Турбомотор или атмосферник – что выбрать – плюсы и минусы
Турбонаддув сегодня – не обязательно атрибут спорткара. Но владельцы семейных автомобилей часто опасаются наддувных двигателей. Зря или нет?
Любой двигатель внутреннего сгорания потребляет воздух и топливо, и чем больше он этих ингредиентов “съест”, тем больше мощности отдаст на колеса. Атмосферный мотор втягивает воздух в свои камеры сгорания самостоятельно, так как поршни работают в цилиндрах как насос.
Принципиальная схема турбонаддува простая, но в конструкции используются продукты высоких технологий: жаростойкие стали, “масляные” подшипники и специальные смазки
Чтобы при тех же размерах двигателя увеличить его отдачу, придумали подавать в него воздух под давлением – компрессором, приводящимся в действие или от коленвала (механический привод), или от турбины, которая в свою очередь приводится от выхлопных газов, которые под давлением выходят из цилиндров.
ЧИТАЙТЕ ТАКЖЕ: Выбираем авто:бензин, дизель, ГБО, электро или гибрид
Турбокомпрессоры имеют большее распространение, чем компрессоры с механическим приводом, их называют турбонаддувом или просто турбиной. Сегодня автомобильные дизели вообще не выпускаются без турбонаддува, а наддувные бензиновые моторы можно увидеть под капотом даже малолитражек самого компактного класса.
Преимущества и недостатки турбонаддува
Плюсы
| Минусы
|
Турбо-особенности
Нынешние конструкторы оснащают бензиновые двигатели турбонаддувом по двум причинам. Во-первых, это как и раньше, стремление наделить автомобиль выдающимися характеристиками с точки зрения динамики – и это касается спорткаров и топовых комплектаций моделей премиальных марок. Во-вторых – это желание сделать двигатель массового автомобиля более дешевым: меньше по размерам, легче, а также с меньшим количеством деталей – с тремя или даже двумя цилиндрами. Эту тенденцию назвали даунсайзингом (down size – уменьшение размера), ее придерживаются некоторые мировые производители – VW, Ford, PSA и т. д; в их моторных линейках распространены моторы объемом 0,9 – 1,2 л, которые устанавливают даже на модели D-класса и большие кроссоверы.Двигатель с турбонаддувом имеет большое количество дополнительных деталей, что влечет за собой снижение надежности. К тому же ресурс температурнонагруженных узлов значительно меньше всего двигателя
Турбина наддувного двигателя – узел с технической точки зрения несколько проблемный, поскольку работает в условиях высокой температуры и высоких оборотов (50 – 100 тыс./мин). Поэтому любой турбомотор менее надежен и менее долговечен, чем атмосферный. Тем более, что и дополнительных систем помимо собственно турбины, у мотора с наддувом больше, чем у атмосферника.
ЧИТАЙТЕ ТАКЖЕ:Что лучше – бензин или дизель: какой выбрать двигатель
Что касается даунсайзинга, то малолитражные двигатели имеют относительно меньший ресурс еще и по той причине, что вынуждены работать в более жестком режиме: на более высоких оборотах, с частыми переключениями передач.
Колесо турбины вращается со скоростью 50 – 100 тыс. об./мин, поэтому при малейших проблемах со смазкой вал выходит из строя
Атмосферный двигатель, пусть даже менее мощный, в этом плане выигрывает у малолитражного наддувного. При этом у турбомоторов “нормального” объема раньше всего выходит из строя именно турбина. Недаром по всей стране работают сети чисто “турбинного” сервиса. Который, кстати, не назовешь дешевым.
Рекомендация Авто24
К счастью, тендеция навязывания потребителю даунсайзинговых моторчиков с непременным турбонаддувом несколько приостановилась. Поэтому почти всегда есть выбор между “турбо” и “атмосферником” в пределах одной модели авто. Но если покупается новый автомобиль из расчета на несколько лет эксплуатации, то на наличие турбины можно не обращать внимания. Конечно, если вы ищете этакий болид со спортивными характеристиками, да еще и с определенным пробегом “за плечами”, надо быть готовым к дополнительным хлопотам с содержанием и ремонтами двигателя.
ЧИТАЙТЕ ТАКЖЕ: Как сделать автомобиль более экономичным
Технические характеристики Шкода Рапид у официального дилера Skoda в Курске
Новая Шкода Рапид 2021 года: технические характеристики
Субкомпактный лифтбэк Skoda Rapid – самая доступная модель бренда – впечатляет стильным дизайном, отточенной управляемостью, высоким уровнем комфорта, щедрым функциональным оснащением высокого класса. Выберите модификацию автомобиля в соответствии со своим стилем вождения и требованиям к динамическим параметрам, ознакомившись с техническими характеристиками новой Шкоды Рапид 2020 года. Запишитесь на тест-драйв в нашем автосалоне в Курске, чтобы лично испытать ее возможности за рулем.
Технические характеристики новой Шкоды Рапид 2021 года
Превосходной управляемостью, высоким комфортом езды и стабильной курсовой устойчивостью лифтбэк обязан хорошо настроенной подвеской с передними стойками McPherson и с задней торсионной балкой. Легкое отзывчивое управление обеспечивает реечная система руля с электромеханическим усилителем. Тормоза – гидравлика с Dual Rat, с вакуумным усилением, с парой диагональных контуров.
Новый Шкода Рапид 2020 года, представленный в нашем автосалоне в Курске, оснащается надежными, производительными, экономичными силовыми агрегатами, адаптированными к сложным климатическим условиям. Доступны два бензиновые 4-цилиндровые двигателя с различными техническими характеристиками: «атмосферник» 1,6 MPI с распределенным впрыском (в двух версиях) и турбомотор 1,4 TSI с системой непосредственного нагнетания топлива.
1,6-литровый силовой агрегат генерирует мощь в 90 или 100 л. с. (форсированная версия). Он работает с 5-ступенчатой коробкой передач с ручным переключением и 6-скоростной автоматической трансмиссией. Обе модификации обеспечивают пиковую тягу 155 Нм при 3800–4000 об/мин.
Турбированный мотор 1,4 TSI способен развить максимальное усилие 125 л. с. (200 Нм при 1400–4000 об/мин). Тяга передние колеса передается через инновационный автоматический «робот» DSG с двумя сцеплениями, 7 скоростями, возможностью ручного переключения передач.
Двигатели потребляют 5.4-6.1 л бензина на 100 км пути в комбинированном цикле, разгоняют новый Шкода Рапид за 9.2-11.8 секунд.
Выгодное предложение дилера в Курске
Клиентам нашего автоцентра доступны следующие привилегии:
— специальные цены, скидки;
— привлекательные, гибкие условия кредитования, Трейд-ин, лизинга, страхования;
— льготы для корпоративных покупателей;
— бесплатный тест-драйв;
— услуги официального сервиса.
Позвоните нам, чтобы получить больше информации о модели, услугах и ваших выгодах.
Двигатель и динамический потенциал
718 Spyder: расход топлива в смешанном цикле 10,9 л/100 км;
выбросы CO2 в смешанном цикле 249 г/км
718 Cayman GT4: расход топлива в смешанном цикле 10,9 л/100 км;
выбросы CO2 в смешанном цикле 249 г/км
Высокооборотистый, мощный и экономичный – приводом в новом Porsche 718 Cayman GT4 и 718 Spyder служит шестицилиндровый оппозитный двигатель собственной разработки Porsche с четырьмя литрами рабочего объема и многочисленными высокотехнологичными генами GT. Атмосферный двигатель базируется на том же поколении моторов, что и турбированные силовые агрегаты современного модельного ряда 911 Carrera. Самый мощный – 309 кВт (420 л.с.) – и эмоциональный двигатель в модельном ряду 718 подкупает своими четкими откликами и характерным звуком. Двигатель раскручивается максимально до 8000 об/мин, при 7600 об/мин он достигает своей максимальной мощности, превосходя предыдущую 3,8-литровую модель GT4 на 35 л.с. У Spyder, который впервые оснащен аналогичным двигателем, прибавка в мощности еще больше – 45 л.с. Максимальный крутящий момент составляет 420 ньютон-метров и остается постоянным в диапазоне от 5000 до 6800 об/мин. Максимальная частота вращения 8000 об/мин на 200 об/мин превышает показатель предыдущей модели.
Все это в результате обеспечивает высочайший динамический потенциал. Новый 718 Cayman GT4 достигает максимальной скорости 304 км/ч, 718 Spyder разгоняется максимально до 301 км/ч. Таким образом, оба они значительно превосходят своих предшественников – на 9 и 11 км/ч соответственно. Стандартный разгон с места до 100 км/ч оба выполняют за 4,4 секунды. Особенно впечатляет еще более динамичный темперамент и улучшенный промежуточный разгон в диапазоне средних скоростей: на пятой передаче с 80 до 120 км/ч 718 Spyder разгоняется всего за 6,0 секунды. Как и 718 Cayman GT4. Расход топлива, пересчитанный по методу NEDC, составляет 10,9 л/100 км и подчеркивает экономичность обоих среднемоторных спорткаров.
Высокие показатели мощности и крутящего момента
Высокооборотистая концепция шестицилиндрового двигателя базируется на существенно усовершенствованных технологиях 4,0-литрового оппозитного двигателя. Прочную механическую базу образует исключительно жесткий, изготовленный из высокопрочного стального сплава, кованный коленчатый вал, шатуны с оптимизированной геометрией и большие коренные подшипники диаметром 67 миллиметров. Прочный масляный поддон из пластика весит на 36,5 процента меньше, чем аналогичный литой поддон предыдущей модели.
Ввиду высокой частоты вращения для привода клапанов используются рокеры (роликовые коромысла) с гидравлическими компенсаторами зазора. Электронная система управления двигателем адаптирует фазы газораспределения четырех распредвалов (VarioCam) в зависимости от нагрузки и оборотов. Например, на стороне выпуска, диапазон регулирования составляет 30 градусов по углу поворота коленчатого вала. Это обеспечивает высокие показатели мощности и крутящего момента во всем диапазоне оборотов и, следовательно, улучшает ходовые качества автомобиля.
Система непосредственного впрыска топлива с пьезофорсунками
Особо высокие требования предъявляются к смесеобразованию в камерах сгорания. Центрально расположенные форсунки системы непосредственного впрыска топлива (DFI) впервые для высокооборотистого двигателя имеют управление от пьезоэлементов. При подаче на них электрического напряжения они расширяются и открывают форсунку. При отсутствии напряжения пьезокристаллы сжимаются, и форсунка вновь закрывается. Это позволяет не только достичь более мелкого распыления топлива, впрыскиваемого с максимальным давлением 200 бар, но и еще более точно управлять процессом сгорания. Струя топлива из пьезофорсунки имеет оптимальную форму, что уменьшает каплеобразование на стенках цилиндра, тем самым противодействуя возможному образованию сажи. В результате расход топлива и вредные выбросы снижаются, в то время как КПД атмосферного двигателя повышается.
Быстрому газообмену в камерах сгорания способствует регулируемая система впуска. Она имеет две резонансные заслонки, которые открываются в зависимости от нагрузки двигателя (по отдельности или одновременно) и таким образом адаптируют частоту пульсаций воздушной струи на ее пути к клапанам в зависимости от частоты вращения двигателя. Тем самым улучшается степень наполнения цилиндров, что в свою очередь ведет к повышению крутящего момента.
Спортивная выхлопная система с сажевыми фильтрами
На стороне выпуска также имеются изменения. Новая конструкция спортивной выхлопной системы преследует сразу несколько целей: наличие сажевых фильтров позволяет выполнить требования экологического стандарта Euro 6d-Temp. Большое поперечное сечение выхлопной системы снижает противодавление отработавшим газам и таким образом способствует повышению мощности. За счет своей особой седловидной формы спортивная выхлопная система оставляет больше места для размещения функционального заднего диффузора (см. раздел «Аэродинамика»).
Для этого два отдельных основных глушителя предыдущей модели GT4 объединены в один центральный глушитель, который благодаря седловидной форме охватывает диффузор и максимально эффективно использует имеющееся монтажное пространство. Несмотря на такую форму, глушитель имеет достаточный объем, чтобы соответствовать строжайшим требованиям к уровню шума. Благодаря управляемым заслонкам в выхлопной системе уникальный звук оппозитного двигателя остался неизменным: в зависимости от температуры двигателя и нагрузки звук подчеркнуто эмоциональный, особенно при наборе мощности и на высоких оборотах.
Адаптивная система отключения цилиндровИнтересной инновацией для снижения вредных выбросов и расхода топлива является адаптивная система отключения цилиндров. При оборотах двигателя от 1600 до 3000 об/мин и требуемом крутящем моменте не более 100 ньютон-метров система на некоторое время прерывает процесс впрыска в одном из двух рядов цилиндров, так что шестицилиндровый двигатель в это время работает только на трех цилиндрах. При постоянной нагрузке каждые 20 секунд происходит смена отключаемого ряда цилиндров, чтобы обеспечить равномерность нагрузки на нейтрализаторы и проходящего через них газового потока. За исключением небольшого изменения звука отключение и подключение цилиндров происходит незаметно для водителя. Тем не менее эффект весьма ощутимый: адаптивная система отключения цилиндров позволяет снизить выбросы CO
Механическая шестиступенчатая коробка передач в базовой комплектации
Крутящий момент шестицилиндрового атмосферного двигателя передается на задние колеса автомобиля через механическую шестиступенчатую коробку передач с двухмассовым маховиком. Укороченный рычаг переключения передач способствует более эмоциональным ощущениям от вождения. Динамические опоры коробки передач сводят к минимуму колебания и вибрации, передающиеся от системы привода на кузов, а при спортивной манере езды сокращают инерцию силового агрегата. Кроме того, имеется динамичная функция «перегазовки»: она уменьшает износ деталей и улучшает устойчивость автомобиля при переключениях на пониженные передачи. Функцию «перегазовки» можно активировать кнопкой AUTO BLIP на центральной консоли. Двухмассовый маховик заимствован у 911 GT3.
Качество отработавших газов
Центрально расположенные пьезофорсунки высокого давления, система непосредственного впрыска топлива, адаптивная система отключения цилиндров, функция Auto Start Stop: качество отработавших газов нового высокооборотистого атмосферного двигателя Porsche 718 Cayman GT4 и 718 Spyder является результатом целого комплекса мер. Самое большое отличие – сажевые фильтры спортивной выхлопной системы. Они дополняют широкополосное лямбда-регулирование посредством кислородных датчиков, которые контролируют состав отработавших газов отдельно для каждого ряда цилиндров. Еще по одному датчику находится в нейтрализаторах, где они следят за преобразованием вредных веществ. Необходимая регенерация сажевых фильтров осуществляется автоматически и незаметно для водителя.
принцип работы атмосферника, что это значит и как он устроен, основные детали и узлы
Любой автомобильный двигатель — сердце машины. Сегодня производителями изготавливаются моторы разного типа и модификаций. Все они конструктивно отличаются между собой, поэтому выбирая транспортное средство, необходимо знать, какой агрегат в нём установлен, его принцип работы, технические характеристики, преимущества и недостатки. Существуют компрессорный, турбированный и атмосферный двигатель.
Классификация атмосферных моторов
Атмосферник — двигатель внутреннего сгорания, в который через фильтры поступает воздух, где он смешивается с топливом. Полученная смесь попадает в камеру сгорания, воспламеняется и приводит в движение поршни, благодаря ему поддерживается вся работа автомобиля.
Двигатели внутреннего сгорания, преобразующие энергию тепла от сгорания топлива в механическую энергию движения, делятся на три группы:
- дизельные;
- газовые;
- бензиновые.
Ещё в 19 столетии был создан первый бензиновый двигатель, который за время существования претерпел много изменений. Он нашёл широкое применение в автомобилестроении наряду с дизельным агрегатом. Газовый применяется только как дополнительный элемент к бензиновому мотору.
По способу подачи топлива все атмосферные агрегаты классифицируются на 2 типа:
- карбюраторные;
- инжекторные.
Карбюратор представляет собой узел системы питания мотора. В нём топливо смешивается с определённой частью воздуха, образуя воздушно-топливную смесь. Полученная смесь в наиболее приемлемом количестве и составе подаётся в цилиндры самого двигателя.
Инжектор или специальная форсунка — это электронно-механический узел в автомобиле, задача которого распылять топливо прямым впрыском непосредственно в цилиндр или во впускной коллектор.
Инжектор выигрывает у карбюратора по показателям эффективности. Карбюраторный агрегат потребляет больше топлива, содержание вредных веществ в выхлопе увеличивается, так как топливо сгорает менее полноценно. Управление системой требует ручной настройки.
Принцип работы
Понятие «атмосферный» говорит о том, что при горении топлива в цилиндрах принимает участие атмосферное давление. Атмосферники громоздкие и тяжёлые, поэтому конструкторы со временем нашли способ усовершенствовать их за счёт компрессоров или турбин. Тем не менее эти двигатели по-прежнему востребованы. Они устанавливаются на авто любого класса, но чаще всего на бюджетные легковые автомобили.
Двигатель работает за счёт энергии, вырабатываемой при воспламенении смеси топлива с воздухом, профильтрованным через воздушный фильтр. Эта энергия взрыва толкает поршень вниз, заставляя коленчатый вал вращаться. Вращательные движения коленвала передаются через муфту сцепления и систему трансмиссии на вращение колёс.
Агрегат работает повторяющимися одинаковыми циклами, каждый из которых состоит из четырёх тактов:
- Впуск воздушно-топливной смеси.
- Сжатие.
- Воспламенение.
- Выпуск отработанных газов.
Во время такта впуска выпускной клапан закрыт, а впускной открыт. Смесь топлива с воздухом при этом всасывается через впускной клапан в цилиндр.
С завершением хода поршня вниз впускной такт заканчивается. Горючее с воздухом втягивается в цилиндр, начинает всё больше сжиматься при подъёме поршня вверх.
Когда поршень закончит свой ход вверх, через свечу зажигания проходит электрический ток, вызывая в нём искровой разряд, немедленно взрывающий горючую смесь. Энергия взрыва опускает поршень, заставляя коленчатый вал вращаться. Эта и есть та сила, которая вращает колёса.
При завершении хода поршня вниз открывается выпускной клапан. Так как поршень начинает опять идти вверх, отработанный газ выталкивается из цилиндра через выпускной клапан. Коленчатый вал приводится во вращение дважды, пока поршень проходит через все 4 такта.
Непрерывная работа двигателя образуется постоянным повторением этих тактов — вот что значит атмосферный двигатель.
Устройство атмосферника
Как устроен двигатель, можно рассмотреть на примере четырёхтактного атмосферного. По функциям детали мотора разделяются примерно на 4 группы:
- Для обеспечения впуска и воспламенения топливно-воздушных смесей. К этой группе относятся головка блока цилиндров и клапанный механизм.
- Детали для обеспечения сжатия воздушно топливной смеси. Эта группа состоит из поршней, поршневых колец, блока цилиндра, клапана.
- Для передачи энергии мотора. В группе находятся шатуны, коленчатый вал, подшипники и маховики, их можно купить здесь: /uzp.net.ua/ru/podshypnyky/.
- Детали для выработки искровых вспышек. Группу наполняют свечи зажигания и распределители.
Взаимодействие этих деталей мотора обеспечивает главное вращение колёс.
Головка блока цилиндров
Это главная часть двигателя, расположенная непосредственно над блоком цилиндров. Она постоянно подвергается действию сгорающих газов, имеющих высокую температуру и давление. Деталь делают из листового железа или из сплава алюминия с высокопрочными и высокотемпературными добавками.
Основание головки блока цилиндра углублено, образует вместе с поршнем и цилиндром камеру сгорания. Коэффициент полезного действия двигателя сильно зависит от формы камеры сгорания, а также от расположения клапанов и свечей зажигания.
Клапаны и сопутствующие детали
Современные четырёхтактные двигатели имеют 4 клапана для каждого цилиндра: 2 впускных и 2 выпускных. Для обеспечения эффективного впуска впускной клапан имеет больший диаметр, чем выпускной. Они изготавливаются из высокотемпературного никеля или хромированной стали.
Каждый клапан имеет сопутствующие детали: седло и пружина, которая является спиральной и создаёт тесный контакт с седлом, предотвращая утечку газа. Обычно в двигателях используется одна пружина, но в некоторых видах устанавливают по 2 штуки для каждого клапана.
Когда клапан закрыт, седло находится в плотном контакте с его поверхностью, чтобы обеспечить непроницаемость камеры сгорания.
Блок цилиндров образует каркас двигателя. Совместно с поршнями блок цилиндров играет важную роль в обеспечении преодоления давления сжатия и сгорания. Для минимизации износа деталей и утечек газа внутренняя поверхность каждого цилиндра отделена под высокое давление хромированием.
Отверстие цилиндра делается круговым. Однако верхняя часть цилиндра и поршня благодаря высокому давлению и температуре страдает от износа. Позже зазор между поршневыми кольцами и цилиндром увеличивается, приводя к потерям сжатия.
Поршень мотора
Деталь двигается в цилиндре вверх и вниз под действием давления, образующего взрывами топливно-воздушной смеси. При этом поршень через поршневой палец и шатун вращает коленчатый вал. Сечение поршня не является правильным кругом: диаметр в направлении поршневого пальца делается немного меньше для утечки теплового расширения.
Головка поршня становится гораздо горячее и расширяется больше, чем юбка. Для компенсации разницы в тепловом расширении диаметр поршня вверху сделан меньше, чем внизу. Кольца препятствуют утечкам под давлением сжатия смеси через зазор между цилиндром и поршнем. Обычно каждый поршень имеет 3 кольца.
Шатун агрегата
Он связывает поршень с коленчатым валом так, что вертикальное движение поршня преобразуется во вращательное движение коленвала. Поскольку шатун подвержен непрерывно действующим силам сжатия и растяжения, он должен быть довольно прочным и хорошо закреплённым, чтобы выдерживать эти нагрузки.
Коленчатый вал
Эта деталь преобразует через шатун прямолинейное движение каждого поршня во вращательное движение. Он состоит из шатунных шеек, которые передают силу поршней и валу, коленных шеек, регулирующих вращение вала и балансировочных грузов, обеспечивающих хорошее, сбалансированное вращение вала.
Коленвал вращается с большой скоростью, подвергаясь сильным нагрузкам от поршней, поэтому он должен быть довольно прочным и закреплённым, а также хорошо сбалансированным как статически, так и динамически.
Достоинства и недостатки
Многие автомобилисты до сих пор выбирают атмосферные агрегаты благодаря их преимуществам:
- простота строения обеспечивает лёгкость в их обслуживании, возможность устранить неисправность самостоятельно и небольшие расходы;
- простой принцип работы;
- низкий расход масла: около 200−500 г на 10 тыс. км;
- замена масла через 15 тыс. — 20 тыс. км;
- хорошо справляется с низкокачественным топливом;
- быстрый прогрев двигателя;
- способность пройти без капитального ремонта свыше 500 тыс. км.
Из недостатков агрегата наиболее существенными по сравнению с турбированным двигателем являются:
- выше расход топлива;
- ниже мощность, динамичность и экологичность.
Развитие перспективных атмосферных двигателей идёт в направлении усовершенствования рабочего процесса, в увеличении степени сжатия и управлении фазами газораспределения, в применении впрыска топлива в цилиндры, уменьшении механических потерь и затрат на вспомогательное оборудование.
Subaru.Слабые места субаровских моторов
«Subaru рулит, остальное – отстой». Так, по крайней мере, утверждает немало владельцев автомобилей Fuji Heavy Industries. Это дает право и нам пройтись по основам репутации знаменитой марки… Поэтому всем, кто не хочет читать критические замечания в адрес Subaru, рекомендуется перейти к следующей статье.«Моторы Subaru – это шедевр»
Вполне возможно, если вспомнить происхождение самого понятия «шедевр» – образцовое изделие. Но образцы могут быть различными – высокого качества и ненадежности, практичности и глупости… Увы, субаровские моторы вписываются в самые разные категории.
«Субаровский оппозит очень компактен»
Если присмотреться внимательнее, окажется, что субаровский двигатель не «компактный», а просто относительно плоский и симметричный – он равномерно «размазан» по моторному отсеку. По закону сохранения вещества 4-цилиндровый ДВС определенного рабочего объема не может быть меньше определенных габаритов. Мотор-плита в самом деле короткая (полублоки по два цилиндра, стоящих с некоторым уступом) и плоская (толщина обычного двигателя с коллекторами плюс поддон), но зато очень широкая (вместо картера с поддоном у рядного, здесь еще один полублок и головка). Так что, если положить рядом два однообъемника, рядный и оппозитный – еще неизвестно, какой из них окажется «компактнее».
«Моторы Subaru используются в авиации»
И как это свидетельствует об исключительных качествах субаровских движков? В легкомоторной авиации весьма распространены также двигатели BMW и VW, но почему-то поклонники германских машин не используют этот аргумент в спорах о достоинствах своих железных коней. «Авиационые» плюсы субару состоят в компоновке, неплохой весовой отдаче и… цене б/у агрегата. Когда на качественный специализированный мотор не хватает денег, то сгодится что угодно. Но достаточно поставить рядом какой-нибудь Lycoming, без громоздкого жидкостного охлаждения, без обязательного для автомобильного движка редуктора, способный выдавать близкую к максималу мощность в течение несравнимо более длительного времени, с гораздо большим межремонтым ресурсом и при этом конструктивно простой… Тогда становится понятно, что гордиться применимостью автомобильных движков в авиации особого смысла нет – каждый должен заниматься своим делом.
«Оппозит абсолютно уравновешен»
Полностью уравновешены только моторы компоновки R6, B6, R8, V12… Оппозитная четверка B4 в этот список, увы, не попадает. Некоторое преимущество по вибронагруженности B4 имеет, но радикальной разницы с обычной рядной четверкой здесь нет – у одной присутствуют неуравновешенные силы инерции второго порядка, но отсутствует свободный момент от них, у другой есть момент, но сами силы уравновешены…
«Идеальная развесовка по осям»
На самом деле речь в рекламе идет всего лишь о симметрии относительно продольной оси. А если говорить о передних и задних колесах, то сам по себе оппозитный двигатель и продольно установленная коробка никакой симметричной развесовки не создают (и уж во всяком случае, такая развесовка не «симметричнее», чем при классической заднеприводной компоновке), просто на задние колеса приходится немного большая доля нагрузки. Но вылезают и свои недостатки… Продольно установленный двигатель на автомобиле с исходно-передним приводом обязан целиком находится в переднем свесе. Именно поэтому «нос» Subaru порой не уступает Audi с аналогичной компоновкой (но при этом имеющей традиционный рядный мотор).
Плюс к тому излишне усложняется конструкция коробки передач – схема потоков мощности с «матрешкой» из трех концентрических валов и ее железное воплощение представляют собой любопытное зрелище. А то, что гипоидная передача находbтся в общем картере с КПП, заставляет купать синхронизаторы в трансмисссионном масле класса GL-5.
Можно было бы поверить в сверхнадежность механических коробок Subaru, не пользуйся у нас устойчивым спросом эти «контрактные» и просто б/у агрегаты. Не каждый экземпляр переживает без ремонта два комплекта сцепления… и это при нормальных двигателях. Как известно, «капля никотина убивает лошадь, а хомячка разрывает на куски» – нетрудно догадаться, насколько меньше служит практически неусиленная трансмиссия, получая от турбомотора пинок в 350 Нм против 200, 280 сил против 100-150.
«…и обладают низким центром тяжести, что обеспечивает потрясающую устойчивость и управляемость на высоких скоростях»
Это обычный субаровский рекламный рефрен, служащий единственным оправданием столь нетрадиционной ориентации. Да, на раллийной или гоночной трассе это был бы явный плюс. Но как помогает низкий центр тяжести при ежедневной езде по забитому пробками городу? При тряске по выбоинам, люкам и лежачим полицейским? При ковылянии по разбитой дачной грунтовке? Нужен ли весь этот оппозитный огород гражданского автомобиля?
Для скоростных упражнений значительно бОльшую роль играют дорожное покрытие, состояние шин и общая исправность подвески. К сожалению похвастаться качеством покрытия и предсказуемостью его состояния у нас трудно по объективным причинам. А два других фактора полностью зависят от владельца. И тут происходят странные вещи – если обладатель новой Subaru из салона еще старается поддерживать ее исправное состояние в комплексе, то хозяин какого-нибудь праворульного аппарата часто начинает экономить – и на резине («а-а, полный привод – значит шипы и зимняя резина не нужны, хватит б/у японской»), и на подвеске («это ж Subaru, у нее ходовка всегда супер и без ремонтов»).
Ну и главное. Если знаменитый «низкий центр тяжести» Subaru придает смещение 100-150 кг силового агрегата вниз аж на 10 сантиметров (при общей массе в полторы тонны), то у любого аналогичного авто с традиционным двигателем и клиренсом меньше всего на 1 сантиметр, центр тяжести будет расположен еще ниже! А, как известно, Subaru в своих классах отличаются именно ощутимо большим клиренсом. Поэтому все рассуждения про центр тяжести – не более чем рекламный трюк FHI, рассчитанный на малограмотных покупателей.
Пройдемся теперь по слабым местам субаровских моторов.
Геометрия цилиндров подвержена любопытной особенности, когда сетка хона в порядке, а цилиндр уже превращается в эллипс. Впрочем, алюминиевые блоки цилиндров с чугунными гильзами, имеющие разные коэффициенты расширения, да еще при открытой рубашке охлаждения никогда не были идеальным решением.
Расход масла подкашивает двигатели независимо от возраста – в одной очереди к доктору стоят пожилые авто из первой волны иномарок и еще пахнущие свежим пластиком выходцы из автосалонов. Здесь способствует угару само горизонтальное положение цилиндров, при случае турбина не отказывается от своей доли закуски, ну и, разумеется, стандартная болезнь залегания колец (а для новых EJ205 это даже не болезнь, а некая составляющая техобслуживания). И попробуйте однозначно замерить на отдельно взятой незнакомой Subaru уровень моторного масла. Получилось? А что с обратной стороны щупа? А если авто откатить на три метра в сторону? Да, это – Subaru!
Ну а что не сгорело, то убежало: течи сальников и «потение» крышек – родовая особенность оппозитных движков.
Датчик массового расхода воздуха покрывается грязью или выходит из строя на автомобилях любых производителей. Увы, старые добрые MAP-сенсоры остались в прошлом.
Унификация. Непонятно, зачем фирме, имевшей всего четыре основные массовые модели, плодить такое количество версий, едва ли не ежегодно их обновляя. Например, кто сколько вспомнит движков, устанавливавшихся на Impreza? Три-четыре-пять? На самом деле их было уже девять, в сорока с лишним модификациях. «А ну-ка почини»…
Ремень ГРМ расположен на оппозите удобно, однако «близок локоть, да не укусишь» – многовато шкивов и роликов он обегает. Если вариант SOHC при минимуме навесного оборудования проблем не представляет, то промахнуться на зуб-другой при установке ремня на движке DOHC вполне реально, тем более на свежем моторе с AVCS (системой изменения фаз). Все бы ничего, но клапана… При обрыве ремня ГРМ они встречаются с поршнем (или друг с другом) и гнутся практически на всех моторах.
Шейки коленвала. Нетрудно догадаться, что 4-цилиндровый оппозит органически предполагал три опоры коленвала, но то было во времена прошлые… Дабы повысить жесткость и немного снизить нагрузки, субаровцы увеличили количество опор до пяти, но, как и в старой притче про десять шапок из одной шкурки, чудес не случилось. Шейки здесь все равно узкие, поэтому удельная нагрузка и износ больше, чем на рядных четверках, да и чрезмерно затруднился ремонт – на каком угодно оборудовании их теперь не перешлифуешь.
Гидрокомпенсаторы ранее (примерно до середины 90-х) пользовались у Subaru большим почетом, однако потом здравый смысл возобладал. Так что удовольствие прокачивать в миске с керосином полтора десятка «грибочков» доступно теперь не всем…
Вентиляция картера. Сложно припомнить двигатели, где ее засорение столь же «быстро и эффективно» приводило на сервис. Если обычный мотор хотя бы попытается пыхтеть, плеваться маслом в воздушный фильтр, выбивать щуп – то субаровский оппозит с мрачным самурайским упорством сразу же приступит к выдавливанию сальников…
Сборка распотрошенного оппозита представляет собой эпическую картину. Правильно зажать коленвал между полублоками – это вам не крышечки коленвала притянуть. Ну а совместить отверстие в поршне, отверстие в шатуне и специальную дырку в блоке, засадить туда поршневой палец и «отполировать» все стопорным кольцом – это же песня (для шестицилиндрового оппозита EZ30 – поэма)! Ладно, будь это гоночный монстр в триста-пятьсот сил – ему подобные изощрения можно простить. Но когда тех же трудов требует стосильная жужжалка какой-нибудь «овощной» импрезы – вменяемость японских инженеров оказывается под большим вопросом.
Можно и не напоминать про то, что для мало-мальски серьезной работы по механике движок надо снимать с автомобиля (а мотор DOHC – в обязательном порядке). Аргумент о легкости съема субаровского двигателя по сравнению с каким бы то ни было рядником справедлив – но вот только в большинстве случаев этот рядник вообще не пришлось бы демонтировать.
Радиаторы массово текут у любых азиатских автопроизводителей. Есть ощущение, что пластиковые бачки радиаторов для японских и корейских машин гонят одни и те же бракоделы, с одними и теми же нарушениями техпроцесса или конструкции. Но… Если у Toyota вероятность выхода из строя радиаторов различна (например, с моторами серии S, к сожалению, это происходит чаще, чем с серией A на одних и тех же моделях), то вся немногочисленная гамма автомобилей Subaru орошает землю антифризом равномерно.
Вот за что нельзя не похвалить классические субаровские двигатели SOHC – так это за доступность впускного тракта и топливной системы. А топливный фильтр? Не тойотовский, с вечно закисшими гайками и спрятанный глубоко в недрах моторного отсека, а легкодоступный, на шлангах и хомутиках.
«Двигатель – миллионник»
Фантастический ресурс субаровских моторов не более чем красивая легенда. К тому же они бывают весьма и весьма разными…
«Нормальные»
Двигатели малых объемов (EJ15#, EJ16#, EJ18#) не «миллионники», хотя вполне работоспособны и надежны – приличные моторы для автомобилей C-класса. С точки зрения производителя, унификация с большими братьями понятна, вот только… Ну, зачем нормальному человеку скромный мотор столь дикой компоновки? Даже к полутора литрам прилагаются две головки блока и «особенности» обслуживания оппозитов.
«Оптимальные»
Лучшие субаровские двигатели – это двухлитровые SOHC (EJ20E, EJ20J, EJ201, EJ202..). Здесь некоторая проблемность хотя бы компенсируется отдачей, а ресурс и мощность находятся в разумном балансе – по надежности они не уступают рядным тойотовским четверкам того же объема. Рассчитаны под 92-й бензин, аппетит имеют умеренный, и хотя доставят немало «приятных» минут при ремонте, в обслуживании весьма просты. На отрезке 200-250 тысяч пробега требуют стандартной переборки с заменой колец (без расточки), после чего получают на какое-то время «вторую жизнь».
«Средние»
Двухлитровые атмосферные двигатели DOHC EJ20D, EJ204… – фактически последние моторы, имеющие реальный запас прочности, но четыре распредвала на четыре цилиндра – это уже перебор. Дело с обслуживанием становится непростым: поменять свечи – уже проблема, при установке ремня ГРМ – вероятность ошибки больше в несколько раз, все работы по механической части – только после съема двигателя, бензин – 95-й…
«Хлам»
В первую очередь – это турбомоторы. Хотя почему же хлам? Задачу свою они выполняют – выложиться с максимальным напряжением и… «исчерпаться». Если эксплуатация типа «починил – погонял – в ремонт» выбирается осознанно, то вопросов нет. Но для «гражданской», а тем более повседневной машины они не годятся, поэтому наивны надежды получить одновременно и мощный, и живучий мотор. Про отменный бензиновый аппетит говорить излишне – все многочисленные лошадки хотят покушать.
EJ20G, EJ205 – базовые турбодвижки с ресурсом в 100-150 тысяч. Вот только «оживление переборкой», подобное хотя бы атмосферным субаровским моторам, не всегда получается. Обычно турбы заканчивают свои дни списанием – после обрыва шатуна, разрушения поршней, аварийного износа…
EJ20K, EJ206, EJ207, EJ208 – турбомонстры… и нежильцы, для которых 100 тысяч будут великолепным результатом. Часто эти автомобили убиваются уже первым владельцем – разумеется, что японский отморозок платил за свою бешеную табуретку двадцать-тридцать тысяч не для того, чтобы она пылилась в гараже, ожидая своего покупателя за границей.
Во вторую очередь непременно вспоминается двигатель DOHC EJ25, самый проблемный субаровский атмосферник – за счет неизбежных перегревов. В запасе к этому двигателю хорошо бы иметь коробку прокладок, стеллаж головок и плоскошлифовальный станок для регулярной правки покоробившихся плоскостей. После того, как обнаружилось, что подобный мотор нельзя больше активно выпускать на внешний рынок (засудят), появился и дефорсированный SOHC EJ252. Но в любом случае субаровские 2.5 традиционно получаются существенно капризнее своих 2-литровых коллег.
Итог? Если бы моторы Subaru и в самом деле были так великолепны, как порой говорят, то у них отсутствовали бы характерные для других проблемы и не возникали специфические, но увы… Да, субары обычно комплектуются более мощными двигателями, чем другие японские автомобили того же класса – это составляет единственное реальное преимущество машин с оппозитами. В остальном они не только не превосходят, но и зачастую уступают по надежности и живучести другим японским маркам.
«Двигатель 2.2 – абсолютно нормальный»
Согласен, не стоило его равнять именно с EJ25D, но как раз EJ22E положил начало ослаблению конструкции, возникновению перегревов и, что важнее, повышенной чувствительности к ним. Другой вопрос, что количество этих двигателей невелико на фоне обычных 2.0 и более современных 2.5, так что их особенности для публики малозаметны.
«Моторы 2.5 сильно грелись, но в 99-м году эту проблему официально признали и решили»
Слышали, слышали… Но вы помните, как именно и что именно решили? Правильно, автомобили внешнего рынка вместо страдающего от перегревов EJ25D DOHC получили низкофорсированный EJ251/2 SOHC (150-156 л.с. против 175 – столько выдавал EJ25D-DXDJE в 1997 году). Но на внутреннем рынке по-прежнему устанавливается наследник EJ25D, именуемый EJ254 DOHC (167 л.с.). То есть FHI не победили проблему, а решили пока не давать повода для жалоб требовательному к технике западному владельцу (причем не только в штатах, но и в Европе – где на менталитет владельцев и качество бензина жаловаться просто глупо).
«А движков EJ252 вообще никогда не было»
Стыдно утверждать такое и не знать, что двигатель EJ252-AWAWL, например, устанавливался в 1999-2001 годах на Legacy американского рынка.
«Почему про стоимость ремонта ничего не сказали?»
А стоит ли? Цена ремонта определяется уже не конструктивными особенностями, а индивидуальным подходом. Запросы конкретного мастера, его честность, где и какие берутся запчасти, насколько, в конце концов, запорот движок… В результате разброс получается огромным – от более чем бюджетных 300 за переборку старого доброго 2.0 (монтаж/демонтаж движка на авто – своими силами) до 2000 за поведенные головки EJ254 и рекордных 3500-4000 за ремонт турбированного агрегата форестера по категории «all inclusive».
Атмосферник или турбированный двигатель? Плюсы и минусы
Перед покупкой автомобиля каждый из нас предстает перед массой дилемм, необходимо выбирать между производителями, марками и моделями автомобилей, различными комплектациями, и самое главное, между силовыми агрегатами. Распространенный вопрос: «Что лучше, дизель или бензин?», по популярности может конкурировать разве что с вопросом: «Что лучше выбрать, турбину или атмосферник?».
Сегодня в нашей рубрике постоянных дилемм мы поднимем актуальный вопрос о том, автомобиль с каким двигателем лучше покупать — атмосферник или турбированный, поговорим о преимуществах и недостатках каждого из них для того чтобы ваш выбор был более простым и правильным.
Прежде всего необходимо уяснить один важный момент, дело в том, что нельзя сказать однозначно, что лучше турбина или атмосферник, и тот и другой имеет свои «плюсы» и «минусы». Итак, давайте по порядку.
Преимущества и недостатки атмосферного двигателяПервым делом для тех кто не в курсе я расскажу, что такое атмосферник. Атмосферником принято называть обычный двигатель внутреннего сгорания (ДВС), который использует для образования топливно-воздушной смеси воздух из карбюратора или инжектора (1 часть бензина к 14 частям воздуха). С появлением турбомоторов выбор автомобиля усложнился, поскольку водители начали все больше «соблазняться» более мощными турбированными агрегатами, отдавая им предпочтение перед обычными ДВС. Однако есть также и те, кто все же не решается покупать турбину ввиду отсутствия знаний или опыта эксплуатации этого двигателя.
Атмосферный двигатель: преимуществаК несомненным достоинствам атмосферных двигателей относят:
- Простоту конструкции, которая отработана на практике в течение многих десятилетий. Ремонт и техническое обслуживание таких силовых агрегатов обходятся владельцу намного дешевле (по сравнению с аналогичными операциями для турбированного мотора).
- Значительно больший ресурс бесперебойной работы до капитального ремонта. При правильных условиях эксплуатации и надлежащем уходе срок «жизни» у атмосферных двигателей в 2÷4 раза больше, чем у моторов с турбонаддувом: 300000÷400000 км, зачастую, не являются пределом «долголетия» таких двигателей.
- Меньший расход масла, который в зависимости от стиля езды обычно не превышает 200÷500 мл на 10000 км пробега автомобиля. Это обусловлено отсутствием дополнительных приспособлений, требующих смазки, а также меньшими нагрузками, которые испытывают вращающиеся части мотора при работе.
- Неприхоливость к качеству используемого масла. Они вполне удовлетворительно работают на полу-синтетических (и даже минеральных) моторных маслах. Однако, не стоит забывать о том, что чем лучше масло, тем дольше срок службы двигателя.
- Не столь частую, как у турбированных двигателей периодичность замены масла, которую необходимо производить после пробега в 15000÷20000 км.
- Меньшую требовательность к качеству применяемого топлива. Как правило, многие атмосферные моторы могут вполне удовлетворительно работать и на бензине марки Аи92.
- Более быстрый прогрев в зимнее время.
Как и все в этом Мире, атмосферные двигатели не лишены недостатков. К таким можно отнести большой вес двигателя, меньшую мощность по сравнению с турбомотором аналогичного объема, снижение мощности при езде в горной местности или других местах, где воздух разрежен. Кроме всего прочего, атмосферник уступает турбированному двигателю в динамических показателях.
Преимущества и недостатки турбированного двигателяТурбированный двигатель впервые увидел мир в 905 году, а на «легковушки» турбины стали устанавливать только в середине 20-го века. Принцип двигателя оснащенного турбиной заключается в том, что турбина рационально использует выхлоп автомобиля, посредством которого происходит нагнетание дополнительного воздуха в цилиндры, который способствует лучшему сгоранию топливно-воздушной смеси. Как вы знаете, чем больше воздуха, тем лучше будет гореть, по тому же принципу устроен и турбомотор, турбина под высоким давлением нагнетает воздух в цилиндры, благодаря чему сгорание топливной смеси происходит с большим КПД, в результате двигатель получает больше мощности минимум на 10%.
Турбированный двигатель: преимуществаК плюсам турбированных моторов (по сравнению с атмосферными аналогами) относят:
- Более высокую мощность (как правило, на 30÷50%) при одинаковом рабочем объеме.
- Максимальный крутящий момент в широком диапазоне оборотов, что весьма положительно влияет на динамику автомобиля.
- Меньшие вес и размеры при одинаковой мощности. Турбированный двигатель значительно легче и компактнее атмосферного. Это позволяет наиболее рационально расположить силовой агрегат и снизить общую массу автомобиля, что способствует, в свою очередь, экономии топлива.
- Быстрый набор рабочих оборотов за счет меньшей массы вращающихся деталей.
- Высокую экологичность, которая достигается за счет более полного сгорания топлива в цилиндрах двигателя.
Среди недостатков турбированных моторов больше эксплуатационных минусов. Во-первых, двигатель с турбиной более привередлив к качеству топлива и моторного масла. Кроме того, на таких двигателях срок службы смазывающих и фильтрующих элементов гораздо меньше чем у атмосферников, примерно в 1,5-2 раза, это объясняется более сложными условиями работы при высоких температурах. Владельцам турбированных моторов следует более тщательно следить за уровнем и состоянием фильтров и масла, и производить их замену в строгом соответствии с указаниями производителя двигателя. Не менее важно состояние воздушного фильтра, забитый или поврежденный фильтр ухудшает работу компрессора и может стать причиной его неисправности.
К недостаткам турбодвигателя следует также отнести его «прожорливость». Турбина, по сравнению с атмосферником аналогичного объема, будет «кушать» больше топлива.
Кроме того, турбомотор имеет меньший моторесурс чем атмосферный двигатель. Турбина со временем изнашивается, особенно если владелец не владеет навыками эксплуатации таких двигателей. К примеру, турбомотору после остановки автомобиля необходимо дать немного поработать на холостых, чтобы турбина остыла и только после этого можно глушить двигатель.
Стоимость ремонта турбированного двигателя обойдется намного дороже чем ремонт атмосферника, кроме того желающих выполнить этот ремонт не так уж много, некоторые специалисты вообще отказываются ремонтировать турбомоторы. Те же, кто берется, иногда выполняют ремонт некачественно, в результате двигатель работает с перебоями или со временем турбодвигатель снова выходит из строя.
Как же расход топлива?Если вы внимательно прочитали о плюсах и минусах обоих моторов (атмосферного и турбированного), то вас удивило то, что мы ничего не рассказали о расходе топлива. На этом вопросе стоит остановиться несколько подробнее. Попробуем разобраться, какой мотор является более экономичным.
Сначала сравним два двигателя с одинаковым объемом (например, 1,4 литра). Атмосферный мотор будет расходовать в среднем около 6÷7 л на 100 км пробега, а трубированному потребуется уже 8÷9 литров. Однако при этом он развивает мощность в 1,5 раза большую, чем атмосферный. Вывод: при одинаковом рабочем объеме «атмосферник» значительно экономичнее (ведь он не только «ест» меньше топлива, но и использует более дешевый бензин), однако значительно уступает турбированному по мощности.
Теперь проведем сравнение расхода топлива у моторов с одинаковой мощностью (например, около 140÷150 лс). Столько «лошадок» под капотом обычно имеет атмосферный мотор объемом 2,0 литра или турбированный двигатель объемом 1,4 литра. В городском цикле расход у обычного двигателя составит около 12÷14 литров на 100 км, у турбированного – все те же 8÷9 литров. Вывод: даже учитывая меньшую стоимость бензина, необходимого для нормальной эксплуатации атмосферного двигателя, мотор с турбо наддувом значительно экономичнее.
Автомобиль с каким двигателем лучше выбратьКак вы видите, и тот и другой двигатели имеют свои «плюсы» и «минусы», для того чтобы понять какой двигатель лучше — турбированный или атмосферный, необходимо для себя уяснить приоритетные стороны того или иного агрегата.
Обе разновидности моторов имеют как свои достоинства, так и недостатки. Поэтому нельзя однозначно сказать какой из них лучше. Если вы поклонник агрессивной езды, быстрого старта с места, любите драйв и готовы к значительным затратам на обслуживание, то выбор однозначен – автомобиль с турбированным двигателем. Однако, склоняясь к такому выбору, надо помнить о том, что мотор вашего транспортного средства (а особенно турбина) «проживет» значительно меньше, чем атмосферный аналог. К тому же вы должны быть уверены, что в своем регионе вы без труда сможете приобрести топливо высокого качества, а также специальные синтетические масла.
Если для вашего стиля езды характерны спокойствие, предусмотрительность и осторожность, и к тому же вы практичный и бережливый человек, то излишки мощности турбированного двигателя вам просто не нежны. А вот надежность, простота в обслуживании и долговечность атмосферного мотора, позволят значительно сэкономить затраты на его повседневную эксплуатацию.
Источники: avto-moto-shtuchki.ru, vopros-avto.ru и др.
Не забываем!
Всё ремонтируется, вопрос остается только в выборе СТО. Этот выбор только за Вами!
Современные тенденции автопроизводителей сделали ставку на компактный турбированный двигатель. Это дало ряд преимуществ, среди которых компактность, экономичность, экологичность и максимальный КПД при малых объемах.
Основные отличия турбированного двигателя от атмосферного
Если атмосферный двигатель подразумевает впуск воздуха посредством разряжения, созданным поршнем, то с турбированным мотором все иначе. Для максимально эффективного сгорания топлива необходимо большое количество воздуха, чего невозможно добиться от атмосферника, поэтому нужно было воздух, в большом объеме, «затолкать».
В атмосферном силовом агрегате крутящий момент и мощность во многом зависит от объема цилиндров, что и стало основным отличием от турбомоторов.
Особенности турбированных двигателей
Принцип работы турбины состоит в принудительном нагнетании воздуха под давлением в цилиндры. Такое действие позволяет увеличить рабочий объем камеры сгорания за счет сильного сжатия, поэтому при равном объеме двигателя, разница в мощности между атмосферником и турбомотором колоссальная.
Главные предпосылки появления турбированных моторов:
- Невозможность существенного увеличения мощности без увеличения объема и количества цилиндров (отсюда мы имеем агрегаты V8 и V12)
- «Выжимание» максимальной мощности с помощью уменьшения камеры сгорания увеличивает степень сжатия, а значит работа двигателя без детонации невозможна. Детонация разрушает поршни.
- Любые манипуляции по увеличению мощности атмосферника увеличивают расход топлива, а также делают невозможным комфортную эксплуатацию во всем диапазоне оборотов двигателя.
Изначально в массовое производство был запущен дизельный турбированный двигатель — такие моторы «наматывали» миллионы километров без особых проблем. В 80-х годах прошлого века среди легковых автомобилей начали появляться бензиновые турбоагрегаты.
Стоимость таких автомобилей существенно отличалась от обычных. До 90-х годов широко использовались механические нагнетатели, приводящиеся в движение через ремень от коленвала. Конструкция довольно проста и надежна, о чем свидетельствует яркий пример в лице двигателя Mercedes-Benz M111 E23 Compressor.
Позднее решено было переходить на турбокомпрессор, работающий от выхлопных газов, так как механический нагнетатель забирал значительную мощность на раскручивание лопастей.
Как работает турбина
Турбина состоит из двух частей:
- Холодная – всасывает и раскручивает впускной воздух,
- Горячая – раскручивается воздух посредством движения выхлопных газов.
В турбине установлен картридж с лопастями, которые от движения воздуха раскручиваются вплоть до 150 000 оборотов в минуту, создавая давление. Вращаются лопасти на подшипниках, а за смазывание и охлаждение отвечает подача масла с двигателя.
Так как при резком повышении давления воздух сильно нагревается, был изобретен интеркуллер, охлаждающий воздух до нужной температуры.
Во впускной магистрали установлен клапан, отвечающий за сброс избыточного давления впускного воздуха (Blow off), а также вестгейт, ограничивающий количество отработанных газов, попадающих в турбину, что позволяет избежать резкого роста повышения оборотов крыльчатки (простыми словами-ограничитель).
Работа турбины крайне проста: в горячую часть турбины попадают отработанные газы и раскручивают крыльчатку. В холодной части раскрученная крыльчатка всасывает большое количество воздуха, который проходит через интеркулер, и в охлажденном состоянии попадает в цилиндры. После того, как отработанные газы раскрутили турбину, они идут далее по выпускной магистрали.
Турбированный двигатель, плюсы и минусы
Сначала о преимуществах:
- Возможность с малого объема “выжать” большую мощность, зачастую это 100 л.с. на каждый литр объема.
- Крутящий момент уже с холостых оборотов дает уверенную тягу, но только в случае, если турбина маленькая, она раскручивается быстрее.
- Диапазон крутящего момента широкий.
- Расход топлива, при одинаковой мощности с атмосферным моторов, явно ниже.
- Возможность увеличивать мощность с помощью прошивки на 20-30% без вреда ресурсу и комфорту движения.
- Ресурс турбины современных авто едва достигает 100 тыс.км.
- Возникновение «турбоямы», процесса между провалом и резким набором скорости из-за ожидания раскрутки турбины.
- Стоимость ремонта дороже, обслуживать двигатель нужно чаще.
- Возрастает потребность в качественном масле и топливе.
Отличие от механического нагнетателя
Приводной нагнетатель широко используется на американских автомобилях с V-образными «восьмерками». Явной потери мощности не ощущается в силу большого объема, зато компрессор уже с холостых оборотов обеспечивает стабильный крутящий момент. К тому же, конструктивно приводной компрессор удобнее и дешевле, чем установка двух турбин.
Турбина, работающая от выхлопных газов, значительно повышает КПД, а его сопротивление приравнивается к 0, так как используется энергия отработанных газов.
У приводного компрессора есть два недостатка: повышенный шум работы и потери мощности на раскручивание.
Основной проблемой турбированного двигателя является незнание правильного ухода и обслуживания таких агрегатов. Турбомоторы требуют более частого внимания, в таком случае дорогой ремонт турбины можно отсрочить на долгие годы.
Как говорилось в советской кинокомедии «Берегись автомобиля»: «Каждый, у кого нет машины, мечтает еe купить. И каждый, у кого есть машина, мечтает еe продать».
Со времени выхода фильма прошло больше пятидесяти лет, машины стали во много раз сложнее в техническом плане, модельный ряд расширился на несколько порядков. Но личный автомобиль — это по-прежнему серьeзная покупка для семьи, и никто не хочет прогадать с выбором.
Итак, у вас на руках заветная сумма, вы уже определились с маркой и моделью будущего автомобиля. И тут встаeт важный вопрос: с каким двигателем брать машину? Если вопрос о выборе дизельного или бензинового двигателя для вашего автомобиля решeн в пользу последнего, возникает ещe одна дилемма: атмосферный или с турбонаддувом.
В нашей стране большинство популярных моделей, будь то бюджетные седаны или сверхпопулярные кроссоверы, предлагаются как с турбированными, так и с атмосферными моторами. При этом, чем выше класс автомобиля и его цена, тем шире линейка именно турбированных агрегатов. Это общемировая тенденция: турбомоторы постепенно вытесняют атмосферные двигатели.
Прежде чем сделать выбор, стоит разобраться в главных отличиях атмосферных и турбированных силовых агрегатов, а также выявить их сильные и слабые стороны.
Как это работает
Основное отличие двух моторов заключается в способе подачи воздуха в цилиндры. В атмосферном двигателе воздух идeт под действием впуска разрежения, который создаeтся на такте, — поршень просто опускается и втягивает воздух. В турбированном моторе работает принудительный наддув — в цилиндры нагнетается больше воздуха с помощью турбокомпрессора.
По сути, турбированный двигатель является модернизацией своего предшественника — классического атмосферного мотора. Основная цель этого изобретения — увеличение мощности без увеличения объeма цилиндров. Турбированный бензиновый двигатель позволяет получить в камерах сгорания более высокую степень сжатия. Благодаря тому, что воздух подаeтся в камеры сгорания под давлением, достигается более полное сгорание топливно-воздушной смеси.
Турбина состоит из двух частей: ротора и компрессора. Двигатель в процессе работы производит выхлопные газы. Эти раскалeнные газы, поступая под давлением в ротор, раскручивают турбонагнетатель, воздействуя на лопатки турбины. Только после этого они поступают в глушитель. Вал ротора, вращаясь, приводит в действие компрессор, который нагнетает воздух в камеры сгорания, образуя дополнительную степень сжатия.
Воспользуемся простым примером для иллюстрации: если объeм мотора составляет 1,6 литра, то мощность классического атмосферника не превысит 100-110 л.с. В свою очередь, турбированный двигатель при том же объeме сможет выдать до 180 л.с.
Кстати, турбированные двигатели имеют свою небольшую классификацию.
- Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора.
- Турбокомпрессор, который использует энергию выхлопных газов. Принципы его работы мы рассмотрели выше.
Немного истории
Готтлиб Даймлер, один из создателей первого двигателя внутреннего сгорания, экспериментировал с нагнетателем, приводимым от коленвала, ещe в 1885 году. Несколькими годами позже Луи Рено — отец одноимeнной марки автомобилей — получил патент на аналогичную конструкцию для ДВС в 1902-м. Причeм само устройство для промышленного применения братья Рутс изобрели ещe в 1859-м.
Примерно тогда же опыты с турбиной, работающей от выхлопных газов, ставил швейцарец Альфред Бюши. Именно ему приписывают создание турбонаддува, функционирующего по такому принципу, в 1905 году. Правда, установить истинного первого изобретателя сейчас сложно, ведь Бюши лишь получил патент.
Мировую же известность механическим нагнетателям принесла компания Mercedes-Benz, которая стала устанавливать наддувные компрессоры в конце 20-х годов сначала на гоночные, а начиная с 30-х и на серийные машины.
Из Германии мода на наддувные машины перекинулась на Голливуд, а оттуда на весь мир. Золотой век немецких «компрессоров» закончился одновременно с началом Второй мировой войны. Основное применение компрессоров в военное время пришлось на авиацию: наддув использовался для компенсации недостатка кислорода на больших высотах.
Сразу после Второй мировой войны использование компрессоров продолжилось в основном на моторах Формулы-1. Турбонаддува на гражданских машинах автопроизводители побаивались из-за детонации возросшего давления и температуры. Технологии производства подшипников оставляли желать лучшего, охлаждение и смазка тоже была малоэффективной, из-за этого турбины быстро приходили в негодность.
Окончательно и бесповоротно на путь «турбинификации» мировые производители встали после топливного кризиса конца 70-х.
Победа за турбокомпрессором?
Не углубляясь в технические подробности, скажем, что механические нагнетатели можно считать частью эволюционного пути, а массовое распространение в итоге получили турбокомпрессоры. Для раскрутки нагнетателя требуется мощность с вала двигателя, турбина же раскручивается просто за счeт выхлопных газов. Первый путь технически сложнее и дороже в массовом производстве.
Тем не менее механические компрессоры до сих пор устанавливают! С одной стороны, это премиальные модели британских Jaguar и Land Rover, некоторые двигатели у Mercedes, а с другой — традиционные масл-кары в духе Dodge Challenger Hellcat, которые продолжают специфически «подвизгивать» именно из-за своего механического нагнетателя.
Главное преимущество этой конструкции — приводной компрессор любой конструкции, будучи привязанным к коленвалу, не имеет инерционности. Связь «по педали» с ним прямая, и разгон остаeтся ровным практически во всeм диапазоне.
Как говорится, каждому своe. Но вернeмся к массовым автомобилям.
Преимущества
Если на рынке продаются оба вида двигателей, значит, у каждого есть ряд неоспоримых преимуществ. Рассмотрим их.
Атмосферный двигатель:
- проще в обслуживании;
- имеет более высокий ресурс;
- меньший расход масла;
- невысокие требования к качеству топлива и масла.
Турбированный двигатель:
- высокая мощность и увеличенный крутящий момент при равных объeмах двигателя;
- меньший расход топлива.
Недостатки
Равно как плюсы, у каждого из двух типов двигателей есть свои недостатки.
Атмосферный двигатель:
- имеет большой вес;
- при одинаковом объeме с турбомотором мощность ниже;
- сниженная динамика — в сравнении с турбомотором того же объeма;
- сложности при езде в горах.
Большинство минусов атмосферного двигателя всплывают при сравнении с турбированными агрегатами. Отдельно стоит сказать о последнем пункте: воздух в горах слишком разреженный, его количества не хватает для стабильной работы мотора, поэтому двигатель попросту «задыхается».
Турбированный двигатель:
- высокие требования к качеству смазки и топлива;
- дорогостоящий ремонт;
- долгий прогрев зимой;
- меньший интервал замены масла.
Трудности выбора
Автолюбителям, которые сомневаются, какой двигатель лучше и выгоднее, однозначного ответа дать не получится. Например, ценителям мощности и динамики имеет смысл присмотреться к турбированному мотору. Однако он же влечeт за собой значительные денежные траты на приобретение бензина и масла высокого качества.
Атмосферный двигатель примечателен своей простотой и неприхотливостью, он прекрасно может служить не одно десятилетие, кроме того, его работоспособность сможет поддержать даже человек с невысоким достатком.
Какое масло нужно турбомоторам, а какое — атмосферным?
У турбомотора наибольшая отдача, то есть максимум выработки тепла приходится на диапазон оборотов в районе 3000-4000 об/мин, когда турбина подаeт повышенное количество воздуха в цилиндры. После того как поток выхлопных газов станет достаточным для полноценной работы турбины, происходит скачок вырабатываемой энергии, сопровождаемый скачком температуры.
Моторное масло в таких условиях обязано сохранять свои свойства как при низких, так и при повышенных температурах. В случае турбированного двигателя это особенно важно, поскольку ось, на которой установлены турбинное и насосное колeса турбонаддува, работает в подшипниках скольжения. В случае если смазочный материал не обеспечит необходимую защиту данного узла, турбина может преждевременно выйти из строя, не выработав свой ресурс, который обычно составляет 30–70% ресурса двигателя.
Для машин с турбокомпрессорами лучше всего подходят синтетические масла, так как они лучше противостоят окислению по сравнению с минеральными и полусинтетическими. К тому же их вязкость в меньшей степени зависит от изменений температуры, что необходимо для обеспечения защиты подшипников турбины на всех режимах работы двигателя.
Что касается самих характеристик вязкости моторного масла, то турбированные моторы «предпочитают» всесезонные масла с низкотемпературным показателем вязкости SAE 0W и высокотемпературным SAE от 20 до 40. Моторные масла с низким показателем высокотемпературной вязкости следует выбирать для повышения топливной экономичности, высокие показатели вязкости — для лучшей защиты двигателя и турбины. В любом случае, подбор смазочного материала следует проводить в полном соответствии с руководством по эксплуатации конкретного автомобиля.
Кроме того, есть пара важных нюансов относительно использования автомобилей с турбированными двигателями:
важно постоянно следить за состоянием масла, меняя его с периодичностью, рекомендованной производителем;
необходимо регулярно проверять воздушный фильтр — если он забился, это нарушит работу компрессора;
турбина быстрее изнашивается, если сразу после остановки автомобиля отключать мотор. Чтобы продлить срок службы турбомотора, ему нужно дать немного поработать на холостых оборотах для охлаждения турбины.
Атмосферные двигатели, в отличие от турбированных, менее требовательны к специфическим характеристикам масла. В данном случае подойдут общие рекомендации, которые мы давали в одной из предыдущих статей.
Стоит лишь напомнить о том, что мы предлагаем простой способ найти подходящее масло, — воспользоваться удобным онлайн-подборщиком. Просто задайте параметры «вид техники — марка — модель» или воспользуйтесь строкой поиска, и вам будут предложены все подходящие виды масла согласно международным стандартам и допускам автопроизводителей.
Источник http://www.vk-sto.by/blog/atmosfernik_ili_turbirovannyj_dvigatel/2019-11-23-54
http://autoexpert174.ru/chto-takoe-turbirovannyj-dvigatel/
Источник http://lukoil-shop.ru/articles/mezhdu_atmo_i_turbo_kakoy_vybrat_dvigatel/
BMW X5 M50d: Упругая расслабленность
Когда примерно 15 лет назад компания BMW впервые предъявила миру большой и мощный автомобиль повышенной проходимости, то был очевидно отважный шаг. И конкуренты у X5 к тому времени уже благополучно существовали, но главное — сама BMW таких машин до того не делала. Поэтому, наверное, первое поколение X5 и вышло эдакое, лаконичное, чтобы не сказать осторожное: в нем доминировала здоровая брутальность — правда, в сочетании с привычными для марки высокими потребительскими качествами.
Для своего первого вседорожника маркетологи BMW даже придумали особую аббревиатуру — не SUV (Sport Utility Vehicle), как обычно именуют кроссоверы, а SAV — Sport Activity Vehicle — подчеркивая его не утилитарность, но спортивность. Спустя два поколения X5 стала, кажется, одним из двух (наряду с седьмой серией) флагманов всей модельной гаммы BMW или уж по крайней мере флагманом ее внедорожной линейки, то есть — законодателем моды. Скромничать уже не нужно: модель — один из бестеллеров марки, она прекрасно себя чувствует даже и в теперешней сверхконкурентной среде.
Нам на тест достался более чем самый заряженный экземпляр модели, со знаменитой буквой в названии — M50d. О моторе, который используется в этой модели, хочется сказать сразу. Он первый в таком роде, он тритурбо, то есть в нем стоят три турбины: две небольших, с изменяемой геометрией, и одна основная. Первая, небольшая, турбина начинает работать прямо на минимальных оборотах; вторая, основная, включается на средних и обеспечивает гигантский — 740 Нм — крутящий момент; наконец, третья, тоже небольшая, поддерживает динамику двигателя на высоких частотах. Рядный трехлитровый дизельный двигатель выдает 381 л. с. мощности и позволяет X5 разогнаться с нуля до 100 км/ч за 5,3 с.
/Уникальный дизельный двигатель, разработанный для версии M50d, — с тремя турбинами. Фото: А.Губский/Ведомости
Во внешнем облике нового поколения X5 особенных изменений по сравнению с предыдущим вроде бы не заметно. Но только на первый взгляд! Поразительное достижение дизайнеров марки — потому если поставить рядом предыдущую и нынешнюю машину, то удивишься, насколько они разные. (Производитель даже утверждает, что у них нет ни единой общей детали!)
Дизайнеры нового “тела” X5 еще дальше ушли от легендарной брутальности и лаконичности, которые были свойственны первому поколению модели. Третье поколение более приземистое, широкое и гладкое, нежели второе, а решетка радиатора, традиционно для BMW поделенная на две фасолины, хотя и стала побольше размером, как-то не создает прежней агрессивности.
Частично эти внешние изменения имеют не только художественный, но и экологический (если такое слово вообще можно употреблять в отношении крупного вседорожника) смысл: коэффициент лобового сопротивления у нового кузова X5 стал как у какого-нибудь роскошного седана — 0,31!
Интерьер оторопи также не вызывает, хотя и придраться буквально не к чему. Качество отделки материалов превосходное, обстановка выглядит очень солидно. Можно даже риторически спросить себя: да правда ли американцы это сделали (X5 собирается в Спартанбурге, в Южной Каролине)?
Обращает на себя внимание разве что гигантская по автомобильным меркам жидкокристаллическая панель, на которую выводятся все настройки и детали управления развлекательной и навигационной системами машины. Одному из нас показалось, что это не самая удачная идея: мощное цветовое пятно волей-неволей оттягивает на себя внимание водителя. Хотя именно с ней связаны всяческие приятные (а для кого-то, может, и раздражающие) мелочи вроде кругового обзора при парковке или эквалайзера.
/Сиденья для BMW M-серии — с более развитой боковой поддержкой и фирменными трехцветными вставками. Фото: А.Губский/Ведомости
Есть и еще один заметный недостаток: кнопки, расположенные вокруг кругляша iDrive, не все видны с водительского места; конечно, человек, который пользуется такой машиной ежедневно, быстро привыкнет не глядя тыкать в необходимые кнопки, но на новенького это вызывает некоторое все же недоумение. Тут же скажем, что зато с интуитивным освоением iDrive проблем вообще не возникло. Да и самих кнопок как-то необычно много для BMW — скорее такой подход к организации пространства свойствен производителям более простых и массовых автомобилей.
Места в салоне много, в один из тестовых дней мы везли в нем — на краткую дистанцию и не по дорогам общего пользования — сразу восемь человек, и нельзя сказать, что кому-то из них было особенно неудобно. При штатной же загрузке о тесноте просто не думается; одному из нас, сравнительно высокому и грузному человеку, обычно в тестовых машинах приходится отодвигать водительское кресло почти по максимуму — в X5 запас еще был велик! В общем, расслабьтесь, дорогие гости, мы за вас все тут продумали.
/На заднем диване без проблем поместятся три пассажира. Фото: А.Губский/Ведомости
Но BMW, и особенно BMW M, — это прежде всего езда. Надо сразу сказать: критиковать в этой области X5 просто не за что. Начать с того, как звучит этот трижды турбированный дизель на малых или холостых оборотах — а почти никак! Хороший бензиновый атмосферник даст не меньше шума, чем он! Разумеется, когда водителю вздумается, переведя режим управления двигателем в положение Sport (а есть даже и Eco, и все равно с неплохой отдачей), как следует нажать на акселератор, двигатель отзовется прекрасным рычанием с богатейшим тембром — но в такой ситуации куда без рычанья! А в мирное время, в пробке или при спокойной городской езде никакого докучливого бормотания или дребезжания и не услышишь.
А режим Eco Pro предлагает водителю увлекательную игру: насколько удастся увеличить пробег автомобиля до ближайшей заправки при движении в этом режиме. Скажем честно: мы этим режимом пользовались нечасто и даже в нем не отказывали себе в удовольствии “наступить” на газ, если к тому располагала дорожная обстановка — и тем не менее даже при таких условиях мы смогли выгадать дополнительные 7,3 км пути. За последние 2200 км пробега X5M 50d потребляла 12,3 л при средней скорости 37,2 км/ч. Прекрасный результат для 2,5-тонного автомобиля мощностью 381 л. с.
/В режиме движения Eco Pro на спидометр выводится количество “бонусных” километров, полученных при такой экономной езде. Фото: А.Губский/Ведомости
Единственное нарекание, которое мы можем высказать после недельной эксплуатации X5M 50d, — к датчику давления в шинах (и одновременно похвалить эти самые шины). Уже в первый день теста нам показалось, что одно из колес подспустило. Мы попытались подкачать колесо — визуально ничего не изменилось. Манометра, чтобы проверить давление, под рукой не оказалось, датчики никакой проблемы не фиксировали. Так мы проездили еще два дня, после чего на приборной панели появилось сообщение о падении давления в шинах. Визуально колесо выглядело так же, как и в первый день теста, и тем не менее мы отправились на шиномонтаж, где диагностировали прокол покрышки и падение давления вдвое ниже нормы. К счастью, на автомобиле были установлены покрышки run-flat, позволяющие ездить даже с проколом, — и колесо от такой эксплуатации не пострадало.
Резюмируя, скажем, что для горячих и самолюбивых людей X5M 50d — отличный выбор. Со светофора эта махина рвет так, что и не узнаешь, собирался с тобой конкурировать кто-то или нет. Тестов на максимальную скорость мы давно уже не делаем, так что почувствовать себя на немецком автобане не удалось, зато удалось попробовать трижды турбо на скоростную маневренность в условиях так называемого рабочего движения на Киевском шоссе: превосходно! Никаких кренов, уверенный набор скорости в любом диапазоне спидометра, четкие реакции на движение руля, ясный и очень приятный отклик на касание педали тормоза — все при ней. И не забываем: если не давить сильно на газ, все это происходит во вполне комфортной шумовой атмосфере.
/Аудиосистема Bang & Olufsen имеет 16 громкоговорителей общей мощностью 1200 Вт. Фото: А.Губский/Ведомости
Как тут не послушать что-нибудь зажигательное? Как не проверить качество звуковоспроизведения автомобильной саунд-системы? (В нашем тестовом BMW была установлена Bang & Olufsen.) Мы выбрали альбом Ssssh (1969 г.) группы Ten Years After, поскольку испытываем слабость к блюзу и психоделии, а также к дарованию Чика Черчилля, который там на клавишах. Несколько грязноватый звук групп вышел аутентично, без провалов и взвизгиваний. Классическую музыку представлял дуэт восходящей скрипичной звезды Сергея Хачатряна и Валерия Гергиева с Мариинским оркестром — они играли концерт Сибелиуса. За исключением самых верхов (где Хачатрян особенно хорош) изложение музыкального материала нареканий не вызвало.
Что такое атмосферный двигатель?
Безнаддувные двигатели — это двигатели, которые работают без турбонагнетателей или нагнетателей, что означает, что они дышат воздухом при атмосферном давлении вместо использования «принудительной индукции» для повышения производительности.
Что мне нужно знать о двигателях без наддува?
Традиционно стандартные бензиновые двигатели были безнаддувными (также называемыми безнаддувными двигателями или даже просто NA), в то время как дизельные двигатели должны регулярно использовать турбокомпрессоры для повышения мощности и экономии.
Однако производители все чаще прибегают к турбонаддуву как бензиновых, так и дизельных двигателей, поскольку покупатели по-прежнему хотят одновременно большей мощности и большей экономии топлива.
Двигателис турбонаддувом часто показывают лучшие результаты в официальных тестах на экономию топлива, и они могут обеспечить больший разброс производительности от низких до средних оборотов двигателя и выше, а это означает, что вам не нужно так сильно работать с двигателем для того же ускорения.
Каковы преимущества атмосферных двигателей?
В то время как двигатели с турбонаддувом могут обеспечить большую мощность, чем безнаддувные альтернативы того же размера, безнаддувные двигатели обладают и другими преимуществами.
Безнаддувные двигатели обычно гораздо быстрее реагируют на нажатие педали акселератора — давая им то, что восторженные водители назвали бы большей реакцией, — тогда как при внезапном запросе увеличения скорости от двигателей с турбонаддувом может возникнуть задержка.
Эта турбо-задержка является результатом дополнительной сложности, которая в конечном итоге позволяет двигателям с турбонаддувом вырабатывать дополнительную мощность.
Точно так же, если вы позволите двигателю упасть слишком низко, некоторые двигатели с турбонаддувом могут чувствовать себя очень запаздывающими, поскольку турбокомпрессору требуется больше времени для восстановления и возврата к скорости.Это не проблема для большинства атмосферных двигателей.
Кроме того, безнаддувные автомобили должны быть дешевле в покупке, более надежными и простыми в обслуживании, поскольку они менее сложны.
Моделис турбонаддувом также не всегда так экономичны в реальном вождении, особенно при более интенсивной работе двигателя — это может привести к большим расхождениям между заявленным и реальным расходом топлива на галлон, особенно для бензиновых автомобилей с турбонаддувом.
Бензин без турбонаддува, как правило, не страдает такими большими различиями; Mazda, например, в значительной степени избегала турбонаддува своих недавних бензиновых двигателей и в результате имеет тенденцию предоставлять впечатляющие показатели реальной экономики.
Однако вы обнаружите, что автомобили без турбонаддува невероятно медленные. Поэтому их лучше избегать.
Альтернативы / Аналогично
Турбокомпрессор
Нагнетатель
Ищете более сложные автомобильные значения? Перейдите на страницу глоссария автомобилей Parkers и ознакомьтесь с другими нашими определениями
Что такое атмосферный двигатель?
Читая об автомобиле, который работает на бензине или дизельном топливе, есть большая вероятность, что вы видели двигатель, описанный как «безнаддувный».Но что это на самом деле означает?
Термин «без наддува» обычно используется для двигателей, не оснащенных турбонагнетателем или нагнетателем.
Двигатели должны смешивать топливо и воздух, чтобы работать. Безнаддувный двигатель использует свои цилиндры для всасывания топливной смеси под атмосферным давлением за счет всасывающего действия поршней во время впуска. Когда в автомобиле есть турбонагнетатель или нагнетатель, это устройство может нагнетать больше воздуха в цилиндры двигателя для создания дополнительной мощности и крутящего момента.
Могут ли безнаддувные двигатели быть быстрыми?
Безнаддувные двигатели сегодня популярны среди большинства новых автомобилей, представленных на рынке, но примечательно, что большинство доступных автомобилей, ориентированных на производительность, действительно оснащены турбонагнетателем или нагнетателем для большей мощности.
Безнаддувные двигатели популярны, потому что их дешевле производить в массовом порядке. Но большинство атмосферных двигателей, используемых в современных автомобилях, также менее мощные, чем агрегаты с турбонаддувом / наддувом.
Означает ли это, что безнаддувный двигатель не может быть быстрым? Нисколько. Взять хотя бы Формулу-1. Конечно, автомобили в этом спорте в настоящее время используют турбины, но в период с 1989 по 2013 год двигатели были безнаддувными, но на одном этапе могли выдавать около 900 л.с.
В прошлом в дорожных автомобилях использовались очень мощные безнаддувные двигатели, хотя обычно они должны быть довольно большими (с использованием как минимум восьмицилиндров) и им может не хватать эффективности. Вот почему в последние годы все больше и больше производителей сосредотачиваются на использовании агрегатов с турбонаддувом для своих высокопроизводительных автомобилей, поскольку они могут добиться большей производительности от более компактного агрегата и уменьшить компромисс между эффективностью и выбросом CO2.
Цены на новые автомобили можно найти здесь, на сайте carkeys.co.uk
Что такое безнаддувный двигатель?
Что такое безнаддувный двигатель?
Под двигателем без наддува понимается двигатель внутреннего сгорания, мощность которого не увеличивается с помощью турбонагнетателя или нагнетателя. Большинство автомобильных двигателей являются двигателями без наддува; однако турбонаддув и наддув в настоящее время являются очень популярным способом увеличения выходной мощности для ряда марок автомобилей.Jaguar пользуется преимуществами своих очень быстрых моделей с наддувом. Subaru, Saab, Mazda, Mitsubishi и Nissan имеют в своем ассортименте автомобили модели с турбонаддувом. В большинстве дорожных автомобилей с дизельным двигателем также будут использоваться турбокомпрессоры и промежуточные охладители. Это связано с тем, что дизельные двигатели без наддува обычно не могут предложить подходящий уровень мощности для повседневных условий вождения.
В двигателе без наддува топливно-воздушная смесь нагнетается в цилиндры под действием вакуума, вызванного движением цилиндра, естественным атмосферным давлением и эффектом Вентури при открытии впускных клапанов.В двигателе с турбонаддувом или двигателем с наддувом топливная смесь нагнетается в камеру сгорания под большим давлением, поэтому такой двигатель называют двигателем с принудительной индукцией.
При сравнении двигателя без наддува и двигателя с турбонаддувом или наддувом того же рабочего объема, двигатель без наддува обычно дает меньшую мощность. Более простая конструкция атмосферных двигателей означает, что цены на автомобили, вероятно, будут ниже, чем с турбонаддувом.
Во многих гоночных сериях, таких как большие австралийские суперкары V8, указывается, что в автомобилях должны использоваться только безнаддувные двигатели для ограничения мощности и скорости. NASCAR, Indy-Car и Formulas One также попадают в эту категорию. Одной из основных причин ограничения является также гарантия того, что стоимость производства гоночных двигателей не будет чрезмерной и недоступной для некоторых производителей. Мы надеемся, что это поможет ответить на вопрос «Что такое безнаддувный двигатель?»!
Понравилось это простое объяснение? Если вам нужна дополнительная информация, ознакомьтесь с этим обсуждением на Quora или в блоге PMC здесь.
Вернуться к автомобильному глоссарию
Что такое безнаддувный двигатель или NA?
Безнаддувный двигатель (NA): конструкция и характеристики
Термин NA обозначает двигатель без наддува. Этот термин применяется только к двигателю внутреннего сгорания (ВС). В двигателе внутреннего сгорания поступление воздуха полностью зависит от атмосферного давления. Поэтому производители называют это естественным дыханием или естественным дыханием.
При открытии впускных клапанов двигателя они заполняют цилиндр свежим воздухом или топливовоздушной смесью (наддувом).Цилиндр двигателя всасывает заряд (или только воздух в случае дизельных и бензиновых двигателей с прямым впрыском) из-за атмосферного давления и вакуума, создаваемого опускающимся поршнем. Он НЕ использует внешний механизм для нагнетания воздуха в цилиндры. Поэтому производители называют этот тип двигателя безнаддувным.
Безнаддувный двигатель против двигателя с турбонаддувом:
Безнаддувный двигатель использует только атмосферное давление и разрежение на впускных отверстиях для заполнения цилиндров.Этот двигатель отличается от двигателя с принудительной подачей, который использует нагнетатели для нагнетания большего количества воздуха в цилиндр, чем это возможно естественно. Следовательно, двигатели с наддувом и с турбонаддувом не считаются двигателями без наддува.
Безнаддувный двигательБезнаддувный двигатель всасывает воздух для сгорания в цилиндры двигателя только за счет атмосферного давления. Он действует против частичного вакуума, который создается поршнем, когда он движется вниз к нижней мертвой точке.Это происходит во время такта впуска в цилиндрах без наддува. Из-за естественного ограничения впускного тракта двигателя, который включает в себя различные впускные отверстия, при всасывании воздуха происходит небольшое падение давления.
Следовательно, двигатель без наддува получает меньше воздушного заряда внутри цилиндра. Таким образом, он обеспечивает более низкий объемный КПД и низкое отношение массы к объему воздуха / заряда. Следовательно, это также влияет на максимальную теоретическую выходную мощность двигателя. Атмосферное давление уменьшается с увеличением высоты полета.Эта потеря воздуха не входит в число потерь из-за ограничений в системе всасывания.
Безнаддувный двигатель Применения:
В большинстве автомобильных бензиновых двигателей и небольших двигателей, не предназначенных для автомобильной промышленности, используется технология двигателей NA. В настоящее время многие дизельные двигатели грузовых автомобилей имеют турбонагнетатель. Они обеспечивают более полезное соотношение мощности к весу. Эти двигатели также обеспечивают лучшую топливную экономичность и более низкие выбросы выхлопных газов.
Преимущества двигателя NA:
- Меньше количества деталей
- Низкая стоимость изготовления
- Просто и легко производить
- Низкая стоимость владения
- Низкая стоимость обслуживания
- Отличный отклик дроссельной заслонки (без лагов)
Недостатки NA Engine:
- Пониженная удельная мощность
- Низкий КПД
- Неполное сгорание, приводящее к более высоким выбросам
Для получения дополнительной информации щелкните здесь.
Посмотрите, как работает безнаддувный двигатель здесь:
Анимация безнаддувного двигателяЧитайте дальше: Что такое 4-клапанный двигатель?
О компании CarBikeTech
CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.
Посмотреть все сообщения CarBikeTech
Безнаддувный двигатель | Автопедия | Фэндом
Двигатель без наддува или двигатель без наддува (или «N / A» — аспирация, означающая дыхание) относится к двигателю внутреннего сгорания (обычно с бензиновым или дизельным двигателем), который не имеет ни турбонаддува, ни наддува.Большинство автомобильных бензиновых (бензиновых) двигателей являются безнаддувными, хотя турбокомпрессоры и нагнетатели переживали периоды успеха, особенно в конце 1980-х и в нынешнюю эпоху 2000-х. Однако в большинстве дорожных автомобилей с дизельным двигателем используются турбокомпрессоры и промежуточные охладители, поскольку дизели без наддува, как правило, не могут предложить подходящее соотношение мощности к массе, приемлемое на современном автомобильном рынке.
Воздух или смеси воздух / топливо нагнетаются в цилиндры под действием вакуума, вызванного движением цилиндра, естественным атмосферным давлением и эффектом Вентури при открытии впускного клапана или клапанов.Давление внутри цилиндра понижается за счет движения поршня от клапанов (чтобы увеличить объем, доступный для входящего воздуха). В некоторых случаях снижение давления в цилиндре усиливается комбинацией скорости выхлопных газов, покидающих цилиндр, и закрытием выпускного клапана в соответствующее время. Отрегулированный выхлоп может помочь в этом, но обычно работает только в узком диапазоне оборотов двигателя и, следовательно, наиболее полезен в очень мощных автомобилях, самолетах и вертолетах.Многие двигатели, недоступные сегодня, используют впускные коллекторы переменной длины, чтобы использовать резонанс Гельмгольца, который имеет умеренный эффект принудительной индукции, но не считается истинной принудительной индукцией.
Конструкция отверстий головки цилиндров имеет первостепенное значение в двигателях без наддува. Распределительные валы обычно более «агрессивны», имеют больший подъем и большую продолжительность работы. Кроме того, прокладки головки блока цилиндров будут тоньше, а верхняя часть поршня поднимется в камеру сгорания для высокопроизводительных двигателей N / A, которые выигрывают от более высокой степени сжатия.
Двигатели без наддува обычно дают меньшую мощность, чем двигатели с турбонаддувом или наддувом того же объема и уровня разработки, но, как правило, дешевле в производстве. В дрэг-рейсинге безнаддувные автомобили — это автомобили, которые не работают с нагнетателем, турбонаддувом и не используют закись азота.
Во многих гоночных сериях для ограничения мощности и скорости указаны двигатели «Н / Д». NASCAR, IndyCar и Formula One попадают в эту категорию. Безнаддувные двигатели используются в Формуле-1 с 1989 года, чтобы ограничить чрезмерную выходную мощность и высокую стоимость двигателей с нагнетателями или турбонагнетателями.Indy Racing League в 1997 году потребовала двигателей N / A.
Естественное вдыхание, как определено выше, не может возникнуть в двухтактном дизельном двигателе. Следовательно, в конструкцию двигателя должен быть интегрирован некоторый способ наполнения цилиндра продувочным воздухом, что обычно достигается с помощью нагнетательного нагнетателя, приводимого в действие коленчатым валом. Воздуходувка в данном случае не действует как нагнетатель, так как она рассчитана на создание объема воздушного потока, прямо пропорционального объему и скорости двигателя.Двухтактный дизельный двигатель с механической продувкой считается безнаддувным.
См. Также []
Сравнение двигателей с наддувом и безнаддувным двигателем
Когда мы решаем построить новый двигатель для одного из наших Mopar, мы почти всегда хотим создать двигатель, который будет более мощным и долговечным, чем двигатель, который он заменит. А с изобилием запасных частей, доступных в наши дни, производство большей мощности стало проще, чем когда-либо. Независимо от того, работает ли он на бензиновом насосе или гоночном топливе, без наддува или с сумматором мощности, существует множество способов создать двигатель Mopar для достижения невероятной мощности.Нам часто задают вопрос, является ли двигатель с наддувом более долговечным или более мощным, чем двигатель без наддува. Ответ на этот вопрос заключается не столько в том, какой двигатель лучше, поскольку прочные и мощные двигатели могут быть построены как с нагнетателем, так и без него, а скорее в том, какой метод лучше всего подходит для вас. В этом месяце мы опишем различия двигателей с аналогичным уровнем мощности, как безнаддувных, так и с наддувом, и вы сможете решить, какой из них подходит для вашего Mopar.
Все мы знаем, что в гоночных классах Top Fuel и Funny Car нагнетатель правит. Эта мощность, однако, имеет свою цену, поскольку эти двигатели служат только один раз на расстоянии четверти мили (фактически 1000 футов), прежде чем их нужно будет восстанавливать. Дело в том, что Mopars, на которых мы ездим и участвуем в гонках, не требует почти такой же мощности, как автомобиль Top Fuel, и создание двигателя умеренной мощности для нашего уличного или гоночного автомобиля может быть достигнуто несколькими способами. В целях сравнения мы опишем, что нужно для создания уличного двигателя Mopar мощностью примерно 600 лошадиных сил, как без наддува, так и с наддувом, а также преимущества и недостатки каждого метода.
Просмотреть все 13 фотографий Прирост мощности при использовании нагнетателя может быть впечатляющим, а уровень мощности 600 или более лошадиных сил легко достигается с большинством типов двигателей Mopar.Как безнаддувные, так и двигатели с наддувом полагаются на так называемое давление во впускном коллекторе (давление внутри впускного коллектора) для подачи воздуха и топлива в цилиндры двигателя.Давление в коллекторе измеряется в дюймах ртутного столба (inHg), что также является стандартом для измерения атмосферного давления. В двигателе без наддува давление в коллекторе ограничено давлением атмосферы, которое измеряется с помощью барометра (барометрическое давление), в то время как двигатель с наддувом может повысить давление в коллекторе, сжимая воздух, поступающий в коллектор. Погодные условия и высота над уровнем моря влияют на атмосферное давление, но, как общепризнанный стандарт, расчеты производительности основаны на атмосферном давлении, равном 29.92 дюйма Меркурия на уровне моря.
Чтобы преобразовать дюймы ртутного столба в фунты на квадратный дюйм (psi), дюймы ртутного столба умножаются на коэффициент 0,49109778. Таким образом, стандартное атмосферное барометрическое давление 29,92 равно примерно 14,69 фунтов на квадратный дюйм, что помогает двигателям (и людям) дышать. Для простоты, это атмосферное давление обычно считается равным нулю фунтов на квадратный дюйм и указывается как таковое на большинстве автомобильных манометров. Любое давление выше этого стандарта будет считаться положительным давлением, а все, что ниже, будет считаться вакуумом (отрицательным давлением) на большинстве манометров.
Посмотреть все 13 фотографий03 В двигателях с наддувом не обязательно использовать агрессивные профили кулачков, поскольку в цилиндры нагнетается воздух. В безнаддувном двигателе клапан должен оставаться открытым дольше и может быть полезен более узкий угол разделения лопастей для продувки цилиндра и максимальной производительности.Давление в коллекторе двигателя без наддува (без наддува) ограничено барометрическим давлением в атмосфере. Таким образом, при полностью открытой дроссельной заслонке давление во впускном коллекторе, заставляющем воздух поступать в цилиндры, такое же, как давление воздуха в окружающей среде, не больше и не меньше.При менее чем полностью открытой дроссельной заслонке давление в коллекторе двигателя падает. Это падение давления определяется как вакуум в коллекторе и вызвано тем, что поршни пытаются всасывать в двигатель больше воздуха, чем позволяет открытие дроссельной заслонки. Таким образом, если определенная установка частичного открытия дроссельной заслонки вызывает давление в коллекторе 19,92 дюйма ртутного столба, а барометрическое давление составляет 29,92 дюйма ртутного столба, считается, что двигатель создает 10 дюймов вакуума. Эта теория вакуума применима как к двигателям без наддува, так и к двигателям с наддувом.
Отличие двигателя с наддувом заключается в том, что нагнетатель (независимо от его типа) сжимает воздух и нагнетает его во впускной коллектор, позволяя создавать давление в коллекторе выше атмосферного. В автомобилях этот дополнительный сжатый воздух называется наддувом, и давление выражается в фунтах на квадратный дюйм (psi), а не в дюймах ртутного столба. Преобразование этих дополнительных пяти дюймов ртутного столба в наддув (psi) равняется 2,45 psi наддува или сжатого воздуха.
Есть несколько очевидных преимуществ использования нагнетателя на вашем двигателе, и самым большим преимуществом, безусловно, является потенциал мощности. Производительность двигателя напрямую зависит от количества воздуха и топлива, которое двигатель забирает в свои цилиндры, поэтому способность нагнетать сжатый воздух в двигатель резко увеличивает мощность, на которую способен двигатель, и чем больше нагнетатель, тем больше мощность. Даже небольшой нагнетатель может довольно легко довести средний уличный бензиновый двигатель до 600 лошадиных сил, а чем больше наддува, тем больше мощность.Еще одним преимуществом добавления нагнетателя является то, что компоненты двигателя и трансмиссии нуждаются лишь в некоторых простых обновлениях, а не в дикой модификациях.
Поскольку нагнетатель нагнетает воздух в двигатель, агрессивные профили кулачков, отверстия в головке блока цилиндров или высокие степени сжатия не являются необходимыми для достижения больших уровней мощности. Фактически, двигатели с наддувом реагируют на распредвалы с более широким углом разделения лепестков, что также способствует плавному холостому ходу и большому крутящему моменту в среднем диапазоне. А поскольку двигатель с наддувом может обеспечивать впечатляющую мощность на низких и средних оборотах, гидротрансформатор на высоких оборотах или низкое передаточное число обычно не требуется для быстрого ускорения.Фактически, мы установили нагнетатели на довольно стандартные двигатели, и при умеренном (4-6 фунтов на кв. Дюйм) уровне наддува заводские компоненты трансмиссии могут нормально работать. А поскольку нагнетатель не нагружает компоненты двигателя во время работы на низких оборотах при низком уровне наддува или без наддува, двигатели с наддувом, как правило, остаются надежными и долговечными в течение продолжительных периодов времени при правильном обслуживании.
Недостатки нагнетателя
Хотя преимущества наддува могут быть огромными, за эти преимущества приходится платить с точки зрения затрат и сложности.Добавление нагнетателя к машине, которая изначально не была оборудована заводом (и Mopar не был), означает добавление оборудования под капотом, которое не только занимает место, но и выделяет тепло. Кроме того, поскольку большинство автомобильных нагнетателей приводятся в действие от коленчатого вала с помощью ремня или зубчатой передачи, обычные аксессуары двигателя, такие как генератор переменного тока, насос гидроусилителя рулевого управления, водяной насос и т. Д., Почти всегда нуждаются в замене или модификации с точки зрения положение и протяженность ремня. При сжатии воздуха также выделяется тепло, поэтому комплекты нагнетателя часто поставляются с промежуточным охладителем, который также необходимо размещать в моторном отсеке, обычно перед радиатором, для охлаждения всасываемого заряда перед подачей воздуха в двигатель.Топливная система автомобиля, включая насос и форсунки (на автомобилях с впрыском топлива) или карбюратор (на автомобилях с карбюратором), также должна соответствовать задаче, поскольку каждый раз, когда подается больше воздуха, необходимо также подавать больше топлива для обеспечения надлежащего горючая смесь. Также следует учитывать настройку момента зажигания, поскольку дополнительное давление в цилиндре, возникающее при наддуве, потребует уменьшения общего опережения для предотвращения детонации.
Конечно, по мере увеличения давления наддува для обеспечения долговечности двигателя необходимы дополнительные модификации, такие как кованые поршни, кованые шатуны и кованый коленчатый вал.В крайних случаях, двигатель с наддувом может нуждаться в «уплотнительном кольце», что включает в себя установку проволоки из нержавеющей стали на палубе или на поверхности головки вокруг камеры сгорания, которая используется с медной прокладкой головки для обеспечения уплотнения камеры сгорания при высоком наддуве. Приложения. И хотя двигатели с наддувом, как правило, не нуждаются в агрессивных оборотах гидротрансформатора или передаточном числе, в какой-то момент потребуется модернизировать гидротрансформатор, трансмиссию, карданные шарниры, шестерни и оси, чтобы справиться с дополнительным крутящим моментом, создаваемым двигателем.
Посмотреть все 13 фотографий 05b Хотя эти элементы не имеют прямого отношения к двигателю, они все же увеличивают стоимость автомобиля.Преимущества без наддува
Простота, вероятно, является самым большим преимуществом двигателя без наддува (без наддува), поскольку в моторном отсеке нет нагнетателя, воздуховодов, промежуточного охладителя или системы привода. Однако создание мощности в диапазоне 600 л.с. без принудительной индукции может быть непростым делом и часто требует некоторых довольно серьезных модификаций двигателя как изнутри в виде строкера и / или кованых внутренних компонентов, так и снаружи в виде головок цилиндров послепродажного обслуживания. , заголовки и индукция.Чтобы добиться высоких уровней мощности без наддува или других систем суммирования мощности, таких как турбонаддув или закись азота, необходим агрессивный распределительный вал, и двигатель должен быть увеличен в оборотах, что приносит в жертву низкий и средний крутящий момент.
Более низкая стоимость — еще одно явное преимущество создания двигателя без наддува, поскольку нагнетатели и связанное с ними оборудование, такое как комплекты привода, промежуточные охладители, воздуховоды и вспомогательные приводы, могут быть дорогими. Если вы решили не добавлять нагнетатель к двигателю, сэкономленные деньги можно направить на сам двигатель в виде таких элементов, как головки цилиндров с высоким потоком, коллекторы, поршни с высокой степенью сжатия, роликовый кулачок и подъемники, а также другие элементы, необходимые для создания больших размеров. мощность без преимущества принудительной индукции.Достижение высоких уровней мощности без нагнетателя обычно требует кулачка с более узким разделением лопастей, большей продолжительностью и более высоким подъемом, чтобы двигатель мог работать выше и поглощать больше воздуха и топлива, поэтому также могут потребоваться модификации масляной системы.
Недостатки безнаддувных двигателей
Безнаддувные двигатели ограничиваются атмосферным давлением, когда дело касается давления в коллекторе, поэтому мощность необходимо оптимизировать другими способами. Дополнительные расходы должны быть потрачены на установку отверстий в головке блока цилиндров, а для более агрессивных профилей кулачков требуются тяжелые пружины, что приведет к более быстрому износу направляющих и седел, а также к более частой замене пружин.Уровни сжатия также должны быть выше в двигателе без наддува, что вызывает более агрессивный износ колец и подшипников штока. Более высокая степень сжатия, необходимая для двигателя без наддува, также приводит к более высокому давлению в цилиндрах каждый раз, когда двигатель работает, а не только при наддуве, как в двигателе с наддувом, что требует более частого технического обслуживания или, соответственно, освежения двигателя.
Просмотреть все 13 фотографий09 Хорошая система зажигания важна для любого двигателя, но особенно важна для двигателя с наддувом.Нагнетатели создают тепло и высокое давление в цилиндре, что может привести к детонации, поэтому правильная синхронизация зажигания имеет жизненно важное значение.Второй недостаток мощного двигателя без наддува — это необходимость наличия таких деталей, как неплотный гидротрансформатор или дифференциал с высоким передаточным числом, для оптимизации характеристик транспортного средства. Поскольку двигатели с наддувом обычно развивают максимальный крутящий момент и мощность на более высоких оборотах и в более узком диапазоне оборотов, чем двигатель с наддувом, передача автомобиля и частота вращения гидротрансформатора становятся гораздо более важными.Часто требуемое более высокое передаточное число приводит к высоким оборотам двигателя при движении по шоссе, вызывая более агрессивный износ двигателя. Конечно, какой-то овердрайв может решить эту проблему, но тогда к стоимости сборки нужно прибавить стоимость трансмиссии.
Цель этой статьи не в том, чтобы сделать вывод о том, лучше или хуже наддув, чем создание мощного двигателя без наддува, а в том, чтобы предоставить вам информацию, чтобы вы могли решить, какой из них подходит для вашего Mopar.Для некоторых из нас наличие быстрого автомобиля, который выглядит довольно стандартным, является желательным аспектом конструкции транспортного средства, поэтому двигатель без наддува может лучше соответствовать нашим потребностям. По мнению других, вой нагнетателя и устрашающий вид воздуходувки, торчащей из капота, может быть именно тем, что нам нужно, а широкий диапазон мощности форсированного двигателя, безусловно, может окупить затраты. А если вы все еще не определились, мы предлагаем построить по одному из каждого!
Мрачное будущее для безнаддувных двигателей — Feature — Car and Driver
Стивен Дори / Getty Images, Марк Престон, Майкл Симари и производитель
За последние 45 лет компания BMW создала одни из самых лучших атмосферных двигателей, которые когда-либо видел мир.Полистайте его задний каталог силовых агрегатов, и вы найдете возвышенное собрание сладких, изысканно сбалансированных, удивительно душевных проявлений инженерного гения в четырех-, шести-, восьми-, десяти- и двенадцатицилиндровом исполнении.
И все они ушли.
BMW больше не предлагает безнаддувный двигатель. Не один. M GmbH также не является ответвлением его высокопроизводительного автомобиля. Сегодня вы можете купить BMW с одним, двумя или даже тремя турбокомпрессорами, но только одну модель без них (если учесть двухцилиндровый двигатель, расширяющий диапазон i3).
Конечно, это не только BMW. В Audi атмосферный двигатель (NA) теперь считается «нишевой технологией» — хотя вы все еще можете купить такой двигатель для RS5 и R8 от Quattro GmbH, они больше не доступны в основных моделях. В Mercedes-Benz они тоже находятся под угрозой, за исключением базовых версий новых городских автомобилей Fortwo и Forfour от Smart. Даже Porsche признает, что следующие модели 911 Carrera будут работать с турбонаддувом, а следующая итерация Ferrari 458 станет первым твин-турбо V-8 этой компании после F40.
Так что же все пошло не так с доминирующей философией двигателя, которая обеспечивала мощность для некоторых из самых удивительно вызывающих воспоминания автомобилей всех времен, от классических Ferrari Daytona и Enzo V-12 до нынешней модели 458 Speciale? От надежного Beetle 4 с воздушным охлаждением до V-12 McLaren F1? От каждого значительного американского маслкара до безошибочного звука и мощности Porsche 911 с плоским двигателем? И действительно ли естественное стремление уходит навсегда?
Стивен Дори / Getty Images, Марк Престон, Майкл Симари и производитель
Ferrari подтвердила, что в дальнейшем все ее двигатели будут гибридными или с турбонаддувом.На момент написания этой статьи уже водил одну новую модель с турбонаддувом, и можно с уверенностью сказать, что ни у одной из них не будет мощности переключения света, как у нестираемого F40.Так что же случилось?
Короткий ответ заключается в том, что современный автомобильный прогресс движется за счет соображений экономии топлива, которые стоят в повестке дня каждого крупного правительства. Станьте свидетелем постоянно меняющегося законодательства Европейского Союза в области экономики и выбросов. Совет по воздушным ресурсам Калифорнии (и еще 16 U.С. заявляет, кто копирует эти правила), безусловно, высказал свое мнение, равно как и мандаты CAFE правительства США, а также Государственное управление по охране окружающей среды Китая (которое обычно следует за ЕС) и Министерство окружающей среды Японии. , тоже. Однако именно ЕС возглавил шествие вокруг этого угла после подписания Киотского протокола 1992 года.
Киотский протокол настоял на том, чтобы к 2012 году мировые выбросы на уровне 1990 года были сокращены на восемь процентов, что привело к рождению первых правил ЕС по выбросам транспортных средств в 1993 году.Они касались в основном выбросов NOx и твердых частиц, поэтому в то время это казалось в первую очередь дизельным, как и правила ЕС 2 (1996 г.), ЕС 3 (2000 г.) и ЕС 4 (2005 г.).
ПОДРОБНЕЕ: Suck, Squeeze, Bang, Blow: будущее двигателей внутреннего сгорания
Но нам следовало уделить больше внимания, потому что постановление ЕС № 443/2009 усложнило жизнь безнаддувным силовым установкам. Он потребовал от автопроизводителей снизить средний показатель выбросов CO2 до 130 г / км в период с 2012 по 2015 год (трехлетний период должен учитывать циклы производства транспортных средств).И все же, хотя это было больно, это еще не конец. К 2020 году ЕС требует сократить количество выбросов CO2 до 95 г / км для среднего парка каждой автомобильной компании. (Нидерланды пошли еще дальше, потребовав к 2020 году 80 г / км.)
Таким образом, уменьшение габаритов стало обычным явлением: меньшие турбодвигатели заменяли более крупные безнаддувные. BMW 328i имеет четырехцилиндровый двигатель с турбонаддувом вместо рядного шестицилиндрового двигателя своего предшественника, например, но уменьшение габаритов — не само собой разумеющееся слово.Также существует «снижение частоты вращения» или разработка двигателей с нуля для работы в более низких диапазонах оборотов с более длинными ходами. Большинство бензиновых двигателей с турбонаддувом сегодня могут обеспечивать максимальный крутящий момент около 1500 об / мин.
Стивен Дори / Getty Images, Марк Престон, Майкл Симари и производитель
Всего несколько лет назад каждая 3-серия, выпускаемая в США, оснащалась одним из шелковых атмосферных двигателей BMW. Теперь их больше нет — у этого 328i четырехцилиндровый двигатель с турбонаддувом.
Немцы ведут наступление — вот что они говорят
В беседах, проведенных для этой истории, руководители Mercedes-Benz, BMW и Audi признали, что дни безнаддувных двигателей для них фактически прошли. Человек, недавно назначенный ответственным за BMW M, Франциск ван Меел, сказал: «Наш модельный ряд предполагает, что мы отошли от них, но мы говорим о системах, а не о конкретных типах технологий».
Майкл Менн, руководитель отдела разработки двигателейM, сказал более конкретно: «Причина, по которой мы перешли на турбонаддув, — это топливная экономичность, и все.Турбонаддув может быть более сложным, но безнаддувные двигатели, которые они заменяют в наших автомобилях, не были простыми двигателями. На данный момент главное — это потребление и сокращение выбросов CO2. Если это останется основным моментом, я уверен, что индустрия останется с турбонаддувом ».
Аналогичная история произошла в головном офисе BMW с большим объемом продаж, где отдел разработки двигателей ответил на наши вопросы следующим образом: «С сегодняшней технической, политической и социальной точки зрения, безнаддувные [бензиновые] двигатели вряд ли будут рассматриваться для массовое производство.Меньшее количество цилиндров означает меньшее трение, более низкие обороты означают меньшее трение, а двигатели с турбонаддувом обеспечивают запуск с высоким крутящим моментом при очень низких оборотах и для широкого диапазона частот вращения, превосходя концепции двигателей без наддува. Уникальное предложение двигателя без наддува может быть возможным для ограниченных выпусков, но в данный момент это не рассматривается иначе ».
В Audi почти то же самое. «Audi была одним из пионеров в разработке бензиновых и дизельных двигателей с турбонаддувом, преимущества которых основаны на превосходных характеристиках и крутящем моменте», — сказал нам руководитель отдела разработки трансмиссии д-р.Стефан Книрш. «Преимущества наддува превратили безнаддувный двигатель в нишевую технологию. Тем не менее, ему все еще есть место в эмоциональных автомобилях, таких как R8 ». [ Стоит отметить: когда Книрш упоминает наддув, это не то, что вы могли знать, а как обобщающий термин для принудительной индукции. Все турбокомпрессоры можно считать нагнетателями, но нагнетатели, не работающие на энергии выхлопных газов, не могут считаться турбокомпрессорами — Ред. ]
Со своей стороны, Daimler, которая производит автомобильные двигатели дольше, чем кто-либо другой в мире, и ее руководители силовых агрегатов также рассматривают турбонаддув как долгосрочную стратегию.
Несколько месяцев назад Герберт Дисс, возглавлявший отдел разработки BMW, недавно названный боссом марки Volkswagen, сказал нам, что цель весом 80 грамм требует более высоких передаточных чисел и снижения скорости. «Первоначально это будет означать 1800–2500 об / мин [для передачи максимального крутящего момента] для двигателей внутреннего сгорания, но на самом деле это будет означать 800–1500 об / мин в более долгосрочной перспективе. Вот где это должно быть. Высокий крутящий момент, низкие обороты, более высокое давление впрыска и, возможно, наличие электроэнергии для его увеличения на низких скоростях ». Подробнее об этом через секунду.
ПОДРОБНЕЕ: Как принудительная индукция меняет производительность
Понижение скорости не устранит причину появления безнаддувного двигателя. Это изменение началось с понижения среднего четырех- или шестицилиндрового ограничителя с 7000 или 6000 об / мин до 5000 об / мин, а может быть еще ниже, до 4000 об / мин. Пик крутящего момента теперь, похоже, достигается даже раньше в бензиновых двигателях с турбонаддувом, чем в турбодизелях. Но обещание турбокомпрессора в эпоху низких выбросов заключается в том, что, когда они не вращаются быстро и не обеспечивают мощность двигателя NA с большим рабочим объемом, они могут обеспечить расход топлива двигателя меньшего рабочего объема или с меньшим количеством цилиндров. .На бумаге это лучшее из обоих миров, хотя оценить показатели экономии топлива двигателей с турбонаддувом сложно в реальном мире, поскольку это почти полностью зависит от водителя. И лишь немногие водители, если таковые имеются, управляют своими автомобилями точно так же, как это было установлено федеральными испытаниями.
Идея «лучшее из обоих миров» — это, конечно же, маркетинговая линия, лежащая в основе семейства двигателей Ford EcoBoost. Ford был самой известной и агрессивной американской компанией, внедрившей турбонаддув, предлагая U.S. покупает все, от 1,0-литрового трехцилиндрового двигателя с турбонаддувом до, в конечном итоге, твин-турбо V-6 мощностью 600 л.с. в суперкаре GT. Но General Motors и Chrysler, последний с помощью своих хозяев Fiat, не выбыли из игры; GM, например, запускает новое семейство малолитражных двигателей с турбонаддувом.
Стивен Дори / Getty Images, Марк Престон, Майкл Симари и производитель
Ford сделал большую ставку на свои двигатели с турбонаддувом под маркой EcoBoost и использует высококлассные средства для их продвижения, в том числе гоночные прототипы Daytona с турбонаддувом и установку твин-турбо V-6 на свой будущий суперкар GT вместо ожидаемого V-образного двигателя. 8.
Судьба атмосферного двигателя аккуратно описана техническим консультантом и бывшим старшим инженером Maserati Полом Фикерсом: «Если вы изучите конструкцию, атмосферные двигатели запускались со средней эффективной скоростью поршня (MEPS) 5 м / с и среднее эффективное давление тормоза (BMEP) 5 бар (72,5 фунта на кв. дюйм). Теперь лучшие двигатели NA имеют MEPS 24 м / с и максимальное MEPS 14 бар (203 фунтов на кв. Дюйм) с довольно постоянным коэффициентом корреляции между ними, равным примерно 0.6 », — пояснил он.
«Это указывает на то, что довольно много преимуществ в двигателях без наддува было достигнуто за счет увеличения числа оборотов, а это не работает с современным законодательством. Турбомоторы обычно начинаются с BMEP 15 бар (218 фунтов на квадратный дюйм), поэтому почти каждый турбомотор лучше по удельной мощности, чем лучшие двигатели NA, и теперь лучшие турбины хорошо зарекомендовали себя при 22 барах (319 фунтов на квадратный дюйм). По-прежнему существует огромный потенциал для достижения давления до 50 бар (725 фунтов на кв. Дюйм).
ПОДРОБНЕЕ: 10 самых необычных двигателей всех времен
«Лучшие двигатели NA вырабатывают почти 134 лошадиных силы на литр рабочего объема и 74 фунт-фут крутящего момента на литр, но с турбонаддувом цифры зависят только от давления, которое вы прикладываете.Но, — соглашается он, — мы можем увидеть возврат к двигателям без наддува за счет электрического наддува ». Но что же тогда остается американским производителям? В конце концов, учитывая относительно стабильные и низкие цены на бензин в долгосрочной перспективе, они традиционно не были первыми приверженцами технологий экономии топлива. Mercedes-Benz думает, что многие из них на этот раз будут полностью на борту раньше, чем позже. «Не в последнюю очередь из-за ужесточения требований к выбросам CO2, в долгосрочной перспективе тенденция отказа от двигателей без наддува приобрела международный характер», — настаивает инженерное подразделение Daimler.
Кто и дальше будет нести флаг?
Остается вероятность того, что кто-то попытается взять метод, который обычно считается строго экологичным для автомобилей или суперкаров, таких как LaFerrari, и распространять его, то есть объединить безнаддувный двигатель с электродвигателем, который должен играть роль турбонагнетателя. Но вместо того, чтобы просто стремиться к эффективности или максимальной мощности, идея заключалась бы в том, чтобы обеспечить такое же сочетание мощности и эффективности, которое рекламируют сторонники турбонаддува.
Стивен Дори / Getty Images, Марк Престон, Майкл Симари и производитель
Audi может рассматривать атмосферные двигатели, такие как V-10 R8, как «нишевую технологию», но, к счастью, она будет продолжать производить их для определенных моделей.
Фирма, которая, скорее всего, будет настаивать на этом — и сильно — это Toyota, наиболее хорошо осведомленная и опытная компания в отрасли, когда дело доходит до электрификации силовых агрегатов.Фактически, они уже делают это, и вице-президент Toyota по силовым агрегатам в Европе Джеральд Киллман настаивает, что компания не откажется от безнаддувных двигателей. «Я понимаю, почему они ушли в премиальный сегмент [ Naturally; Подразделение роскошных автомобилей Toyota Lexus теперь выпускает четырехцилиндровые двигатели с турбонаддувом — Эд. ], но электрический наддув дает нам исключительные возможности для передачи крутящего момента на трансмиссию в тех местах, где безнаддувные двигатели не так сильны. Это обеспечивает ожидаемую производительность и экономит топливо.
«Мы говорим о полных системах, которые доставляют то, что требуется, а не о безнаддувных или турбированных двигателях, но мы видим, что двигатели Северной Америки играют для нас большую роль. Да, мы их все еще разрабатываем, особенно для использования с электроусилением. Мы уже работаем непосредственно с трансмиссией, поэтому мы можем использовать преимущества турбомотора без использования турбонагнетателя, и всегда есть несколько способов, если вы посмотрите на всю систему автомобиля и то, что вы хотите, чтобы она была ».
Per Mercedes-Benz: «В U.S., все больше и больше OEM-производителей внедряют двигатели с турбонаддувом и сокращают расход топлива за счет уменьшения габаритов ». [Вышеупомянутые двигатели Ford EcoBoost, например — Эд ]. «Даже если текущие низкие цены на топливо снизят интерес клиентов, перспективы на будущее ясны. То же самое и с Японией, и с Кореей, хотя и на некотором расстоянии. В Китае производители оригинального оборудования сосредоточены исключительно на местных условиях, и [если это не касается] совместных предприятий с западными производителями оборудования, они по-прежнему будут предлагать безнаддувные двигатели в обозримом будущем — не в последнюю очередь из соображений стоимости.Но краткосрочные изменения в законодательстве — особенно в отношении требований к выбросам и потреблению — не редкость в Китае, поэтому возможно, что и местные производители быстрее повернутся к турбодвигателям ».
В этом прототипе дизельного двигателя RS5 TDI используется электродвигатель для вращения компрессора, который затем подает воздух в двигатель на низких оборотах, а затем передается на пару турбонагнетателей на более высоких скоростях. Да, это невероятно сложно. Он также мощный — 385 лошадиных сил и 553 фунт-фут крутящего момента, но автомобиль все еще может проехать почти 30 миль на галлон на шоссе.
Помимо прямого наддува, еще одной заманчивой перспективой является нагнетатель с электрическим приводом, который представляет собой центробежный компрессор. Audi почти наверняка будет первой в производстве с этой технологией (хотя, потеряв свой лазерный свет «око за око» с BMW, мы можем ошибаться), и она выставляла напоказ прототипы как одно-, так и двухтурбодизельных версий. с помощью принудительной индукции с электроприводом в течение некоторого времени. Они не работают как электродвигатель, встроенный в трансмиссию; вместо этого электродвигатель воздействует на компрессор, чтобы нагнетать воздух в двигатель или другой турбонагнетатель — Volvo и Audi предлагают решения, в которых электрический нагнетатель направляет воздух в несколько турбин с приводом от выхлопных газов.(Вот наше подробное изложение того, как работают такие системы.) Однако на данный момент неясно, заменит ли этот метод традиционные турбокомпрессоры или просто дополнит их. Из-за теплового КПД турбокомпрессора мы делаем ставку на последнее, и, возможно, наиболее распространенной становится установка в стиле Формулы 1 — общий вал для турбины, крыльчатки и электродвигателя.
ПОДРОБНЕЕ: Почему 0,5-литровые цилиндры скоро будут доминировать в конструкции автомобильных двигателей
И BMW, и Daimler считают, что эти две технологии дополняют друг друга.«Нет, они не бросают вызов друг другу, — говорит Даймлер. «Электрические и механические турбины идеально [работают вместе]. Электрические турбины поддерживают механические, особенно в низком диапазоне; верхний диапазон подходит для [супер] зарядного устройства ».
Но, кроме Toyota и любителя двигателей в Северной Америке Honda, которая, надо сказать, готовит к производству четырехцилиндровые двигатели с турбонаддувом в конце этого года, практически нет никаких свидетельств того, что кто-то выкладывал эскизы или ресурсы для разработать новый безнаддувный двигатель с чистым листом.Возможно, потребуется некоторое обновление существующего оборудования, но не ожидайте большего.
И это действительно очень печально.