Двигатель кпд: Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс

Содержание

Урок 25. тепловые двигатели. кпд тепловых двигателей - Физика - 10 класс

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело - тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу.

Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания.

Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно - самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

КПД квантового теплового двигателя впервые превысил максимальный КПД классического двигателя

James Klatzow et al. / Physical Review Letters, 2019

Физики из Великобритании и Израиля построили первый квантовый тепловой двигатель, эффективность которого превышает максимальную эффективность классического теплового двигателя. В качестве рабочего тела такого двигателя выступают два когерентных энергетических уровня NV-центра с наименьшей энергией, а в качестве тепловых резервуаров — возбужденные уровни. Работу, совершаемую двигателем, ученые измеряли с помощью микроволновых импульсов. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

Классический тепловой двигатель превращает тепло в работу, периодически нагревая и охлаждая рабочее тело. В рамках классической термодинамики можно показать, что максимальным коэффициентом полезного действия (КПД) среди тепловых двигателей обладает двигатель Карно, цикл которого состоит из периодов изотермического и адиабатического расширения и сжатия. На практике эффективность тепловых двигателей, работающих при сравнимых температурах нагревателя и холодильника, значительно ниже, чем у двигателя Карно. В частности, КПД паровых машин примерно в два раза меньше максимального достижимого КПД.

Теоретически эффективность теплового двигателя можно повысить за счет квантовых эффектов, которые не учитывает классическая термодинамика. Первыми такую возможность рассмотрели около шестидесяти лет назад физики Генри Сковил (Henry Scovil) и Эрих Шульц-Дюбуа (Erich Schulz-DuBois), которые связали эффективность трехуровневого мазера с эффективностью цикла Карно. А в 2015 году группа физиков под руководством Раама Уздина (Raam Uzdin) наконец разработала схему квантового двигателя, эффективность которого превышает эффективность цикла Карно.

Для этого ученые рассмотрели двигатель, который работает в так называемом режиме малого действия (small-action limit), то есть совершает за цикл работу, малую по сравнению с постоянной Планка. В этом режиме корреляции между энергетическими уровнями двигателя играют важную роль, а потому могут существенно повысить его эффективность. Впрочем, подтвердить это предположение на практике физики не смогли.

Группа ученых под руководством Джеймса Клатцова (James Klatzow) наконец проверила предположение группы Уздина и построила квантовый двигатель, эффективность которого превышает эффективность классического двигателя, работающего в тех же условиях. Чтобы построить такой двигатель, физики использовали NV-центры — точечные дефекты алмаза, которые возникают при замещении атома углерода атомом азота. С одной стороны, такой центр ведет себя как водородоподобный атом; с другой стороны, заселенность его энергетических уровней удобно контролировать и измерять с помощью вспышек лазера. Во внешнем магнитном поле NV-центр можно рассматривать как когерентный магнитный двигатель, в котором два уровня с самой низкой энергией выступают в качестве рабочего тела, а возбужденные уровни моделируют тепловые резервуары с разными температурами. Чтобы связать рабочее тело с тепловыми резервуарами и извлечь из него работу, ученые светили на NV-центр оптическим и микроволновым лазером. Кроме того, ученые контролировали когерентность двух квантовых состояний рабочего тела в начале каждого цикла, изменяя продолжительность «теплового» лазерного импульса.

Схема эксперимента (a) и фотография установки (b)

James Klatzow et al. / Physical Review Letters, 2019

Схема квантового теплового двигателя, основанного не NV-центре во внешнем магнитном поле

James Klatzow et al. / Physical Review Letters, 2019

В этой схеме ученые реализовали три типа квантовых тепловых двигателей: непрерывный, двухфазный и четырехфазный. В двигателе первого типа передача тепла и связь с тепловыми резервуарами происходит одновременно и непрерывно; этот режим больше всего напоминает квантовый двигатель Сковила-Шульца. В двигателе второго типа извлечение работы отделено от передачи тепла, однако связь с холодным и горячим резервуарами происходит в одно и то же время. Наконец, в двигателе третьего типа все операции производятся последовательно (как в двигателе Карно). В классическом пределе это устройство переходит в двигатель Отто. Все три двигателя работали в режиме малого действия, то есть произведение продолжительности цикла и средней работы, которая в течение него производилась, было много меньше постоянной Планка.

Схема непрерывного, двухфазного и четырехфазного двигателей. Красные и синие стрелки обозначают связь с «горячим» и «холодным» тепловым резервуаром, оператор U — извлечению работы

James Klatzow et al. / Physical Review Letters, 2019

Наконец, физики измерили мощность квантовых двигателей и среднее количество работы, которое они совершали за один цикл. Оказалось, что в режиме малого действия и когерентных энергетических уровней рабочего тела все три двигателя были термодинамически эквивалентны, то есть совершали одинаковое количество работы. Более того, их эффективность превышала предельную эффективность классического теплового двигателя, который работал в тех же условиях. По оценкам ученых, расхождение между КПД, измеренном в этом режиме, и «максимальным» КПД составляло 2,4 сигма (p-value

Мощность когерентного двухфазного двигателя (a) и средняя работа, совершаемая за цикл (b), в зависимости от длины «тепловой» фазы, разрушающей когерентное состояние. Красными точками отмечены данные эксперимента, красной линией — теоретическая зависимость. Для сравнения приведены теоретические ограничения на аналогичные параметры классического теплового двигателя (синяя линия)

James Klatzow et al. / Physical Review Letters, 2019

Авторы статьи замечают, что построенный ими квантовый тепловой двигатель пока еще очень сложно применять на практике. В частности, потому, что совершаемая им работа «пропадает впустую» и измеряется только косвенно. Тем не менее, физики надеются, что их работа заинтересует других исследователей, которые построят более совершенные квантовые тепловые двигатели. Кроме того, ученые надеются, что их статья поможет разобраться, как работают природные микроскопические тепловые двигатели, например фотосинтетический аппарат.

Стоит отметить, что на архив электронных препринтов физики выложили работу еще в октябре 2017 года. Поэтому, несмотря на то, что до рецензируемого журнала она добралась только на этой неделе, ее уже успели процитировать в 13 новых статьях.

В ноябре 2017 года физики из Бразилии и Германии обнаружили, что корреляции между квантовыми состояниями могут «нарушить» второй закон термодинамики. Для этого ученые скоррелировали спины двух атомов, находящихся в тепловых состояниях с разными температурами, и показали, что в такой системе тепло течет от «холодного» атома к «горячему», а энтропия системы уменьшается. Впрочем, второй закон термодинамики это не нарушает, поскольку взаимная информация атомов в ходе процесса уменьшается, а «суммарная разупорядоченность» в целом растет.

Дмитрий Трунин

Изучаем странные двигатели, застрявшие на обочине прогресса — ДРАЙВ

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

В простейшем моторе Scuderi цилиндров два: поршень в холодном цилиндре отстаёт на 30 градусов поворота коленвала от собрата в горячем.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!

По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.

Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.

Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.

К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.

В агрегате Paut Motor — четыре рабочих камеры с поршнями диаметром 100 мм и четыре компрессионных (120 мм). Двухсторонние поршни передают усилия на коленвал, который, благодаря паре шестерён с внутренним зацеплением, совершает планетарное движение.

Двухтактный двигатель Bonner (по имени спонсора, фирмы Bonner Motor), изобретённый в 2006 году в США Вальтером Шмидом, устроен ещё сложнее. Как и в проекте Paut Motor, цилиндры тут расположены буквой X, а коленвал тоже совершает планетарное движение за счёт системы шестерён.

Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).

За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.

Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.

Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.

По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор...

. ..такой, как американский Dina-Cam 1960-х с полувековыми корнями. Благодаря хорошему соотношению веса и мощности аксиальные агрегаты прочили на роль моторов для лёгких самолётов.

Разновидностью аксиальных агрегатов является новозеландский проект фирмы Duke Engines — пятицилиндровый четырёхтактник рабочим объёмом три литра. По сравнению с классическим ДВС того же литража этот был, по расчётам авторов, на 19% легче и на 36% компактнее. Ему сулили применение в самых разных областях, но мечты о завоевании целого мира остались мечтами.

Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.

Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.

Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.

Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.

Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.

Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.

Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.

Система фирмы Garric Engines похожа на VGT, однако вместо поперечного распреддиска использовано шесть поворотных золотников.

В 2009 году свой тороидальный мотор, принципиально повторяющий канадский, разработали американцы Гарри Келли и Рик Айвас (видео выше). По их оценке, тор полуметрового диаметра обеспечивал бы 230 л.с. и около 1000 Н•м всего при 1050 об/мин. Но… На сайте их фирмы Garric Engines сейчас висит заглушка «Спасибо за интерес. В будущем страница может быть обновлена». Возможно, чуть лучшая судьба ждёт так называемый нутационный двигатель, придуманный американцем Леонардом Мейером в 2006 году — его хотя бы построили в нескольких экземплярах.

Главный принцип нутационного диска: в процессе работы он не вращается вокруг вала, а качается из стороны в сторону. Добавив перегородки, получаем отсеки, в которых газ может сжиматься и расширяться.

Нутация по-латински означает «кивать». Мейер сформировал четыре рабочие камеры переменного объёма между корпусом мотора и «кивающим» по сторонам диском, который играет роль поршня. Диск разрезан пополам вдоль своего диаметра и нанизан на Z-образный вал, с которого и снимается мощность. За газообмен отвечают каналы и клапаны в корпусе.

Рабочий диск показан в разрезе. Минимализму, уравновешенности и лёгкости нутационной конструкции позавидует даже двигатель Ванкеля.

Прототипы мотора Мейера построила компания Baker Engineering и родственная ей Kinetic BEI. С единственным диском диаметром 102 мм агрегат развивает семь сил, а с парой дисков по 203 мм — уже 120! Длина двухдискового двигателя — 500 мм, диаметр — 300, а рабочий объём — 3,8 л. На килограмм веса — 2,5−3 «лошади» против одной-двух у массовых атмосферных ДВС (из немассовых некоторые моторы Ferrari выдают больше трёх сил на килограмм, но при высоченных 9000 об/мин). Литровая мощность, правда, не впечатляет. Ныне Baker и Kinetic вроде как доводят проекты до ума, хотя особой активности на их сайтах не видно.

За один оборот вала в двухдисковом нутационном агрегате происходят те же четыре рабочих хода, что и в восьмицилиндровом поршневом «четырёхтактнике». На фото — одно- и двухдисковые рабочие прототипы. (Кстати, из двух дисков в принципе можно создать и машину с разделённым циклом, одному отдать сжатие смеси, другому рабочий ход.)

В 2010 году нутационный мотор попал в зону интереса исследовательского центра ВВС США. Гарри Смит, менеджер лаборатории, демонстрирует внутренности мотора и объясняет, что особую ценность конструкция представляет для лёгкой авиации.

Идея роторных агрегатов различного типа так часто привлекает новаторов, будто один лишь отход от знакомой схемы даёт существенное повышение характеристик. Так, Николай Школьник, выходец из СССР, давно перебравшийся в США, с сыном Александром разработал мотор, напоминающий двигатель Ванкеля, вывернутый наизнанку. Ротор арахисовой формы также вращается в треугольной камере, но в отличие от агрегата Ванкеля уплотнители закреплены не на поршне, а на стенках камеры.

В роторе LiquidPiston есть полость, играющая свою роль в газообмене. Процесс сгорания проходит при постоянном объёме, а затем идёт расширение — это один из факторов, повышающих КПД.

Для развития конструкции Школьники основали фирму LiquidPiston, которой заинтересовалось оборонное агентство DARPA — теперь оно софинансирует эксперименты в расчёте на перспективы работы «арахисовых» агрегатов в лёгких летательных аппаратах, включая беспилотники, и в переносных генераторах. Опытный моторчик рабочим объёмом 23 см³ обладает неплохим для таких габаритов КПД в 20%. Теперь авторы нацелены на дизельный прототип весом около 13 кг и мощностью 40 л.с. для установки на гибридный автомобиль. Его КПД якобы вырастет уже до 45%.

Первый образец мотора Школьников можно положить на ладонь. Он весит 1,8 кг и может заменить вдесятеро более тяжёлый поршневой ДВС карта (показан слева). Мощность всего 3 л.с., но классический двигатель такого размера был бы ещё слабее.

Последний рассмотренный нами мотор демонстрирует, что идея плоского агрегата (ротор ведь можно сделать очень узким) заманчива. Вместе с тем для её реализации сами роторы не так обязательны — достаточно «оквадратить» традиционный поршень и, соответственно, сделать прямоугольным на виде сверху цилиндр.

Этой странной разработке фирмы Pivotal Engineering уже несколько лет, в течение которых создан ряд образцов, приводивших в движение мотоциклы и самолёты. Авторы адресуют так называемый качающийся поршень в первую очередь авиации. Помимо высоких выходных характеристик по отношению к весу и габаритам, такой двухтактный агрегат отлично поддаётся форсировке за счёт прохождения сквозь неподвижную ось поршня (рисунок ниже) жидкостного канала охлаждения. С иной схемой такой трюк затруднителен.

Задумка компании Pivotal Engineering из Новой Зеландии представляет собой мотор с качающимися прямоугольными (в плане) поршнями. Один их край закреплён на неподвижной оси, второй — связан с шатуном. Справа — четырёхцилиндровый образец на 2,1 л.

За пределами нашего обзора осталось ещё много экзотических разработок вроде 12-роторного мотора Ванкеля, двигателя Найта или агрегатов со встречными поршнями, ДВС с изменяемой степенью сжатия или с пятью тактами (есть и такие!), а ещё роторно-лопастные агрегаты, в которых составные части ротора совершают движения, будто сходящиеся и расходящиеся лезвия ножниц.

Ещё пример чудачеств — H-образный двигатель, объединяющий в себе две рядные «пятёрки». Автор патента Луи Хернс полагает, что одну половину агрегата можно адаптировать под бензин, а другую — под метан и активировать их как врозь, так и вместе.

Даже беглый экскурс за пределы классических ДВС показал, сколь большое количество идей не находит массового воплощения. Роторы часто губит проблема износа уплотнений. Роторно-лопастные варианты вдобавок страдают от высоких знакопеременных нагрузок, разрушающих механизм связи лопастей и вала. Это только одна из причин, почему мы не встречаем такие «чудеса» на серийных автомобилях.

Вторая — в том, что и традиционные ДВС не стоят на месте. У последних бензиновых образцов с циклом Миллера термический КПД доходит до 40% даже без турбонаддува. Это много. У большинства бензиновых агрегатов — 20−30%. У дизелей — 30−40% (на крупных судах — до 50). А главное — глобальная альтернатива ДВС уже найдена. Это электромоторы и силовые установки на топливных элементах. Поэтому если изобретатели диковинок не решат все технические проблемы в самое ближайшее время, вырулить с обочины прогресса перед электричками они попросту не успеют.

Наступает ли конец дизельного двигателя?

Автор фото, Reuters

Подпись к фото,

Многие крупные города страдают от проблем с качеством воздуха, и Лондон - не исключение

Мэры Афин, Мехико, Мадрида и Парижа пообещали к 2025 году запретить на своих улицах дизельные автомобили и грузовики.

Вместо этого они обещали поощрять использование альтернативных транспортных средств - электромобилей, гибридных и водородных автомобилей.

Все четыре города страдают от проблем с качеством воздуха. Их мэры ссылаются на опыт Токио, где уже запрещено движение дизельных автомобилей.

Автопроизводители опасаются, что более широкий запрет машин с дизельными двигателями - лишь дело времени.

Действительно ли дизельные двигатели, выбрасывающие в атмосферу большое количество двуокиси азота и других вредных для здоровья веществ, обречены на вымирание?

Ведущий программы "Пятый этаж" Александр Баранов беседует с автомобильным экспертом Вячеславом Субботиным.

Автор фото, Not Specified

Александр Баранов: Здравствуйте, дорогие друзья! Сегодня с нами на "Пятом этаже" Вячеслав Субботин, автомобильный эксперт и автогонщик, пилот команды "Газ Рейд Спорт". Вячеслав, здравствуйте!

Вячеслав Субботин: Добрый вечер!

А.Б.: Мы рады приветствовать вас здесь у нас в гостях в нашей программе. Четыре города на конференции в Мексике пообещали к 2025 году запретить полностью дизельные машины. Ссылаются, кстати, на опыт Токио, куда уже на дизеле не въедешь. Как вы считаете: насколько это решение важно для судьбы дизельных двигателей в принципе, действительно ли дизельный двигатель обречен, умрет ли он быстро или еще помучается какое-то время? Как вы считаете?

В.С.: С одной стороны, я считаю, что это конъюнктурное предложение. Это все входит в схему дизель-гейта, который возник с группы "Фольксваген", и борьбы с ним на этом фоне. Почему это носит такой характер предвзятый? У дизельного двигателя на самом деле КПД выше, чем у двигателя внутреннего сгорания на бензине.

Мало того, солярка обладает большей теплотворной способностью, из нее можно получить больше энергии. Не смотрите на то, что дизели более дорогие, в обслуживании более дорогие. На самом деле, они приблизились по конструкции, по обслуживанию, по сложности к обычным бензиновым моторам.

Но самое главное - они эффективнее. Другое дело, что много старых дизельных автомобилей. Скажем, Париж просто задыхается, особенно зимой: никуда этот выхлоп не рассеивается.

А.Б.: Старые автомобили - это другой вопрос. В Париже, насколько я знаю, запретили автомобили старше 1997 года выпуска. Здесь, в Лондоне, тоже вовсю идут разговоры. Новый мэр говорил о том, что он хотел бы ввести дополнительный налог на автомобили, которые старше 10 лет. В этом смысле нас тоже обкладывают.

То, что касается дизельного двигателя: ирония в том, что еще недавно его всячески пропагандировали как более чистый. Количество машин с дизельным двигателем в Англии, например, возросло стремительно. Где-то в 2011 или 2012 году их стало продаваться больше, чем бензиновых - и тут вдруг все повернулось.

Объясняют это тем, что те выхлопы, которые производят дизельные двигатели - окись азота, формальдегиды, какие-то частицы - сажа, короче говоря, вылетает - все это очень вредно для здоровья. Вреднее, чем то, что выбрасывает бензиновый двигатель. Это же, наверное, должно беспокоить действительно, если это так?

В.С.: Разумеется, это беспокоит, но здесь беспокоит только один параметр - это выброс сажи. Весь остальной букет присутствует в равной степени и в автомобилях с бензиновым двигателем - в равной степени, а, может быть, даже еще и большей. Поэтому здесь только сажа.

Для этого есть специальные системы: сажевые фильтры, системы нейтрализации газов. Все это есть и отрабатывается. Рециркуляция отработавших газов, дожиг отработавших газов, то есть масса всего придумана. Вопрос в том, что это должно работать.

Дизельный двигатель, как ни крути, эффективнее. Почему он так популярен? Потому что он меньше топлива расходует на 100 километров пробега при той же, равной работе.

А.Б.: Да, но сейчас бензиновые двигатели стали намного более эффективными, в принципе, они уже приближаются к дизелю. Конечно, еще отстают, но разница не настолько большая. Многое еще зависит от цены дизельного топлива.

Скажем, если в Германии дизельное топливо намного дешевле, чем бензин, то здесь, в Англии, дизельное топливо подороже, чем бензин. Если посмотреть на экономию: еще надо учесть, что дизельный двигатель более сложный, более тяжелый и так далее, поэтому цена дизельной машины на несколько тысяч дороже.

Если вы мало ездите - а обычная семья, в общем-то, мало ездит по городу - то дизельный двигатель оказывается не настолько экономичным. Тут еще и вредный, еще говорят, что рак можно заработать от всех этих вредных выбросов.

В.С.: Рак можно заработать, побывав, скажем, в Австралии или в Новой Зеландии. Под озоновой дырой побыл - ну и все, привет, как говорится: получил излучение. Таких мест, где можно получить рак, на самом деле полно.

Дизельный двигатель на самом деле гораздо эффективнее, а то, что сейчас говорят, что он сложнее, что он тяжелее - глупости все. На самом деле он по конструкции стал очень технологичным. Дизельный двигатель среди двигателей внутреннего сгорания - это явное преимущество.

Никогда бензиновый двигатель не подойдет по своим характеристикам к дизельному, во всяком случае, по своей эффективности. Не сможет. Теплотворная способность бензина всегда меньше. Это точно так же, как теплотворная способность газа всегда меньше, чем у бензина.

Если сжечь один килограмм бензина, то мы получим гораздо меньше энергии, чем если мы сожжем один килограмм солярки.

А.Б.: Да, может быть. В таком случае виноваты сами автопроизводители. Говорят, что бензиновые двигатели стали намного меньше выбрасывать СО2, а ведь СО2 - это главный показатель был все последние годы.

Борьба с озоновыми дырами, глобальное потепление и так далее - на СО2 обращали внимание в первую очередь, вообще только на СО2 обращали внимание. Тем временем бензиновые двигатели стали чище, а дизельные двигатели чище не стали, хотя они стали более технологичными. Как вы сами рассказываете, они стали лучше.

Более того, с дизельными двигателями еще такая "петрушка": очень часто можно услышать совет - если у вас дизельный двигатель, первым делом надо отвинтить у него фильтр, тогда он будет еще более эффективный, еще дешевле. И вот ездит масса дизельных машин без фильтров.

В.С.: А знаете, сколько ездит бензиновых автомобилей с пробитым катализатором, катколлектором? Плохое топливо залили или просто свечи не вовремя поменяли, он оплавляется, осыпается, забивается - и все. Когда глушитель забит, то мотор не работает.

Что в этом случае делают во всех странах? Берут лом, снимают эту штуку и пробивают ломом, потом перепрошивают программу. Таких автомобилей ездит по любой стране, даже моторизованной, просто огромная масса. Это известный прием, об этом знает любой сервисмен и даже гаражник, как это сделать.

Современный дизельный двигатель сегодня гораздо эффективнее по конструкции, потому что он выбрасывает эффективнее, чем бензиновый, тут даже доказывать нечего. Вопрос только в старых автомобилях.

А.Б.: Еще говорят о том, что на самом деле есть новые технологии, которые позволят сделать дизельный двигатель намного более чистым, практически чистым, но автопроизводители не хотят это делать, потому что это будет стоить примерно 220 фунтов лишних на одну машину, специалисты даже посчитали. Вы можете что-то сказать по этому поводу? Действительно, может быть, в этом автопроизводители сами виноваты?

В. С.: Не то что виноваты. Производители - это бизнесмены. Прежде всего их душу греет рубль или доллар, фунт, - все, что угодно. Им интересно продавать то, с чего они получают наибольшую прибыль. Наибольшую прибыль они получают, скажем, с бензинового мотора: массовый автомобиль, дешевый, дешевле гораздо производить - и пошел в серию.

Их, думаете, так беспокоит безопасность окружающей среды? Их беспокоит закон, который заставляет их, вынуждает это делать. Поэтому делают бензиновые двигатели и не стараются делать, скажем, на солярке. Потом все прекрасно понимают, что будущее все-таки за электромобилями, поэтому сюда направляют наибольшие усилия.

А.Б.: Мне тоже кажется, что это отдельное решение. Может быть, оно, как вы говорите, какое-то конъюнктурное, вызвано чем-то, может быть, не вызвано, не знаю.

Дело даже не в этом, а дело в том, что это решение Афин, Мехико, Мадрида и Парижа очень вписывается в общий тренд, который сейчас просто набирает обороты - тренд на отказ от традиционных моторов, двигателей как дизельного, так и бензинового.

Вопрос в том, я думаю, что автомобилисты гадают сейчас: как быстро это все произойдет? Как много времени нужно, чтобы электрические машины заняли рынок и стали распространенными, чтобы их действительно можно было бы покупать без каких-то долгих размышлений: а где мы будем их заряжать и так далее? Как вы думаете, как быстро это может произойти?

В.С.: Электромобили наступают и наступают лавинообразно. Даже в странах с холодным климатом они есть, а в странах с теплым климатом, где вообще не видели снега, это само собой.

Понятное дело, что в ближайшие несколько лет - я не знаю, может быть, три года, пять лет - они будут занимать в городе существенную долю, просто огромную долю. К этому будет подвигать не только экономическая сторона.

Электромобиль легче обслуживать, он дешевле, там только батарейки дорогие на сегодняшний день. Батарейки можно брать в аренду. Есть такая форма: пошел, взял в аренду, откатал несколько лет, сдал эти батарейки, их утилизируют, поменяют на новые.

Самое главное - КПД электромобиля гораздо выше, чем машины с бензиновым или дизельным двигателем, с двигателем внутреннего сгорания, потому что энергию производят на стационарных станциях или вообще производят, как говорится, бесплатно - от солнца, от воды, от прилива, от чего угодно.

А.Б.: Я думаю, что если мы перейдем на электромобили, то одними солнцем и водой тут не обойтись. На самом деле это огромное количество электроэнергии, которое надо будет производить. На мой взгляд, когда говорят об экологии, о том, что будет воздух более чистый, это некоторое лукавство.

Что происходит с электромобилями? Очищается воздух там, где они ездят, то есть в городе, и начинает загрязняться где-то в пригороде, где стоят электростанции, которые производят это электричество. Грязный воздух перемещается из города в деревню - так получается с электромобилями?

В.С.: Так говорят те, кто не учил в шестом или в седьмом классе физику. На самом деле стационарные станции, вырабатывающие электроэнергию, гораздо эффективнее, чем двигатели внутреннего сгорания.

Самое главное - коэффициент полезного действия от того же газа, если это тепловая электростанция, которая работает на газе. Они из этого топлива получают чуть ли не 60% - это на самой плохой станции, а так - все 80%. Мало того, 20% улетучивается просто в тепло.

Высокий КПД - это первое. Второе: там система фильтров совсем другая, там фильтрация другая. Наконец, это стабильный режим, а двигатель внутреннего сгорания работает в режиме частичных нагрузок - все время не прогретый, перегретый или сломанный. Его даже контролировать невозможно.

Наконец, третье: станцию можно контролировать, а как автомобиль контролировать? Никак. Потом мы все говорим: "Ограничения по выхлопу, скажем, СО2 - углекислого газа. Есть ограничения: чтобы не больше чем на 100 тысяч километров".

А кто-нибудь замеры делал, когда машина пробежала 100 тысяч километров, 150? Я вас заверю: эти нормы уже там не соблюдаются, нет этих норм. А на электростанции как 10 лет назад производили с определенными выбросами, небольшими, так и дальше будут производить с небольшими выбросами. Вопрос контроля.

А.Б.: Это интересно. Есть еще другая проблема, которая не связана напрямую с экологией, но связана с тем, что электромобили пожирают большое количество электричества. Уже сейчас с этой проблемой столкнулись в Калифорнии.

Я ездил туда, и мне рассказывали люди - "из первых рук", что называется: в продвинутой Калифорнии есть уже небольшие улицы в достаточно богатых предместьях, где двадцать домов и пять-шесть электромобилей, которые ночью заряжаются. Электрические сети просто падают, абсолютно не выдерживают этой нагрузки.

Для этого нужно абсолютно все менять - всю систему электроснабжения. Это тоже огромные деньги. Нынешние электросети в Англии точно, я думаю, что и в России тоже, просто не готовы к электромобилям.

В. С.: На самом деле это тоже не так. Все электросети готовы. Электромобили в основном заряжаются ночью. Днем они ездят. Днем кто заряжает? Никто. К офису приехал, у кого есть, воткнул вилку в розетку, заряжаешься. Заряжаются ночью, тогда, когда мощности простаивают - в этом вся "фишка".

Энергетикам это очень выгодно. Электроэнергию нельзя в бак залить, или еще куда-то, чтобы ее накопить. Ее можно произвести и прямо сейчас реализовать. Электромобили - это спасение для энергетиков, и они сами об этом говорят. То, что не выдерживают сети - сделайте, ребята, так, чтобы выдерживали. Медные провода нужно делать.

А.Б.: Сейчас дело даже не в проводах. Сейчас появляются компании в той же Калифорнии, которые занимаются "умным" распределением электроэнергии между различными источниками.

Действительно, очень часто так бывает, что электростанцию не закрыть, она работает вхолостую, это электричество не используется - ничего хорошего в этом нет. Эта система распределения электричества становится более компьютеризированной, более "умной" и помогает как-то с этой проблемой справиться.

На самом деле даже ночью - вы говорите, что ночью - все зависит от количества машин. Как только машин появится много, ночью не будут справляться с зарядкой. Это еще для наших автолюбителей далекое будущее, до него еще надо дожить и доехать. А сейчас вы б сами покупали машину, купили бы дизель?

В.С.: У меня есть дизельный автомобиль, я на нем успешно езжу, правда, я езжу на нем успешно на дальние расстояния. У меня автобус, и я на нем путешествую. По городу я перемещаюсь на маленьком автомобиле с бензиновым двигателем. Просто его проще завести, он быстрее прогреется.

Это действительно так, потому что дизельный двигатель прогревается слабо. Он работает фактически, если на холостых оборотах, на минимальных, то он работает исключительно на воздухе. Поэтому да, есть определенные трудности. Скажем, в России, да и в любой моторизованной стране переход с солярки летней на зимнюю очень для автолюбителей неважный, потому что может замерзнуть солярка. Ударил мороз, солярка замерзла - все, привет, машина встала.

А.Б.: В любом случае, мне кажется, что если человек сегодня купит дизель, если у него срок 10 лет, допустим, хотя он дольше может ездить, то в любом случае, наверное, это уже будет последний дизель нашего автолюбителя, и следующая машина наверняка будет электрическая, наверное, да? Как вы думаете?

В.С.: Я предполагаю, что дизельные двигатели будут еще долго и долго производиться и будут совершенствоваться, потому что это не только легковые автомобили, это еще и коммерческий транспорт. Это очень важно. Коммерческому транспорту выгодно ездить на солярке. Она действительно экономит, много экономит, а электромобили - да, придут. Для людей, живущих в мегаполисах, особенно в центре, особенно там, где есть ограничения, это очень выгодно, очень выгодно.

А.Б.: Хорошо, спасибо огромное, Вячеслав. Было очень интересно узнать и стало немножко яснее, какую же машину покупать.

________________________________________________________

Загрузить подкаст передачи "Пятый этаж" можно здесь.

какой двигатель наиболее эффективный? – Богдан-Авто Холдинг

В настоящее время существует большое количество двигателей и альтернативных приводов. Предложение различных моторных решений для автомобилей часто вызывает у клиентов вопрос: какой же двигатель работает наиболее эффективно? Эксперты издания futurezone.de пришли к выводу, что самым высоким коэффициентом полезного действия (КПД) обладает электродвигатель. Для «зеленого» привода он составляет до 99%, а это означает, что 99% вырабатываемой электрической энергии преобразовывается в кинетическую энергию движения. Сегодня мы рассмотрим, чем отличаются наиболее известные типы двигателей и сравним их преимущества и недостатки.

Электро

Интересно, что принцип работы электродвигателя был открыт еще в 1830-х годах, за несколько десятилетий до появления двигателя внутреннего сгорания. На сегодняшний день существуют различные типы электродвигателей, которые работают на постоянном или переменном токе. В качестве топлива используется электричество, которое обеспечивает бортовая аккумуляторная батарея. Сегодня в основном применяются литий-ионные аккумуляторы благодаря хорошим характеристикам и длительному сроку службы. Несмотря на то, что многие модели электромобилей обладают пока еще низким запасом хода, а для зарядки потребуется в общей сложности несколько часов, электродвигатели обладают явными преимуществами. Во-первых, они не загрязняют окружающую среду, так как выбросы равны нулю. Во-вторых, в отличие от двигателей внутреннего сгорания, электромотор имеет меньше деталей, которые подлежат износу, а это означает, что Вас ожидает меньше расходов на ремонт и обслуживание. В дополнение к этому, электромотор предлагает отличную динамику, так как максимальный крутящий момент уже доступен на низких оборотах двигателя.

Водород

С точки зрения эксплуатационных характеристик, близкими по духу чистым электромобилям являются электромобили на водородных двигателях. Данный тип привода использует топливный элемент для производства электроэнергии из газообразного водорода и кислорода. При этом из выхлопной трубы выделяется только вода. Помимо экологического аспекта, водородный двигатель имеет практические преимущества по сравнению с электромотором. Автомобили на водороде быстро заправляются и не нуждаются в длительной зарядке, а также обладают более широким запасом хода при меньшем весе по сравнению с электромобилями, оснащенными тяжелыми аккумуляторными батареями.

Гибрид

Менее эффективными, чем электродвигатели, но более экономичными по сравнению с двигателями внутреннего сгорания являются гибриды. В автомобилях с гибридным приводом применяются как двигатели внутреннего сгорания, так и электромоторы, что позволяет использовать преимущества обеих систем. В таких моделях аккумулятор для электродвигателя обычно заряжается во время движения от двигателя внутреннего сгорания или от восстановления энергии торможения. Более низкий расход топлива обеспечивается в основном при движении в городе, так как в большинстве случаев система автоматически переключается на электропривод при низких скоростях, таких как остановка и движение в пробках. Во время путешествий на дальние расстояния гибридные приводы практически не экономят топливо. При этом гибриды стоят на порядок выше, чем автомобили с двигателями внутреннего сгорания.

Газ

Если сравнивать линейку классических двигателей внутреннего сгорания, то Вашим фаворитом легко может стать газ. Во-первых, двигатель, работающий на природном газе, более экологически чистый, чем бензиновый или дизельный мотор. Сжигание природного газа, который в принципе состоит из метана, является относительно чистым, а это означает, что при этом не образуется сажа и значительно снижается количество других загрязняющих веществ. Во-вторых, двигатель, работающий на газе, до 10% более эффективный, чем бензиновый. Помимо этого, цена на газ существенно ниже по сравнению со стоимостью бензина или дизельного топлива. Но при всех плюсах Вы должны учитывать, что за авто на газе Вам придется заплатить дополнительные тысячи евро, и к тому же газ предлагается не на каждой АЗС.

Дизель

Выбирая дизельный двигатель, клиенты сознательно платят более высокую стоимость за автомобиль с целью сэкономить в будущем на затратах на топливо, так как главный плюс дизеля – это более низкий расход топлива. В дизельных моторах воздух всасывается в камеру цилиндра, где он смешивается с дизельным топливом путем прямого впрыска. Дизельно-воздушная смесь воспламеняется самостоятельно, поэтому дизельный двигатель не нуждается в свечах зажигания. При этом давление сжатия составляет от 30 до 50 бар, а температура на 700-900 градусов Цельсия выше, чем у бензинового двигателя. Учитывая данные значения, дизель должен иметь более устойчивую конструкцию и соответственно больше весить. Тем не менее, дизель имеет более высокую плотность энергии и КПД дизеля составляет около 33%, в результате чего снижается расход топлива.   

Бензин

Бензиновый двигатель обладает наименьшим КПД среди двигателей – 25%. Это означает, что 75% энергии, получаемой при сжигании бензина, преобразуется в тепло, и только 25% в движение.  Но сегодня многие бензиновые двигатели оснащаются системой непосредственного впрыска, а также турбонаддувом. Данные технологии позволяют увеличить производительность мотора, а также снизить вредные выбросы. Не смотря на более низкую эффективность, бензиновый двигатель обладает другими полезными характеристиками. По сравнению с дизелем, у бензина более низкие выбросы оксида азота. Помимо этого, бензиновый двигатель дает широкий диапазон оборотов, что идеально подходит для спортивного вождения. Именно по этой причине мотоциклы ездят исключительно на бензине. В дополнение, автомобили с бензиновым двигателем являются самыми доступными по стоимости на рынке.

Виды двигателей, которыми оборудованы автомобили дилерской сети «Богдан-Авто Холдинг»

Модель автоТип двигателяРасход топлива в смешанном цикле (л / 100 км)
Subaru
Subaru XVБензин7
Subaru OutbackБензин7,3
Subaru ForesterБензин7,2
Hyundai
Hyundai i30Бензин/ Дизель6 / 5,3
Hyundai i10Бензин4
ElantraБензин6,6
CretaБензин7
Santa Fe NewБензин/ Дизель7,1 / 5,2
TucsonБензин/ Дизель7,9/ 5,3
AccentБензин5,7
Grand Santa FeТурбодизель7,8
Ioniq ElectricЭлектро0
Ioniq HybridГибрид3,4
GrandeurБензин9,1
Great Wall
Wingle 5Дизель7,4
Wingle 6Бензин/ Дизель11,2 / 8,6
HAVAL
HAVAL h3Бензин6,7
HAVAL H6Бензин8,5
HAVAL H9Бензин/ Дизель10,9 / 9,1
JAC
JAC S2Бензин6,5
JAC S3Бензин5,6
JAC iEV 7SЭлектро0

Подготовлено по материалам Futurezone. de]]>

ГОСТ 31605-2012 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Двигатели. Показатели энергоэффективности, ГОСТ от 23 ноября 2012 года №31605-2012


ГОСТ 31605-2012



МКС 29.160.30

Дата введения 2015-01-01


Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 24 мая 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Кыргызстан

KG

Кыргызстандарт

Российская Федерация

RU

Росстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 23 ноября 2012 г. N 1104-ст межгосударственный стандарт ГОСТ 31605-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

5 Стандарт подготовлен на основе применения ГОСТ Р 51677-2000

6 ВВЕДЕН ВПЕРВЫЕ


Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в ежемесячно издаваемом информационном указателе "Национальные стандарты".

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемом информационном указателе "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячно издаваемом информационном указателе "Национальные стандарты"


1 Область применения


Настоящий стандарт распространяется на трехфазные асинхронные двигатели с короткозамкнутым ротором общего назначения мощностью от 1 до 400 кВт включительно (далее - двигатели) для работы от сети переменного тока напряжением до 690 В, изготовляемые для нужд народного хозяйства и экспорта.

Стандарт не распространяется на специальные двигатели, устанавливаемые на средствах наземного, морского и воздушного транспорта, взрывозащищенные двигатели, а также на двигатели, работающие в нестационарных режимах, многоскоростные двигатели и двигатели с повышенным скольжением.

Стандарт устанавливает уровни показателей энергоэффективности (энергетических показателей): коэффициента полезного действия (КПД) и коэффициента мощности, а также методы их определения.

Требования настоящего стандарта являются обязательными.

2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 183-74 Машины электрические вращающиеся. Общие технические условия
_______________
На территории Российской Федерации действует ГОСТ Р 52776-2007.


ГОСТ 7217-87 Машины электрические вращающиеся. Двигатели асинхронные. Методы испытаний

ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Двигатели. Общие технические требования
_______________
На территории Российской Федерации действует ГОСТ Р 51689-2000.


Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю "Национальные стандарты", составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом, следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 двигатели с нормальным КПД: Двигатели общепромышленного назначения, КПД которых соответствует уровню, достигнутому в производстве двигателей серии АИ.

3.2 двигатели с повышенным КПД (энергосберегающие двигатели): Двигатели общепромышленного назначения, у которых суммарные потери мощности не менее чем на 20% меньше суммарных потерь мощности двигателей с нормальным КПД той же мощности и частоты вращения.

КПД энергосберегающего двигателя , %, при различных уровнях снижения суммарных потерь определяют по формуле

, (1)


где - коэффициент полезного действия двигателя с нормальным КПД, %;

0,2 - относительное снижение суммарных потерь мощности в двигателе, о.е.

Минимальные значения КПД энергосберегающего двигателя (для случая снижения суммарных потерь мощности в двигателе на 20%, т.е. при 0,2), , %, определяют по формуле

. (2)

4 Основные параметры и размеры


Основные параметры и размеры двигателей - по ГОСТ 28330.

5 Технические требования

5. 1 Показателями энергоэффективности являются:

- коэффициент полезного действия, представляющий отношение полезной мощности на валу двигателя, выраженной в киловаттах, к активной мощности, потребляемой двигателем из сети, выраженной в киловаттах;

- коэффициент мощности, представляющий отношение потребляемой активной мощности, выраженной в киловаттах, к полной мощности, потребляемой из сети, выраженной в киловольтамперах.

5.2 В зависимости от требований к уровню энергоэффективности двигатели подразделяют на:

- двигатели с нормальным КПД;

- двигатели с повышенным КПД (энергосберегающие двигатели).

5.3 Двигатели с нормальным КПД мощностью от 1 до 400 кВт включительно должны иметь номинальные значения КПД и коэффициента мощности не ниже указанных в таблицах 1 и 2.


Таблица 1 - Значения КПД двигателей с нормальным КПД

Номинальная мощность, кВт

КПД двигателей, %, при числе полюсов

2

4

6

8

10

12

1,10

77,0

75,0

72,0

72,0

-

-

1,50

79,0

77,0

77,0

73,0

-

-

2,20

82,0

78,0

80,0

75,0

-

-

3,00

82,0

79,0

81,0

78,0

-

-

4,00

83,0

83,0

82,0

82,0

-

-

5,50

86,0

84,0

84,0

83,0

-

-

7,50

87,0

87,0

84,5

85,0

-

-

11,0

88,0

88,0

87,0

87,0

-

-

15,0

89,0

89,0

88,5

88,0

-

-

18,5

90,0

90,0

89,0

88,5

-

-

22,0

90,5

90,5

90,0

89,5

-

-

30,0

91,0

91,5

90,0

90,0

88,5

-

37,0

92,0

92,0

91,0

91,0

89,0

-

45,0

92,5

92,5

92,0

92,0

91,0

90,5

55,0

93,0

93,0

92,5

92,0

92,0

91,0

75,0

93,0

93,5

92,5

92,5

92,0

91,5

90,0

93,0

94,0

93,0

93,0

92,5

92,0

110,0

93,5

94,0

93,0

93,0

93,0

92,0

132,0

94,0

94,0

93,5

93,5

93,0

-

160,0

94,0

94,0

94,0

93,5

-

-

200,0

94,5

94,5

94,5

94,0

-

-

250,0

94,5

94,5

94,5

-

-

-

315,0

95,0

95,0

-

-

-

-

400,0

95,5

95,5

-

-

-

-



Таблица 2 - Значения коэффициента мощности двигателей с нормальным и повышенным КПД

Номинальная мощность, кВт

Коэффициент мощности двигателей о. е., при числе полюсов

2

4

6

8

10

12

1,10

0,80

0,76

0,70

0,68

-

-

1,50

0,82

0,78

0,70

0,70

-

-

2,20

0,84

0,80

0,72

0,70

-

-

3,00

0,85

0,80

0,72

0,70

-

-

4,00

0,84

0,81

0,75

0,70

-

-

5,50

0,85

0,82

0,76

0,72

-

-

7,50

0,85

0,83

0,77

0,72

-

-

11,0

0,86

0,83

0,80

0,73

-

-

15,0

0,86

0,84

0,82

0,75

-

-

18,5

0,87

0,84

0,82

0,75

-

-

22,0

0,87

0,84

0,82

0,75

-

-

30,0

0,88

0,85

0,82

0,75

0,70

-

37,0

0,88

0,85

0,82

0,75

0,70

-

45,0

0,88

0,85

0,82

0,75

0,72

0,70

55,0

0,88

0,85

0,82

0,75

0,72

0,70

75,0

0,89

0,85

0,82

0,80

0,75

0,70

90,0

0,89

0,86

0,83

0,80

0,75

0,70

110,0

0,89

0,86

0,83

0,82

0,75

0,70

132,0

0,89

0,87

0,85

0,82

0,78

-

160,0

0,89

0,87

0,85

0,82

-

-

200,0

0,90

0,87

0,85

0,82

-

-

250,0

0,90

0,88

0,86

-

-

-

315,0

0,90

0,88

-

-

-

-

355,0

0,90

0,89

-

-

-

-

400,0

0,90

0,89

-

-

-

-

5. 4 Двигатели с повышенным КПД (энергосберегающие двигатели) мощностью от 15 до 400 кВт включительно должны иметь номинальные значения КПД и коэффициента мощности не ниже указанных в таблицах 3 и 2.

Значения КПД, указанные в таблице 3, определены по формуле (2).


Таблица 3 - Значения КПД двигателей с повышенным КПД

Номинальная мощность, кВт

КПД двигателей, %, при числе полюсов

2

4

6

8

10

12

15,0

91,3

91,8

90,6

90,0

-

-

18,5

91,8

92,2

91,0

90,6

-

-

22,0

92,3

92,6

91,8

91,4

-

-

30,0

92,9

93,7

91,8

91,8

90,6

-

37,0

93,5

93,7

92,7

92,7

91,0

-

45,0

93,9

93,9

93,5

93,5

92,7

92,3

55,0

94,3

94,3

93,9

93,5

93,5

92,7

75,0

94,6

94,7

93,9

93,9

93,5

93,1

90,0

95,0

95,1

94,3

94,3

93,9

93,5

110,0

94,7

95,1

94,3

94,3

94,3

93,5

132,0

95,1

95,1

94,7

94,7

94,3

-

160,0

95,1

95,1

95,1

94,7

-

-

200,0

95,5

95,5

95,5

95,1

-

-

250,0

95,5

95,5

95,5

-

-

-

315,0

96,0

96,0

-

-

-

-

400,0

96,4

96,4

-

-

-

-

5. 5 Номинальные значения показателей энергоэффективности (КПД и коэффициента мощности) указывают в технических условиях на двигатели конкретных типов.

5.6 Допускаемые отклонения от номинальных значений показателей энергоэффективности - в соответствии с требованиями ГОСТ 183.

6 Маркировка


Маркировка двигателей с повышенным КПД - по ГОСТ 28330.

При маркировании в условном обозначении двигателей с повышенным КПД применяют строчную букву е, которую располагают после цифры, обозначающей число полюсов двигателя.

Пример условного обозначения асинхронного двигателя серии 5А высотой оси вращения 180 мм, длиной , двухполюсного, с повышенным КПД, климатического исполнения Т2:

5A180S2eT2

7 Методы контроля


Методы испытаний двигателей - по ГОСТ 7217.



Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
официальное издание
М. : Стандартинформ, 2013

КПД дизельного двигателя

Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.

Что касается двигателя внутреннего сгорания (ДВС), такой силовой агрегат осуществляет преобразование тепловой энергии. Данная высвобождающаяся энергия является результатом сгорания топлива в цилиндрах двигателя. КПД мотора представляет собой фактически совершенную механическую работу, которая состоит в соотношении полученной поршнем энергии от сгорания топлива и конечной мощности, которая отдается установкой на коленчатом валу ДВС.

Содержание статьи

Почему КПД дизеля выше

Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. Бензиновые моторы имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.

Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.

Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.

Если сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.

Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.

Что касается КПД атмосферного дизельного агрегата, то этот показатель составляет около 40%. Установка турбокомпрессора позволяет увеличить отметку до внушительных 50%. Использование современных систем топливного впрыска на дизельных ДВС в сочетании с турбиной позволило добиться КПД около 55%.

Такая разница в производительности конструктивно схожих бензиновых и дизельных ДВС напрямую связана с видом топлива, принципом образования рабочей топливно-воздушной смеси и последующей реализацией воспламенения заряда. Бензиновые агрегаты более оборотистые по сравнению с дизельными, но большие потери связаны с расходами полезной энергии на тепло. Получается, энергия бензина менее эффективно превращается в полноценную механическую работу, а большая доля попросту рассеивается системой охлаждения в атмосферу.

Мощность и крутящий момент

При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом  становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Итоги

Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение систем изменения фаз газораспределения, электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

Благодаря таким особенностям современный дизель способен  полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

 

Читайте также

Wärtsilä 31 самый эффективный двигатель в мире

Добро пожаловать в новое поколение двигателей. Wärtsilä 31 устанавливает новый стандарт энергоэффективности, обеспечивая самый низкий уровень расхода топлива среди всех четырехтактных двигателей в мире. Он также предлагает беспрецедентный уровень эксплуатационной гибкости и может быть легко адаптирован для работы с различными типами топлива и рабочими профилями. В течение всего срока службы двигателя Wärtsilä 31 вы получите лучшую поддержку по запасным частям, обслуживанию на месте, техническим вопросам, переоборудованию и соглашениям об обслуживании.Wärtsilä 31 - это просто самый экономичный, удобный и универсальный двигатель из когда-либо разработанных.

Wärtsilä 31 - это не один двигатель, а платформа, состоящая из трех различных продуктов - дизельного двигателя, газового двигателя и двухтопливного двигателя. Двигатели могут работать на широком спектре доступных видов топлива, таких как тяжелое дизельное топливо (HFO), судовое дизельное топливо (MDO), топливо с низкой вязкостью или низким содержанием серы, сжиженный природный газ (СПГ), этановый газ (LEG) или нефть. газ (LPG).

Ульф Остранд, директор Wärtsilä по программам разработки продуктов, курировал внедрение всех новых технологий, содержащихся в новом двигателе. Он поясняет, что это первый раз, когда платформа двигателя разрабатывается одновременно для всех вариантов его топлива.

«Предыдущие двигатели изначально разрабатывались для работы на дизельном топливе, а затем были адаптированы для работы на газе», - говорит он. «Это сделало невозможным когда-либо полностью оптимизировать их характеристики и топливную экономичность для газового или двухтопливного режимов.

«Это совершенно новый движок, который мы разработали с нуля», - добавляет Джулио Тирелли, директор по портфолио и приложениям движков. «Это результат почти десяти лет разработок и содержит самые передовые технологии, открывающие двери для дальнейших разработок».

Топливная экономичность

Новый Wärtsilä 31 - самый экономичный четырехтактный двигатель, доступный в настоящее время на рынке. Дизельная версия двигателя потребляет в среднем на 8–10 г / кВтч топлива меньше по сравнению с ближайшим конкурентом во всем диапазоне нагрузок. В оптимальной точке это число может снизиться до 165 г / кВтч. В пересчете на эксплуатационные расходы ежедневная экономия на поставке эталонного буксира для обработки якорей (AHTS) составила бы около 10 000 евро в день в виде расходов на топливо.

«Повышение топливной эффективности такого масштаба никогда не достигалось за один раз», - говорит Остранд. «И мы сделали это за один присест».

«Сегодня топливная экономичность - это высший показатель технического прогресса», - соглашается Тирелли. «И повышение производительности на 10 г / кВт · ч за один запуск продукта - значительное улучшение.Этот двигатель достиг такого уровня эффективности, который еще несколько лет назад считался физически невозможным ».

Ориентация на экологичность

Поскольку выбросы вызваны сжиганием топлива, вполне естественно, что двигатель, потребляющий значительно меньше топлива, также производит значительно меньше выбросов. Совершенно новый Wärtsilä 31 не только соответствует существующему стандарту выбросов IMO Tier II, но и соответствует законодательству IMO Tier III, которое вступит в силу в 2016 году. Кроме того, двухтопливная концепция позволяет судам легко переключаться с дизельного топлива на газ в зависимости от того, где они работают.

«Будучи лидером на рынке по топливной эффективности, судно будет производить значительно меньшее количество CO2, CO, THC и SOX. В двухтопливной версии он может работать на дизельном топливе в зоне Tier II, а затем переключаться на газ при входе в зону Tier III (например, в зону контроля выбросов или ECA). Переключение происходит мгновенно - нет необходимости ждать переключения - судно может просто продолжать движение с той же скоростью.”

Меньше обслуживания, больше времени безотказной работы

Что касается обслуживания, затраты, связанные с новым Wärtsilä 31, были снижены примерно на 20%. В то время как стандартные двигатели аналогичной мощности требуют первой остановки для технического обслуживания примерно через 1000 часов работы, первая остановка на новом двигателе происходит через 8000 часов.

«Поскольку мы знаем, насколько важно время безотказной работы для прибыльности наших клиентов, сокращение потребности в техническом обслуживании было одним из наших главных приоритетов для этого нового двигателя», - объясняет Остранд. «Мало того, что его компоненты имеют более длительный срок службы, мы также вложили много энергии в сокращение времени, необходимого для его обслуживания».

Удаленный доступ к эксплуатационным данным обеспечивает расширенную поддержку и немедленное реагирование со стороны Wärtsilä для обеспечения безопасной эксплуатации судна или электростанции независимо от ее местонахождения. Выделенный эксперт с техническим опытом высшего уровня дает рекомендации экипажу по телефону и электронной почте. Это сокращает внеплановые посещения для технического обслуживания на борту.

Модульная конструкция

Модульная конструкция нового Wärtsilä 31 позволяет легко снимать и заменять целые модули двигателя. Это сокращает время обслуживания, поскольку модуль можно просто заменить, вместо того, чтобы разбирать каждую отдельную часть.

«Этот переход от отдельных запасных частей к« сменным блокам »- что означает замену целых блоков или модулей, таких как блоки питания, форсунки и топливные насосы высокого давления - способствует более эффективному обслуживанию и максимальному увеличению времени безотказной работы», - говорит Остранд.

Когда двигатель требует технического обслуживания, время простоя будет значительно сокращено, поскольку весь модуль можно просто вынуть и заменить на заменяемый. Модули обмена перечислены в руководстве по запасным частям и доступны на складе.

Операционная гибкость

Операционная гибкость - главная проблема для морских приложений, поскольку многие суда работают при низкой нагрузке, но также требуют возможности быстрого набора энергии. Операторам необходимо убедиться, что они могут работать при низких нагрузках, обеспечивая при этом максимальную топливную эффективность и рентабельность.Wärtsilä 31 может быть легко адаптирован для различных рабочих профилей, с различными настройками, благодаря передовой системе автоматизации двигателя в сочетании с гибкостью систем впрыска топлива и впуска воздуха. Дальнейшие улучшения для операций с низкой нагрузкой также могут быть достигнуты путем установки пакета низкой эффективности нагрузки, который включает некоторые механические изменения.

«Благодаря чрезвычайно высокому уровню автоматизации мы смогли оптимизировать несколько моментов, которые мы не смогли бы адаптировать в прошлом», - объясняет Тирелли.

«Многие механические системы не могут быть настроены для разных рабочих профилей, но современные электронные и гидравлические системы легко адаптировать к рабочим потребностям клиента», - соглашается Остранд, добавляя, что если владелец хочет изменить способ существующее судно работает, его всегда можно перенастроить под новые требования.

Двигатель, ориентированный на будущее

Модульная конструкция не только способствует быстрому ремонту, но и поддерживает будущие обновления. По словам Ульфа Остранда, это делает двигатель «перспективным»:

«В будущем, когда мы разработаем новую технологию, судовладелец может просто установить модуль, содержащий обновление.Это будет особенно полезно при введении новых стандартов выбросов, но может также применяться к будущим видам топлива. Мы разработали продукт, который можно легко адаптировать к любым будущим возможностям. Я называю это двигателем, отвечающим требованиям завтрашнего дня ».

Три двигателя, одна общая платформа

Работа по разработке нового Wärtsilä 31 началась еще в 2010 году. Инженеры Wärtsilä приступили к созданию платформы двигателя с высоким уровнем общности между тремя вариантами двигателей.

«Три двигателя почти идентичны», - говорит Джулио Тирелли.«Техник, обученный работе с одним, обнаружит, что с двумя другими очень легко работать, в то время как владельцы более чем одного типа двигателей уменьшат запасы запчастей благодаря высокой унифицированности деталей. Кроме того, двигатель, который изначально был куплен для работы, скажем, на дизельном топливе, можно легко адаптировать к работе в качестве газового или двухтопливного двигателя, если требования заказчика изменятся в течение срока службы продукта ».

«Благодаря модульной конструкции и использованию общих технологий в различных вариантах, двигатель может быть преобразован из одного варианта в другой с незначительными механическими изменениями», - добавляет Остранд. «Это делает его надежным выбором на будущее, независимо от изменений в наличии топлива или возможных серьезных колебаний цен на топливо».

Подробнее о Wärtsilä 31

Меньше энергии, затрат, времени простоя и выбросов. Больше гибкости и времени безотказной работы.

Энергоэффективность. Потребляет в среднем на 8–10 г / кВтч топлива меньше, чем у ближайшего конкурента во всем диапазоне нагрузок, обеспечивая ежедневную экономию до 10 000 евро.

Топливная гибкость. Wärtsilä 31 может работать на широком спектре видов топлива: мазут (HFO), дизельное топливо для судов (MDO), топливо с низкой вязкостью или низким содержанием серы, сжиженный природный газ (LNG), этановый газ (LEG) или нефтяной газ. (СНГ).

Экономическая эффективность . Затраты на техническое обслуживание снизились примерно на 20%.

Меньше обслуживания , больше времени безотказной работы. Первая остановка для технического обслуживания происходит через 8 000 часов по сравнению с 1 000 часов для стандартных двигателей аналогичной мощности.Наличие модулей обмена обеспечивает короткие простои для обслуживания.

Операционная гибкость. Полностью работоспособен, везде. Двухтопливный двигатель позволяет легко переключаться на газ при въезде в зону Tier III без каких-либо изменений скорости. Wärtsilä 31 можно легко адаптировать к различным рабочим профилям и любым будущим возможностям.

Меньше выбросов. Значительно меньшее количество CO2, CO, THC и SOX. Полностью соответствует правилам IMO Tier III, вступающим в силу в 2016 году.

Повышение эффективности двигателя внутреннего сгорания

  • Дайте двигателю поработать на обедненной смеси, то есть используйте избыток воздуха. Хорошо известно, что работа на обедненной смеси повышает эффективность. Раньше в крейсерских условиях двигатели всегда работали на обедненной смеси с избытком воздуха около 15% - это было экономично. Так что же это изменить? Проблема заключается в трехкомпонентном катализаторе (CO, UHC, NOx), который используется в выхлопных газах двигателя. Это работает, только если соотношение воздух / топливо в двигателе (по массе) стехиометрическое (химически правильное).Для бензина это соотношение составляет 14,6: 1. Компьютер двигателя, действуя совместно с датчиком воздушного потока двигателя, электронными топливными форсунками и датчиком кислорода в выхлопных газах, поддерживает стехиометрическое соотношение на протяжении большей части вашего вождения. Только при таком соотношении катализатор может одновременно окислять CO и UHC (до CO 2 и H 2 O) и химически восстанавливать NOx (до N 2 ). (UHC = несгоревшие углеводороды.) Человечеству нужен катализатор обедненного NOx. Тогда мы могли бы повысить эффективность и оставаться чистыми!
  • Также необходимы способы улучшения воспламеняемости обедненной смеси в бензиновых двигателях.То есть способность сжигать реальную бедную смесь ограничена топливом. Если смесь бензина с воздухом слишком бедная, пламя не будет иметь достаточной скорости, чтобы пройти через цилиндр за время, разрешенное частотой вращения двигателя, которую хочет водитель, или пламя даже не запустит пропуски зажигания в цилиндре, и тогда катализатор будет чтобы окислить огромное количество UHC и, следовательно, может перегреться (что может означать, что вам придется покупать новый катализатор).

    Фон:

    Первый курс термодинамики может научить эффективности цикла Отто (который является идеальным циклом, используемым для моделирования бензинового автомобильного двигателя с искровым зажиганием).Такой курс выведет следующее уравнение для эффективности цикла Отто:

    ч

    = 1 1 / r v г-1

    Степень сжатия двигателя r v . Собственно, это соотношение объемов. Это отношение объема в цилиндре, когда поршень находится внизу цилиндра, к объему в цилиндре, когда поршень находится в его верхнем положении: r v = V внизу / V вверху .

    Большинство автомобильных двигателей имеют степень сжатия от 9 до 10.5 диапазон. Отметим: чем выше степень сжатия, тем выше КПД! Параметр g представляет собой отношение удельной теплоемкости, т. Е. Удельной теплоемкости при постоянном давлении и удельной теплоемкости постоянного объема. На практике чем выше g, тем выше КПД. Такой газ, как гелий или аргон, состоящий только из атомов, имеет максимально возможное значение g - 1,67. С другой стороны, комнатный воздух, состоящий в основном из молекул O 2 и N 2 , имеет г 1,4. Пар топлива имеет на g меньше, чем у воздуха.Смесь воздуха и паров бензина, вводимая в двигатель, имеет g около 1,35. Поскольку эта смесь сжимается и нагревается во время такта сжатия, ее g падает примерно до 1,33. При сгорании (когда поршень находится около своего верхнего положения) топливо окисляется до CO 2 (и некоторого количества CO) и H 2 O, и g падает дальше. Он падает в диапазоне 1,20–1,25. Общий эффективный g для всего цикла для использования в приведенном выше уравнении эффективности составляет около 1,27 .

    Практическое правило: чем сложнее молекулы, тем меньше g.Нижний предел равен 1. Атомы аргона и гелия только перемещаются, то есть они движутся по прямой траектории, пока не встретят другой атом. Молекулы комнатного воздуха перемещаются и вращаются (примерно по 2 осям). Горячий воздух начинает вибрировать (как два ядра, соединенных пружиной). Молекулы паров топлива имеют много возможностей вибрировать даже при комнатной температуре. Продукты сгорания вибрируют. Тем не менее, только перемещение молекул ТОЛКАЕТ поршень. Другие режимы молекулярного движения ничего не делают для толкания поршня.Таким образом, когда g падает (что указывает на усиление вибрации молекул), h падает. Бедный двигатель (т.е. двигатель с избытком воздуха) имеет более холодный процесс сгорания и больше воздуха по сравнению с топливом, чем типичный двигатель с химически правильной смесью. Таким образом, его g больше, а h больше.

    Подставьте g = 1,27 в приведенное выше уравнение эффективности, предположите, что r v = 10, и вы получите h = 0,46. Умножьте это примерно на 0,75, чтобы учесть эффекты реального цикла (например, время, необходимое для горения, потери тепла в охлаждающую жидкость и выпускные клапаны, которые открываются до того, как поршень полностью достигнет нижнего положения), и вы получите h = 0.35. Это эффективность (указанная выше) использования химической энергии топлива для толкания поршней. Умножьте это на механический КПД двигателя, который учитывает механическое трение в двигателе и работу по перекачке воздуха (и топлива), которую необходимо выполнить, и вы получите конечный или общий КПД двигателя. Конечно, механический КПД зависит от условий вождения. Чем выше частота вращения двигателя, тем больше потери на трение. Чем больше закрыта дроссельная заслонка (т. Е. Чем дальше вы снимаете ногу с педали), тем выше насосные потери.Для типичного вождения в США общий КПД двигателя составляет около 20%. Обратите внимание, ваша педаль на самом деле не педаль газа, это педаль воздуха! Добавьте к этому механические потери на трение трансмиссии и реальной оси (или потери на трение трансмиссии) и утечку некоторых основных принадлежностей, и вы получите 15% -ный коэффициент расхода топлива на колеса для типичного автомобиля, эксплуатируемого в США.

  • Более высокая степень сжатия. Здесь мы ограничены самовоспламенением детонации бензина. То есть, если компрессия бензинового двигателя выше примерно 10.5, если октановое число топлива не является высоким, происходит детонационное сгорание. Это раздражает, и если оно будет продолжаться, может произойти повреждение двигателя. Таким образом, бензиновые двигатели ограничены в своей эффективности из-за неспособности топлива плавно сгорать в двигателях с высокой степенью сжатия.
  • Однако это ограничение не распространяется на дизельный двигатель. Он работает с высокой степенью сжатия. Отчасти этим объясняется его высокая эффективность. Он также работает на обедненной смеси, и его перекачивающая работа невысока, что еще больше увеличивает его эффективность по сравнению с бензиновым двигателем.Человечеству нужны тихие, бездымные дизели без запаха!

  • Нам нужны новые циклы для практического использования. Примером может служить цикл Аткинсона. У него меньшая степень сжатия, чем степень расширения. Это означает, что T C снижается, поскольку сгоревший газ охлаждается по мере расширения, что делает цикл эффективным. Мы выбрасываем меньше тепла через выхлоп.
  • Запустите двигатель в оптимальных условиях, что означает низкое трение (умеренные обороты двигателя) и низкую насосную работу (воздушный дроссель более открыт).Попытайтесь приблизиться к КПД «толкания поршней» в 35%. Это уже происходит в некоторых стационарных поршневых двигателях, например, больших тихоходных поршневых двигателях, используемых на компрессорных станциях трубопроводов. Кроме того, это важная характеристика двигателей, используемых в гибридных бензиново-электрических транспортных средствах. Пусть бензиновый двигатель в гибридной бензиново-электрической силовой установке работает только с хорошим открытием дроссельной заслонки и скромными оборотами. Пример одного типа коммерчески доступного гибридного двигателя («параллельного» типа) можно найти по адресу:
  • Эффективность двигателя

    63% смог вызвать, выбросы диоксида азота в Онтарио вызваны автомобилями, грузовые автомобили и другие виды транспорта. Такие программы, как Правительство Онтарио "Drive Green" - попытка для устранения серьезности проблемы, вызванной автомобилем загрязнение, убедившись, что наши автомобили работают правильно и максимально эффективно.

    Дизайнеров в настоящее время работает над перепроектированием энергии внутреннего сгорания. Там буквально миллиарды вариаций параметров, которые влияют на работу двигателя.Проблема, с которой сталкиваются дизайнеры: что улучшения в области контроля выбросов часто отрицательно влияют на топливную экономичность. Хитрость в том, чтобы найти баланс между многочисленными конструктивными параметрами.

    Эффективность автомобильный двигатель можно определить, исследуя ввод и выходная энергия. Входная энергия будет количеством химическая потенциальная энергия, которая будет храниться в молекулы, обнаруженные в бензине.Когда эта энергия высвобождается при горении происходят многочисленные преобразования энергии. Много энергии теряется в виде тепловой и звуковой энергии. Охлаждение система в автомобиле имеет решающее значение для удаления этой тепловой энергии из двигатель. Менее четверти энергии выделяется из бензин фактически превращается в кинетическую энергию. В большая часть энергии просто теряется во время трансформации, происходящие в двигателе автомобиля.

    КПД в процентах рассчитывается путем сравнения выходной энергии, кинетическая энергия в случае автомобиля, с входящей энергией, энергия, содержащаяся в молекулах бензина.

    Эффективность для любого автомат можно определить, посчитав количество энергия, идущая на преобразование энергии в полезную энергия выходит.Оба типа трансформации возникновение и тип используемого устройства могут повлиять на уровень эффективности.

    50% КПД бензинового двигателя в поле зрения

    Эта статья также появляется в

    Подпишись сейчас "

    Бензиновый двигатель Delphi Gen3X с непосредственным впрыском и воспламенением от сжатия (GDCI) продемонстрировал примерно 43. Тепловой КПД 5%, но разработчики говорят, что есть потенциал для большего. (Delphi)

    Исследователи двигателей: на горизонте 50% эффективности бензинового двигателя

    2019-04-09 Билл Висник

    Выступая на симпозиуме SAE High-Efficiency IC Engine, предшествующем конференции WCX19 на этой неделе в Детройте, ведущий исследователь долгосрочной программы Delphi Technologies, направленной на максимальное повышение термического КПД бензиновых двигателей, сказал, что последние разработки обещают обеспечить готовый к производству бензиновый двигатель с тепловым КПД около 50%.

    Марк Селлнау, который до недавнего времени оставил Delphi для работы в Aramco, руководил программой разработки системы сгорания бензина с прямым впрыском и воспламенением от сжатия (GDCI) Delphi и представил результаты испытаний третьего поколения 4-цилиндрового двигателя GDCI, получившего название Gen3X. Селлнау резюмировал анализ в недавнем техническом документе SAE, подробно описывающем достижения Gen3X (SAE 2018-01-0901), заявив, что усовершенствования, примененные к двигателю Gen3X, повысили его тепловой КПД тормозов (BTE) до 43.5%.

    Но, добавил он, в концепции четвертого поколения двигателя прогнозируется повышение его эффективности примерно до 48% или выше - «Почти практические пределы для легкового двигателя внутреннего сгорания» в практической трансмиссии, сказал он. , также подтверждая, что Gen4X - это «двигатель, который мы планируем построить в ближайшем будущем».

    Между тем, существующий двигатель Gen3X, соединенный с 8-ступенчатой ​​автоматической коробкой передач и 12-вольтовой системой старт-стоп и установленный в легковом автомобиле среднего размера, продемонстрировал экономию топлива 61 миль на галлон в цикле шоссе и 48 миль на галлон в городском цикле.Селльнау сказал, что двигатель Gen4X, как ожидается, будет способен развивать скорость 68 миль на галлон на шоссе.

    Достижения в целях сокращения затрат и повышения производительности
    На данный момент, однако, усовершенствования в движке Gen3X еще больше улучшают концепцию GDCI, которая разрабатывалась в рамках исследовательской программы, финансируемой Министерством энергетики США стоимостью 9,8 млн долларов США, которая началась 2011 г. и производились две предыдущие версии двигателя. «Все эти двигатели уже устарели», - категорично заявил Селльнау. «Ни один из них не отвечает требованиям для коммерческих двигателей малой мощности.”

    Селлнау сказал, что многочисленные изменения позволили снизить стоимость и сложность новейшего двигателя Gen3X и повысить производительность, не говоря уже о долговечности. «Я вижу лучшую надежность», - сказал он участникам многолетнего симпозиума по высокоэффективным двигателям ИС в 2019 году. «Вы можете это почувствовать».

    Главным среди конструктивных изменений является установка компрессора с регулируемым впуском (VIC) и турбонагнетателя с регулируемым соплом (VNT), что позволило исследователям отказаться от нагнетателя, необходимого для двигателя GDCI второго поколения, что значительно снизило стоимость.

    Не менее важно управление сложной «частично предварительно смешанной» воздушно-топливной смесью (в отличие от некоторых других бензиновых конструкций с воспламенением от сжатия, таких как Mazda SpCCI, Delphi GDCI не использует свечи зажигания для увеличения самовоспламенения при определенных условиях) для Gen3X Двигатель теперь поставляется в двух различных рабочих «регионах»: режим низкой нагрузки / холодного запуска и отдельная рабочая фаза для работы со средней и высокой нагрузкой. «С точки зрения средств контроля это относительно просто, - сказал Селльнау.

    Другие важные новые особенности двигателя Gen3X включают более высокую степень сжатия 17: 1 (по сравнению с 14,5: 1) и увеличенное отношение хода поршня к диаметру цилиндра (1,28). Увеличенный ход уменьшает объем поверхности поршня, что помогает снизить тепловые потери.

    Переход к четвертому поколению
    Но, несмотря на значительный рост производительности, эффективности и сокращения выбросов, Селлнау указывает, что продолжающиеся исследования уже обращаются к двигателю Gen4X, в основном из-за низких цен на бензин в США. S. подтолкнули потребителей к более крупным автомобилям, в то время как тенденции ценообразования на дизельное топливо сделали его еще более неблагоприятным в результате глобального исследования выбросов дизельных двигателей. И, добавляет он, исследование показывает, что двигатель GDCI может заметно превосходить эффективность лучших на сегодняшний день бензиновых двигателей с искровым зажиганием и гибридных электромобилей, которые, по его словам, также тяжелее и сложнее.

    Он утверждает, что нынешний двигатель Gen3X уже демонстрирует удовлетворительную кривую крутящего момента, подобную дизельной, и отвечает требованиям проекта по уровню шума, в то время как его удельный расход топлива на тормоз 194 г на кВт · ч соответствует 43.5% BTE, что превосходит современные достижения в производстве двигателей с искровым зажиганием.

    Он предвидит новую разработку термобарьерных покрытий как новое достижение, которое поможет улучшить двигатель Gen4X, и сказал, что «планируется OEM-программа с несколькими автомобилями» для разработки Gen4X.

    Продолжить чтение "

    6.2: Двигатели и тепловой КПД

    Простой двигатель

    Циклические процессы обеспечивают возможность иметь воспроизводимые процессы, которые преобразуют тепловую энергию, поступающую в газ, в рабочую энергию, покидающую газ.Мы знаем, что для теплообмена должна быть разница температур, и правильно спроектированное устройство может работать в цикле, чтобы использовать разницу температур для передачи полезной механической энергии. Такое устройство называется тепловой машиной . Конечно, для этого требуется циклический процесс, который выполняется по часовой стрелке на диаграмме \ (PV \). Теперь мы рассмотрим простейшую версию движка - ту, которая образует прямоугольник на своей диаграмме \ (PV \). Нашим акцентом будет визуализация каждого отрезка цикла как физического процесса, включающего поршень, который обменивается теплом с тепловым резервуаром и / или работает с его окружением.

    Рисунок 6.2.1 - Простой двигатель

    Мы начнем с того, что мы уже знаем о циклах - поскольку термодинамическое состояние возвращается туда, где оно было начато, внутренняя энергия не изменяется в течение цикла, а это означает, что выходящая рабочая энергия (равна площадь, ограниченная петлей) равна тепловой энергии, которая поступает внутрь.

    \ [\ Delta U = 0 \; \; \; \ Rightarrow \; \; \; Q_ {in} = W_ {out} = \ left (P_2-P_1 \ right) \ left (V_2-V_1 \ right) \]

    Теперь мы вычислим тепло, передаваемое на всех четырех отдельных участках циклического процесса, чтобы подтвердить этот результат.По мере того, как мы это делаем, мы будем включать диаграмму того, что происходит физически.

    Рисунок 6.2.2a - Процесс A – B

    Это квазистатический изобарический процесс, при котором тепло передается газу медленно (из теплового резервуара, который на каждом этапе процесса едва теплее, чем газ двигателя). При этом температура газа повышается, а объем увеличивается, а тепло поступает в систему.Количество передаваемого тепла:

    \ [Q_ {AB} = nC_P \ Delta T_ {AB} = nC_P \ left (\ dfrac {P_2 \ Delta V_ {AB}} {nR} \ right) = \ left (\ dfrac {C_P} {R} P_2 \ вправо) \ влево (V_2-V_1 \ вправо) \]

    Рисунок 6.2.2b - Процесс B – C

    На этот раз у нас есть изохорный процесс, и поскольку давление падает, это должно быть связано с падением температуры. Это может происходить только при неизменном объеме, когда тепло выходит из системы, и поскольку процесс является квазистатическим, температура теплового резервуара немного ниже, чем температура газа на протяжении всего процесса.Потери тепла на этом этапе:

    \ [Q_ {BC} = nC_V \ Delta T_ {BC} = nC_V \ left (\ dfrac {\ Delta P_ {BC} V_2} {nR} \ right) = \ left (\ dfrac {C_V} {R} V_2 \ вправо) \ влево (P_1-P_2 \ вправо) \]

    Рисунок 6. 2.2c - Процесс C – D

    Эта третья ветвь снова представляет собой изобарический процесс, на этот раз с падением температуры и объема. И снова этот квазистатический процесс требует, чтобы температура резервуара оставалась немного ниже температуры газа.Потери тепла:

    \ [Q_ {CD} = nC_P \ Delta T_ {CD} = nC_P \ left (\ dfrac {P_2 \ Delta V_ {CD}} {nR} \ right) = \ left (\ dfrac {C_P} {R} P_1 \ вправо) \ влево (V_1-V_2 \ вправо) \]

    Рисунок 6.2.2d - Процесс D – A

    Последняя ветвь снова изохорическая, и давление увеличивается вместе с температурой за счет тепла, добавляемого от теплового резервуара, который немного теплее газа. Передаваемое тепло:

    \ [Q_ {DA} = nC_V \ Delta T_ {DA} = nC_V \ left (\ dfrac {\ Delta P_ {DA} V_1} {nR} \ right) = \ left (\ dfrac {C_V} {R} V_1 \ вправо) \ влево (P_2-P_1 \ вправо) \]

    Это оставлено читателю в качестве упражнения по алгебре, чтобы продемонстрировать, что сумма этих четырех теплопередач равна общей теплопередаче, как указано в уравнении 6. 2.1. При выполнении этого упражнения полезно помнить, что \ (C_P = C_V + R \).

    Реальные двигатели

    На протяжении приведенных выше вычислений читателю могло прийти в голову, что постоянно возникает одно неудобное требование - тепловой резервуар всегда должен быть на бесконечно малую величину, отличающуюся по температуре от газа в двигателе. Как именно совершить такой подвиг? Резервуар немного теплее, температура газа повышается до тех пор, пока они не достигнут теплового равновесия, затем резервуар снова становится немного теплее, так что он снова может отдавать небольшое количество тепла газу, и так далее? Очевидно, что этот процесс нельзя разумно спроектировать, и даже если бы это было возможно, тот факт, что скорость теплового потока связана с разницей температур, означает, что он будет мучительно медленным.

    В реальном мире у нас обычно есть два тепловых резервуара с фиксированными температурами для работы - один с высокой температурой, от которой двигатель получает тепло, и один с низкой температурой, где двигатель отводит тепло. Обратите внимание, что в простом двигателе, описанном выше, газ должен как получать, так и отводить тепло, даже если он получал чистое количество тепла, которое он преобразовывал в работу. Оказывается, это обязательная особенность всех двигателей (по причинам, которые мы рассмотрим позже) - двигатель не может просто забирать тепло из одного горячего теплового резервуара и преобразовывать его в работу в цикле, не передавая тепло другому. , более холодный термальный резервуар.Схема этого общего принципа двигателей показана ниже.

    Рисунок 6.2.3 - Реальная схема теплового двигателя

    На схеме показаны многие элементы двигателя. Во-первых, процесс должен быть циклическим, что означает, что общее изменение внутренней энергии равно нулю, а общее тепло, которое поступает (тепло, поступающее из более теплого резервуара, минус тепло, поступающее в более холодный резервуар), равно общей работе, которая гаснет (технически есть также входящая работа, но эта схема включает только работу net , при этом «входящее» тепло разделено на «выходное» по причинам, которые вскоре станут ясны). Мы включили теплообменники с двумя резервуарами с точки зрения их абсолютных значений, так что нам не нужно беспокоиться о знаках тепла на входе / выходе. Очевидно, что произведенная работа представляет собой разницу между полной тепловой энергией, поступающей из горячего резервуара, за вычетом общей тепловой энергии, которая уходит в холодный тепловой резервуар.

    Тепловой КПД

    Это правда, что в реальном мире, когда мы берем тепло из одного резервуара и отдаем его другому, более холодному, мы делаем два резервуара немного ближе по температуре.В идеале мы хотели бы избежать «растраты» любой исходящей тепловой энергии, которая только увеличивает температуру более холодного резервуара, а вместо этого просто преобразовывать всю тепловую энергию, поступающую из горячего резервуара, непосредственно в работу. Достижение этой цели означало бы создание «совершенно эффективного двигателя», и мы бы сказали, что его тепловой КПД составляет 100%. Таким образом, определение процентного КПД любого двигателя довольно очевидно - просто возьмите отношение извлеченной работы к подаваемому теплу:

    \ [e = \ dfrac {W_ {net}} {Q_H} = \ dfrac {\ left | Q_H \ right | - \ left | Q_C \ right |} {\ left | Q_H \ right |} = 1 - \ dfrac {\ left | Q_C \ right |} {\ left | Q_H \ right |} \]

    Следует отметить, что «извлеченная работа» - это чистая работа - работа, которая выходит в течение полного цикла за вычетом работы, которая вложена (т. е. это область внутри замкнутого контура на диаграмме PV по часовой стрелке). Также обратите внимание, что для этого двигателя температура не просто немного выше температуры газа в двигателе, и фактически сила, обусловленная давлением газа, также не немного больше внешней силы при выполнении работы. Так что ни один из этих процессов не является квазистатическим. Но, как мы видели, это не помешает нам эффективно использовать квазистатические модели процессов.

    Позже мы увидим, что двигатели максимально эффективны, когда процессы, за которыми они следуют, обратимы, но, конечно, для некоторых процессов требуется, чтобы задействованный тепловой резервуар изменял свою температуру, чтобы оставаться бесконечно большим или меньшим, чем температура двигателя.Это противоречит всему понятию «тепловой резервуар», поэтому очевидно, что реальный КПД двигателя будет хуже, чем у реверсивных двигателей, которые мы можем использовать для их моделирования. Тем не менее, мы можем использовать отношение общей работы к общему количеству тепла для обратимой модели, чтобы вычислить максимальную возможную эффективность для моделируемого двигателя.

    Пример \ (\ PageIndex {1} \)

    В циклическом процессе для двигателя, показанного ниже, процесс от A до B утроит давление, процесс от B до C является адиабатическим, а рабочий газ в двигателе является одноатомным.{\ frac {3} {5}} V_o \ right) \ right] = -0.933P_oV_o \ end {array} \ right \} \; \; \; \ Rightarrow \; \; \; W_ {net} = W_1 + W_2 = 0,667P_oV_o \ nonumber \]

    Тепло выходит из системы во время изобарического процесса, и во время адиабатического процесса тепло не передается, поэтому все тепло, поступающее в двигатель, поступает во время изохорного процесса, и это легко вычислить для одноатомного идеального газа:

    \ [Q_ {in} = \ frac {3} {2} \ Delta P V = 3P_oV_o \ nonumber \]

    Эффективность определяется отношением полезной работы к теплу:

    \ [e = \ dfrac {W_ {net}} {Q_ {in}} = \ dfrac {0.667P_oV_o} {3P_oV_o} = 22,2 \% \ nonumber \]

    Цикл Отто

    Наш самый узнаваемый тип двигателя - это двигатель внутреннего сгорания, и наиболее распространенный циклический процесс, который они описывают, называется циклом Отто .

    Предупреждение

    В дальнейшем слово «газ» относится к газу внутри поршня, который в основном представляет собой воздух. Говоря о бензине (наиболее распространенном топливе для сжигания), мы будем ссылаться на него в такой длинной форме - мы не будем использовать сокращенную версию слова «газ."

    Мы начнем с построения диаграммы \ (PV \), которая аппроксимирует процесс, а затем объясним каждую часть цикла.

    Рисунок 6.2.4 - Цикл Отто

    процесс A-B (адиабатическое сжатие)

    Пары бензина (или другого горючего) попадают в камеру и смешиваются с воздухом с прохладной (окружающей) температурой, после чего над смесью производятся работы по ее сжатию.Это происходит очень быстро, так что газ не успевает обмениваться теплом с окружающей средой, и это побуждает нас рассматривать этот процесс как адиабатический.

    процесс B-C (изохорный нагрев)

    Бензин воспламеняется, что приводит к быстрому изменению температуры газа внутри поршня. Технически, тепло исходит не снаружи двигателя, а скорее в результате экзотермического химического процесса, но это то же самое. Это воспламенение происходит очень внезапно, прежде чем газ успевает расширить поршень, поэтому мы рассматриваем этот процесс как изохорный.

    процесс C-D (адиабатическое расширение)

    Нагретый газ теперь находится под очень высоким давлением, и это давление расширяет поршень, выполняя работу. Опять же, скорость этого процесса настолько велика, что очень мало тепла успевает покинуть поршень, когда это происходит, поэтому мы рассматриваем этот процесс как адиабатический.

    процесс D-A (изохорическое охлаждение)

    После полного расширения охлажденный, но все еще более горячий, чем окружающий, газ удаляется из двигателя, и в камеру поступает новая партия воздуха и паров бензина. Технически газ не «изохорически остывает», но это равносильно тому же, поскольку камера вскоре заполняется новым газом с более низкой температурой и тем же объемом.

    Этот пример показывает, как мы можем использовать то, что мы узнали о термодинамических процессах, для анализа ситуаций реального мира, даже если наше понимание основано на идеальных ситуациях, которых не существует в реальном мире. Мы просто смотрим на особенности реального процесса и максимально приближаем его к квазистатическому процессу.Во время этого процесса «согласования» мы заботимся о том, чтобы конечные точки совпадали правильно (поскольку это состояния равновесия), и чтобы тепло / работа, передаваемая во время процесса, имела смысл. В приведенном выше примере это заключалось в том, чтобы спросить, произошел ли процесс быстро (нет времени для выхода тепла) или объем не изменился (работа не выполнялась). Скоро мы снова увидим другую форму этого соответствия.

    Давайте посмотрим на эффективность этого цикла. Имейте в виду, что наша идеализированная версия будет более эффективной, чем то, что мы можем достичь в реальном мире, но это дает нам верхний предел того, на что мы можем надеяться.Чтобы добиться эффективности, нам нужно тепло, подаваемое горячим резервуаром, и тепло, отбираемое холодным резервуаром. В этом цикле теплообмен происходит только во время процессов B-C и D-A, которые являются изохорными, поэтому теплообмены пропорциональны изменениям температуры. Следовательно, эффективность определяется как:

    \ [e = 1 - \ dfrac {\ left | Q_C \ right |} {\ left | Q_H \ right |} = 1 - \ dfrac {nC_V \ left (T_D - T_A \ right)} {nC_V \ left (T_C - T_B \ right)} = 1 - \ dfrac {\ left (T_D - T_A \ right)} {\ left (T_C - T_B \ right)} \]

    Из этого результата должно быть ясно, что двигатель работает более эффективно, когда разница температур между двумя тепловыми резервуарами больше.В данном случае это разница между температурой нагнетаемого и горящего газа. Из диаграммы должно быть ясно, что эту разницу можно измерить с точки зрения разницы (или, точнее, отношения) двух объемов, которые занимает газ. С практической точки зрения, газ не может быть сжат до столь малого объема, как хотелось бы, до его воспламенения, потому что повышение температуры из-за сжатия может само по себе спонтанно воспламенить газ. Топливо с более высоким октановым числом допускает большее сжатие без этого нежелательного самовоспламенения, повышая эффективность.

    Как мы можем заключить из вышеизложенного, можно переписать эффективность этого двигателя в терминах переменной, которую мы можем измерить легче, чем температуры, а именно свойства самого двигателя. Два из четырех процессов являются изохорическими, что означает, что объем изменяется только дважды за весь цикл, а это значит, что нам нужно беспокоиться только о двух объемах - максимальном и минимальном. Максимум происходит при полном расширении поршня, а минимальный - при полном сжатии.{1- \ gamma} \]

    Дизельный цикл

    С небольшим изменением цикла Отто можно несколько повысить эффективность. Это изменение заключается в управлении процессом воспламенения, чтобы он происходил при постоянном давлении, а не при постоянном объеме. В этой конструкции двигателя используется так называемый дизельный цикл . Это, конечно, означает, что воспламенение должно происходить менее "взрывоопасно", что снижает скорость, с которой может происходить цикл, и мы знаем из Физики 9А, что скорость, с которой выводится работа, является мощностью цикла, поэтому, хотя это цикл получается более эффективным, он дает меньше мощности.

    Чтобы определить разницу в эффективности, нужно только изменить знаменатель уравнения 6.2.7, которое учитывает процесс зажигания (с B на C). Вместо того, чтобы происходить при постоянном объеме, это происходит при постоянном давлении, которое просто меняет \ (C_V \) на \ (C_P \), давая:

    \ [e = 1- \ dfrac {C_V \ left (T_D-T_A \ right)} {C_P \ left (T_C-T_B \ right)} = 1- \ dfrac {1} {\ gamma} \; \ dfrac { T_D-T_A} {T_C-T_B} \]

    Член, вычитаемый из эффективности, уменьшается на коэффициент гаммы, что приводит к повышению эффективности.Кроме того, возможны более высокие степени сжатия, поскольку воздух сжимается без топлива (топливо добавляется постепенно с помощью топливных форсунок во время процесса зажигания, поддерживая постоянное давление), что устраняет проблему воспламенения топлива во время сжатия. Конечно, если много лет назад этот процесс применялся исключительно в дизельных двигателях, в настоящее время впрыск топлива и сопутствующие ему более высокие степени сжатия являются стандартом для автомобилей, работающих на бензине.

    Цикл Карно

    Мы смогли умно описать циклы Отто и дизель в терминах 4 квазистатических процессов, рассматривая воспламенение газа как добавляемое тепло, а не в результате химической реакции, и рассматривая замену газа как тепло исключен.Без этих уловок поддержание квазистатичности этих процессов сделало бы их очень медленными и не могло бы происходить между резервуарами с двумя фиксированными температурами, как показано на рисунке 6.2.3, потому что для процесса, включающего теплопередачу и изменение температуры (что имеет место для квазистатического протекания как изохорного, так и изобарного процессов) резервуар должен изменять температуру, чтобы оставаться лишь бесконечно малым отличным от температуры газа. Мы не можем получить что-то даром, и на самом деле процессы воспламенения и замещения газа необратимы, делая эти процессы лишь приблизительно такими квазистатическими циклами, как мы их объявили.

    Из этого анализа мы видим, что проблема с включением изохорных и изобарических процессов в случай «реального мира», когда двигатель вынужден работать между двумя резервуарами с фиксированными температурами, заключается в том, что мы не можем сделать эти процессы обратимыми. Но даже при этом ограничении фиксированной температуры для резервуаров есть два процесса, которые мы можем (в принципе) выполнять квазистатически. Адиабатический процесс вообще не предполагает теплопередачи, поэтому относительная температура двигателя и резервуара не имеет значения.В результате изотермического процесса температура двигателя остается неизменной, поэтому, если она равна температуре резервуара, проблем не возникает.

    При обсуждении уравнения 5.8.20 мы отметили, что в любой заданной точке на фотоэлектрической диаграмме газа адиабата, которая проходит через эту точку, круче, чем изотерма, которая также проходит через нее. Благодаря этому мы можем создать циклический процесс, в котором используются два изотермических процесса (один вверху, один внизу PV-диаграммы) и два адиабатических процесса (по одному с каждой стороны PV-диаграммы), и этот цикл может быть приводится в действие двумя резервуарами с фиксированной температурой. Это известно как цикл Карно .

    Рисунок 6.2.5 - Цикл Карно

    Мы можем вычислить эффективность этого двигателя, как мы это делали с циклами Отто и дизельным двигателем. Отметив, что во время двух адиабатических процессов тепло не передается, и используя уравнение 5.8.16 для тепла, передаваемого во время двух изотермических процессов, мы имеем:

    \ [\ left. \ begin {array} {l} \ left | Q_H \ right | = W_ {out} = nRT_H \ ln \ left [\ dfrac {V_B} {V_A} \ right] \\ \ left | Q_C \ right | = -W_ {in} = -nRT_C \ ln \ left [\ dfrac {V_D} {V_C} \ right] = nRT_C \ ln \ left [\ dfrac {V_C} {V_D} \ right] \\ e = 1 - \ dfrac {\ left | Q_C \ right |} {\ left | Q_H \ right |} \ end {array} \ right \} \; \; \; \ Rightarrow \; \; \; e = 1- \ dfrac {T_C} {T_H} \ dfrac {\ ln \ left [\ dfrac {V_C} {V_D} \ right]} {\ ln \ left [\ dfrac {V_B} {V_A} \ right]} \]

    Однако здесь мы можем сделать больше. {\ gamma-1} \ end {array} \ right \} \; \; \; \ Rightarrow \; \; \; \ dfrac {V_B} {V_A} = \ dfrac {V_C} {V_D} \]

    При подключении их выше логарифмы в числителе и знаменателе отменяются, что делает эффективность цикла Карно простой функцией температур двух резервуаров:

    \ [e = 1- \ dfrac {T_C} {T_H} \]

    Чем больше разница температур между двумя резервуарами, тем выше КПД двигателя Карно.

    Холодильники

    При обсуждении двигателей мы постоянно наблюдаем то, что на диаграмме PV циклы идут по часовой стрелке.Это гарантирует, что после полного цикла работы из системы выходит из , так как тепло уходит из . Что произойдет, если мы запустим цикл в обратном порядке? Затем начинается работа и выходит тепло. Это основа холодильника . Естественно, это не означает, что мы можем взять двигатель внутреннего сгорания, включить его «реверсом», и он превратится в кондиционер. Во-первых, мы не можем «разжечь» газ. Но мы можем осуществить процессы в обратном направлении другими способами. Во-первых, давайте посмотрим на схему холодильника, как мы это сделали для теплового двигателя:

    Рисунок 6.2.6 - Реальная схема холодильника

    Эффективность холодильника не определяется так же, как у двигателя, поскольку здесь цель состоит в том, чтобы отвести как можно больше тепла из холодного резервуара, затрачивая при этом как можно меньше работы. Поэтому мы определяем коэффициент полезного действия как отношение отведенного тепла к требуемой работе:

    \ [K = \ dfrac {\ left | Q_C \ right |} {W} = \ dfrac {\ left | Q_C \ right |} {\ left | Q_H \ right | - \ left | Q_C \ right |} \]

    Чрезвычайно упрощенный способ представить себе, как работает холодильник: мы знаем, что если мы очень резко сжимаем газ, он становится намного горячее (см. Пример в самом конце раздела 5.8). Неудивительно, что верно и обратное: если газ внезапно расширит поршень, это приведет к сильному охлаждению газа. Предположим, мы хотим сделать внутреннюю часть холодильника холоднее, чем внешнюю (да, это определение холодильника!). Начните с газа в поршне вне холодильника, сожмите его до небольшого объема и подождите, пока он не достигнет температуры наружного воздуха. Затем резко отпустите поршень и быстро отнесите его в холодильник. Если мы сжимаем его достаточно сильно, изменение температуры газа в поршне приведет к тому, что его температура будет ниже, чем внутри холодильника.Мы ждем немного времени, пока внутренняя часть холодильника отдает тепло холодному воздуху в поршне, тем самым охлаждая воздух внутри холодильника. Когда они достигают равновесия, мы выносим поршень наружу и повторяем процесс. Это переносит тепловую энергию из холодильника.

    Работа, выполняемая с газом во время сжатия, превышает работу, выполняемую газом во время расширения (т.е. необходимо вложить чистую работу). Процессы сжатия и расширения являются адиабатическими, в то время как «ожидающие» процессы изохоричны, что дает диаграмму PV, которая выглядит примерно так:

    Рисунок 6. 2.7 - Фотоэлектрическая схема простого холодильника

    Очевидно, мы пожертвовали большим количеством реальности ради этого простого для понимания «холодильника». Очевидно, что нам не нужно транспортировать поршень в охлаждаемую камеру и из нее, и вместо этого мы можем направлять газ в нее и из нее, сжимая его на выходе и расширяя при входе. Но с этим дизайном все еще есть довольно большая проблема. Чтобы тепло передавалось в нужном направлении и в нужное время, нам нужно, чтобы температура газа после его охлаждения от расширения была ниже температуры окружающей среды в холодильнике.На диаграмме PV температуры внутри и снаружи холодильников более или менее соответствуют температурам состояний B и D соответственно. Это означает, что если мы проведем изотермы через точки B и D , то промежуток между этими изотермами представляет собой максимальный температурный разрыв, который мы можем поддерживать между горячими и холодными областями. Очевидно, это функция разницы давлений, которую мы можем создать между сжатым газом и расширенным газом, но с практической точки зрения это существенное препятствие.

    Способ преодоления этого ограничения заключается в переносе большей части тепловой энергии в фазе хладагента. Мы знаем, что мы можем изменять фазы, сочетая сжатие / расширение и нагрев / охлаждение жидкости, и скрытая теплота парообразования значительна по сравнению с удельной теплоемкостью при небольшом изменении температуры. Это приводит к следующему основному процессу:

    • компрессор изменяет фазу хладагента на жидкость, которая нагревает его до температуры выше наружной температуры
    • жидкость затем поступает в змеевик конденсатора , цель которого - увеличить площадь контакта с наружным воздухом, ускоряя процесс отвода тепла
    • к тому времени, когда жидкость проходит через змеевик конденсатора, она находится под высоким давлением, но приходит в тепловое равновесие с наружным воздухом, а затем проходит в расширительный клапан , где она адиабатически расширяется, изменяя фазу обратно к газу и значительному падению температуры ниже температуры внутреннего воздуха
    • газ затем проходит через змеевик испарителя , который увеличивает скорость, с которой тепло может поступать в хладагент из внутреннего воздуха, и в конце змеевика испарителя он повторно поступает в компрессор, чтобы снова запустить цикл.

    Тепловая эффективность - Energy Education

    Рис. 1: Объем работы для данного количества тепла дает системе ее тепловой КПД. [1]

    Тепловые машины превращают тепло в работу. Тепловой КПД выражает долю тепла, которая становится полезной работой. Тепловой КПД представлен символом [math] \ eta [/ math] и может быть рассчитан с помощью уравнения:

    [математика] \ eta = \ frac {W} {Q_H} [/ математика]

    Где:

    [math] W [/ math] - полезная работа и

    [math] Q_H [/ math] - общее количество тепловой энергии, потребляемой от горячего источника. [2]

    Тепловые двигатели часто работают с КПД от 30% до 50% из-за практических ограничений. Тепловые двигатели не могут достичь 100% теплового КПД ([math] \ eta = 1 [/ math]) согласно Второму закону термодинамики. Это невозможно, потому что в тепловом двигателе всегда вырабатывается некоторое количество отработанного тепла, что показано на Рисунке 1 термином [math] Q_L [/ math]. Хотя полная эффективность теплового двигателя невозможна, есть много способов повысить общую эффективность системы.

    Пример

    Если вводится 200 джоулей тепловой энергии в качестве тепла ([math] Q_H [/ math]), а двигатель выполняет работу 80 Дж ([math] W [/ math]), то эффективность составляет 80J / 200J, что эффективность 40%.

    Тот же результат может быть получен путем измерения отходящего тепла двигателя. Например, если в двигатель вложено 200 Дж, а отходящее тепло составляет 120 Дж, то должно быть выполнено 80 Дж работы, что дает КПД 40%.

    Эффективность Карно

    основная статья

    Существует максимально достижимый КПД теплового двигателя, который был определен физиком Сади Карно.Следуя законам термодинамики, уравнение для этого оказывается

    [математика] \ eta_ {max} = 1 - \ frac {T_L} {T_H} [/ math]

    Где

    [math] T_L [/ math] - температура холодной «раковины» и

    [math] T_H [/ math] - это температура теплового резервуара.

    Это описывает эффективность идеализированного двигателя, которая в действительности недостижима. [3] Из этого уравнения, чем ниже температура стока [math] T_L [/ math] или чем выше температура источника [math] T_H [/ math], тем больше работы доступно от теплового двигателя.Энергия для работы исходит от уменьшения общей энергии жидкости, используемой в системе. Следовательно, чем больше изменение температуры, тем больше это уменьшение жидкости и, следовательно, больше энергии, доступной для выполнения работы. [4]

    Для дальнейшего чтения

    Для получения дополнительной информации см. Соответствующие страницы ниже:

    Ссылки

    1. ↑ Это изображение было сделано командой Energy Education.
    2. ↑ TPUB Engine Mechanics. (4 апреля 2015 г.). Тепловой КПД [Онлайн]. Доступно: http://enginemechanics.tpub.com/14075/css/14075_141.htm
    3. ↑ Hyperphysics, Цикл Карно [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/carnot.html
    4. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 4-е изд. Торонто, Онтарио. Канада: Томсон Брукс / Коул, 2006, глава 4, раздел E, стр 115
    Mazda

    заявляет, что ее бензиновый двигатель следующего поколения будет работать чище, чем электромобиль

    Mazda делает ставку в своем будущем на продолжение существования двигателя внутреннего сгорания, с такими умными технологиями, как искровое зажигание от сжатия, которое дебютирует в двигателе Skyactiv-X для серийных автомобилей Mazda нового поколения.Но автопроизводитель уже задумывается о будущем двигателей внутреннего сгорания. Automotive News сообщает, что Mazda работает над новым газовым двигателем Skyactiv-3, который, по словам автопроизводителя, будет таким же чистым, как электромобиль.

    Выступая на техническом форуме в Токио, руководитель трансмиссии Mazda Мицуо Хитоми сказал, что главная цель Skyactiv-3 - повысить тепловой КПД двигателя примерно до 56 процентов. Если это будет достигнуто, двигатель Skyactiv станет первым поршневым двигателем внутреннего сгорания, который превращает большую часть энергии своего топлива в энергию, а не в отходы из-за трения или потери тепла.

    На сегодняшний день самый термически эффективный автомобильный двигатель внутреннего сгорания принадлежит команде Mercedes-AMG Formula 1 с КПД 50 процентов; AMG надеется, что двигатель на основе F1 в уличном суперкаре Project One достигнет 41-процентного теплового КПД, что сделает его самым термически эффективным двигателем для серийных автомобилей в истории. Automotive News говорит, что цель Mazda - 56% - это улучшение на 27% по сравнению с нынешними двигателями Mazda. Хитоми не указал сроки, когда Skyactiv-3 выйдет в производство, и не уточнил, как Mazda надеется достичь такого улучшения.

    Mazda утверждает, что Skyactiv-3 будет более чистым в эксплуатации, чем полностью электрический автомобиль, является смелым и требует некоторой распаковки. Mazda основывает это утверждение на своих оценках выбросов «от скважины к колесам», подсчитывая загрязнение, вызванное как производством ископаемого топлива, так и выработкой электроэнергии коммунальными предприятиями, чтобы сравнить выбросы Skyactiv-3 и электромобилей. Такой анализ отражает реальность того, что в настоящее время большая часть электроэнергии вырабатывается за счет ископаемого топлива. В регионах, где электричество получают от ветра, солнца или гидроэлектроэнергии, электромобили явно выиграют спор, но сегодня для многих потребителей это не так.

    Если Mazda сможет создать серийный двигатель внутреннего сгорания с тепловым КПД более 50 процентов, это будет невероятный подвиг - и, вероятно, поможет гарантировать дальнейшую выживаемость поршневого двигателя.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *