Что такое размерность дизельного двигателя: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

Содержание

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы

[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проблемы с содержанием статьиПроверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Проблемы с содержанием статьиВозможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Дизельный двигатель

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

Содержание статьи

Принцип работы

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Поршни и свечи дизеляПоршни и свечи дизеля

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

Камеры сгорания дизельного двигателяКамеры сгорания дизельного двигателя

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в
цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизельного двигателяСистема питания дизельного двигателя

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

Насос-форсунка дизельного двигателяНасос-форсунка дизельного двигателя

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common RailСистема питания Common Rail

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Дизельный двигатель — принцип работы

                                                                                                          Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

 

 

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлы турбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Что такое дизель? Принцип работы, устройство и технические характеристики дизельного двигателя

Дизельные двигатели весьма распространены на легковых автомобилях. Многие модели имеют хотя бы один вариант в моторной гамме. И это без учета грузовиков, автобусов и строительной техники, где их применяют повсеместно. Далее рассмотрено, что такое дизель, конструкция, принцип работы, особенности.

Определение

Данный агрегат представляет собой поршневой двигатель внутреннего сгорания, функционирование которого основано на самовоспламенении распыленного топлива от нагрева либо сжатия.

Что такое дизель

Особенности конструкции

Бензиновый двигатель имеет те же конструктивные элементы, что и дизель. Схема функционирования в целом также аналогична. Отличие состоит в процессах формирования топливовоздушной смеси и ее сгорания. К тому же дизельные моторы отличаются более прочными деталями. Это обусловлено примерно вдвое более высокой степенью сжатия, чем у бензиновых двигателей (19-24 против 9-11).

Классификация

По конструкции камеры сгорания дизели подразделяют на варианты с раздельной камерой сгорания и с непосредственным впрыском.

В первом случае камера сгорания отделена от цилиндра и соединена с ним каналом. При сжатии поступающий в камеру вихревого типа воздух закручивается, что улучшает смесеобразование и самовоспламенение, которое начинается там и продолжается в основной камере. Дизельные двигатели данного типа ранее были распространены на легковых автомобилях в связи с тем, что они отличались пониженным уровнем шума и большим диапазоном оборотов от рассмотренных далее вариантов.

Не заводится дизель

В дизельных двигателях с непосредственным впрыском камера сгорания находится в поршне, а топливо подается в надпоршневое пространство. Такая конструкция изначально использовалась на низкооборотных моторах большого объема. Они отличались высоким уровнем шума и вибраций и низким расходом топлива. Позднее, с появлением топливных насосов высокого давления с электронным управлением и оптимизацией процесса сгорания, конструкторы достигли стабильной работы при диапазоне до 4500 об./мин. К тому же возросла экономичность, снизилась шумность и уровень вибраций. Среди мер по уменьшению жесткости работы – многостадийный предвпрыск. Благодаря этому двигатели данного типа получили в последние два десятилетия обширное распространение.

Дизель мотор

По принципу функционирования дизели подразделяют на четырехтактные и двухтактные, как и бензиновые моторы. Их особенности рассмотрены далее.

Принцип функционирования

Чтобы понимать, что такое дизель и чем обусловлены его функциональные особенности, необходимо рассмотреть принцип работы. Приведенная выше классификация поршневых ДВС основана на количестве тактов, входящих в рабочий цикл, которые выделяют по величине угла поворота коленчатого вала.

Следовательно, рабочий цикл четырехтактных двигателей включает 4 фазы.

  • Впуск. Происходит при повороте коленвала от 0 до 180°. При этом воздух проходит в цилиндр через открытый на 345-355° впускной клапан. Одновременно с ним во время поворота коленвала на 10-15° открыт выпускной клапан, что называют перекрытием.
  • Сжатие. Поршень, двигаясь вверх при 180-360°, сжимает воздух в 16-25 раз (степень сжатия), а впускной клапан закрывается в начале такта (при 190-210°).
  • Рабочий ход, расширение. Происходит при 360-540°. В начале такта до достижения поршнем верхней мертвой точки топливо подается в горячий воздух и воспламеняется. Это особенность дизельных двигателей, отличающая их от бензиновых, где происходит опережение зажигания. Выделяющиеся при этом продукты горения толкают поршень вниз. При этом время сгорания топлива равно времени его подачи форсункой и длится не дольше продолжительности рабочего хода. То есть при рабочем процессе давление газов постоянно, вследствие чего дизели развивают больший крутящий момент. Также важной особенностью таких моторов является необходимость обеспечения избытка воздуха в цилиндре, так как пламя занимает небольшую часть камеры сгорания. То есть отличается пропорция топливовоздушной смеси.
  • Выпуск. При 540-720° поворота коленвала открытый выпускной клапан поршень, двигаясь вверх, вытесняет выхлопные газы.
Характеристики дизеля

Двухтактный цикл отличается укороченными фазами и единым процессом газообмена в цилиндре (продувкой), происходящей между концом рабочего хода и началом сжатия. При движении поршня вниз продукты горения удаляются через выпускные клапаны или окна (в стенке цилиндра). Позже открываются впускные окна для поступления свежего воздуха. Когда поршень поднимается, все окна закрываются, и начинается сжатие. Чуть ранее достижения ВМТ впрыскивается и воспламеняется топливо, начинается расширение.

Расход топлива дизель

Из-за сложности обеспечения продувки вихревой камеры двухтактные моторы бывают только с непосредственным впрыском.

Производительность таких двигателей выше в 1,6-1,7 раз, чем характеристики дизеля четырехтактного типа. Ее прирост обеспечивается вдвое более частым осуществлением рабочих ходов, но частично сокращается из-за их меньшей величины и продувки. Вследствие удвоенного количества рабочих ходов двухтактный цикл особо актуален в случае невозможности увеличения частоты вращения.

Основной проблемой таких двигателей является продувка из-за ее непродолжительности, что невозможно компенсировать без снижения эффективности за счет укорочения рабочего хода. К тому же невозможно разделить выхлоп и свежий воздух, из-за чего часть последнего удаляется с отработанными газами. Данную проблему можно решить путем обеспечения опережения выпускных окон. В таком случае газы начинают удаляться до продувки, и после закрытия выпуска цилиндр дополняется свежим воздухом.

К тому же при использовании одного цилиндра возникают сложности с синхронностью открытия/закрытия окон, поэтому существуют двигатели (ПДП), в которых каждый цилиндр имеет два поршня, движущихся в одной плоскости. Один из них контролирует впуск, другой – выпуск.

По механизму осуществления продувку подразделяют на щелевую (оконную) и клапанно-щелевую. В первом случае окна служат и впускными и выпускными отверстиями. Второй вариант предполагает их использование в качестве впускных отверстий, а для выпуска служит клапан в головке цилиндра.

Обычно двухтактные дизели применяют на тяжелых транспортных средствах вроде кораблей, тепловозов, танков.

Топливная система

Топливная аппаратура дизельных двигателей существенно сложнее, чем у бензиновых. Это объясняется высокими требованиями к точности подачи топлива по времени, количеству и давлению. Основные компоненты топливной системы – ТНВД, форсунки, фильтр.

Тест-драйвы дизелей

Широко применяется система подачи топлива с компьютерным управлением (Common-Rail). Она впрыскивает его двумя порциями. Первая из них маленькая, служащая для повышения температуры в камере сгорания (предвпрыск), что позволяет снизить шум и вибрации. К тому же данная система повышает на малых оборотах крутящий момент на 25%, снижает расход топлива на 20% и содержание сажи в выхлопных газах.

Топливо для дизеля

Турбонаддув

На дизельных двигателях очень широко применяют турбины. Это объясняется более высоким (в 1,5-2) раза давлением выхлопных газов, которые раскручивают турбину, что позволяет избежать турбоямы, обеспечив наддув с более низких оборотов.

Дизель схема

Холодный запуск

Можно найти множество отзывов о том, что при отрицательных температурах не заводится дизель. Сложность запуска таких моторов в холодных условиях обусловлена тем, что для этого требуется больше энергии. Для облегчения процесса их оснащают предпусковым подогревателем. Данное устройство представлено свечами накаливания, размещенными в камерах сгорания, которые при включении зажигания подогревают воздух в них и работают еще в течение 15-25 секунд после запуска для обеспечения стабильности работы непрогретого мотора. Благодаря этому дизели заводятся при температурах -30…-25 °С.

Особенности обслуживания

Для обеспечения долговечности при эксплуатации необходимо знать, что такое дизель и как его обслуживать. Относительно невысокая распространенность рассматриваемых двигателей в сравнении с бензиновыми объясняется в том числе более сложным обслуживанием.

Прежде всего это касается топливной системы высокой сложности. Из-за этого дизели крайне чувствительны к содержанию в топливе воды и механических частиц, а ее ремонт дороже, как и двигателя в целом в сравнении с бензиновым того же уровня.

В случае наличия турбины также высоки требования к качеству моторного масла. Ее ресурс обычно составляет 150 тыс. км, а стоимость высока.

В любом случае на дизельных двигателях менять масло следует чаще, чем на бензиновых (в 2 раза по европейским нормам).

Как было отмечено, у данных моторов встречаются проблемы холодного запуска, когда при низких температурах не заводится дизель. В некоторых случаях это вызвано использованием неподходящего топлива (в зависимости от сезона на таких двигателях применяют различные сорта, так как летнее топливо при низких температурах застывает).

Эксплуатационные качества

К тому же многим не по душе такие качества дизельных моторов, как меньшие мощность и диапазон рабочих оборотов, более высокий уровень шума и вибраций.

Бензиновый двигатель действительно обычно превосходит в производительности, в том числе и литровой мощности, аналогичный дизель. Мотор рассматриваемого типа при этом имеет более высокий и ровный график крутящего момента. Повышенная степень сжатия, обеспечивающая больший крутящий момент, вынуждает применять более прочные детали. Так как они тяжелее, снижается мощность. К тому же это сказывается на массе двигателя, а следовательно, и автомобиля.

Небольшой диапазон рабочих оборотов объясняется более длительным возгоранием топлива, вследствие чего на высоких оборотах оно не успевает догореть.

Повышенный уровень шума и вибраций вызывает резкое нарастание давления в цилиндре при воспламенении.

Основными достоинствами дизелей считают более высокую тяговитость, экономичность и экологичность.

Тяговитость, то есть высокий крутящий момент на малых оборотах, объясняется сгоранием топлива по мере впрыска. Это обеспечивает большую отзывчивость и облегчает эффективное использование мощности.

Экономичность обусловлена как низким расходом, так и тем, что топливо для дизеля дешевле. К тому же возможно использовать в качестве него низкосортные тяжелые масла благодаря отсутствию строгих требований к испаряемости. А чем топливо тяжелее, тем выше эффективность мотора. Наконец, дизели работают на бедных смесях в сравнении с бензиновыми моторами и при высокой степени сжатия. Последнее обеспечивает меньшие потери тепла с отработанными газами, то есть большую эффективность. Все данные меры снижают расход топлива. Дизель, благодаря этому, тратит его на 30-40% меньше.

Экологичность дизелей объясняется тем, что в их выхлопных газах ниже содержание окиси углерода. Это достигается применением сложных систем очистки, благодаря чему сейчас бензиновый двигатель соответствует тем же экологическим нормам, что и дизель. Мотор такого типа ранее значительно уступал бензиновому в данном отношении.

Применение

Как понятно из того, что такое дизель и каковы его характеристики, такие моторы наиболее подходят для тех случаев, когда необходима высокая тяга на низких оборотах. Поэтому ими оснащают почти все автобусы, грузовики и строительную технику. Что касается частных транспортных средств, среди них такие параметры наиболее важны для внедорожников. Благодаря высокой экономичности данными моторами оснащают и городские модели. К тому же они удобнее в управлении в таких условиях. Тест-драйвы дизелей свидетельствуют об этом.

Дизельный двигатель: особенности, преимущества, функции

Современные автолюбители обладают большими запросами к технической комплектации транспортного средства. Наряду с экономичностью и долгим сроком эксплуатации сегодня их интересует и наличие дизельного двигателя. Не секрет, что в последние годы на смену привычным бензиновым моторам пришли усовершенствованные дизельные приборы. Но что же представляет из себя дизельный двигатель, какие отличительные особенности и виды он имеет? Об этом мы и поговорим детальнее в данном материале.

Дизельный двигатель – это мотор внутреннего сгорания, который работает в режиме самостоятельного воспламенения при контакте со средой. Первый дизель появился на свет еще в 1897 году. Тогда процесс его функционирования зависел от применения на практике большого количества сжатого воздуха. В отличие от своего предшественника современный агрегат представляет собой компактный прибор, оказывающий влияние на многие показатели работы автомобиля. От качества и вида выбранного вами прибора зависит как мощность машины, так и ее потенциальный ресурс.

 

Виды современных двигателей: HDI, TDI и SDI моторы

 

Дизельные двигатели классифицируются по нескольким признакам. Для начала разберем, что означает аббревиатура в их названиях:

  1. Дизельный двигатель HDI – это собственная разработка крупной автомобильной компанией Peugeot, которая была запатентована еще несколько лет назад. Суть данной технологии сводится к минимизации затрат на техническое обслуживание транспортного средства. Владелец такого мотора может не опасаться возникновения неполадок и проверять состояние своего мотора один раз за 25000-35000 километров пробега. Также при наличии двигателя HDI автолюбитель может не беспокоиться о замене ремней ГРМ. Мотор в состоянии работать даже на холостых оборотах. Сегодня двигатели данной марки пользуются небывалым спросом на рынках многих европейских стран.
  2. Дизельный двигатель TDI – устройство, которое впервые было разработано и внедрено на территории всемирно известного концерна Volkswagen. Двигатель изготовлен с учетом механизма равномерного впрыска и системы турбунаддува. Такие показатели позволяют машине достичь еще большей мощности, имея достаточно высокий коэффициент воздействия. Главной особенностью работы мотора является экологичность и полная чистота выхлопа. Изделия легки в ежедневной эксплуатации: они могут работать в различных климатических условиях.
  3. Дизельный двигатель SDI считается наиболее экономичным вариантом. Современные системы common rail работают по тому же принципу. Они управляются блоком электронного управления, который открывает каждый инжектор электронно, а не механически. Эта технология была детально разработана общими усилиями компаний Magneti Marelli, Centro Ricerche Fiat и Elasis. После того, как Fiat разработал дизайн и концепцию системы, она была продана немецкой компании Robert Bosch GmbH для разработки массового продукта. Это оказалось большим просчетом Fiat, поскольку новая технология стала очень выгодна, но в то время итальянский концерн не имел финансовых ресурсов для завершения работ. Тем не менее, итальянцы первые применили систему common rail в 1997 году на Alfa Romeo 156 1.9 JTD и только потом она появилась на Mercedes-Benz C 220 CDI

 

Виды дизельных двигателей: особенности конструкции камеры сгорания

 

Также дизельный двигатель можно классифицировать в зависимости от того, какую комплектацию имеет камера внутреннего сгорания. К первому типу можно отнести двигатели, которые имеют совместную камеру. В них приятно заливать топливо через небольшой резервуар, расположенный возле поршня. На сегодняшний день они подверглись процессу усовершенствования за счет открытия двухступенчатого впрыска и внедрения электронного управления работой. Сейчас моторы с одной камерой могут функционировать с мощностью в 4500 и более оборотов в одну минуту.

Второй вид включает такое понятие, как вихрекамерные дизельные двигатели. Они встречаются в комплектации легковых авто, а их особенность заключается в наличии разделенной на несколько частей камеры сгорания. В данном случае процесс подачи топлива разнится. Сначала он поступает во вспомогательную камеру, а потом – в цилиндр.

И, наконец, последний вид двигателей – это предкамерные устройства. Их популярность довольно низка из-за наличия форкамеры – прибора, который соединяет цилиндры с каналами.

 

Виды двигателей: необходимость использования насосов

 

После разработки первого насоса, работающего на топливе, специалисты ввели в обиход еще одну классификацию. Исходя из нее, дизельный двигатель бывает двух типов: тот, который использует насосный механизм (ТНВД), и тот, который использует аккумуляторный механизм. Первый вид агрегатов работает за счет соединения отдельно взятой секции насоса с одной форсункой. Второй предполагает отсутствие соединения, как такового. В этом случае топливо передается благодаря насосу во встроенный аккумуляторный блок, который затем обеспечивает полную наполняемость форсунок.

Дизельные двигатели

Французский ученый С. Карно в 1824 году создал основы термодинамики. В этой работе он, в числе многого другого, утверждал, что заставить тепловую машину работать наиболее экономично можно, доводя рабочее тело до температуры вспышки топлива сжатием. Фактически он сформулировал принцип, на котором работают дизельные двигатели. Оставалось только взять и сделать такой двигатель. Но этого пришлось ждать еще несколько десятков лет.

В 1892 году немецкий инженер Рудольф Дизель получает патент на первый двигатель (показан на рисунке), работающий на сжатии воздуха до температуры вспышки. В 1987 году первый «дизель-мотор» (так немцы называют двигатель с воспламенением от сжатия) заработал и доказал свою эффективность.

По сравнению с «отто-мотором» (бензиновый двигатель со свечами зажигания) новый двигатель был более тяжелым и поначалу не внушал большого энтузиазма. Но только поначалу. Устройство дизельного двигателя первых образцов включало воздушный компрессор для впрыскивания топлива.

Рудольф Дизель

Сам Дизель вначале предполагал применить совсем уж экзотический вариант: угольная пыль. Смесь угольной пыли и воздуха, конечно, способна работать в двигателе, но за сколько часов абразивные частицы съедят кольца, поршни, седла и тарелки клапанов, об этом как-то не подумали. Да и саму угольную пыль получить не так просто.

Из-за тяжелого компрессора двигатель оказывалось невозможно применить на наземном транспорте. Но в работе он расходовал так мало горючего и работа его была настолько устойчивой, что отказаться от него было уже невозможно. Расчеты показывали, что от двигателя можно ожидать значительно большую мощность, если решить проблему с подачей топлива.

У инженеров возникла идея заменить компрессор плунжерным насосом. Качать топливо в жидком виде было чрезвычайно выгодно, на это уходит гораздо меньше энергии, а насос можно сделать совсем небольшим. Однако, изготовить плунжерную пару было не так просто. Дело в особой точности изготовления — расстояние между деталями составляет 2-3 микрона.

Все же дизелям нашлась работа. Впервые они были установлены на немецких подводных лодках еще при кайзере Вильгельме. (Возможно, с этим как раз связано темная история исчезновения самого изобретателя, утонувшего в Ла-Манше по дороге в Англию.)

В 1920 году Роберт Бош наконец, получает качественный плунжерный насос. В цилиндры двигателя научились подавать больше топлива. Теперь обороты дизельного двигателя и его удельная мощность, становятся достаточными для установки на автотранспорте. Вместе с насосом Бош разрабатывает и очень удачную форсунку для топлива.

Дизельный двигатель

Сгорание топлива в дизельном двигателе

Проще всего понять, как работает дизельный двигатель, если посмотреть на сгорание топлива в нем. В дизелях используется тяжелое топливо. Это означает, что двигатель внутреннего сгорания такого типа может работать на керосине (известном как солярка), мазуте, сырой нефти, и даже на некоторых растительных маслах.

Все эти виды топлива более калорийны, чем бензин. Так что, рабочая температура дизельного двигателя заметно выше, чем у бензинового. Но тяжелые виды топлива горят хуже, чем бензин, медленнее и трудно поджигаются. Для их воспламенения требуется большая степень сжатия, воздушно-топливная смесь должна нагреваться до 700-800°С.

Вязкость любого из дизельных видов топлива, даже в подогретом состоянии, выше бензиновой, а распылять его необходимо до мельчайшего состояния, особенно в быстроходных дизелях. Еще экспериментальный двигатель Дизеля работал при впрыске топлива под давлением не менее 50 бар (атм), а практический двигатель требует 100-200 бар.

Однако, у тяжелых калорийных топлив есть свое преимущество перед бензином. Давление в цилиндре дизеля практически постоянно на всем такте расширения, поэтому крутящий момент у них весьма значителен и стабилен. Благодаря постоянному давлению, угол опережения зажигания также остается постоянным и регулировки не требует. Ресурс дизельного двигателя больше, чем у бензинового. Есть области, где дизель практически незаменим, например в сельскохозяйственном тракторе.

Дизельный двигатель

Разновидности дизельных двигателей

Принцип действия дизельного двигателя для всех из них одинаков: сначала производится сжатие свежего заряда рабочего тела (воздуха), затем впрыскивается топливо. От высокой температуры смесь воспламеняется и сгорает, поднимая давление. Под его действием поршень двигается обратно и в нижней точке выпускной клапан цилиндра открывается, выпуская отработанный газ. В основном, это углекислый газ, дизельные двигатели экологически чище бензиновых.

Камеры сгорания дизелей могут выполняться непосредственно в днище поршня — там делается выемка особой формы — или в ряде случаев используют предкамеры (или форкамеры, как это говорят на родине двигателя). Первый вариант — самый экономичный, второй считался оптимальным в прежние годы. Сейчас, когда экономичность, во многих случаях, считается решающей, от предкамерных вариантов снова отказываются.

Рабочий процесс в дизеле может протекать, как и в бензиновом двигателе, в два или четыре такта. Подавляющее большинство дизелей — четырехтактные. Двухтактные проще реверсировать, поэтому они распространены на морских судах, где применяется жесткая связь с гребным валом. Камеры сгорания в двухтактных дизелях не разделяются из-за очевидных проблем с продувкой форкамеры.

Конструкция дизельного двигателя зависит от его мощности и назначения. Наиболее мощные двигатели, применяемые на судах и некоторых электростанциях, имеют крейцкопф — устройство для снижения боковых сил на поршень. Все мощные дизели имеют сложно устроенное дно, потому, что подвергаются высокой температуре.

Дизельный двигатель

Часть, обращенная в цилиндр, делается стальной, а остальная часть поршня (юбка) — алюминиевой. Кроме того, в поршне сделаны канавки для системы масляного охлаждения.

Типы дизельных двигателей различаются и по расположению цилиндров. Бывает рядовое, V-образное и даже такое, при котором цилиндры располагаются с разворотом на 180 градусов. Это зависит от тех условий, которые имеются на месте установки двигателя. Например, на современном грузовике или автобусе, скорее всего, будет применен двухрядный дизель, установленный под полом кабины водителя. Как устроен дизельный двигатель, будет зависеть и от наличия наддува.

Турбонаддув дизелей

Мощность дизельного двигателя, без увеличения расхода топлива, можно повысить при помощи турбокомпрессора. Тогда можно использовать еще неплохой кусочек диаграммы цикла Карно. Эксплуатация дизельного двигателя с турбокомпрессором имеет то преимущество, что используя энергию выхлопных газов можно раскрутить турбину, и на том же валу установить другую турбину — компрессор.

Этот компрессор будет нагнетать воздух, поступающий через впускной коллектор, увеличится заряд воздуха в цилиндрах, и, таким образом, мощность двигателя заметно возрастет. (Работу таких двигателей легко узнать по характерному свисту в момент раскручивания турбины.)

Принцип турбонаддува

Плюсы и минусы дизелей

Преимущества дизельного двигателя — это высокий и постоянный крутящий момент в сочетании с высокой экологичностью выхлопных газов (это относится, правда, только к современным двигателям). Также вне конкуренции их высокий КПД, самый высокий среди ДВС. Известны дизели (MAN) дающие свыше 50%, (что считалось «теоретическим» максимумом). Там использован максимум всех современных достижений. Экономичность достигает до 40%, если провести сравнение с бензиновыми.

Проблемы дизельных двигателей, а без них техники не бывает, заключаются в тяжелом пуске, из-за высокой степени сжатия (до 25 в современных двигателях), на автомобилях приходится ставить мощный стартер и аккумулятор. Большая точность изготовления деталей насосов высокого давления и форсунок затрудняет обслуживание.

Дизели крайне чувствительны к механическим загрязнениям топлива, для очистки которого приходится применять даже центрифугу в составе топливной аппаратуры. При равном объеме в литрах, дизельный двигатель уступает бензиновому по мощности, при равной мощности дизель тяжелее. Дизельный двигатель требует более качественных сплавов для своего изготовления и заметно дороже бензинового.

И все же, сравнивая преимущества и недостатки дизельного двигателя, можно сделать выбор в пользу дизеля. Особенно этому способствует технический прогресс в области электроники и блоков управления двигателями. Система «общая магистраль» (common rail) и электромагнитные форсунки позволяет сильно упростить ТВНД, а блок управления доводит экономию топлива до максимума, поскольку работает на любых переходных режимах и успевает все отследить.

Дизельный двигатель

Дизельный двигатель — двигатель внутреннего сгорания, в котором:
— сжатию подвергается воздух, температура которого повышается до 600-700°С.
— топливо воспламеняется при соприкосновении с раскаленным воздухом.

Дизели ставят только на грузовики. Многие современные легковые автомобили имеют дизельные двигатели, причем, например, в Европе люди даже предпочитают дизели бензиновым двигателям.

Дизельный двигатель менее мощный, чем бензиновый. При современном уровне технологий чаще оказывается наоборот. Современный дизельный двигатель может превосходить бензиновый по мощности, не говоря уже о крутящем моменте, который обеспечивает эластичность и удобство управления разгоном.

Дизельные двигатели эффективны только при большом объеме. Для дизельного двигателя, точно так же, как и для бензинового, не существует ограничений по объему. Сейчас выпускаются автомобили с объемом дизельного двигателя 1,1; 1,3 литра, и даже мотоциклы с дизельным двигателем объемом 0,6 литра.

Даже если дизель мощнее, за счет своего веса он проигрывает по характеристикам бензиновому. Сейчас для дизельных двигателей применяются те же материалы, что и для бензиновых, поэтому они ненамного тяжелее.

Дизельный двигатель хуже заводится зимой. Если не экономить деньги на свечах накаливания и зимнем дизтопливе, то он будет запускаться в любой мороз с такой же легкостью.

Дизельный двигатель с турбиной расходует больше топлива. Как это ни парадоксально, но турбина в дизельном двигателе, в отличие от бензинового, снижает расход топлива. Это объясняется резко возрастающим крутящим моментом, который позволяет управлять машиной более спокойно.

Дизельный двигатель необходимо долго прогревать. Если прогревать дизельный двигатель регулярно, то на клапанах остаются остатки нагара и смол, которые при накоплении могут привести к неплотному прилеганию клапана к седлу и даже его стопорению. Но, тем не менее, турбодизели нуждаются в недолгом прогреве на холостом ходу для избежания поломок турбины.

Дизельный двигатель намного сложнее в обслуживании и ремонте. Дизельный двигатель по своей конструкции намного проще бензинового, так как в нем воспламенение происходит не от искры, производимой свечой зажигания, а от сжатия смеси в цилиндре. А так как простые конструкции всегда надежнее, то поломки этого типа двигателя происходят намного реже. В обслуживании и ремонте дизельные двигатели также намного проще по понятной причине.

Дизельный двигатель чрезвычайно шумный. Дизельный двигатель, оснащенный хорошим глушителем и современной системой впуска работает немного громче бензинового, но в большинстве случаев звук работы современных бензиновых и дизельных двигателей практически невозможно различить.

Любой дизель требует хорошего топлива. Во-первых, многие дизельные двигатели, особенно атмосферные, абсолютно не требовательны к топливу. А во-вторых даже на самый прихотливый дизель можно поставить фильтр-водоотделитель и фильтр твердых частиц, которые позволят заправлять автомобиль топливом любого качества.

Бензиновые двигатели все же надежнее – они лучше проверены. Это не так. Дизельные двигатели в среднем имеют ресурс на 40-50% больший, чем у бензинового двигателя.

В дизеле бесполезно применять сложную электронику. Дизельный двигатель допускает применение в нем любых сложных систем. Так, в современном дизельном двигателе применяются такие системы, как электронноуправляемые форсунки, общая аккумуляторно-возвратная топливная рампа Common Rail и другие.

Форсировать дизельный двигатель невозможно. Да, дизели хуже поддаются тюнингу, чем бензиновые двигатели, но поднять мощность в 1,5 раза без особого прироста расхода топлива все же возможно.

Автоматическая коробка передач и дизель несовместимы. Дизельный двигатель стыкуется с автоматической коробкой передач даже лучше бензинового за счет более высокого крутящего момента, который лучше приводит в действие гидротрансформатор.

Выхлоп дизельного двигателя сильнее загрязняет окружающую среду. При применении каталитических нейтрализаторов, рециркуляции выхлопных газов и сажевого фильтра выхлоп дизельного двигателя может соответствовать самым жестким экологическим нормам.

Дизельная машина дешевле бензиновой. При равном уровне оснащения машина с дизельным двигателем будет стоить дороже бензиновой за счет применения более дорогих электронных и очистных систем, но ее эксплуатация обойдется дешевле.

Вибронагруженность дизеля слишком высока. При четном количестве цилиндров в одном ряду вибронагруженность дизельного двигателя вполне приемлема, но если наоборот – то это утверждение становится правдивым.

В дизельный двигатель заливается такое же масло, как и в бензиновый. Для дизелей лучше использовать специальное масло, причем стоит внимательно изучить, для каких именно типов дизелей оно предназначено.

