • Степень сжатия Коэффициент : 16,2: 1

Это последнее Версия 6.7L обеспечивает значительно улучшенный крутящий момент и мощность наряду с высочайшей топливной экономичностью, а также улучшенными характеристиками буксировки и полезной нагрузки. Что особенно впечатляет, так это то, что Ford добился этих улучшенных характеристик исключительно за счет точной настройки программного обеспечения управления двигателем, не внося никаких физических изменений в двигатель со времени предыдущей 6.Дизайн 7L.

В целом, 6.7L является обновлением предыдущих 6L и 6.4L почти во всех отношениях. Каждый дилер Ford, с которым мы разговаривали, говорил одно и то же: покупайте 6,7-литровый двигатель, даже не думайте о более старой модели. Он легче, прочнее, надежнее и эффективнее.

Источники: Автомобильный журнал Dust Runners; телефонное интервью с компанией Midway Ford (22.06.2020).

Дополнительная функция: двигатели с силовым ходом 3,2 л и 3,0 л

Силовой ход 3.2-литровый двигатель, ласково именуемый «Пума». Источник: Ford Authority.

Еще два двигателя Power Stroke были произведены после 6,7-литрового двигателя, оба были произведены компанией Ford без участия Navistar.

3,2-литровый двигатель Power Stroke — это рядный пятицилиндровый двигатель, который впервые появился на рынке в 2015 году. Он не является прямым преемником 6,7-литрового двигателя, а скорее представляет собой боковой сдвиг в функциональности, в большей степени ориентированный на грузовые фургоны среднего размера. Например, он используется в Ford Transit.

Чокка Форд из Квакертауна, штат Пенсильвания, рассказал нам о конкретных применениях этого двигателя.«3,2-литровый двигатель предназначен для грузовых автомобилей, и в основном это двигатель типа SUV», — сказали они.

Основанный на двигателе Ford Duratorq (представленный в 2000 году), 3,2-литровый двигатель был адаптирован для соответствия американским стандартам выбросов и продавался под маркой Power Stroke.

  • Мощность : 197 л.с. при 3000 об / мин
  • Крутящий момент : 350 фунт-фут при 2500 об / мин
  • Диаметр цилиндра : 3,54 дюйма
  • Ход поршня : 3,96 дюйма
  • Блок : чугун
  • Головка : алюминий
  • Степень сжатия Коэффициент : 15.8: 1

Оснащен системой впрыска Common-Rail высокого давления и пьезоинжекторами. Он оснащен турбонаддувом с изменяемой геометрией, масляным насосом с регулируемым расходом и литыми алюминиевыми поршнями с низким коэффициентом трения. Этот двигатель отличается отличной топливной экономичностью и улучшенным охлаждением в условиях высоких нагрузок.

Двигатель Power Stroke объемом 3,0 л, также известный как «лев». Источник: Fast Lane Truck.

3.0L Power Stroke Turbo-Diesel V6 был представлен для Ford F-150 в 2018 году.Хотя этот двигатель был доступен для Land Rover Discovery и Land Rover Range Rover с 2014 года, это был первый раз, когда F-150 — самый продаваемый пикап Ford — был оснащен дизельным двигателем. Технические характеристики 3.0L ниже:

  • Мощность : 250 л.с. при 3250 об / мин
  • Крутящий момент : 440 фунт-фут при 1750 об / мин
  • Диаметр цилиндра : 3,307 дюйма
  • Ход : 3,543 дюйма
  • Блок : железо с уплотненным графитом
  • Головка : алюминиевый сплав
  • Степень сжатия Коэффициент : 16.0: 1

Этот двигатель относительно небольшой, но при этом может похвастаться впечатляющей выходной мощностью и крутящим моментом. 3,0-литровый двигатель был задуман как аналог двигателя Ram 1500 EcoDiesel V6 средней грузоподъемности и известен своим балансом топливной экономичности, выходной мощности и производительности. Он может достигать 30 миль на галлон на шоссе.

Источники: официальные органы Ford; DieselHub; Трудолюбивые грузовики; телефонное интервью с Чокка Фордом (22.06.2020).

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *