7 правил правильной эксплуатации дизельного двигателя
Правило 1
Покупайте моторное масло рекомендованное авто-производителем. Важно! Характеристики масла для турбодизелей отличаются от масел, используемых в атмосферном ДВС. Это связано с тем, что в турбодизеле масло при высоких температурах подвергается значительно большим нагрузкам.
Избегайте также менять марку масла и его вязкость.
Правило 2
Не допускайте низкого уровня масла в вашем дизельном двигателе с турбокомпрессором (ТКР)! Последствие масляного «голодания» ДВС – смазка не будет поступать в необходимом объеме к подшипникам ТКР, которые будут быстро изнашиваться и выходить из строя. Постоянно проверяйте уровень моторного масла, и вы сможете избежать этих проблем.
Правило 3
Забудьте минут на 5 о педали газа после запуска дизельного двигателя с ТКР! Перегазовка в момент, когда моторное масло еще не заполнило масляные каналы, приведет к быстрому износу турбокомпрессора – турбина пока работает почти «на сухую».
Совет: подержите ДВС после запуска несколько минут на холостом ходу. Двинувшись с места, подержите недолго обороты низкими. Увеличивать нагрузку надо постепенно.
Правило 4
Лучший режим работы для турбодизеля – средние обороты. Избегайте движения в течение продолжительного времени на низких/высоких оборотах. Баланс работы турбины будет нарушен, и она быстро выйдет из строя.
Важно! Запустить очистку системы турбонаддува ТКР можно при работе ДВС на самых высоких оборотах. Вам достаточно пару раз в неделю недолго погонять мотор в таком режиме. Очистка системы увеличит срок службы турбокомпрессора, однако долго держать высокие обороты турбодизеля нельзя!
Правило 5
Не выключайте двигатель сразу после завершения поездки! Дайте турбокомпрессору возможность охладиться при работе двигателя на холостых оборотах в пределах 5 минут.
Правило 6
Быстрая закоксовка (засорение продуктами горения) турбодизеля происходит при длительной работе мотора на холостых оборотах – этого допускать нельзя! Кроме того, на работоспособности деталей цилиндро-поршневой группы в таком режиме может сказаться попадание (подсос) масла в цилиндры.
Правило 7
Обязательное условие длительной и безаварийной работы турбодизеля – своевременное прохождение технического обслуживания. Интервал между ТО у дизельных двигателей с турбокомпрессором меньше, чем у обычных. Работа турбины под высокими нагрузками требует более частой замены масла и фильтров.
Хотите продлит в несколько раз срок службы своего турбодизеля и ТКР? Не забывайте следовать этим простым правилам!
Как правильно эксплуатировать турбодизельный двигатель
Совет №1. Держите уровень масла под контролем.
Всем двигателям вообще, а рассматриваемому нами турбированному дизельному мотору в частности, не рекомендуется масляное голодание. Ведь масло в таком агрегате играет особую роль, смазывая подшипники скольжения и качения турбокомпрессора. Когда уровень моторного масла падает, подшипники не получают нужного количества смазки, что приводит к их скорому износу и выходу из строя.
Поэтому рекомендуем как можно чаще проверять уровень масла в картере двигателя и при обнаружении дефицита смазки, немедленно доливать нужно количество. Кроме того, необходимо выяснить причину, по которой в системе падает уровень масла (это может быть загрязнение либо не герметичность масляной системы, выход из строя масляного насоса и прочее) и незамедлительно ее устранить.
Совет №2. Используйте только качественное моторное масло.
Раз уж приобрели автомобиль с турбодизельным двигателем, не скупитесь на заправку его качественным и рекомендованным производителем моторным маслом. Тут как в известной поговорке: сэкономите на рыбке, получите плохую юшку. Выше мы уже указали, какую роль играет моторное масло для турбины, поэтому заливать в двигатель абы какое масло – значит, заранее обрекать турбокомпрессор силовой установки своей машины на медленную смерть. Важно помнить: масла, рекомендованные для турбированных агрегатов, отличны по составу от обычных масел ввиду того, что при работе в турбине они подвержены воздействию куда больших температур и нагрузок, чем в атмосферном моторе. Еще один немаловажный аспект: крайне не рекомендуется смешивать разные по коэффициенту вязкости масла, например, доливать в двигатель масло 5w-30, если там уже было залито 10w-40.
Поэтому советуем: заливайте масло одного коэффициента вязкости и желательно одной и той же марки.
Совет №3. Следите за качеством дизельного топлива.
Турбина дизельного двигателя чувствительна не только к качеству моторного масла, но и к качеству топлива, которым вы «кормите» свой автомобиль. При использовании горючего низкого качества вероятно засорение топливной системы двигателя, что, в свою очередь, сказывается на потере мощности двигателя, из-за чего турбина, чтобы восполнить этот пробел в оборотах, вынуждена работать на пределе мощности. А это может привести к сокращению срока ее эксплуатации.
Поэтому рекомендуем по возможности заправляться только на проверенных АЗС. Если не уверены в качестве горючего, его лучше дополнительно отфильтровать.
Совет №4. Избегайте перегазовок в момент запуска турбированного двигателя.
Следовать этому совету нужно, прежде всего, тем владельцам машин, у которых не установлена система запуска/остановки двигателя Start&Stop. Дело в том, что при запуске двигателя масляные каналы еще не заполнены моторным маслом, при нажатии на педаль акселератора вы даете нагрузку на турбину, которая вращается практически без масла, вследствие чего быстро изнашиваются ее узлы (бронзо-графитовые подшипники скольжения и качения), что в конечном итоге приводит к выходу из строя турбокомпрессора.
Поэтому настоятельно рекомендуем подавать газ плавно, и некоторое время (в течение 5 минут максимум) после запуска дать двигателю поработать на холостых оборотах, а затем начать движение на низких оборотах, постепенно увеличивая нагрузку. Оговоримся, что это важно для двигателей, не оснащенных системой Start&Stop.
Совет №5. Держите при езде средние обороты.
Турбина двигателя – это агрегат, постоянно работающий при высоких нагрузках, поэтому ездить на автомобиле с таким агрегатом длительное время на низких оборотах нельзя. Вообще же рекомендуется несколько раз в неделю давать турбине мотора поработать на предельно высоких оборотах: таким образом, вы активируете процесс очистки системы наддува турбокомпрессора, что в дальнейшем поможет продлить срок эксплуатации агрегата. Важно избегать «перекручивания» турбины, то есть длительной езды на высоких оборотах. При этом ротор турбокомпрессора испытывает повышенные нагрузки, что приводит к дисбалансу в его работе и, как следствие, выходу из строя его узлов.
Поэтому при езде на автомобиле с подобным типом мотора лучше всего придерживаться средних оборотов.
Совет №6. Не глушите двигатель сразу после остановки автомобиля.
Этот совет особенно важен для автолюбителей, чьи турбодизельные моторы не оснащены системой Start&Stop. Дело в том, что при незамедлительной остановке двигателя крыльчатки турбины еще продолжают вращаться, но масла, которые смазывает их, уже недостаточно, что приводит к перегреву узлов турбокомпрессора (ротора и подшипников). А это, в свою очередь, ведет к повышенному износу указанных частей турбины.
Поэтому после остановки дайте поработать двигателю на холостых оборотах короткое (не более 5 минут) время. За это время турбина охладится и ее можно деактивировать.
Совет №7. Избегайте длительной работы мотора на холостых оборотах.
Для турбированного двигателя работа на холостых оборотах в течение 20-30 минут – смерти подобна. Дело в том, что при таком режиме работы двигателя может произойти закоксовка (проще говоря, засорение) турбины, а именно маслоотводящей трубки, привода изменения геометрии турбины. Также при длительной работе на холостых оборотах возможен подсос моторного масла в цилиндры двигателя, что может привести к выходу из строя компонентов цилиндропоршневой группы.
Если вы все же держите мотор длительное время на холостом ходу, то советуем вам держать частоту вращения коленвала на 1200-1600 об./мин.
Совет №8. Вовремя проводите техническое обслуживание автомобиля.
Придерживайтесь рекомендованных производителем сроков замены моторного масла и фильтров, как масляного, так и воздушного. Помните, что для турбированного двигателя сроки прохождения ТО, как правило, короче, чем для атмосферного, так как турбина работает при более высоких нагрузках, чем обычный дизельный агрегат, и, следовательно, чаще нуждается в свежем масле и фильтрах.
Следование этим простым советам избавит владельцев автомобилей от дорогостоящего ремонта турбины.
Турбодизель – Автомобили – Коммерсантъ
 ТурбодизельЧасть вторая
В первой части статьи мы говорили о системах наддува двигателей внутреннего сгорания. Сейчас речь пойдет о дизельных двигателях.
Если не слишком искушенному в технике человеку задать вопрос, чем дизельный двигатель отличается от бензинового, то ответы, скорее всего, будут такими: работает на солярке, обходится без свечей зажигания, больше шумит и при этом развивает меньшую мощность. Все это правильно, но…
При слове «дизель» у человека с воображением обычно возникает картинка: весь в грязных потеках грубый механизм на мощной станине, который изрыгает клубы черного дыма и своим ревом заглушает все в радиусе нескольких десятков метров. Если уточнить, что речь идет о двигателе автомобиля, картинка получается не такой страшной, но не более привлекательной: по-прежнему нечто грязное, пахнет, гремит, в мороз не заведешь, машина тупая — за полчаса не разгонишься…
В таблице 1 в качестве примера приведены основные характеристики Volkswagen Passat GT TDI с 4-цилиндровым турбодизелем. Таким же двигателем комплектуются, кстати, и вполне престижные Audi A4 1.9 TDI и A6 1.9 TDI. Из таблицы видно, что единственное, в чем автомобиль с дизелем явно уступает, — это время разгона. 13,9 сек. до сотни все-таки многовато. Но бывают машины и пошустрее.
Перед тем как рассматривать системы наддува дизельных двигателей, есть смысл остановиться на основных особенностях самих дизелей — для большинства наших автовладельцев они пока не слишком знакомы.
Дизель
Этот тип двигателя получил свое название по имени немецкого инженера Рудольфа Дизеля, построившего в 1897 году первый мотор с самовоспламенением топлива. Конструктивно дизель очень похож на привычный бензиновый двигатель: те же цилиндры, поршни, распредвал, клапаны. Но имеется и ряд отличий, из которых главное, можно даже сказать принципиальное, заключается в том, что воспламенение топлива в дизеле производится не искрой от свечи зажигания, а за счет высокой температуры, которой достигает воздух в результате сжатия его поршнем в цилиндре.
Второй важный момент — способ подачи топлива. В бензиновом двигателе рабочим телом является смесь бензина с воздухом. Смесь готовится заранее (в карбюраторе) или непосредственно в момент ее подачи в цилиндры (в системах впрыска) — главное то, что топливо подается вместе с воздухом, а поджигается и сгорает относительно гомогенная топливо-воздушная смесь.
В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндр всасывается воздух, затем он сжимается, и только после этого впрыскивается топливо, поэтому говорить о гомогенной топливо-воздушной смеси не приходится. Впрыск производится в конце такта сжатия, топливо и воздух фактически не смешиваются друг с другом, горение происходит на фронте впрыскиваемой в сжатый воздух струи топлива (рис. 1).
Самовоспламенение топлива сопровождается резким, скачкообразным повышением давления в цилиндре — этим объясняется обычно шумная, жесткая работа дизельного двигателя. В низкооборотных дизелях с большим рабочим объемом, которые используются на грузовиках, этот недостаток проявляется в меньшей степени, и с ним мирятся. В дизелях легковых автомобилей от него пытаются избавиться применением форкамеры, или предкамеры, — небольшого отсека камеры сгорания, в который впрыскивается топливо. Там оно воспламеняется, частично перемешивается с воздухом, после чего горящая смесь распространяется по основному объему цилиндра.
Этот способ несколько уменьшает жесткость работы двигателя, но снижает его тепловую эффективность и топливную экономичность, поэтому в современных дизелях легковых автомобилей от форкамеры отказываются. Примером может служить 2,5-литровый дизель с турбонаддувом, который в 1990 г. был применен на Audi 100. Двигатель с прямым впрыском, 5-цилиндровый, 120 л. с. и 265 Нм (2250 об./мин.). Расход топлива 5,7 л/100 км. Для более плавного воспламенения топлива использованы двухступенчатый впрыск и сложная электронная схема управления.
Более свежий пример — 1,9-литровый атмосферный дизель с непосредственным впрыском мощностью 64 л. с., который Volkswagen собирается показать на Женевском салоне в этом году на Golf SDI. Отказ от форкамеры позволил на 12% улучшить и так неплохую экономичность двигателя: расход топлива составляет 4,9 л/100 км. Автомобиль Golf SDI с этим дизелем развивает скорость 156 км/час и разгоняется до сотни за 17,6 сек. (11,2 сек. до 80 км/час). Этот же дизель в турбированном варианте развивает мощность уже 90 л. с., потребляет 5,2 л/100 км и разгоняет Golf Cabrio TDI до 100 км/час за 13,3 сек. (8,8 сек. до 80 км/час). Максимальная скорость — 172 км/час.
Очевидное отличие дизельных двигателей от бензиновых — используемое топливо. Дизельное топливо, в просторечии солярка или ДТ, — тяжелая керосино-газойлевая фракция нефти C10 — C14 (у бензинов C6 — C8). Характерной особенностью дизелей является наличие твердых частиц в отработавших газах. Из-за гетерогенности процесса горения на поверхности отдельных частиц топлива всегда наблюдается некоторый недостаток кислорода, в результате чего вместо их окисления происходит частичное термическое разложение с образованием твердых продуктов — сажи. Для хорошего сжигания дизельного топлива требуется значительное, даже избыточное количество воздуха.
Ну и наконец, еще одна особенность — степень сжатия у дизеля в 2 раза выше, чем у бензинового двигателя. Высокая, не менее 14, степень сжатия необходима для того, чтобы температура воздуха в цилиндре поднялась до величины, достаточной для воспламенения топлива. Обычно в дизелях степень сжатия составляет 21-22 и ограничивается лишь прочностными характеристиками двигателя.
Стоит отметить, что устройства для подачи топлива в дизельных двигателях значительно сложнее, чем в бензиновых. Их сложность определяется прежде всего тем, что приходится впрыскивать очень маленькие, всего несколько миллиграмм, порции топлива в среду с высоким давлением. Эти порции должны быть очень точно отмерены — именно количеством подаваемого топлива управляется работа дизеля. Для этого нужны быстродействующие и точные форсунки. Высокая степень сжатия дизеля требует применения соответствующих топливных насосов — давление в сопле форсунки должно достигать нескольких сотен бар. Все это усложняет и ощутимо удорожает систему подачи топлива и, соответственно, сам дизельный двигатель.
Надо еще учесть, что почти все дизели до сих пор оснащаются механическими устройствами впрыска, ненамного отличающимися от тех, которые Bosch GmbH начала выпускать в 1927 году. Они уже почти изжили себя и скоро будут вытесняться гораздо более сложными устройствами с электронным управлением, индивидуальными для каждого цилиндра топливными насосами, совмещенными с форсунками, различными датчиками. Понятно, что стоимость таких систем тоже будет расти.
К числу недостатков дизелей обычно относят большую шумность, более высокую стоимость и, главное, меньшую, при том же рабочем объеме, мощность.
С шумностью пытаются справиться совершенствованием конструкции дизеля, изменением элементов его подвески, поговаривают даже о том, что двигатель можно капсулировать звукопоглощающим материалом. Стоимость — понятие относительное: заплатив за автомобиль больше при покупке, можно сэкономить на эксплуатации — это надо подсчитывать в каждом конкретном случае. А что касается мощности, то способ ее повышения известен — наддув.
Турбодизель
Применение наддува в дизельном двигателе преследует ту же основную цель, что и в бензиновом — увеличить количество топлива, сжигаемого в единицу времени. Устройство и работу различных типов нагнетателей воздуха мы рассматривали в первой части статьи. Все они могут быть применены и на дизельном двигателе. Из графика, приведенного на рис. 2, следует, что механический нагнетатель Comprex обеспечивает наибольшее увеличение крутящего момента двигателя, особенно на низких, около 2000 об./мин., частотах вращения, но общая характеристика при этом получается слишком острой. Нагнетатель Roots придает 1,2-литровому дизелю практически такую же характеристику крутящего момента, как у 1,6-литрового атмосферного бензинового двигателя. Характеристика, которую обеспечивает турбокомпрессор, занимает промежуточное положение: она достаточно плоская, а на средних (2000-4000 об./мин.) частотах вращения крутящий момент даже больше, чем с нагнетателем Roots.
Механические нагнетатели сложнее и дороже, кроме того, благодаря некоторым особенностям работы дизеля к нему легче всего удается приспособить именно турбокомпрессор.
Во-первых, как уже указывалось, подача воздуха в дизеле не связана с подачей топлива и не требует тонкой регулировки — чем больше воздуха, тем лучше. Во-вторых, диапазон рабочих оборотов — от холостых до максимальных — у дизеля меньше, соответственно, проще осуществляется управление турбокомпрессором, с этим вполне справляется обычный перепускной клапан в турбине. Кроме того, благодаря высокой степени сжатия давление отработавших газов дизеля в 1,5-2,5 раза выше — это делает эффективней работу турбины на низких оборотах.
Все это объясняет, почему практически все, по крайней мере европейские, производители для наддува дизельных двигателей применяют именно турбокомпрессор. Исключением является, пожалуй, только японская Mazda, которая на модели 626 Wagon предлагает 4-цилиндровый дизель с нагнетателем Comprex, характеристики которого не особенно впечатляют: при объеме 1998 см куб. мощность и крутящий момент, соответственно, 75 л. с. (4000 об./мин.) и 169 Нм (2000 об./мин.).
Есть и другие факторы, облегчающие применение наддува на дизелях. В отличие от бензиновых двигателей, где из-за опасности детонации степень сжатия при турбировании приходится уменьшать примерно на 20%, дизели к детонации не склонны, поэтому при применении наддува степень сжатия приходится снижать незначительно, всего на несколько процентов, а иногда можно обойтись и без этого.
Эксплуатация: плюсы и минусы
К числу несомненных достоинств дизельных двигателей, как атмосферных, так и турбированных, относятся меньший, чем в бензиновых, расход топлива (примерно на 30%), нетребовательность к качеству топлива и экологическая чистота выхлопа. Дизельное топливо к тому же на 20-30% дешевле, хотя это сильно зависит от страны или региона.
Меньшая мощность дизелей с успехом компенсируется, как мы видели, применением наддува. На рис. 2 видно, что 1,2-литровый турбодизель по мощностным характеристикам эквивалентен 1,6-литровому атмосферному бензиновому двигателю.
В целом дизельный двигатель долговечен — его ресурс обычно на 20-30% больше, чем у бензинового. При турбировании ресурс, естественно, уменьшается, но не так сильно, как у бензинового, всего лишь на 10-20%. Иногда, как бы странно это ни звучало, турбирование может даже увеличить ресурс, например, при постоянной эксплуатации автомобиля в высокогорных районах, где атмосферному дизелю не хватает воздуха — наддув оптимизирует сгорание и позволяет избавиться от жесткой работы двигателя, снижая тем самым ударные нагрузки на его узлы и детали.
Благодаря простоте схемы управления турбокомпрессором повышается надежность и снижаются расходы на обслуживание.
В эксплуатации дизельных автомобилей есть некоторые особенности — неважно, турбирован их двигатель или нет. Главная из них — зимний запуск. По традиции многие считают, что дизель на морозе не запустишь. Это не так — если автомобиль рассчитан на эксплуатацию при низких температурах. Двигатель, например, Peugeot 405 при использовании соответствующего масла, зимней солярки и встроенных свечей накаливания для подогрева зоны впрыска пускается при температуре -32°С — доказано практикой. А вот в инструкции по эксплуатации Chevrolet Suburban с 6,5-литровым турбодизелем, который тоже оснащен свечами накаливания, уже при -18°С предлагается пользоваться электрическим нагревателем блока цилиндров с внешним, из розетки, питанием.
Еще одна проблема, на которую иногда жалуются, — это загрязнение форсунок от плохой солярки. Но эта же проблема возникает и в бензиновых двигателях с системами впрыска топлива. Решить ее позволяет периодическая, строго по инструкции или даже чаще, замена топливного фильтра. Заодно это продлит и срок службы плунжерных пар.
И наконец, стоимость. Как уже говорилось, дизель дороже. Но по сравнению со стоимостью самого двигателя стоимость турбокомпрессора относительно невелика, поэтому турбирование дизеля, значительно улучшая потребительские качества автомобиля, лишь ненамного увеличивает его цену.
В таблице 2 приведены некоторые характеристики автомобиля Peugeot 306 XT, оснащенного разными двигателями — двумя бензиновыми с впрыском и турбодизелем примерно такой же мощности. Сравнение характеристик показывает, что турбодизельный вариант ни в чем не уступает бензиновым. Действительно, турбодизельная версия стоит дороже на $1000. Но подсчитано, что на ее эксплуатации, например, в Германии в год при пробеге 20 тыс. км экономится DM900. Для России годовая экономия только на топливе составила бы $250-300. С учетом долговечности дизельного двигателя и меньших расходов на его эксплуатацию первоначальные дополнительные затраты окупятся за 2-3 года.
Некоторые могут возразить, что через такой срок автомобиль уже пора менять. Наверное, это правильно. Но не всем по карману. Да и покупать дизельный или турбодизельный автомобиль будут не любители острой спортивной езды, у которых машина все равно долго не живет, а те, кто предпочитает экономичность и надежность, пусть даже и несколько медлительную.
Виталий Струговщиков
Таблица 1.
Характеристики Volkswagen Passat GT TDI
Двигатель | турбодизель |
Рабочий объем (см куб.) | 1898 |
Мощность (л. с.) | 90 (4000 об./мин.) |
Крутящий момент (Нм) | 202 (1900 об./мин.) |
Вес (кг) | 1343 |
Максимальная скорость (км/ч) | 178 |
Разгон от 0 до 100 км/час с | 13,9 |
переключением передач (сек.) | |
Разгон от 60 до 100 км/ч на | 11,6 |
4-й передаче (сек.) | |
Расход топлива (л/100 км) | 5,0-8,8 |
Уровень шума в салоне при 100 км/ч (дБ) | 67 |
Цена в Германии (DM) | 43600 |
Таблица 2.
Характеристики Peugeot 306 XT
Модель | Peugeot 306 XT 1.6i | Peugeot 306 XT 1.8i | Peugeot 306 XTDT |
---|---|---|---|
Двигатель | бензиновый с | бензиновый с | турбодизель |
впрыском | впрыском | ||
Рабочий объем (см куб.) | 1587 | 1762 | 1905 |
Степень сжатия | 9,6 | 9,25 | 21,8 |
Мощность (л. с.) | 88 (5600 об./мин.) | 101 (6000 об./мин.) | 92 (4000 об./мин.) |
Крутящий момент (Нм) | 135 (3000 об./мин.) | 153 (3050 об./мин.) | 196 (2250 об./мин.) |
Полная масса (кг) | 1570 | 1590 | 1630 |
Разгон от 0 до 100 км/ч | 12,9 | 12,3 | 12,4 |
(сек.) | |||
Максимальная скорость | 180 | 185 | 180 |
(км/ч) | |||
Расход топлива по | 9,0 | 10,4 | 7,5 |
городскому циклу | |||
(л/100 км) | |||
Каталожная цена (шв. | 22950 | 23500 | 24950 |
франки) |
для чего необходим турбонаддув с интеркулером
В данной статье мы разберем преимущества и особенности турбокомпрессорного наддува с промежуточным охлаждением воздуха
Судовой дизель с турбонаддувом
Основной характеристикой судовых дизелей, как в прочем и любых двигателей, является мощность. Для ее увеличения, без существенного изменения объема двигателя и количества цилиндров применяют турбонаддув. Он представляет собой один из видов нагнетания дополнительного воздуха в камеру сгорания, который происходит за счет работы турбокомпрессора. Судовой дизель, оборудованный турбонаддувом, неизменно демонстрирует лучшие мощностные показатели, чем равноценные аналоги с атмосферным нагнетанием воздуха.
Турбонаддув в судовых двигателях осуществляется за счет специального устройства – турбокомпрессора. Именно это приспособление, используя энергию отработанных газов, позволяет увеличить содержание кислорода в горючей смеси.
Если рассматривать сам принцип действия данного вида нагнетания воздушного потока, то в общих чертах схема выглядит так: колесо турбины, вращающееся за счет выхлопных газов, приводит в движение компрессорное колесо, которое и отвечает за сжатие и нагнетание воздушных масс в камеру сгорания.
Указанный процесс сопровождается неминуемым нагреванием воздуха до крайне высоких температурных показателей (до 200 °С). Стоит отметить, что и сам турбированный компрессор подвергается нагреванию со стороны отработанных газов. Данный факт обусловил появление сразу нескольких проблем: во-первых, перегрев элементов судового дизеля, в конечном итоге, приведет к его отказу, а во-вторых, горячий воздух обладает меньшей плотностью, что самым негативным образом сказывается на давлении наддува. Иными словами, судовой дизель будет работать в разы эффективнее, если потоки, циркулирующие в турбокомпрессоре, подвергать охлаждению.
Судовой дизель с интеркулером
Для решения данной задачи был придуман интеркулер – одновременно простое и гениальное устройство, позволяющее уменьшить температуру воздуха примерно до 50° С. Судовой дизель, в котором присутствует интеркулер, получает в свое распоряжение до 20% дополнительной мощности. Согласитесь, это внушительный показатель, особенно если учесть, что судовой дизель при этом не претерпевает никаких серьезных изменений. Конструкция промежуточного охладителя, как иначе называют интеркулер, относительно несложная: больше всего он напоминает радиатор с множеством длинных патрубков и ходов, выполненных из меди или алюминия. Выбор именно этих металлов продиктован их прекрасной теплоотдачей. Особенности строения И определяют и его «слабое место». Воздушный поток, проходя через многочисленные элементы интеркулера, частично теряет давление. Кроме того, он утяжеляет судовой дизель как минимум на несколько килограммов. Именно поэтому реальный показатель эффективности работы промежуточного охладителя оценивается в 70%, хотя в идеальном случае предполагается достижение всех 100%. Учитывая темпы развития современного машиностроения, можно предположить, что в скором времени будет найден путь для минимизации потери давления.
На данный момент существует только два вида интеркулеров:
- с воздушным охлаждением: они обладают наиболее простой конструкцией, однако уступают второму типу в эффективности;
- с водяным охлаждением: наиболее продуктивный вид И, но, за счет сложности установки и эксплуатации, встречается реже.
Подводя итог, можно с уверенностью заявить, что судовой дизель с турбонаддувом в сочетании с интеркулером даст внушительный прирост мощности.
В каталоге Маринэк вы можете выбрать подходящий судовой дизель Nanni как с атмосферным, так и турбонаддувом. На все возникающие вопросы вам ответят наши специалисты по телефону 8 812 34-000-56 и электронной почте info@seacomm.ru.
Дизельный двигатель с турбонаддувом
История создания дизельных двигателей с турбонаддувом
Турбокомпрессоры применялись для повышения мощности двигателей внутреннего сгорания еще на этапе развития этого вида технологий. Запатентованный американцем Альфредом Бюхи в 1911 году турбокомпрессор на заре своего развития сыграл значительную роль в военной авиации – турбированные бензиновые двигатели ставились на истребители и бомбардировщики для повышения их высотности. Свое применение в автомобильном дизелестироении технология нашла относительно недавно. Первым серийным автомобилем с турбированным дизелем был появившийся в 1978 г. Mercedes-Benz 300 SD, а в 1981 г. за ним последовал VW Turbodiesel.
Устройство и принцип работы дизельного двигателя с турбонаддувом
Принцип работы турбированного дизельного двигателя основан на использовании энергии выхлопных газов. Покинув цилиндр, отработавшие газы попадают на крыльчатку турбины, вращая ее и закрепленную с ней на одном валу турбину компрессора, встроенного в систему подачи воздуха в цилиндры.
Таким образом, в отличие от атмосферных дизелей, в турбокомпрессорных агрегатах воздух в цилиндры подается принудительно под более высоким давлением. В итоге объем воздуха, попадающего в цилиндр за один цикл, возрастает. В сочетании с увеличением объема сгорающего топлива (пропорции топливно-воздушной смеси остаются неизменными) это дает прирост мощности до 25%.
Для еще большего повышения объема поступающего в цилиндры воздуха дополнительно применяют интеркулер – специальное устройство, охлаждающее атмосферный воздух перед нагнетанием в двигатель. Из школьного курса физики известно, что холодный воздух занимает меньше места, чем теплый. Таким образом, при охлаждении можно «затолкать» в цилиндр больше воздуха за цикл.
В результате у турбодизеля меньше удельный эффективный расход топлива (в граммах на киловатт-час) и выше объемная мощность (количество лошадиных сил на литр объема двигателя). Все это обеспечивает возможность существенно подрастить суммарную мощность мотора без значительного увеличения его габаритов и числа оборотов.
Плюсы и минусы дизельного двигателя с турбонаддувом
Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр. Также в работе двигателей с турбинами низкого давления может присутствовать эффект «турбоямы», выражающийся в заметном «проседании» на низких и средних оборотах двигателя.
Турбированные моторы менее экономичны, чем атмосферные дизели, потребляя на 20 – 50% больше топлива при том же объеме. Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя, а турбированные дизели еще менее ремонтопригодны, чем их атмосферные братья.
Да и вообще, наличие технически сложного турбокомпрессора, нуждающегося в дополнительных устройствах стабилизации давления, аварийного его сброса и так далее делает силовую установку автомобиля более замысловатой, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.
Современные технологии усовершенствования дизельных двигателей
Значительную популярность сегодня приобрела система повышения эффективности и гибкости режимов дизеля под названием «Common-Rail». Если в традиционном дизельном двигателе каждая секция насоса высокого давления подает топливо в отдельный топливопровод, замкнутый на одну форсунку. Даже несмотря на изрядную толщину стенок топливопроводов при подаче в них жидкости под давлением в 1500-2000 атмосфер они незначительно, но «раздуваются». В результате попадающая в цилиндр порция топлива отличается от расчетной. «Довесок», сгорая, увеличивает расход горючего, повышает дымность и снижает полноту сгорания топливно-воздушной смеси.
Удачное инженерное решение этой проблемы разработали одновременно сразу несколько автопроизводителей. В новой системе топливный насос высокого давления подает горючее в общий трубопровод — топливную рампу, которая, помимо прочего, играет роль ресивера, то есть стабилизатора давления в контуре. В рампе все время присутствует постоянный объем топлива, находящегося не под пульсирующим давлением, а под постоянным.
К тому же, развитие интеллектуальных технологий позволило оснастить форсунки электронными системами открытия (в традиционных дизелях регулировка циклов впрыска происходит гидромеханическим способом при повышении давления в трубопроводе). Электронный блок, управляющий работой форсунок, учитывает информацию о положении педали акселератора, давлении в рампе, температурном режиме двигателя, его нагрузке и т.д. На основе этих данных рассчитывается размер порции топлива и момент его подачи.
Еще одно новшество, появившееся благодаря развитию автомобильной электроники – двухэтапная подача топлива в камеру сгорания. Сначала впрыскивается «разгонная» (около миллиграмма) порция. При сгорании она дополнительно к эффекту сжатия повышает температуру в камере, и основная доза, впрыскиваемая следом, сгорает более плавно, также плавно наращивая давление в цилиндре. В результате двигатель работает мягче и менее шумно, а расход топлива сокращается примерно на 20% при одновременном возрастании крутящего момента на малых оборотах на 25%. Что немаловажно — уменьшается содержание в выхлопе сажи.
Среди новых разработок, призванных улучшить экологические характеристики дизелей одновременно с оптимизацией их экономичности, наиболее перспективной считается система BlueTec, разработанная специалистами концерна Daimler AG. Основная ее составляющая – инновационная методика каталитической нейтрализации выхлопных газов.
Каталитические нейтрализаторы современных автомобилей работают за счет керамических или металлических «сот», покрытых слоем химически активных веществ — катализаторов. Катализаторы окисляют или восстанавливают токсичные соединения CO, CH и NOx до углекислого газа, простого азота и воды.
Однако особенности дизельного топлива, а также процессов образования и сгорания топливно-воздушной смеси в дизеле таковы, что выхлоп содержит не только вредные химические компоненты, но большое количество сажи. Причем если начать уменьшать долю сажи возрастает содержание NOx, и наоборот. Таким образом, для комплексной очистки дизельного выхлопа нужна многокомпонентная химико-механическая система, усложняющая конструкцию автомобиля и, как следствие, снижающая рентабельность производства.
Технология BlueTec построена на сочетании традиционных и новых решений. Сначала отработавшие газы проходят имеющийся на большинстве дизельных автомашин противосажевый фильтр и катализатор, «истребляющий» соединения углерода. Далее в выпускной тракт впрыскивается активный реагент AdВlue на основе мочевины (раствора аммиака в воде). Получившаяся смесь попадает в специальный нейтрализатор избирательного действия (SCR), в котором аммиак из AdBlue под влиянием катализа при температуре 250–300°С вступает в химическую реакцию с окислами азота, «разбирая» их на азот и воду. Здесь же «дожигаются» остальные вредные компоненты.
При очевидных плюсах BlueTec имеет не менее очевидные минусы. Хранение запаса компонента AdВlue требует отдельной емкости. Сама система осложняется за счет присутствия дополнительных узлов и магистралей. К тому же, система еще более прихотлива к качеству топлива и может работать только на солярке с минимальным содержанием серы.
Еще одна весьма актуальная для России проблема — раствор AdВlue замерзает при минус 11,5 градусов. Поэтому инженеры BlueTec сейчас активно работают над совершенствованием систем без использования мочевины. Сегодня проходят опробование и доработку комплексы из противосажевого фильтра, платинового каталитического нейтрализатора и двух SCR-катализаторов, «заряженных» исключительно на борьбу с оксидами азота. В настоящее время система позволяет обеспечить содержание NOx в выхлопе дизелей примерно на уровне Евро-5.
Правила и рекомендации по уходу за дизельным двигателем зимой
Распространенное мнение о том, что дизельные автомобили надежнее бензиновых, довольно субъективно. Его можно назвать справедливым лишь при обсуждении силовых установок, которые подходят только для тяжелых грузовиков. Если речь идет о легковушках с дизельным мотором, моторесурс таких двигателей практически идентичен бензиновым. Дизельный мотор требует надлежащего ухода и соблюдения правил эксплуатации во избежание появления неисправностей и проблем в работе, которые могут обернуться существенными финансовыми затратами. Итак, как ухаживать за дизельным двигателем?
Дизель с турбиной: правильная эксплуатация
Несмотря на обилие схожих черт, дизельные моторы разительно отличаются от бензиновых. Соответственно, их эксплуатация также имеет свои особенности.
- Если на дизеле установлен турбонаддув, то его характеристики будут сходны с высокооборотистыми двигателями на бензине. Однако, система дизельного агрегата изначально не рассчитана на езду на высоких оборотах, как большая часть бензиновых аналогов.
- Процесс управления дизельным автомобилем отличается: он хорошо тянет на пониженных оборотах, дополнительная раскрутка на требуется. Кроме того, рационально будет раньше повышать передачу, тогда как в случае с бензиновым авто это следует делать на более высоких оборотах.
- Если автомобиль был куплен недавно, стоит грамотно его обкатать, соблюдая все рекомендации специалистов и производителя.
- При холодном запуске откажитесь от перегазовки, даже если на улице стоит мороз. В такой ситуации давление масла пониженное, а смазка не идет в масляные каналы мотора. Давление на турбину резко взлетает вверх из-за недостаточного уровня масла в системе. Именно поэтому в холодное время необходимо тщательно прогреть дизмотор на холостых оборотах, а затем плавно начать медленное движение без внезапного ускорения.
- После окончания поездки следует дать мотору еще немного поработать вхолостую. Резкая остановка и выключение двигателя могут вызвать проблемы. Дело в том, что крыльчатка прогретой турбины продолжает быстро вращаться. При резком падении давления масла падает и мощность охлаждения турбины. В итоге турбокомпрессор может перегреться, а разгоряченное масло в системе турбонаддува начнет коксоваться. Во избежание таких проблем рекомендуется дать мотору функционировать на холостом ходу в течение 4 минут, и только потом заглушить двигатель. Выполнение этой задачи можно доверить автоматизации – просто купите турботаймер, который оставит двигатель работать в течение требуемого времени после того, как вы заберете ключ зажигания и закроете авто.
Оптимальный режим работы дизеля зимой – движение на средних оборотах с периодическими ускорениями и раскруткой оборотов до максимума. Такие нагрузки обеспечат качественную прочистку турбокомпрессора и активируют режим восстановления сажевого фильтра. Однако, высокие обороты рекомендованы лишь на краткие промежутки, поскольку длительные нагрузки может не выдержать ротор турбины. При этом нужно знать, что для активации такой функции необходимо будет каждый раз ставить машину на ручник, включая нейтральную передачу на механике.
Помните о том, что длительная работа мотора на холостом ходу (более 15 мин) и привычка ездить «на низах» может привести к постепенной закоксовке турбокомпрессора, в особенности при оснащении двигателя турбиной. При таком стиле вождения масло может проникнуть в камеру сгорания, что приведет к закоксовке дизеля.
Устранить эту проблему можно и своими руками, но, в любом случае, лучше избежать такого развития событий. Если вы застряли в пробке, и стоящий на месте дизель нельзя заглушить, следует намеренно разгонять обороты до показателя 1400 в минуту каждые 10 минут.
Выбор топлива и масла для дизельного авто
Ключевой плюс дизельного мотора – скромный расход топлива. Владельцы таких машин обязаны следить за качеством потребляемого автомобилем дизтоплива и проверять состояние фильтров. Дело в следующем: система питания дизеля чувствительна к попаданию мелких частиц, примесей и воды. Добавляется и необходимость замены дизельного топлива в соответствии с погодой – заправляйтесь соляркой для зимы или для лета согласно сезону.
Дизельное топливо густеет при минусовой температуре воздуха. Невысокое качество солярки на территории стран СНГ в сочетании с заморозками может сделать запуск дизельного мотора проблематичным. Чтобы избежать такой проблемы, следует производить простые манипуляции:
- Используйте специальные присадки-антигели;
- Контролируйте работоспособность свечей и своевременно меняйте вышедшие из строя элементы на новые;
- Установите подогреватель дизтоплива (проточный или предпусковой).
Кроме того, не стоит экономить на масле для дизельного двигателя. Отдайте предпочтение качественной продукции и регулярно меняйте масло – в случае с дизелем это нужно делать чаще, чем на бензиновых авто.
Следует учитывать, что в составе российской солярки содержится солидный объем серы, что вызывает ускоренное окисление масла. Следовательно, замену масла в дизельных автомобилях лучше делать каждые 7000 км пробега.
Характеристики масла также определяют срок службы турбины дизельного мотора, поскольку масло смазывает не только части двигателя, но и подшипники турбокомпрессора. Турбированный дизель плохо работает из-за недостаточного количества масла и требует использования высококачественного продукта. Зимой следует регулярно мониторить уровень масла. Если ваш двигатель турбирован, выбирайте масло с особым составом – он отличается от состава средств для атмосферных моторов. Турбонаддув повышает нагрузку на двигатель, поэтому для бесперебойной работы системы требуется масло со специальными присадками.
При необходимости добавить масла в мотор и отсутствии того же самого продукта, смешивать масла разных производителей или продукцию с разными характеристиками нельзя. Это обязательно приведет к перебоям в работе двигателя.
Важные рекомендации по эксплуатации дизеля зимой
Мы рассмотрели основные правила ухода за дизельным мотором в холодный сезон. Подведем итоги, выделив фундаментальные рекомендации для обеспечения продуктивной работы дизеля зимой:
- Перед каждой поездкой тщательно подогревайте мотор на холостых оборотах.
- Покупайте масло проверенного бренда, в качестве которого вы не сомневаетесь. Выбирайте продукцию, соответствующую конкретному типу мотора (наличие или отсутствие турбонаддува), поскольку «универсальные» масла не учитывают особенности работы и характеристики двигателей разной конструкции.
- Меняйте моторное масло в два раза чаще, чем рекомендовано производителем автомобиля.
- Заправляйтесь соляркой только на фирменных АЗС, подбирая тип топлива с учетом текущего сезона.
- Контролируйте функциональность свечей накала и своевременно меняйте перегоревшие или слабо работающие элементы на новые.
- Старайтесь ездить на средних оборотах, периодически повышая их для прочистки турбокомпрессора.
- Не забывайте проводить регулярную диагностику мотора и сервисное обслуживание системы питания в профилактических целях.
- Соблюдайте специальные правила эксплуатации двигателей, оснащенных турбонаддувом.
При соблюдении перечисленных правил хозяева дизельных авто смогут продлить службу двигателя и повысить его производительность. Грамотная эксплуатация позволит избежать ремонта дизельной системы, который может влететь в копеечку.
Особенности эксплуатации турбированного двигателя, советы по уходу ⋆ блог компании Turbovector
Эксплуатация турбины
Турбокомпрессор, установленный в авто, способен увеличить мощность двигателя путем улучшения наддува воздуха в цилиндры. Главными частями устройства являются воздушный насос и турбина. Правильная эксплуатация турбины продлевает срок работы всего механизма и снижает количество поломок.
Краткая информационная справка
Турбины классифицируются как механизмы:
- низкого давления;
- высокого давления.
Устройства из второй группы более эффективны, но выделяются сложным конструктивом.
Агрегаты подходят для любого типа двигателей:
- бензиновый;
- газовый;
- дизельный.
Кроме того, они успешно устанавливаются как на грузовых, так и на легковых авто. Изначальный ресурс агрегата достаточно высок, но эксплуатация двигателя с турбиной требует соблюдения ряда правил.
Особенности эксплуатации
При приобретении транспортного средства с турбодвигателем в Минске или любом другом городе владелец должен учитывать, что срок эксплуатации турбины значительно меньше, чем самого мотора. Поэтому именно она выйдет из строя первой. Но снизить количество поломок все-таки можно.
Краткая инструкция по эксплуатации турбины приведена в следующем списке:
- контроль за уровнем и качеством масла;
- правильный запуск;
- постепенная остановка двигателя.
Каждый пункт требует более полного раскрытия.
Несколько слов о масле
Устройство крайне чувствительно к недостатку смазочных материалов. Если масла не хватает, то агрегат сразу же прекращает работу в аварийном режиме. Поэтому перед любым запуском двигателя рекомендуется проверять количество масла в системе. Недостаток может возникнуть по различным причинам:
- проблемы с насосом;
- зазоры на коленчатом валу;
- грязный масляный фильтр;
- плохая проходимость подающей трубки.
Загрязненное масло тоже приводит к выходу турбины из строя. Нередко поломки происходят из-за попадания в состав инородных предметов.
Смешивать или менять рекомендованное производителем масло не рекомендуется. Это заметно снижает ресурс турбины. Особенно негативно реагирует агрегат на класс вязкости 0W-X. Такой смазочный материал вызовет многочисленные неисправности.
Запуск мотора
Многие водители увлекаются нажатием на газ при запуске двигателя. Это приводит к быстрому износу турбины, так как нормальный уровень давление достигается за считанные секунды. Поэтому автовладельцам рекомендуется научиться сразу же убирать ногу с педали после запуска.
Остановка двигателя
Если на авто установлена турбина, эксплуатация двигателя должна быть бережной. И в первую очередь это касается остановки – перед выключением мотору требуется поработать вхолостую 3-4 минуты для остывания турбины. В противном случае появляется карбоновый налет, выводящий агрегат из строя.
Чтобы быть на 100% уверенным в исправности турбины, не стоит пренебрегать регулярной диагностикой. Специалисты нашей компании проведут ее быстро и недорого, несмотря на тип и конфигурацию механизма.
Звоните! +375 (29) 123 59 55
Как работает турбокомпрессор | Cummins
Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува : воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива . Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.
Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя. Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу.Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.
Как работает турбокомпрессор?
Турбокомпрессор состоит из двух основных частей: турбины и компрессора.Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопные газы (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через выходную зону (4) .
Компрессор также состоит из двух частей: крыльчатки компрессора (5) и корпуса компрессора (6) . Принцип действия компрессора противоположен турбине.Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.
- Колесо турбины
- Корпус турбины
- Выхлопные газы
- Площадь выхода выхлопных газов
- Колесо компрессора
- Корпус компрессора
- Вал из кованой стали
- Сжатый воздух
Узнайте, как работает Turbo
Основы турбокомпрессора
Основы турбокомпрессораХанну Яэскеляйнен, Магди К.Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной выхлопного газа и используемые в двигателях для повышения давления наддувочного воздуха. Производительность турбокомпрессора влияет на все важные параметры двигателя, такие как экономия топлива, мощность и выбросы. Прежде чем перейти к более подробному обсуждению специфики турбокомпрессора, важно понять ряд фундаментальных концепций.
Конструкция турбокомпрессора
Турбокомпрессор состоит из колеса компрессора и колеса турбины выхлопного газа, соединенных сплошным валом и используемого для повышения давления всасываемого воздуха двигателя внутреннего сгорания. Турбина выхлопного газа извлекает энергию из выхлопного газа и использует ее для привода компрессора и преодоления трения. В большинстве автомобильных применений и компрессор, и турбинное колесо являются радиальными. В некоторых приложениях, таких как средне- и низкооборотные дизельные двигатели, можно использовать колесо турбины с осевым потоком вместо турбины с радиальным потоком.Поток газов через типичный турбокомпрессор с радиальным компрессором и турбинными колесами показан на Рисунке 1 [482] .
Рисунок 1 . Конструкция турбокомпрессора и расход газов(Источник: Schwitzer)
Центр-Жилье. Общий вал турбина-компрессор поддерживается системой подшипников в центральном корпусе (корпусе подшипника), расположенном между компрессором и турбиной (Рисунок 2). Узел колеса вала (SWA) относится к валу с прикрепленными колесами компрессора и турбины, т.е.е., вращающийся узел. Узел вращения центрального корпуса (CHRA) относится к SWA, установленному в центральном корпусе, но без корпусов компрессора и турбины. Центральный корпус обычно отлит из серого чугуна, но в некоторых случаях может использоваться и алюминий. Уплотнения предотвращают попадание масла в компрессор и турбину. Турбокомпрессоры для систем с высокой температурой выхлопных газов, таких как двигатели с искровым зажиганием, также могут иметь охлаждающие каналы в центральном корпусе.
Рисунок 2 . Турбокомпрессор в разрезеТурбонагнетатель отработавших газов бензинового двигателя в разрезе, показывающий колесо компрессора (слева) и колесо турбины (справа). Подшипниковая система состоит из упорного подшипника и двух полностью плавающих опорных подшипников. Обратите внимание на охлаждающие каналы.
(Источник: BorgWarner)
Подшипники турбокомпрессора
Подшипники. Система подшипников турбонагнетателя выглядит простой по конструкции, но она играет ключевую роль в ряде важных функций.К наиболее важным из них относятся: контроль радиального и осевого движения вала и колес и минимизация потерь на трение в подшипниковой системе. Подшипниковым системам уделяется значительное внимание из-за их влияния на трение турбокомпрессора и его влияние на топливную экономичность двигателя.
За исключением некоторых крупных турбонагнетателей для тихоходных двигателей, подшипники, поддерживающие вал, обычно расположены между колесами в выступе. Эта гибкая конструкция ротора гарантирует, что турбокомпрессор будет работать выше своей первой и, возможно, второй критических скоростей, и, следовательно, может подвергаться динамическим условиям ротора, таким как завихрение и синхронная вибрация.
Уплотнения. Уплотнения расположены на обоих концах корпуса подшипника. Эти уплотнения представляют собой сложную конструктивную проблему из-за необходимости поддерживать низкие потери на трение, относительно больших перемещений вала из-за зазора в подшипниках и неблагоприятных градиентов давления в некоторых условиях.
Эти уплотнения в первую очередь служат для предотвращения попадания всасываемого воздуха и выхлопных газов в центральный корпус. Давление во впускной и выпускной системах обычно выше, чем в центральном корпусе турбокомпрессора, который обычно находится на уровне давления в картере двигателя.По существу, они в первую очередь предназначены для уплотнения центрального корпуса, когда давление в центральном корпусе ниже, чем во впускной и выпускной системах. Эти уплотнения не предназначены для использования в качестве основного средства предотвращения утечки масла из центрального корпуса в выхлопную и воздушную системы. Попадание масла в контакт с этими уплотнениями обычно предотвращается другими средствами, такими как масляные дефлекторы и вращающиеся пальцы.
Уплотнения турбокомпрессора отличаются от мягких манжетных уплотнений, которые обычно используются во вращающемся оборудовании, работающем при гораздо более низких скоростях и температурах.Уплотнение с поршневым кольцом — это один из наиболее часто используемых типов уплотнений. Он состоит из металлического кольца, внешне похожего на поршневое кольцо. Уплотнение остается неподвижным при вращении вала. Иногда используются уплотнения лабиринтного типа. Обычно уплотнения вала турбонагнетателя не предотвращают утечку масла, если перепад давления меняется на противоположный, так что давление в центральном корпусе выше, чем во впускной или выпускной системах.
###
принципов | BorgWarner Turbo Systems
Чтобы лучше понять технику турбонаддува, полезно ознакомиться с принципами работы двигателя внутреннего сгорания.Сегодня большинство пассажиров легковые и коммерческие дизельные двигатели представляют собой четырехтактные поршневые двигатели, регулируемые впуском. и выпускные клапаны. Один рабочий цикл состоит из четырех ходов в течение двух полных. обороты коленчатого вала.
- Всасывание (ход перезарядки)
Когда поршень движется вниз, воздух (дизельный двигатель или бензиновый двигатель с прямым впрыском) или топливно-воздушная смесь (бензиновый двигатель) всасывается через впускной клапан. - Компрессия (рабочий ход)
Объем цилиндра сжат. - Расширение (рабочий ход)
В бензиновом двигателе топливно-воздушная смесь воспламеняется от свечи зажигания, тогда как в топливо для дизельного двигателя впрыскивается под высоким давлением, и смесь самовоспламеняется. - Выхлоп (ход перезарядки)
Выхлопные газы удаляются при движении поршня вверх.
Эти простые принципы работы предоставляют различные возможности увеличения мощность двигателя:
Увеличение рабочего объема
Увеличение рабочего объема позволяет увеличить выходную мощность, поскольку больше воздух доступен в камере сгорания большего размера, и, таким образом, можно сжечь больше топлива. Это увеличение может быть достигнуто за счет увеличения количества цилиндров или объем каждого отдельного цилиндра.В общем, это приводит к большему и большему весу двигатели. Что касается расхода топлива и выбросов, то существенных можно ожидать преимуществ.
Увеличение оборотов двигателя
Еще одна возможность увеличения выходной мощности двигателя — увеличение его мощности. скорость. Это достигается за счет увеличения количества ударов в единицу времени. Потому что пределов механической стабильности, однако такое улучшение производительности ограничено.Кроме того, увеличение скорости приводит к увеличению потерь на трение и накачку. экспоненциально и КПД двигателя падает.
Турбонаддув
В описанных выше процедурах двигатель работает как безнаддувный. двигатель. Воздух для горения втягивается непосредственно в цилиндр во время всасывания. Инсульт. В двигателях с турбонаддувом воздух для горения уже предварительно сжимается. подается в двигатель.Двигатель всасывает такой же объем воздуха, но из-за с более высоким давлением в камеру сгорания поступает больше воздушных масс. Следовательно, может быть сожжено больше топлива, так что выходная мощность двигателя увеличивается по сравнению с та же скорость и стреловидность.
По сути, следует различать механический наддув и выхлопные газы. двигатели с турбонаддувом.
Механический наддув
При механическом наддуве воздух для горения сжимается компрессором. приводится непосредственно от двигателя.Однако прирост мощности частично теряется. из-за паразитных потерь от привода компрессора. Способность управлять механическим турбокомпрессор составляет до 15% мощности двигателя. Следовательно, расход топлива выше по сравнению с безнаддувным двигателем с той же выходной мощностью.
Турбонагнетатель выхлопных газов
При турбонаддуве выхлопных газов часть энергии выхлопных газов, которая обычно быть потраченным впустую, используется для привода турбины.Устанавливается на том же валу, что и турбина. представляет собой компрессор, который всасывает воздух для горения, сжимает его, а затем подает это к двигателю. Механической связи с двигателем нет.
Турбокомпрессор — обзор | Темы ScienceDirect
1 ВВЕДЕНИЕ
Турбокомпрессоры обычно оснащаются опорными подшипниками для поддержки турбин и узла ротора. Однако шарикоподшипники стали популярными в качестве замены опорных подшипников в турбонагнетателях.Ван (1) в своем обзоре технологии керамических подшипников указывает, что гибридные керамические подшипники могут обеспечить лучшую реакцию на ускорение, более низкие требования к крутящему моменту, более низкие вибрации и меньшее повышение температуры, чем опорные подшипники. Гибридные керамические шарикоподшипники содержат стальные внутреннее и внешнее кольца, керамические шарики и обычно обработанный сепаратор. Керамические шарики, по сравнению со стальными ответными частями, легче, гладче, жестче, тверже, устойчивы к коррозии и электрически. Эти фундаментальные характеристики позволяют значительно улучшить рабочие характеристики подшипниковой роторной системы.Керамические шарики особенно хорошо подходят для использования в суровых, высоких температурах и / или коррозионных средах. Поэтому гибридные керамические подшипники идеально подходят для турбонагнетателей. Miyashita et al. (2), Keller et al. (3) и Tanimoto et al. (4) использовали шарикоподшипники в небольших автомобильных турбокомпрессорах. Тем не менее, проблемы все еще остаются для высокоскоростных турбонагнетателей с большой выходной мощностью, для которых требуются подшипники с большим внутренним диаметром, работающие с номинальным диаметром более 2 миллионов. По мере увеличения размера подшипника динамика роторной системы подшипников становится критической для комплексного проектирования и удовлетворительной работы турбокомпрессора.
Исследователи попытались аналитически проанализировать динамику роторной системы турбокомпрессора. San Andrés et al. (5,6,7) представили комплексные модели для прогнозирования динамики турбокомпрессора. Включение полной модели подшипника с жидкостной пленкой позволило понять влияние динамики подшипника на динамику турбокомпрессора. Bou-Said et al. (8) также исследовали динамику ротора турбонагнетателя с линейными и нелинейными аэродинамическими моделями подшипников. Петтинато и др. (9) продемонстрировали преимущества таких динамических моделей ротора турбокомпрессора, используя их для улучшения конструкции подшипников, используемых в турбокомпрессоре.Бонелло (10) реализовал нелинейную модель для исследования динамики турбокомпрессора на полностью плавающих и полуплавающих кольцевых подшипниках. Однако большая часть работы над динамическими моделями ротора турбокомпрессора была сосредоточена на турбокомпрессорах с опорными подшипниками. Поэтому эти модели не могут предсказать динамику ротора турбокомпрессоров, в которых используются подшипники качения. Тем не менее, исследователи попытались разработать аналитические модели для изучения динамики простых роторных систем с подшипниками качения.Гупта (11-13) был одним из первых, кто представил трехмерную динамическую модель подшипника. Разработанная модель была способна анализировать движение всех компонентов подшипника. Meyer et al. (14) представили влияние дефектов на подшипник и продемонстрировали характер колебаний, связанных с дефектами. Saheta et al. (15) и Ghaisas et al. (16) представили полностью динамическую модель дискретных элементов с шестью степенями свободы. В их моделях компоненты подшипников рассматриваются как части сфер и цилиндров, что значительно сокращает вычислительные затраты, связанные с динамическим моделированием подшипников.Sopanen et al. (17, 18) разработали модель подшипника, учитывающую влияние включений. Однако в их анализе динамика клетки и центробежные нагрузки не учитывались. Аштекар и др. (19, 20) разработали модель подшипника с шестью степенями свободы, которая учитывала эффекты дефектов поверхности подшипника. В целом предыдущие исследователи сосредоточились на динамике подшипников и проигнорировали сложное взаимодействие роликовых подшипников с системой вал / ротор. Однако для полного понимания и изучения высокоскоростных турбонагнетателей с большой выходной мощностью критически важно объединить влияние подшипников и динамики вала / ротора.В высокоскоростных приложениях ротор претерпевает различные формы колебаний, что приводит к сложному движению несущей системы ротора. Lim et al. (21) и Hendrikx et al. (22) разработали модель подшипника, учитывающую эффекты гибкости ротора; однако они пренебрегли влиянием сепаратора подшипника на динамику системы. Тивари (23, 24) рассмотрел влияние дисбаланса и предварительного нагружения подшипников на динамику ротора, однако была рассмотрена упрощенная модель идеального подшипника и предполагалось, что ротор является жестким.Пренгер (25) представил модель подшипника, способную моделировать конические роликоподшипники и радиально-упорные подшипники. Модель Пренгера включала эффект гибких валов; однако рассматривались только простые модели вала, и эта модель не могла работать с высокоскоростными приложениями. Программное обеспечение BEAST, разработанное Stacke et al (26), как известно, учитывает гибкость ротора; однако ни модель, ни результаты не являются общедоступными.
В этом исследовании была разработана модель, представляющая систему подшипникового ротора турбокомпрессора.Модель сочетает в себе модель подшипника с дискретным элементом и модель гибкого ротора для имитации динамики системы подшипника ротора. Затем модель использовалась для исследования движения каждого компонента подшипника и определения сил и прогиба ротора в зависимости от различных условий эксплуатации. Результаты модели были использованы для исследования характеристик подшипников при различных предварительных нагрузках, дисбалансе ротора и рабочих скоростях.
Конструкция и принцип действия турбокомпрессора — турбина
Турбонагнетатель основные функции принципиально не изменились со времен Альфреда Бюхи.Турбокомпрессор состоит из компрессора и турбины, соединенных общим валом. Турбина с приводом от выхлопных газов обеспечивает приводную энергию для компрессора.
Дизайн и функционирование
Турбина турбонагнетателя, состоящая из турбинного колеса и корпуса турбины, преобразует выхлопные газы двигателя в механическую энергию для привода компрессора. Газ, который ограничен площадью поперечного сечения потока турбины, приводит к при перепаде давления и температуры между входом и выходом.Это падение давления преобразуется турбиной в кинетическую энергию для привода турбинного колеса.
Есть два основных типа турбин: осевые и радиальные. В осевом типе, поток через колесо идет только в осевом направлении. В радиальных турбинах приток газа центростремительный, т.е.в радиальном направлении снаружи внутрь, и газ отток в осевом направлении.
До диаметра колеса около 160 мм используются только радиальные турбины.Этот соответствует мощности двигателя примерно 1000 кВт на турбокомпрессор. От 300 мм и более используются только осевые турбины. Между этими двумя значениями оба варианта возможны.
Поскольку турбина с радиальным потоком является наиболее популярным типом для автомобильной промышленности, следующее описание ограничено конструкцией и функциями этой турбины. тип. В улитке таких радиальных или центростремительных турбин давление выхлопных газов преобразуется в кинетическую энергию и выхлопные газы по окружности колеса направлен с постоянной скоростью к турбинному колесу.Передача энергии от кинетической энергия на валу происходит в турбинном колесе, которое сконструировано таким образом, чтобы почти вся кинетическая энергия преобразуется к тому времени, когда газ достигает колеса торговая точка.
Рабочие характеристики
Производительность турбины увеличивается по мере падения давления между входом и выходом. увеличивается, т. е. когда больше выхлопных газов забивается перед турбиной в результате более высоких оборотов двигателя, или в случае повышения температуры выхлопных газов из-за к более высокой энергии выхлопных газов.
Характерное поведение турбины определяется удельным поперечным сечением потока,
поперечное сечение горловины в зоне перехода впускного канала к спиральной камере.
За счет уменьшения этого поперечного сечения горловины больше выхлопных газов задерживается выше по потоку.
турбина и производительность турбины увеличивается в результате более высокого давления
соотношение. Таким образом, меньшее поперечное сечение потока приводит к более высокому давлению наддува.
Площадь поперечного сечения потока турбины может быть легко изменена путем замены турбины.
Корпус.
Помимо площади проточного сечения корпуса турбины, площадь выхода на колесо Впуск также влияет на пропускную способность турбины по массе. Обработка турбины Литой контур колеса допускает площадь поперечного сечения и, следовательно, давление наддува, быть отрегулированным. Увеличение контура приводит к увеличению площади поперечного сечения потока. турбины.
Турбины с изменяемой геометрией турбины изменяют поперечное сечение потока между улитками. канал и вход колеса. Площадь выхода на турбинное колесо изменяется на переменную направляющие лопатки или регулируемое скользящее кольцо, закрывающее часть поперечного сечения.
На практике рабочие характеристики турбин турбонагнетателя отработавших газов описываются картами, показывающими параметры потока в зависимости от давления в турбине. соотношение.Карта турбины показывает кривые массового расхода и КПД турбины для различные скорости. Чтобы упростить карту, кривые массового расхода, а также КПД, можно показать средней кривой
Для высокой общей эффективности турбокомпрессора согласование компрессора и Диаметр турбинного колеса имеет жизненно важное значение. Положение рабочей точки на карте компрессора определяет частоту вращения турбокомпрессора. Диаметр турбинного колеса должен быть таким, чтобы КПД турбины был максимальным в этом рабочем диапазоне.
Турбины двухступенчатые
Турбина редко подвергается постоянному давлению выхлопных газов. В импульсном режиме с турбонаддувом коммерческие дизельные двигатели, турбины с двойным входом позволяют снизить пульсации выхлопных газов. оптимизирован, поскольку более высокий коэффициент давления турбины достигается за более короткое время. Таким образом, за счет увеличения степени сжатия эффективность повышается, улучшая очень важный временной интервал, когда через него проходит высокий, более эффективный массовый расход турбина.В результате этого улучшенного использования энергии выхлопных газов двигатель характеристики давления наддува и, следовательно, характеристики крутящего момента улучшаются, особенно при низких оборотах двигателя.
Турбокомпрессор с двухкамерной турбиной
Чтобы различные цилиндры не мешали друг другу во время зарядки В циклах обмена три цилиндра соединены в один выпускной коллектор.Двойной вход Затем турбины позволяют отдельно пропускать поток выхлопных газов через турбину.
Кожухи турбины водяного охлаждения
Турбокомпрессор с корпусом турбины с водяным охлаждением для морского применения
При проектировании турбокомпрессора необходимо также учитывать аспекты безопасности. На корабле Например, в машинном отделении следует избегать горячих поверхностей из-за опасности возгорания.Поэтому корпуса турбин с водяным охлаждением или корпуса турбин, покрытые изоляционным материалом. материал используется для морских применений.
Турбокомпрессоры — давление наддува и привода
До того, как дизельные двигатели с турбонаддувом появились на рынке грузовиков, у вас было немного выбора. Либо вы купили 6,9-литровый двигатель IDI F-серии (мощностью 170 или 180 л.с.), либо 130-сильный 6,2-литровый Chevrolet C / K-серии. По состоянию на 2009 год Chevy, Dodge и Ford предлагают пакеты мощностью 350 л.с. и более, при этом соблюдая гораздо более строгие стандарты выбросов.На вторичном рынке также применяется турбонаддув, а мощность в 500 с лишним лошадиных сил становится повседневной нормой. Турбонаддув — самая большая причина, по которой современные дизели могут достичь таких уровней мощности, поэтому, имея в виду эту историю, давайте более подробно рассмотрим, как работает самая важная часть вашего двигателя.
Основы
В среднем в день давление воздуха на уровне моря составляет около 14,7 фунтов на квадратный дюйм (psi). Когда двигатель имеет турбонаддув, турбонагнетатель действует как вентилятор с очень высокой скоростью вращения, который нагнетает больше воздуха в двигатель.Величина давления, которое может создать турбонагнетатель, измеряется в фунтах на квадратный дюйм выше атмосферного давления. Таким образом, двигатель с турбонаддувом и 15 фунтами наддува будет перемещать примерно вдвое больше воздуха, чем двигатель без наддува, и при прочих равных условиях будет производить примерно вдвое большую мощность. С новыми дизелями давление наддува может достигать 40 фунтов на квадратный дюйм, но двигатель останется надежным и в три-четыре раза превосходит мощность дизельного двигателя без наддува.
Как работает турбина
Турбокомпрессор в своей основной форме состоит всего из нескольких частей: рамы, вала, компрессора, турбины, а также корпуса компрессора и выхлопной системы.Выхлопные газы двигателя используются для вращения турбины, которая, в свою очередь, приводит в движение компрессор через общий вал, который создает давление наддува, которое направляется в двигатель. Эти типы турбин успешно используются с 1920-х годов в гоночных и дизельных двигателях.
Давление наддува и привода
Хотя мы уже ввели давление наддува, другим важным аспектом турбонаддува является давление привода. Давление привода — это сила (в фунтах на квадратный дюйм), которая используется для вращения турбокомпрессора. Отношение давления привода к давлению наддува 1: 1 является идеальным, хотя в действительности давление привода обычно немного выше, чем давление наддува. Если возникает ситуация, когда давление привода намного превышает давление наддува (скажем, давление наддува 35 фунтов на квадратный дюйм, давление привода 65 фунтов на квадратный дюйм), вы можете столкнуться с проблемой.Чтобы сымитировать ситуацию с высоким давлением вождения, попробуйте вдохнуть нормальным дыханием, затем закройте рот рукой и выдохните. Это то, что вы делаете со своим двигателем. Высокое давление привода плохо влияет на детали и снижает эффективность вашего турбокомпрессора.
Слишком сильный наддув также может быть проблемой для турбокомпрессоров. Чтобы обеспечить большее ускорение, турбины будут вращаться быстрее, и у каждого турбокомпрессора есть место, где он просто не может вращаться быстрее. Например, если у вас есть HX35 (встречается на ’94-98 1/2 Dodges), он может производить только около 40 фунтов на квадратный дюйм, прежде чем превышение скорости станет угрозой.Если вы используете давление наддува 45 фунтов на квадратный дюйм или более на HX35 в течение длительного периода времени, ваш турбокомпрессор почти наверняка выйдет из строя.
Посмотреть все 5 фото Вот пример внешнего вестгейта (стрелка). Перепускная заслонка забирает избыточное давление выхлопных газов из двигателя и отводит его по спускной трубе. Таким образом, на турбокомпрессоре можно использовать меньший корпус со стороны выпуска для улучшения характеристик намотки.Внутренние и внешние заслонки сброса давления и турбо-лагИдея заключалась в том, что, поскольку эти грузовики в основном использовались для перевозки грузов, особого ответа не требовалось. Поскольку грузовики стали популярными в повседневной жизни, потребность в более эффективных турбокомпрессорах стала необходимостью. Есть время, которое проходит от момента, когда вы наполняете свой дизельный двигатель, до момента, когда он начинает создавать изрядное количество наддува (скажем, 10-15 фунтов на квадратный дюйм). Этот период времени называется турбо-лагом.
Чтобы уменьшить турбо-задержку, Dodge и другие производители начали использовать выхлопные корпуса гораздо меньшего размера и сбрасывать газы в турбокомпрессорах за счет отвода выхлопных газов вокруг колеса турбины.Меньший корпус выхлопа помог бы турбонагнетателю быстрее набирать обороты, в то время как перепускная заслонка позволяла стравливать избыточное давление привода, когда турбонагнетатель набирал скорость. Когда дизельные грузовики модифицируются для производства большего количества топлива или более высоких оборотов, количество выхлопных газов может превышать пропускную способность внутреннего перепускного клапана. В этом случае можно установить более крупный выпускной корпус или добавить к турбо-системе внешний перепускной клапан, установленный в выпускном коллекторе. Следует отметить, что не все турбокомпрессоры являются перепускными.В соревнованиях, например, при буксировке салазок, двигатель может работать только в очень узком рабочем диапазоне (скажем, 3500–5000 об / мин). Если управляемость не вызывает беспокойства, эти гоночные двигатели могут уйти с корпусом без перепускных клапанов и по-прежнему иметь благоприятное соотношение давления наддува и привода.
Посмотреть все 5 фотографий Турбокомпрессор был разрушен в результате превышения скорости — было использовано слишком много закиси азота (что значительно увеличило давление привода) без надлежащего сброса давления. Как выходит из строя турбокомпрессор? Когда мне понадобится новый?
Самая распространенная проблема, которая приводит к отказу турбонагнетателя, — это когда люди пытаются протолкнуть штатный турбонагнетатель далеко за его пределы, и либо вал выходит из строя, либо взрывается компрессор. Обе эти ситуации обычно являются результатом превышения скорости турбокомпрессора из-за избыточного давления привода. Установка внешнего перепускного клапана снизит давление привода, но у вас все равно может быть больше топлива, чем воздуха. В этом случае пора перейти к турбокомпрессору большего размера.Большинство стандартных турбокомпрессоров имеют мощность примерно 400-500 лошадиных сил. Кроме того, сброс газа и / или установка турбонагнетателя с индуктором 62-71 мм (в зависимости от вашего приложения) — верный выбор для обеспечения надежной мощности.
Турбины с изменяемой геометрией, корпуса с водяным охлаждением и т. Д.
По мере развития технологий были найдены новые способы повышения долговечности и эффективности современного турбокомпрессора. Многие турбокомпрессоры теперь имеют водяное охлаждение для большей долговечности, а потребность в более быстром намотке турбонагнетателя привела к появлению на рынке турбонагнетателей с изменяемой геометрией.Турбины с изменяемой геометрией (также называемые турбинами с регулируемыми лопастями или сокращенно VGT или VNT) имеют небольшие лопатки, установленные на раме, которые открывают и направляют выхлопные газы к турбине во время работы на низких оборотах, помогая более быстрому катушке турбокомпрессора. Выхлопной газ также попадает на лопатки почти под прямым углом, что эффективно приводит к уменьшению площади корпуса, что также помогает наматывать катушку и часто устраняет необходимость в перепускной заслонке. Новый 4,5-литровый двигатель Duramax является хорошим примером двигателя, в котором вместо перепускного клапана используется турбокомпрессор с изменяемой геометрией. DP
Super Turbocharging the Direct Injection Diesel Engine
В настоящем исследовании моделируется устойчивая работа дизельного двигателя с прямым впрыском (TDI) с турбонаддувом и механизмом изменения передаточного числа, соединяющим вал турбонагнетателя с коленчатым валом. Ключевыми параметрами механизма с регулируемым передаточным числом являются диапазон передаточных чисел, эффективность и инерция, а также возможность управления относительной скоростью и потоком мощности. Устройство получает энергию от коленчатого вала или турбонагнетателя или передает энергию им.Таким образом, помимо поршней двигателя внутреннего сгорания (ДВС), также турбокомпрессор вносит вклад в общую механическую мощность двигателя. Подача энергии от коленчатого вала в основном необходима во время резких ускорений, чтобы избежать турбонаддува и увеличить крутящий момент на низких скоростях. На низких скоростях резко увеличивается максимальный крутящий момент, радикально расширяя диапазон нагрузок. Кроме того, приближаясь к точкам работы сбалансированного турбонагнетателя, также можно улучшить как КПД η , определяемый как отношение мощности коленчатого вала поршня к мощности потока топлива, так и общий КПД η * , определяемый как отношение мощности поршневого коленчатого вала, увеличенной мощности от вала турбонагнетателя, к мощности потока топлива, даже если она минимальна.Подача энергии к коленчатому валу возможна в основном при высоких скоростях и высоких нагрузках, когда в противном случае турбина могла быть закрыта впустую, а также во время замедления. Использование энергии в турбине в противном случае приводит к повышению общего КПД преобразования топлива на η * больше, чем КПД η . Гораздо меньшие улучшения достигаются для максимального крутящего момента, снова приближаясь к точкам работы сбалансированного турбонагнетателя. Использование гораздо большего турбонагнетателя (целевой рабочий объем x частота вращения на 30% больше, чем у обычного турбонагнетателя), лучший выход крутящего момента и эффективность преобразования топлива η * и η возможны на любой скорости vs.двигатель с меньшим сбалансированным турбонагнетателем. Этот результат мотивирует дальнейшие исследования механизма, который может значительно улучшить традиционные силовые агрегаты на базе дизельных двигателей.
1 Введение
Нагнетатели повышают давление на впуске за счет работы сжатия, снимаемой с коленчатого вала. Полностью теряется энергия выхлопных газов. Турбокомпрессоры повышают давление на впуске за счет энергии выхлопных газов, которые расширяются через коаксиальную турбину за счет повышенного противодавления.
Турбокомпрессорыобычно более эффективны, чем нагнетатели, и имеют лучшие характеристики во всем диапазоне скоростей и нагрузок. Поскольку нагнетатели приводятся в движение коленчатым валом через механизмы с регулируемым передаточным числом, наддув не зависит от энергии выхлопных газов. В турбонагнетателе наддув зависит от энергии выхлопных газов, поскольку работа в турбине равна работе в компрессоре при равновесной скорости. Обычно турбокомпрессор управляется перепускным клапаном на турбине, который снижает количество энергии, рекуперированной в турбине для работы компрессора.В то время как на высоких скоростях турбина является закрытой, на низких скоростях энергия, доступная в турбине, минимальна, и наддув уменьшается. Отсутствие наддува также наблюдается во время резких ускорений, поскольку энергии турбины недостаточно для выполнения требуемой работы компрессору (турбо-задержка). Таким образом, турбокомпрессор расходует часть рекуперируемой энергии в выхлопе на высокой скорости или во время резких замедлений и не имеет достаточной энергии на турбине во время резких ускорений и на низких скоростях.В нагнетателе вся энергия выхлопных газов теряется.
В то время как в турбокомпрессоре скорость вращения может изменяться в широких пределах, в случае нагнетателя скорость компрессора ограничена характеристиками механизма, соединяющего коленчатый вал с валом компрессора. В нагнетателях помимо центробежных компрессоров также используются объемные компрессоры.
В традиционных турбонагнетателях вал турбонагнетателя не соединен с коленчатым валом, и мощность компрессора идеально сбалансирована мощностью от турбины, при этом перепускной клапан турбины дает возможность контролировать рабочую точку, уменьшая поток через турбину.Если вал турбокомпрессора соединен с коленчатым валом через механизм с изменяемым передаточным числом, это открывает новый мир возможностей, поскольку турбокомпрессор может работать со скоростью, отличной от равновесной, а мощность может подаваться на коленчатый вал или отводиться от него. Это нововведение, которое изучается здесь, направлено на улучшение рекуперации наддува и отходящего тепла и, в конечном итоге, на повышение общей эффективности преобразования топлива и крутящего момента на любой скорости.
Поскольку дополнительная работа турбины может быть собрана на коленчатом валу, турбокомпрессор может быть выбран намного большего размера, чем в традиционной установке турбокомпрессора.
Управление частотой вращения турбонагнетателя и, следовательно, потоком мощности к коленчатому валу или от вала турбонагнетателя, а также повышением давления теперь достигается за счет управления передаточным числом через механизм.
1,1 VanDyne Super Turbocharger
Название супер турбокомпрессор не новинка. VanDyne Super Turbocharger (или SuperTurbo) [1–4] — это турбокомпрессор, соединяющий вал турбокомпрессора с коленчатым валом. Изобретение по ссылке [2] приводит турбокомпрессор до определенной скорости или давления во впускном коллекторе.Когда энергия выхлопных газов обеспечивает больше работы, чем требуется для приведения в действие впускного компрессора, изобретение восстанавливает эту избыточную энергию, чтобы добавить крутящий момент на коленчатый вал. Изменяя передаточное число бесступенчатой трансмиссии (CVT), SuperTurbo в принципе может потреблять мощность от коленчатого вала, работающего как нагнетатель, или передавать энергию коленчатому валу, работающему как турбокомпрессор. Функция нагнетателя SuperTurbo улучшает переходные характеристики двигателя с уменьшенным размером и турбонаддувом, а функция турбонаддува дает возможность извлекать доступную энергию выхлопных газов из турбины, а не открывать перепускной клапан.
В практическом применении ссылки [4] высокоскоростной тяговый привод используется для обеспечения снижения скорости от вала высокоскоростной турбины, в то время как второй тяговый привод обеспечивает бесступенчатое регулирование передаточных чисел через вариатор. Однако передаточное отношение вала турбонагнетателя к коленчатому валу двигателя ограничено. Механизм состоит из зубчатых пар, насоса с наклонной шайбой, рычага управления, электродвигателя, гидравлических линий, но в нем отсутствует современный вариатор, такой как тороидальный вариатор Tototrak [5, 6] или тороидальный вариатор Nissan Extroid [7] для управления. передаточное число и поток энергии между турбонагнетателем и коленчатым валом.
1.2 Нагнетатель с регулируемой скоростью Torotrak
В 2012 году Torotrak предложила технологию наддува с регулируемой частотой вращения [5], позволяющую запускать нагнетатель в широком диапазоне оборотов в минуту и наддува независимо от частоты вращения двигателя. Механизм состоит из вариатора тягового привода (TDV) и планетарного привода тягового привода (TDE), которые изменяют скорость центробежного нагнетателя. Механизм получает от двигателя повышающую передачу 3: 1. TDV регулирует передаточное число от 0,35: 1 (понижающая передача) до 2.82: 1 (овердрайв). TDE обеспечивает фиксированное увеличение передаточного отношения 12,67: 1. Механизм может вращать центробежный компрессор от 13,3 до 107,2 оборотов двигателя в бесступенчато регулируемой величине [5]. Вариатор из [5] аналогичен по конструкции тороидальному вариатору, предложенному для чисто механических систем рекуперации кинетической энергии (KERS) F1 [6] на основе маховика. Двунаправленный двойной тороидальный вариатор был ранее предложен Торотраком для F1 KERS [6]. С Torotrak V-Charge [5] скорость компрессора может быть в пределах 4.В 43 и 35,73 раза больше оборотов двигателя. Таким образом, для частоты вращения двигателя 3000 об / мин скорость компрессора может быть изменена между 13 300 и 107 200 об / мин. Передаточное отношение вала турбонагнетателя к коленчатому валу двигателя широкое. Этот вариатор подходит для управления передаточным числом и потоком энергии между турбонагнетателем и коленчатым валом.
1,3 F1 MGU-H
Бензиновый двигатель с непосредственным впрыском (DI) с турбонаддувом, входящий в состав гибридной электрической трансмиссии, с установленным на валу турбокомпрессора двигателем-генератором типа F1 (MGU-H) был недавно исследован в [8].На рисунке 1 представлена схема турбонагнетателя со стороны компрессора (а) или между компрессором и турбиной (b) со стороны блока двигателя / генератора (b), как это используется в Формуле-1, например, Renault или Ferrari в сезоне 2014 года. MGU-H получает или передает энергию в тот же накопитель энергии (ES) гибридного силового агрегата, который включает в себя мотор-генератор на трансмиссии (MGU-K) в дополнение к двигателю внутреннего сгорания (ICE). Подача энергии от ES в основном необходима во время резких ускорений, чтобы избежать турбо-лага и увеличить крутящий момент на низких скоростях.На низких скоростях он также улучшает отношение мощности коленчатого вала двигателя к мощности потока топлива, а также отношение мощности коленчатого вала двигателя плюс мощность вала турбонагнетателя к мощности потока топлива. Подача энергии к ES возможна при высоких скоростях и нагрузках, когда в противном случае турбина могла бы быть закрытой, а также во время замедления. Это улучшает соотношение мощности коленчатого вала двигателя и вала турбонагнетателя к мощности потока топлива. Однако в этом случае мощность, подаваемая на вал турбонагнетателя, идет на подзарядку аккумулятора через MHU-H и не поступает непосредственно на колеса.Точно так же мощность, потребляемая от вала турбонагнетателя, вырабатывается путем разряда батареи через MHU-H и не влияет на поток мощности к колесам. Поскольку каждое изменение формы энергии, с механической на электрическую, на химическую и наоборот, происходит с КПД менее 100%, чисто механический супер-турбонаддув также имеет преимущества по сравнению с гибридным электрическим супер-турбонаддувом. Эти преимущества рассматриваются здесь для дизельного двигателя, в котором повышение давления не ограничивается детонацией.
Рис.1
Схема турбонагнетателя со стороной компрессора (а) или между компрессором и турбиной (b) со стороны двигателя / генератора, как используется в F1.
2 Предлагаемый супер-турбонагнетатель с широким диапазоном частоты вращения
В предлагаемом нововведении турбонагнетатель увеличенного размера соединен с коленчатым валом через другой механизм изменения передаточного числа. Конструкции да Винчи бесступенчатого вариатора датируются 1490 годом.В 1886 году был подан первый патент на тороидальный вариатор. Конструкция полутороидальной бесступенчатой трансмиссии (CVT), используемая здесь, предлагается во многих статьях, таких как [9]. В этой статье предлагаются геометрические и кинематические величины, силы, крутящий момент и эффективность, контактное давление и смазка полутороидального вариатора. Устройство с регулируемым передаточным числом, аналогичное характеристикам Torotrak V-Charge, может использоваться для запуска турбокомпрессора увеличенного размера в предлагаемом приложении. А 13.В настоящей заявке рассматривается механизм передаточного отношения от 2 до 107,2. CVT должен обеспечивать непрерывное передаточное число переменной скорости от понижающей передачи 1: (2,85) до повышающей передачи (2,85): 1, хотя и имеет тороидальную конструкцию. Конечное передаточное число достигается за счет использования одной или нескольких зубчатых пар с общим передаточным числом 37,6: 1. Этот механизм позволяет передавать на коленчатый вал положительную разницу между работой турбины и компрессора или получать от коленчатого вала отрицательную разницу между работой турбины и компрессора с оптимальной скоростью.Механизм действует в двух направлениях, то есть может передавать мощность на коленчатый вал или от коленчатого вала и турбокомпрессора, и он соединен с валом турбокомпрессора, а не с валом компрессора. Существование продукта — нагнетателя с регулируемой скоростью Torotrack — с бесступенчатой трансмиссией с таким же передаточным числом, как у предлагаемого здесь, является доказательством возможности создания этого устройства.
Рабочая скорость турбонагнетателя — это скорость, которая максимизирует общий выходной крутящий момент на коленчатом валу и общую топливную эффективность. η *, определяемая как отношение мощности поршневого коленчатого вала, увеличенной мощности от вала турбонагнетателя к мощности потока топлива. .В случае традиционного турбонагнетателя работа турбонагнетателя направлена только на максимизацию работы поршня и КПД η , определяемого как отношение мощности поршневого коленчатого вала к мощности потока топлива.
В данной работе рассматривается дизельный, а не бензиновый двигатель, как в ссылках [1–4] (или [8]). Турбина может рекуперировать намного больше энергии, чем энергия, необходимая для компрессора, и вносить вклад в общий выходной крутящий момент на коленчатом валу с разницей между работой турбины и компрессора.Точно так же, когда компрессору требуется больше энергии, чем энергия, доступная в турбине, именно эта разница обеспечивается коленчатым валом. Эффективность механизма только весит на разнице между работой компрессора и турбины. При работе турбокомпрессора на более высокой скорости, чем уравновешивающая скорость, компрессор выполняет больше работы, давление на впуске увеличивается, больше воздуха задерживается внутри цилиндра, больше топлива впрыскивается при сгорании, больше работы совершается поршнями, и больше работы совершается выхлопными газами, расширяющимися через турбину.Это увеличивает общий крутящий момент и общую эффективность преобразования топлива.
На рис. 2 представлена схема турбонагнетателя со стороной компрессора CVT для механического соединения с желобными шестернями коленчатого вала (a, b), рассматриваемыми в настоящем исследовании. Здесь рассматриваются варианты со стороны компрессора с вариатором для механического соединения с коленчатым валом через двойной тороидальный вариатор и 3 пары шестерен или с одним тороидальным вариатором с 1 парой зубчатых колес к / от коленчатого вала. Бесступенчатая трансмиссия состоит из входного и выходного диска (дисков) и приводных роликов, с передаточным отношением отношения радиусов входного и выходного контакта.Также может быть добавлено сцепление, чтобы обеспечить сбалансированную работу турбокомпрессора, отделенную от скорости двигателя, если / когда это будет сочтено целесообразным. Конструкции бесступенчатой трансмиссии (а) и (b) — это только две из множества возможностей, которые необходимо дополнительно изучить в механической конструкции вала трансмиссии от / до коленчатого вала.
Рис.2
Схема турбокомпрессора со стороной вариатора компрессора для механического соединения с коленчатым валом через двойной тороидальный вариатор, тороидальный и 3 зубчатые пары (а) или одиночный тороидальный вариатор с 1 зубчатой парой (б).
Механическая система имеет недостатки в упаковке и гибкости по сравнению с электрической системой. Однако его преимущества заключаются в полной механической интеграции, увеличивающей выходную мощность коленчатого вала.
CVT должен обеспечивать непрерывное передаточное число переменной скорости от понижающей передачи 1: (2,85) до повышающей передачи (2,85): 1 посредством тороидальной конструкции, такой как предложенная на рисунке 1 (b). Если r 1 — радиус контакта на входном диске, а r 2 — радиус контакта на выходном диске, (симметричный) тороидальный вариатор работает от r 2 / r 1 = 2.85 по r 1 / r 2 = 2,85. Поскольку поток мощности через вариатор ограничен, конструкция двойного тороидального вариатора, показанная на Рисунке 1 (а), типичная для трансмиссий двигателя или гоночного механического маховика KERS, не нужна. При изменении r 1 / r 2 изменяется относительная скорость турбокомпрессора и компрессора, и, таким образом, наддув и мощность на коленчатый вал или от него.
3 Вычислительный метод
Моделирование рабочих характеристик двигателя (например, хорошо известные из справочников [10, 11], лидеры отрасли в этой области) позволяют рассчитать работу двигателя для заданной геометрии при различных условиях эксплуатации.Точность моделирования повышается за счет применения передового опыта и обширных проверок по сравнению с экспериментами. Настоящее моделирование выполнено для шестицилиндрового дизельного двигателя TDI V с соотношением диаметр цилиндра / ход поршня 0,829, отношение длины шатуна к ходу хода 1,896, степень сжатия 18,5: 1, максимальное отношение давлений через компрессор 4,0, рабочий объем 3,8 литра. Этот двигатель предназначен для гоночных автомобилей, а не для легковых автомобилей.
Критическим аспектом моделирования, в остальном довольно простым, является моделирование горения.Сгорание здесь моделируется с помощью функции дизельного топлива Wiebe, состоящей из табулированных параметров в зависимости от скорости и нагрузки. Скорость горения задается с помощью трехчленной функции Вибе. Константы Вибе должны соответствовать скорости тепловыделения, рассчитанной на основе измеренного давления в цилиндре. Константы Вибе включают: задержку зажигания (задержка в градусах угла поворота коленчатого вала между началом впрыска и началом сгорания), предварительно смешанная фракция (фракция топлива, которая смешивается до начала сгорания и сгорает предварительно смешанной), хвостовую фракцию (долю топлива, которая ожоги за пределами основного диффузионного ожога), продолжительность предварительно смешанного ожога (продолжительность в градусах угла поворота кривошипа для предварительного ожога), основная продолжительность (продолжительность в градусах угла поворота коленчатого вала основного диффузионного ожога) и, наконец, продолжительность хвостового ожога (продолжительность в градусах угла поворота кривошипа хвостового ожога) изгиб).Модель также требует указания предварительно смешанной экспоненты, главной экспоненты и хвостовой экспоненты. Функция Wiebe для дизельного двигателя представлена в виде таблицы для воспроизведения экспериментальной скорости тепловыделения, рассчитанной на основе давления в цилиндре для базового дизельного двигателя, который работает с другим турбонагнетателем и другими наддувами. Поскольку предполагается, что температура и давление внутри цилиндра увеличатся, это в конечном итоге приведет к более высокой скорости сгорания. Модель аппроксимирует одним эквивалентным событием впрыска тепловыделение более сложного впрыска, состоящего из нескольких фаз, поскольку стратегия впрыска в современных дизельных двигателях с прямым впрыском основана на последовательности событий впрыска.Дальнейшее улучшение точности моделирования возможно только после экспериментов с двигателем.
4 Результаты
Здесь представлены моделирование двигателя с воспламенением от сжатия, работающего с валом турбонагнетателя, соединенным с коленчатым валом с помощью механизма изменения передаточного числа. Турбокомпрессор намеренно увеличен в размерах, а также увеличены размеры портов, диаметров клапанов и подъемников. Турбокомпрессор предназначен для использования с максимальной скоростью x рабочий объем, который на 30% больше нынешнего 3.8 литров × 4500 об. / Мин. Предполагается, что эффективность механизма с изменяемым передаточным числом, обеспечивающего передаточное число от 13,3 до 107,2, составляет 90%.
На рисунке 3 представлены карты турбины и компрессора. a) и b) карты компрессора, c) и d) карты турбины. Значения скорректированы на 298 К и 100 кПа. Уменьшенные значения соответствуют формулам:
р п M р е d ты c е d знак равно р п M а c т ты а л Т я п л е т — т о т а л м ˙ р е d ты c е d знак равно м ˙ а c т ты а л ⋅ Т я п л е т — т о т а л п я п л е т — т о т а л
Фиг.3
Карта компрессора. Скорость (a) и эффективность (b) в зависимости от степени давления и скорректированного массового расхода. Линии скорости компрессора от 8 644 до 102 000 об / мин. Карта турбины. Скорость (c) и эффективность (d) в зависимости от степени давления и скорректированного массового расхода.
С частотой вращения турбонагнетателя, давлением P, температурой T и массовым расходом. Турбокомпрессор имеет области оптимальной работы, области, где он работает менее эффективно, и области, где он не может работать. Соединение коленчатого вала с помощью механизма переменного передаточного числа позволяет искать оптимальную рабочую точку, изменяя передаточное число и, следовательно, скорость турбокомпрессора в дополнение к другим типичным параметрам управления традиционного турбокомпрессора.
На рис. 4 представлена созданная модель. Вал турбины и компрессора через шестерни соединены с коленчатым валом двигателя. Передаточное число задано различным для каждой частоты вращения двигателя и нагрузки, но одинаково для турбины и компрессора. На максимальной скорости компрессор работает в зоне между линией помпажа с левой стороны и линией дроссельной заслонки с правой стороны для всех значений массового расхода в диапазоне частот вращения двигателя. Компрессорная система, включающая вариатор и шестерню, соединяющую вал с коленчатым валом, выбирается таким образом, чтобы расчетные рабочие точки не выходили за пределы линий помпажа и дросселирования.
Виртуальные модели двигателей разработаны с использованием программного обеспечения GT-SUITE [11, 17]. GT-SUITE — это один из ведущих в отрасли инструментов моделирования характеристик двигателя, применяемый производителями оригинального оборудования (OEM), исследовательскими центрами и академическими учреждениями и предлагаемый на многих курсах бакалавриата и магистратуры по автомобильной инженерии. Этот специфический инструмент существует уже 3 десятилетия. Почти 800 из множества опубликованных статей, посвященных разработке, проверке и применению моделей GT-SUITE разработчиками, перечислены в [17].Рисунок 4 позволяет оценить детали модели. В дополнение к элементам потока, в которых решается зависимое от времени уравнение сохранения массы, импульса, энергии и компонентов, на эскизе также показаны специальные элементы, такие как цилиндры двигателя и форсунки, а также элементы компрессора и турбины, имеющие более сложное определение. . Следует отметить, что компрессор и турбины связаны с коленчатым валом отдельными механическими звеньями. Это требует ручной постобработки результатов, чтобы уменьшить механические потери турбонагнетателя, пропорциональные полезной мощности, подаваемой на турбонагнетатель или от него.Более подробную информацию о моделировании можно найти в [11] и [17].
Кинематическое передаточное число и механический КПД, которые представляют собой потери на трение в зубчатом соединении между коленчатым валом и валом турбонагнетателя, предписываются для каждой рабочей точки нагрузки (BMEP) x скорости. Механический КПД трения также определяется для вала как отношение выходной мощности к входной мощности. Этот параметр также предписывается для каждой рабочей точки нагрузка × скорость.
Аналогично тому, что было сделано в [8], настройка модели не позволяет напрямую вычислить поток мощности к / от коленчатого вала, поскольку только разница между мощностью турбины и компрессора проходит через вариатор и зубчатая пара до коленвала.В [8] только разница между мощностью турбины и компрессора подавалась на MGU-H для зарядки или разрядки батареи. Общая мощность на коленчатом валу, а также вклад поршней и турбонагнетателя корректируются во время постобработки. Если P t — полная мощность турбины, а P c — полная мощность компрессора, когда Δ P t , c = (P t −P c )> 0, то мощность, передаваемая на коленчатый вал, составляет Δ P t , c ⋅ η CVT , где η CVT , является КПД вариатора и зубчатой пары.И наоборот, когда Δ P t , c = (P t −P c ) <0, то мощность, потребляемая от коленчатого вала, составляет Δ P t , c / η CVT .
На Рисунке 5 представлены предварительные результаты работы. a) и b) — это степень давлений в компрессоре и турбине, а c) и d) — это соотношение скоростей турбокомпрессор / двигатель и частота вращения турбокомпрессора.e) и f) — отношение мощности турбонагнетателя к общей мощности и общий КПД преобразования топлива η *, отношение мощности на коленчатом валу и валу турбонагнетателя к мощности потока топлива в зависимости от среднего эффективного давления и скорости в тормозной системе.
Фиг.5
Предварительные результаты расчетов, различные рабочие параметры двигателя в зависимости от частоты вращения двигателя в об / мин и среднего эффективного давления в тормозной системе в барах. Соотношение давлений в компрессоре (а) и турбине (б).Отношение частоты вращения турбокомпрессора к коленчатому валу двигателя (c) и частота вращения турбонагнетателя (d). Отношение мощности турбонагнетателя к мощности коленчатого вала (e) и общий КПД двигателя η * (отношение мощности на коленчатом валу плюс мощность на валу турбонагнетателя к мощности потока топлива) (f).
Максимальная частота вращения турбокомпрессора 150 000 об / мин. При средней нагрузке на любой скорости обеспечивается очень высокий коэффициент давлений около 4, при этом это отношение лишь минимально снижает, увеличивая скорость двигателя выше 3000 об / мин.При высокой нагрузке максимальная частота вращения турбокомпрессора разрешена выше 1500 об / мин. Только в диапазоне низких нагрузок частота вращения турбокомпрессора может быть чрезмерной.
Это результат предписанного минимального передаточного числа 13,3, так как турбокомпрессор, отсоединенный от механизма, мог бы лучше работать ниже этого передаточного числа. Более широкое передаточное число или сцепление могут решить эту проблему.
С традиционным турбонагнетателем максимальный крутящий момент составляет около 3000 об / мин, при очень плохих характеристиках ниже этой частоты вращения двигателя, а максимальная мощность составляет 4500 об / мин.Увеличиваются и максимальный крутящий момент, и максимальная мощность. Широко распространена область с КПД выше 40%, от 15 до 40 бар и от 2000 до 4000 об / мин. При максимальной нагрузке рассматривается λ 1,4.
При частоте вращения выше 4000 об / мин эффективность снижается в основном из-за зависимости трения от скорости и усложнения процесса сгорания (4500 об / мин — это технологический предел сгорания дизельного топлива с диффузионным регулированием). Ниже 2000 об / мин эффективность снижается, поскольку выхлопные газы не поддерживают более высокие скорости компрессора.Однако КПД по-прежнему выше, чем можно было бы достичь без подачи энергии на вал турбонагнетателя. При частичной нагрузке турбокомпрессор продолжает получать энергию на низких скоростях — средне-высоких нагрузках, в то время как на высоких скоростях — средне-высоких нагрузках турбокомпрессор обычно выдает энергию. Турбонагнетатель вносит значительный вклад в общую мощность двигателя, особенно при высоких скоростях и нагрузках. Для конкретного двигателя и турбонагнетателя дополнительная мощность турбонагнетателя может приближаться к 10% мощности коленчатого вала двигателя.На низких оборотах мощность турбонагнетателя отрицательная, требуя почти 20% мощности коленчатого вала двигателя. Минимальное значение λ для полной нагрузки составляет 1,4. λ увеличивается до 6,5–7, снижая нагрузку до 1 бар BMEP. Поскольку карта передаточного отношения не полностью оптимизирована, дальнейшие улучшения в общей карте эффективности преобразования топлива все еще возможны.
Не показан в статье, предлагаемый двигатель с автономным турбонагнетателем увеличенного размера (не соединенным с коленчатым валом через шестерню и вариатор) имеет очень низкий крутящий момент и очень низкую эффективность преобразования топлива в диапазоне низких скоростей.В предлагаемом устройстве крутящий момент на низкой скорости увеличивается до значений средней скорости, рис. 5f, в то время как эффективность лишь незначительно снижается при снижении скорости с 2000 до 1000 об / мин.
На рис. 6, наконец, представлена мощность, подаваемая на коленчатый вал от вала турбонагнетателя (положительное значение для работы турбины больше, чем для работы компрессора) плюс отношение радиусов впуска к выпускному в вариаторе. Мощность максимальная при высоких скоростях и нагрузках и минимальная при низких скоростях и средних и высоких нагрузках. Передаточное число CVT максимально при низкой скорости и средних и высоких нагрузках и минимально при низких нагрузках.Он также уменьшается за счет увеличения скорости. Эти данные являются рабочими входными данными, необходимыми для проверки механической правильности конструкции вариатора.
Фиг.6
Предварительные результаты расчетов в зависимости от частоты вращения двигателя в оборотах в минуту и среднего эффективного давления в тормозной системе в барах. Мощность на валу турбокомпрессора (а) и передаточное число (или отношение радиусов впуска к выпускному) на вариаторе (b).
5 Обсуждение и заключение
Здесь предлагается супертурбонагнетатель, соединяющий вал турбонагнетателя с коленчатым валом через вариатор и шестерню.Этот супертурбонагнетатель отличается от системы VanDyne, где вал турбонагнетателя соединен с коленчатым валом через шестерню, или нагнетателя с регулируемой скоростью Torotrak, где вариатор и шестерня соединяются с коленчатым валом только валом компрессора.
Предлагаемое нововведение позволяет достичь максимального среднего эффективного давления в тормозах 40 бар в дизельном двигателе на обедненной смеси с минимальным давлением λ 1,4. Нововведение обеспечивает высокий наддув на любой скорости, а также высокую эффективность преобразования топлива, превышающую 40%, на большей части графика нагрузки x скорости, отсутствие турбо-лага и снижение потерь тепла выхлопных газов.
Инновация включает теоретически готовые компоненты (конечно, турбокомпрессор, более сомнительно устройство с регулируемым передаточным числом).
Результаты расчетов должны быть проверены во время экспериментов с двигателем.
Что касается выхлопного тепла блока двигателя-генератора типа F1 (MGU-H), соединяющего вал турбонагнетателя с тяговой батареей, такой как [8], то предлагаемая конструкция имеет значительное преимущество, заключающееся в подаче энергии на коленчатый вал, а не на батарею, тем самым увеличивая мощность двигателя в остальном не изменилась.С точки зрения эффективности чисто механическое соединение лучше, чем преобразование механической энергии в электрическую, затем химическую, затем обратно в электрическую и, наконец, в механическую энергию, как в MGU-H в стиле F1. Предлагаемое нововведение превосходит MGU-H типа F1 [8] как по мощности двигателя, так и по эффективности преобразования топлива и не требует гибридной электрической силовой передачи.
Этот результат мотивирует дальнейшие исследования механизма, который может значительно улучшить традиционные силовые агрегаты на базе дизельных двигателей.
Утверждение об электрическом MGU-H в стиле F1 следует из того факта, что предложенный механизм передает или получает энергию непосредственно от коленчатого вала или к нему без какого-либо преобразования энергии. В MGU-H в стиле F1 турбокомпрессор подает или получает энергию от накопителя энергии, батареи, с преобразованием механической энергии в электрическую, а затем в химическую, или преобразованием химической энергии в электрическую, а затем в механическую. энергия, с эффективностью каждого процесса преобразования энергии все, кроме единства.Кроме того, в то время как в предлагаемом устройстве турбонагнетатель передает дополнительную энергию, доступную в конечном итоге коленчатому валу, и, следовательно, увеличивает чистую выходную мощность двигателя, в MGU-H типа F1 дополнительная мощность турбонагнетателя направляется в накопитель энергии, который может быть разряжен путем подачи энергия поступает в турбонагнетатель при восстановлении баланса энергии или в колеса через MGU-K системы рекуперации кинетической энергии, в этом случае снова возникают проблемы с преобразованием энергии. Хотя турбокомпрессор увеличенного размера имеет смысл с предлагаемым механическим соединением вала турбокомпрессора с коленчатым валом, нет никаких оснований использовать турбокомпрессоры увеличенного размера с электрическим MGU-H.
С максимальной эффективностью преобразования топлива в диапазоне от 40% для легковых автомобилей и выше 50% для грузовиков большой грузоподъемности и незначительными потерями эффективности в большей части диапазона нагрузок традиционные силовые агрегаты с дизельными двигателями превосходят всех других конкурентов. для экономии топлива по сравнению с реальными условиями вождения, с возможностью использования механической или электрической системы рекуперации кинетической энергии, необходимой для тяжелых городских условий вождения, характеризующихся частыми запусками и остановками [12].
Что касается выбросов оксидов азота, ахиллова пята дизельного двигателя, работающего на обедненной смеси, до сих пор не имеющего дополнительной обработки, конкурирующей с трехкомпонентным каталитическим нейтрализатором стехиометрического бензина, следует отметить, что различные альтернативы массового транспорта следует сравнивать с все соответствующие критерии, экологические, экономические и рабочие характеристики, на протяжении всего жизненного цикла транспортного средства, включая производство, эксплуатацию, техническое обслуживание и утилизацию, а также с помощью объективных испытаний [13].
В дополнение к дальнейшему развитию доочистки, образование оксидов азота также может быть уменьшено за счет использования прямого впрыска воды [14–16] в дополнение к рециркуляции выхлопных газов, поскольку эта мера может не только снизить тенденция к детонации и ограничению потерь тепла в бензиновых двигателях, а также к снижению температуры дымовых газов там, где / когда это необходимо, в дизельном топливе с обедненным сжиганием.
Эта статья — лишь еще один пример того, что еще есть значительные запасы для улучшения двигателя внутреннего сгорания.Если политически будущее двигателя внутреннего сгорания находится под угрозой [13], поскольку электромобиль предлагается для массовой мобильности до того, как будут решены проблемы с аккумулятором и производство возобновляемой электроэнергии, технически все еще нет лучшего варианта, чем внутренний двигатель внутреннего сгорания, при этом все еще возможны значительные улучшения в конструкции двигателя внутреннего сгорания и в гибридизации трансмиссии.
- BMEP
среднее эффективное давление тормоза
- Вариатор
Бесступенчатая трансмиссия
- ЛЕД
двигатель внутреннего сгорания
- KERS
система рекуперации кинетической энергии
- МГУ-Н
Мотор-генератор тепла выхлопных газов
- МГУ-К
мотор-генератор кинетической энергии
- η
мощность на коленчатом валу vs.мощность потока топлива
- η *
Зависимость мощности от коленчатого вала и вала турбонагнетателя от мощности потока топлива
- λ
относительное соотношение воздух-топливо
Ссылки
[1] VanDyne, E.A. и Вагнер Р., Компания Woodward Governor Company, 2008. Презентация супертурбокомпрессора.На конференции DEER, Детройт (Мичиган), август. energy.gov/sites/prod/files/2014/03/f8/deer08_vandyne.pdf Поиск в Google Scholar
[2] Ван Дайн, Э. и Гендрон, Т.А., Woodward Governor Company, 2009. Супер-турбонагнетатель. Патент США 7,490,594. Поиск в Google Scholar
[3] Chadwell, C.J. and Walls, M., 2010. Анализ уменьшенного двигателя с турбонаддувом с использованием 1-D моделирования CFD. Технический документ SAE № 2010-01-1231. Искать в Google Scholar
[4] Riley, M.B., VanDyne, E.и Браун, Дж. У., Vandyne Superturbo, Inc., 2015. Супертурбонагнетатель с высокоскоростным тяговым приводом и бесступенчатой трансмиссией. Патент США 9, 217, 363. Искать в Google Scholar
[5] www.enginelabs.com/news/inside-look-variable-speed-supercharging-technology/ Искать в Google Scholar
[6] Cross, D. и Brockbank, C., 2009. Механическая гибридная система, включающая маховик и вариатор для автоспорта и основных автомобильных приложений, технический документ SAE No.2009-01-1312. 10.4271 / 2009-01-1312 Искать в Google Scholar
[7] www.nissan-global.com/PDF/tcvt_e.pdf Искать в Google Scholar
[8] Boretti, A., 2017. F1 style MGU-H Применяется к турбокомпрессору бензинового гибридного электрического легкового автомобиля, Нелинейная инженерия, 10.1515 / nleng-2016-0069. Искать в Google Scholar
[9] Карбоне, Г., Мангиаларди, Л. и Мантриота, Г., 2004. Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. Теория механизмов и машин, 39 (9): 921–942.10.1016 / j.mechmachtheory.2004.04.003 Поиск в Google Scholar
[10] www.software.ricardo.com/Products/WAVE Поиск в Google Scholar
[11] www.gtisoft.com/gt-suite-applications/ propulsion-systems / gt-power-engine-Simulation-software / Поиск в Google Scholar
[12] Боретти, А., 2010, Сравнение топливной экономичности высокоэффективных дизельных и водородных двигателей, приводящих в движение компактный автомобиль с кинетической системой на основе маховика. системы рекуперации энергии, Международный журнал водородной энергетики 35 (16): 8417–8424.10.1016 / j.ijhydene.2010.05.031 Поиск в Google Scholar
[13] Боретти А., 2017, Будущее двигателя внутреннего сгорания после «дизельных ворот», Техническая статья SAE № 2017-28-1933. Поиск в Google Scholar
[14] Boretti, A. (2011), Стехиометрические измерения с закачкой воды, Международный журнал по водородной энергии 36: 4469–4473.10.1016 / j.ijhydene.2010.11.117 Поиск в Google Scholar
[ 15] Боретти, А., Осман, А. и Арис, И. (2011), Прямой впрыск водорода, кислорода и воды в новый двухтактный двигатель, International Journal of Hydrogen Energy 36: 10100–10106.10.1016 / j.ijhydene.2011.05.033 Искать в Google Scholar
[16] Боретти А. (2013), Впрыск воды в двигатели с искровым зажиганием с прямым впрыском, с турбонаддувом, Applied Thermal Engineering, 52 (1): 62–68.10.1016 /j.applthermaleng.2012.11.016 Искать в Google Scholar
[17] Gamma Technologies LLC, «Публикации GT-SUITE». https://www.gtisoft.com/gt-suite/publications, 2015 (по состоянию на 15 октября 2015 г.). Искать в Google Scholar
Поступила: 20.11.2016
Принято: 2017-8-10
Опубликовано в сети: 2017-9-16
Опубликовано в печати: 2018-3-26
© 2017 Walter de Gruyter GmbH, Берлин / Бостон
Эта статья распространяется на условиях некоммерческой лицензии Creative Commons Attribution, которая разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.
.