Популярные мифы

Популярные факты

Популярные советы

Популярные сленг

Как работают дизельные двигатели?

Крис Вудфорд. Последнее обновление: 29 января 2020 г.

Вы когда-нибудь смотрели в изумлении, когда гигантский грузовик медленно ползет вверх по холму? Возможно нет! Такие вещи случаются каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднял против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться То, что ты видишь, довольно примечательно.Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но они генерируют больше энергии, более эффективно, работая немного по-другому. Давайте возьмем пристальный взгляд!

Фото: дизельные двигатели (как в этом железнодорожном локомотиве) идеально подходят для тяги тяжелых поездов. Это великолепно сохранившийся (и отлично отполированный!) Британский железнодорожный класс 55 («Deltic»), номер 55022, названный Royal Scots Grey 1960 года.Вот картинка из Дизельный двигатель Napier Deltic, который приводит его в действие.

Что такое дизельный двигатель?

Фото: типичный дизельный двигатель (из пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Как и бензиновый двигатель, дизельный двигатель — это тип внутреннего сгорания. двигатель. Горение это еще одно слово для горения, и внутреннее значит внутри, поэтому двигатель внутреннего сгорания просто тот, где топливо сгорает внутри главной части двигателя (цилиндры) где производится энергия.Это очень отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровом двигателе есть большой пожар на одном конце котел, который нагревает воду для приготовления пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень назад и вперед для перемещения колес. Это внешний сгорание, потому что огонь находится за пределами цилиндра (действительно, обычно 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих цилиндров.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно течь откуда он производится в цилиндр: все происходит одинаково место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Как дизельный двигатель отличается от бензинового двигателя?

Бензиновые и дизельные двигатели работают как от внутреннего сгорания, но в немного по-другому.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, что делает его взрывоопасным, и небольшая электрическая искра от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерируя энергию, которая толкает поршень вниз по цилиндру и (через коленвал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но проще.Во-первых, воздух допускается в цилиндр и поршень сжимает его, но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжатый примерно до десятой части своего первоначального объема. Но в дизеле двигатель, воздух сжимается на что-нибудь от 14 до 25 раз. Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали чем горячее в ваших руках, тем дольше вы его используете. Это потому что сжатие газа генерирует тепло. Представьте себе, сколько тепла генерируется путем нагнетания воздуха в 14–25 раз меньше пространства, чем обычно занимает.Так много тепла, как это бывает, что воздух становится действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда и очень горячее. Как только воздух сжат, туман топлива распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает немного как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от того, сколько энергии водитель хочет, чтобы двигатель работал.) Воздух настолько горячий, что топливо мгновенно воспламеняется и взрывается без искры подключи.Этот контролируемый взрыв заставляет поршень вытолкнуть цилиндр, производящий энергию, которая приводит в движение автомобиль или который двигатель установлен. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минут!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели в два раза эффективнее бензиновых двигателей — около 40 процентов эффективный, то есть.Проще говоря, это означает, что вы можете пойти гораздо дальше на том же количестве топлива (или получите больше миль за свои деньги). Есть несколько причин этот. Во-первых, они сжимают больше и работают при более высоких температурах. Фундаментальная теория о том, как работают тепловые двигатели, известный как правило Карно, говорит нам, что эффективность двигателя зависит на высоких и низких температурах, между которыми он работает. Дизельный двигатель с большим перепадом температур (более высокая температура или самая низкая температура) более эффективна.Во-вторых, отсутствие системы зажигания с зажиганием делает более простая конструкция, которая может легко сжать воздух намного больше — и это делает топливо более горячим и более полным, высвобождая больше энергии. Есть еще одна экономия эффективности слишком. В бензиновом двигателе, который не работает на полную мощность, вам нужно подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на меньшей мощности. Другим важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, блокируя их атомы вместе (другими словами, дизель имеет более высокую плотность энергии, чем бензин).Дизель тоже лучше смазка, чем бензин, так дизельный двигатель будет естественно работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совсем разные. Вы будете знать это очень много, если вы когда-либо слышал страшные истории людей, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель является низкосортный, менее рафинированный продукт из нефти, полученный из более тяжелых углеводороды (молекулы построены из большего количества углерода и водорода атомов).Сырые дизельные двигатели, которым не хватает сложного впрыска топлива Теоретически, системы могут работать практически на любом углеводородном топливе, поэтому популярность биодизеля (вид биотоплива, сделанного, среди прочего, вещи, отработанные растительные масла). Изобретатель дизельного двигателя, Рудольф Дизель, успешно запустил свои ранние двигатели на арахисовом масле и думал, что его двигатель сделает людям одолжение, освободив их от зависимость от топлива, как уголь и бензин. Если бы он только знал!

Фото: смазка будет путешествовать: Джошуа и Кайя Тикелл, пара защитники окружающей среды, используйте этот трейлер (Green Grease Machine) для производства биодизельного топлива для своего фургона (прикрепленного к передней части) с использованием отработанного растительного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит внушительные $ 0,80 за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, на сегодняшний день, нашел во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и более экономичный. Они также безопаснее, потому что дизельное топливо меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей, они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо больше напряжения и деформации, чем в бензиновом двигателе. Поэтому дизельные двигатели должны быть сильнее и тяжелее и почему долго В то время они использовались только для питания больших транспортных средств и машин. Пока это может показаться недостатком, это означает, что дизельные двигатели, как правило, более Прочный и прослужит намного дольше, чем бензиновые двигатели.

Фото: дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они шумят, и они производят много несгоревших частиц сажи, которые являются грязными и опасными для здоровья. В теории, дизели более эффективны, поэтому они следует использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и вносить меньший вклад в глобальное потепление.На практике есть спор о том, действительно ли это так. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива только немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно выходят лучше. Другой Недавние исследования показывают, что даже новые дизельные автомобили очень загрязняющие. Как насчет выбросов CO2? По данным Британского общества автопроизводителей и трейдеры: «Дизельные автомобили внесли огромный вклад в сокращение выбросов CO2.С 2002 года покупатели, выбирающие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу «. Дизельные двигатели, как правило, стоят дороже, чем бензиновые двигатели, хотя их более низкие эксплуатационные расходы и длительный срок службы обычно компенсирует это. Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор произошло значительное падение продаж скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязняют окружающую среду.

Нет сомнений, что дизельные двигатели будут продолжать работать на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы зависят от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный импульс для того, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые преимущества использования дизелей в автомобилях. В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться выдавленными вообще.Опять же сами дизели постоянно развиваются; в 2011 году министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизель может остаться претендент на меньшие транспортные средства в течение многих лет, особенно если их выбросы сажи может быть правильно решена.

Кто изобрел дизельный двигатель?

Произведение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, который он нарисовал в своем патенте 1895 года.Цилиндр (1) находится сверху. 2) «Плунжер» (как его называл дизель) крепится кривошипом и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную частоту вращения двигателя (отключение подачи топлива, если двигатель работает слишком быстро, затем его включение, когда двигатель снова замедляется). Иллюстрации любезно предоставлены Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: «Способ и устройство для преобразования тепла в работу» Рудольфа Дизеля.

Не удивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Рош (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на эту идею 16 февраля 1862 года, но ему не удается собрать работающую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: в возрасте 22 лет, Рудольф Дизель переходит на работу к инженеру-холодильнику Карлу фону Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель использует более высокое давление и температуру, для чего не требуется свеча зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы другие не могли ими воспользоваться.
  • 1893: Дизель строит огромный, стационарный двигатель, который работает целую минуту под своей собственной власть, 17 февраля 1894 г.
  • 1895: патент на дизельное топливо выдан в США 16 июля 1895 года.
  • 1898: с помощью Дизеля, первый коммерческий двигатель построен в завод в Сент-Луисе, штат Миссури, США, Адольф Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На дизельном заводе в Аугсбурге начинается производство дизельных двигателей. Дизель начинает лицензировать свои идеи другим фирмам и вскоре становится очень богатый
  • 1903: Petit Pierre, один из первых дизельных кораблей, начинает работу над каналом Марн-Рейн во Франции.
  • 1912: MS Selandia, первый океанский дизельный корабль, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, по-видимому, падая за борт с корабля Дрезден во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или совершил самоубийство, но ничего не происходит доказана.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., строящий один из первых успешных автомобилей с дизельным двигателем и демонстрирующий его эффективность, перевозя его из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершил революцию в сельском хозяйстве, представив Diesel Sixty, первый дизельный гусеничный трактор на базе популярного Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и это остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой мощный дизель-электрический локомотив EMD FT и отправляет первый (номер 103) в путешествие на протяжении года, чтобы продемонстрировать свою ценность.Несомненно, это доказывает превосходство дизельного двигателя.
  • 1970-х годов: глобальный топливный кризис вызывает новый интерес к использованию небольших, эффективных дизельных двигателей в автомобилях.
  • 1987: Всемирно известный корабль Queen Elizabeth 2 (QE2) оснащен девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что делает его самым мощным торговым судном с дизельным двигателем в то время.
  • 2000: Peugeot представляет первый в мире фильтр частиц (PF) для дизельных двигателей на своей модели 607, утверждая, что выбросы сажи на 99 процентов ниже.
  • 2015: Volkswagen погрузился в огромный глобальный скандал после систематического обмана на тестах на выбросы дизельного двигателя. Продажи дизельных автомобилей резко упали впервые за многие годы.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявив, что все новые автомобили будут гибридами или полностью электрическими с 2019 года.
,

Cummins, Power Stroke и Duramax Diesel Размеры

Мощность хода и IDI Размеры

Двигатель

Длина

Ширина

Высота

Вес

6,9 л / 7,3 л IDI

30.0 «*

27,0 «

27,0 «**

995 фунтов сухих

7.3L Power Stroke

34,0 «

32,0 «

36,0 «

920 фунтов сухих

6.0L Power Stroke

35,0 «

38.3 «

40,7 «

966 фунтов мокрых

6.4L Power Stroke

32,0 «

34,0 «

38,0 «

1 130 фунтов мокрых

* Длина измеряется от задней части блока до передней части принадлежностей. Не включает сборку вентилятора.
** Высота, измеренная от нижней части блока до верхней части двигателя; Масляный поддон в комплект не входит.

Cummins Размеры

Двигатель

Длина

Ширина

Высота

Вес

5.9L Cummins

40,0 «*

24.9 «

37,9 «

12 В — 975 фунтов мокрого, 24 В 1100 фунтов мокрых

6,7 л Cummins

41,7 «

28,6 «

37,8 «

1150 фунтов сухих

4BT Cummins **

30,6 «

24.6 «

37,7 «

745 — 782 кг сухого

4,5 л Cummins

32,2 «

28,1 «

34,5 «

818 фунтов мокрых

* Приблизительная длина, включая вентилятор и корпус, длина блока составляет только 29,45 «.
** Размеры и вес могут незначительно отличаться в зависимости от исходного применения.

Duramax & GM Diesel Размеры

Двигатель

Длина

Ширина

Высота

Вес

6,6 л Duramax

30,0 «

30.0 «

32,0 «

835 фунтов сухих

6.2L Детройт

30,0 «

26,0 «

26,0 «

Прибл. 750 фунтов

6,5 л Детройт *

30,0 «

26,0 «

26.0 «

Прибл. 750 фунтов

* Размеры будут варьироваться между версиями с турбонаддувом и безнаддувным двигателем. Дизельные двигатели 6,2 л / 6,5 л были спроектированы для установки везде, где мог бы газовый двигатель 396/454.

,

Что такое дизельный двигатель? (с картинками)

Дизельный двигатель — это тип двигателя внутреннего сгорания, который был изобретен Рудольфом Дизелем. Он получил патент на дизельный двигатель в 1892 году, и основной задачей было создать эффективную альтернативу бензиновому двигателю.

Diesel engines require diesel fuel. Дизельные двигатели требуют дизельного топлива.

Бензиновые и дизельные двигатели работают путем создания контролируемого взрыва в герметичной поршневой камере. Небольшой взрыв быстро перемещает поршень, который, в свою очередь, вращает выходной вал. В бензиновом двигателе смесь топлива и воздуха впрыскивается в камеру и затем зажигается искрой, создаваемой свечой зажигания.С другой стороны, дизельный двигатель не использует свечу зажигания для зажигания смеси. Топливо нагнетается в камеру, и высокое давление генерирует достаточно тепла, чтобы воспламенить топливно-воздушную смесь.

Inhaling exhaust fumes expelled from a diesel engine may cause breathing difficulties. Вдыхание выхлопных газов из дизельного двигателя может вызвать затруднение дыхания.

Некоторые дизельные двигатели используют свечу накаливания для нагрева камеры, чтобы минимизировать давление, необходимое для вращения двигателя. Без такого дополнительного источника тепла давление, необходимое для зажигания (особенно при холодном двигателе), было бы чрезмерно высоким.

Хотите автоматически сэкономить время и деньги месяца? Пройдите 2-минутный тест, чтобы узнать, как начать экономить до 257 долларов в месяц.

On a diesel-electric locomotive, a diesel engine with reciprocating pistons provides power to an electric traction motor that turns the unit На дизель-электрическом локомотиве дизельный двигатель с поршневыми поршнями обеспечивает питание электрического тягового двигателя, который вращает колеса агрегата.

Дизельные двигатели требуют дизельного топлива для правильной работы процесса сгорания. Дизельное топливо дешевле, чем обычный бензин, потому что требуется меньше переработки. Кроме того, дизельные двигатели более эффективны, и поэтому дизельные автомобили получают больший пробег, чем их бензиновые аналоги.

Diesel is used to fuel vehicles such as diesel-electric locomotives. Дизель используется для заправки автомобилей, таких как дизель-электрические локомотивы. Car and truck engines, including diesel ones, use many types of seals called gaskets that help prevent leakage of gases and fluids. В двигателях легковых и грузовых автомобилей, в том числе дизельных, используются уплотнения многих типов, называемые прокладками, которые помогают предотвратить утечку газов и жидкостей.,

Ранняя история дизельного двигателя

Ранняя история дизельного двигателя

Ханну Яяскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым начальным содержанием. Полный доступ требует подписки DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Аннотация : В 1890-х годах Рудольф Дизель изобрел эффективный двигатель внутреннего сгорания с воспламенением от сжатия, который носит его имя. Ранние дизельные двигатели были большими и работали на низких оборотах из-за ограничений их систем впрыска сжатого воздуха.В свои первые годы дизельный двигатель конкурировал с другой концепцией двигателя на жидком топливе — двигателем с горячей колбой, изобретенным Акройд-Стюарт. Высокоскоростные дизельные двигатели были введены в 1920-х годах для коммерческого транспорта и в 1930-х годах для легковых автомобилей.

Изобретение Рудольфа Дизеля

Рудольф Дизель, который является самым известным за изобретение двигателя, который носит его имя, родился в Париже, Франция, в 1858 году. Его изобретение появилось, когда паровой двигатель был преобладающим источником энергии для крупных отраслей промышленности.

Рисунок 1 . Рудольф Дизель (1858-1913)

В 1885 году Дизель открыл свой первый магазин в Париже, чтобы начать разработку двигателя с воспламенением от сжатия. Процесс продлится 13 лет. В 1890-х годах он получил ряд патентов на изобретение эффективного двигателя с медленным горением, с воспламенением от сжатия, двигателя внутреннего сгорания [2856] [2857] [2858] [2859] . С 1893 по 1897 год Дизель развивал свои идеи в Maschinenfabrik-Augsburg AG (позже Maschinenfabrik-Augsburg-Nürnberg или MAN).В дополнение к MAN, швейцарские братья Сульцер рано заинтересовались работой Дизеля, купив в 1893 году определенные права на изобретение Дизеля.

На заводе MAN в Аугсбурге испытания прототипа начались с конструкции с ходом 150 мм / 400 мм 10 августа 1893 года. Хотя первое испытание двигателя было неудачным, ряд улучшений и последующие испытания привели к успешному испытанию 17 февраля 1897 года, когда Дизель продемонстрировал эффективность 26,2% с двигателем (рис. 2) под нагрузкой — значительное достижение, учитывая, что тогдашний популярный паровой двигатель имел КПД около 10%.Первый дизельный двигатель производства Sulzer был запущен в июне 1898 года [388] [2860] . Дополнительные подробности раннего тестирования Diesel можно найти в литературе [2864] [2265] .

Рисунок 2 . Третий двигатель испытания дизеля, использованный в успешном приемочном испытании 1897 года

1 цилиндр, четырехтактный, с водяным охлаждением, воздушный впрыск топлива
Мощность: 14,7 кВт (20 л.с.)
Расход топлива: 317 г / кВт-ч (238 г / л.с.-час)
КПД: 26,2%
Количество оборотов: 172 мин. -1
Объем смещения: 19.6 л
отверстие: 250 мм
ход: 400 мм

Разработка изобретения Дизеля потребовала больше времени и работы, чтобы стать коммерческим успехом. Многие инженеры и разработчики присоединились к работе по улучшению жизнеспособности рынка идеи, созданной Рудольфом Дизелем. Он, с другой стороны, стал несколько угрожать этим процессом и не всегда мог найти общий язык с другими проектировщиками двигателя, разрабатывающими его изобретение. Попытки Дизеля продвинуть на рынке еще не готовый двигатель в конечном итоге привели к нервному срыву.В 1913 году, глубоко обеспокоенный критикой его роли в разработке двигателя, он таинственным образом исчез с корабля во время плавания в Англию, предположительно совершив самоубийство [389] . После того, как срок действия патентов Diesel начал истекать, ряд других компаний взяли его изобретение и развили его дальше.

###

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *