Принцип работы дизельного двигателя с турбиной: Как работает турбина на дизельном двигателе

Глоток свежего воздуха – турбина ДВС

Почти на каждом дизельном двигателе, в том числе и с установленной системой bosch имеется турбонагнетатель.

В теории турбина, это воздушный насос, закачивающий больше воздуха в дизельный двигатель. Большое количество воздуха позволяет дизельному двигателю, развивать большую мощность и  при этом уменьшая расход топлива.

Основные характеристики, принцип работы и устройство

Турбина устанавливается между воздушным трубопроводом и трубой выхлопа. Как только выхлопные газы покидают двигатель, попадая в турбину они начинают ее раскручивать и вращают компрессор, который нагнетает воздух в двигатель. Масло, подаваемое на турбину, производит смазку турбины.

На практике, турбина очень эффективный агрегат, собранный инженерами  с точностью до сотых доли миллиметра.

Турбина и компрессор смонтированы в едином кожухе, с поддерживаемой системой подшипников. Сама  турбина работает за счет давления отработанных газов двигателя.

Отработанные газы входят в отсек турбины, раскручивают ее и покидают через выходной трубопровод.

Температура выхлопных газов может достигать 950 °C, что означает использование в производстве турбины высокотемпературных сплавов.

Скорость и нагрузка на дизельный двигатель определяет, с какой скоростью будет вращаться турбина. При работе двигателя на холостом ходу, турбина работает на самых минимальных оборотах.  Чем большее количество выхлопных газов проходит через турбину, тем быстрее скорость ее вращения. На максимальных оборотах, ее скорость может достигать  240 тыс. об /мин.

  • Компрессорное колесо с лопатками  соединено с турбиной единым закаленным стальным  валом и вращается за счет вращения турбины.
  • Воздух засасывается за счет вращения компрессионного колеса и при этом сжимается от очень высокой скорости вращения.
  • Турбокомпрессор преобразует высокоскоростной воздушный поток с низким давлением в высокоскоростной поток с высоким давлением.
  • Поступающий в турбину воздух, проходя через нее, нагревается до 200 °C.

Увеличение температуры увеличивает плотность, что в свою очередь уменьшает мощность двигателя. Поэтому воздух, перед тем как попасть в двигатель из турбокомпрессора, охлаждается в специальном радиаторе  — интеркулере.

Соединяющий турбину и компрессор вал, работает в системе опорных подшипников и смазывается маслом из системы смазки двигателя. Масло играет одновременно роль охладителя турбины, забирая тепло от подшипников.

  С двух сторон кожуха установлены уникальные масляные сальники, разработанные специально для высоких температур. Сальники предотвращают попаданию масла в компрессор и турбину.

Турбина с электронной начинкой

При больших оборотах турбины, может произойти перегазовка двигателя. Поэтому сейчас изготавливают управляемые турбины с подключением в одну электронную систему управления работы двигателя.

Турбина современного грузового автомобиля очень сложный агрегат, включенный в одну систему с ТНВД. Для улучшения работы дизельного двигателя производители устанавливают так называемые варьированные турбины.

В зависимости от завода — изготовителя турбины, в них используются подвижные створки или подвижные сопла, давая турбине подстраиваться под работу двигателя. Это позволяет намного более эффективно использовать выхлопные газы  и изменять воздушный поток, чтобы получить желаемую скорость в диапазоне работы двигателя.

Данная технология позволяет двигателю эффективно работать при различных режимах. Увеличивая экономию топлива и улучшая характеристики торможения двигателем.

Ранее выпускавшиеся варьированные турбины использовали вакуум для изменения положения сопел или заслонок. Большинство современных моделей использует электронное оборудование и имеет собственный процессор.

Знания и точность – ремонт турбин

В любом случае работа таких турбин осуществляется в согласованной связке с ТНВД. Сложность  варьированных турбин не позволяет производить их ремонт в неспециализированных мастерских с отсутствием специального оборудования и мастеров должной квалификации.

Это закономерно относиться и к ремонту тнвд bosch дизельных двигателей грузовиков. Только опытные специалисты смогут произвести ремонт и настройку сложной системы ТНВД и турбины.

Не рискуйте своим автомобилем, отдавая его в руки ненадежных механиков с малопригодным оборудованием.

Если у вас возникла необходимость в ремонте турбины или ремонте тнвд бош, обращайтесь только к настоящим профессионалам.

Ремонт тнвд бош, двигателей, турбин – мы №1 по праву.

Принцип работы современной турбины

21.11.2014 / 25.04.2018   •   1698 / 48

Автомобильный двигатель не может работать без воздуха – для сжигания 1 литра бензина его требуется не менее 11 тыс. литров! Но чтобы проникнуть в цилиндры, воздуху приходится преодолеть фильтр, впускной коллектор, обогнуть дроссельную заслонку да еще и протиснуться в щель между клапаном и его седлом.

Потому неудивительно, что потребность мотора в данном веществе никогда не удовлетворяется полностью. В лучшем случае – на 90-95%.

Иное дело, если воздуху придать ускорение при помощи специальных устройств, которых за более чем столетнюю историю автомобилестроения было придумано немало. Здесь и приводной компрессор, и динамический с резонансным наддувом, и, конечно, турбокомпрессор. О нем и поговорим.

Как работает?
Турбонаддув включает в себя следующие элементы: турбокомпрессор, регулятор давления наддува и зачастую охладитель (интеркулер). Турбокомпрессор представляет собой центробежный воздушный насос («холодная крыльчатка»), расположенный на одном валу с газовой турбиной, которую раскручивает поток отработавших газов («горячая крыльчатка»). Сам вал установлен на подшипниках скольжения или качения. Первые применяют чаще, поскольку масло, подаваемое к подшипникам, обеспечивает дополнительное охлаждение турбонагнетателя.

Отработавшие газы раскручивают турбинное колесо до 50 – 200 тыс. об/мин (в зависимости от конструкции и режима работы).

Вместе с турбинным, естественно, вращается и насосное колесо, загоняя в цилиндры необходимое количество воздуха. Последний после сжатия лопатками «холодной крыльчатки» нагревается. Да так, что в некоторых случаях может возникнуть калильное зажигание, не говоря уже об элементарной детонации. Вдобавок у горячего воздуха плотность меньше, чем у холодного. Следовательно, и попадает его в цилиндры гораздо меньше, чем рассчитывали. Потому между нагнетателем и двигателем начали установливать охладитель, он же интеркулер – воздушный радиатор.

Характеристики мотора напрямую зависят от давления наддува: чем больше воздуха удастся загнать в цилиндры, тем мощнее будет двигатель. При определенном стиле вождения появляются и другие плюсы – снижается расход топлива, мотор не боится горных дорог, где обычные двигатели буквально задыхаются от нехватки кислорода в разреженной атмосфере.

Однако стоит заметить, что при установке на серийный мотор слишком производительного турбокомпрессора (высокого давления) или при перепрограммировании его блока управления, вопервых, требуется усилить буквально все основные детали – начиная с поршней, которые делают коваными и дополняют масляным охлаждением, и заканчивая специальными прокладками и коллекторами. А вовторых, при наддуве высокого давления чаще встречается такое неприятное явление как «турбояма» – отсутствие тяги на «низах» и скачок мощности после раскручивания. Возникает оно изза того, что на малых оборотах крыльчатки турбины вращаются со сравнительно небольшой скоростью и подают меньше воздуха, чем необходимо. Зато после раскручивания турбонагнетатель явно перевыполняет план.

Решением этой проблемы занялись лет двадцатьтридцать назад, когда начали использовать специальные подшипники низкого трения, оптимизированные коллекторы, многоклапанные головки и т. д. А на моторы большого рабочего объема и вовсе установили по две турбины – ведь два малых турбокомпрессора раскручиваются намного быстрее, чем один большой (Audi RS6, Maybach 62). Но самым эффективным способом заставить турбомотор нормально тянуть, начиная с «низов», стало применение регуляторов давления.

Регуляторы
Все турбонаддувы можно условно разделить на два типа – низкого (0,20,8 бара) и высокого давления (0,82 бара). Первый, как показала практика, может вообще обходиться без регуляторов. К примеру, на мотор Saab 95 V6 Ecopower Turbo объемом 3,0 л установлена относительно маломощная, поэтому и менее «задумчивая» турбина Garrett. Интересно, что для достижения максимального давления 0,25 бара она использует энергию отработавших газов лишь трех цилиндров из шести. На больших оборотах турбонагнетатель не может как следует разогнаться, что и обеспечивает низкое давление наддува. Электронно управляемая заслонка в этой турбине тут же открывается при любом нажатии на педаль газа. Это позволяет турбине немедленно получать необходимое количество отработавших газов для того, чтобы закачивать в цилиндры больше воздуха. Как только «воздушный насос» раскрутился, заслонка возвращается в положение, соответствующее заданному числу оборотов двигателя. В результате максимальный момент 310 Нм этот мотор выдает при 2100 об/мин.

Но это исключение из правил. Обычно в качестве регуляторов давления в турбодвигателях используют предохранительные клапаны – механические либо с электронным управлением. Первые открываются избыточным давлением наддуваемого воздуха, вторые имеют исполнительные механизмы, как правило, электромагнитные. Команду открытьзакрыть клапану дает ЭБУ двигателя, руководствуясь информацией целой группы датчиков: давления во впускном коллекторе, детонации, расходомера воздуха и т. д. Первым подобную систему применил Saab в 1981 году.

Давление наддува обычно регулируется с помощью клапанных систем, которые перепускают требуемое количество отработавших газов. Хотя встречаются модели, в которых избыточный воздух сбрасывается прямо под капот, что не совсем выгодно с точки зрения экономичности. Впрочем, и первый способ не идеален. Ведь значительное количество отработавших газов не выполняет никаких полезных действий. Вот если бы объединить две турбины в одной! Тогда бы одна использывалась для малых оборотов двигателя, а другая – для максимальных. При этом перепускной клапан использовался бы эпизодически.

Что такое VTG?
Турбонагнетатель с изменяемой геометрией VTG (Variable Turbo Geometry) – это вовсе не турбина с поворотными крыльчатками. Реализовать подобное затруднительно. Но зато ничто не мешает сделать подвижным направляющий аппарат, который в зависимости от нагрузки дозировал бы количество и скорость поступающих на «горячую крыльчатку» отработавших газов.

Самый простой вариант использовали в роторном моторе Mazda RX7 в конце 80х. Здесь струя выхлопных газов была разделена на два потока. На малых оборотах они воздействовали только на верхнюю часть турбинного колеса. При достижении определенной частоты вращения коленвала срабатывал клапан, после чего отработавшие газы подавались уже на всю поверхность крыльчаток. Правда, оказалось, что данная система хорошо работала только в паре с роторнопоршневым двигателем Ванкеля.

Более удачной оказалась идея с несколькими поворотными лопатками, закрепленными в специальной обойме. Они регулировали скорость и давление потока отработавших газов в зависимости от режима работы. В грузовых автомобилях первой удачно применила этот метод фирма Mitsubishi в середине 80х, а в легковых – Audi и Volkswagen – фирма Allied Signal (Garrett) в 1995 году. Позже VTGнагнетатетелями обзавелись легковые дизели BMW и MercedesBenz, а также AlfaRomeo.

К слову, нечто подобное устанавливалось на советские танковые дизели с середины 60х.

Но пока, к сожалению, такая система прижилась только на дизельных моторах. Дело в том, что нежный направляющий аппарат теряет подвижность после долгой работы при высоких температурах выхлопных газов. Сравним 1050°С для бензинового двигателя и всего 600°С для дизеля. Кроме того, турбина с переменной геометрией дороже, чем обычная. А ее надежность и долговечность всетаки поменьше. Поэтому в ближайшее время вопрос о том, каким должен быть идеальный наддув, остается открытым. Один из перспективных путей – применение комбинированного наддува. К примеру, на малых оборотах воздух в цилиндры нагнетает приводной компрессор, а уже со средних в дело вступает турбонаддув.

Принципы работы газотурбинных двигателей — 624 слов


Газотурбинные двигатели

Газотурбинные двигатели имеют широкое применение, наиболее распространены автомобильные двигатели. Они работают по простому принципу сжатия воздушно-топливной смеси под высоким давлением, а не ее воспламенения. Создаваемая взрывная сила действует как тяга и используется для создания механических движений поршней двигателя, которые вращают колеса. Тот же принцип используется в самолетах, но основное отличие заключается в том, что тяга используется для поворота лопастей пропеллера, толкающего самолет вперед. Его другие применения в генераторах и некоторых водяных насосах. (Тригер, стр. 36)

Как это работает

Когда вы поворачиваете ключ зажигания в автомобиле, сразу же начинает вращаться электродвигатель, работающий от автомобильного аккумулятора. Этот мотор имеет вентиляторы и начинает всасывать воздух из атмосферы, проталкивая его в камеры двигателя. Этот воздух с большой скоростью проходит через лопасти вентиляторов и попадает в камеру сжатия, которая имеет меньший объем, чем окружающая атмосфера. Уменьшение объема по закону Бойля увеличивает давление воздуха. (Давление обратно пропорционально объему, в котором оно содержится). Включение зажигания также приводит к тому, что бензин в баке начинает двигаться к камере сгорания в двигателе.

Топливо проходит через узкое сопло, прежде чем смешивается с воздухом. Внезапное уменьшение объема бензина при прохождении через сопло приводит к тому, что он «превращается в почти паровую фазу в результате процесса, называемого распылением» (Керреброк, стр. 124). Теперь топливо в паровой фазе начинает смешиваться со сжатым воздухом, и режим воспламенения топлива зависит от используемого типа. Для дизельных двигателей они работают по принципу воспламенения от сжатия, при котором само давление топливно-воздушной смеси в камере сгорания вызывает самовоспламенение паров дизельного топлива, тем самым инициируя фазу сгорания. Для бензиновых двигателей распыление бензина в форсунках создает «топливно-воздушную смесь (дымовые газы), и почти сразу же свечи зажигания выбрасывают искру, которая воспламеняет бензин и знаменует собой начало процесса сгорания». (Kerrebrock, стр. 125) Стоит отметить, что весь процесс от поворота ключа зажигания до сгорания топливовоздушной смеси занимает считанные секунды.

Воспламенение топливовоздушной смеси — взрывной процесс, при котором выделяется много энергии. Эта мощность преобразуется в механическую силу поршнями, прикрепленными к камере сгорания. Поршни совершают движение вверх-вниз и работают друг против друга, так что когда одна пара поршней четырехпоршневого двигателя поднимается, другая пара опускается. Суммарная комбинация сил поршня вызывает цилиндрическое движение коленчатого вала, который в случае автомобиля приводит во вращение маховик, который, в свою очередь, вращает колеса автомобиля. В самолете вращающийся коленчатый вал используется для вращения пропеллера, который создает необходимую для полета тягу. Более высокая выходная мощность двигателя достигается за счет сжатия большего количества воздуха в камере сгорания и запуска чего-то вроде цепной реакции в уже существующем процессе сгорания. Переключение передач изменяет степень вращения колес и, в некотором роде, количество мощности, передаваемой поршням и коленчатому валу на колеса. Высокая передача вызывает дефицит крутящего момента, который вращает колеса, и эта дополнительная мощность потребляется двигателем. Более низкая передача и происходит обратное, при этом происходит обратное и поршни расслабляются, так как на колесах достаточно крутящего момента. (Керреброк, стр. 126).

Процитированные работы

  1. Treager Irwin, Aircraft Gas Turbine Technology, Career Education, 3 rd Edition, pp 36-39
  2. Kerrebrock Jack L, Aircraft Engines and Gas Turbines, MIT press, 2 nd Edition 123-126

Это эссе о принципах работы газотурбинных двигателей было написано и представлено вашим коллегой студент. Вы можете использовать его для исследовательских и справочных целей, чтобы написать свою собственную статью; однако ты должны цитировать его соответственно.

Запрос на удаление

Если вы являетесь владельцем авторских прав на эту статью и больше не хотите, чтобы ваша работа публиковалась на IvyPanda.

Запросить удаление

Нужен пользовательский Образец эссе , написанный с нуля
профессиональный специально для вас?

807 сертифицированных писателей онлайн

ПОЛУЧИТЬ ПИСЬМЕННУЮ ПОМОЩЬ

Cite This paper

Выберите стиль ссылки:

Ссылка

IvyPanda. (2022, 7 марта). Принципы работы газотурбинных двигателей. https://ivypanda.com/essays/gas-turbine-engines-principles-of-work/

Ссылка

IvyPanda. (2022, 7 марта). Принципы работы газотурбинных двигателей. Получено с https://ivypanda.com/essays/gas-turbine-engines-principles-of-work/

Процитировано

«Принципы работы газотурбинных двигателей». IvyPanda , 7 марта 2022 г., ivypanda.com/essays/gas-turbine-engines-principles-of-work/.

1. АйвиПанда . «Принципы работы газотурбинных двигателей». 7 марта 2022 г. https://ivypanda.com/essays/gas-turbine-engines-principles-of-work/.

Библиография

IvyPanda . «Принципы работы газотурбинных двигателей». 7 марта 2022 г. https://ivypanda.com/essays/gas-turbine-engines-principles-of-work/.

Ссылки

IvyPanda . 2022. «Принципы работы газотурбинных двигателей». 7 марта 2022 г. https://ivypanda.com/essays/gas-turbine-engines-principles-of-work/.

Ссылки

IvyPanda . (2022) «Принципы работы газотурбинных двигателей». 7 марта.

Работает на CiteTotal, простой генератор цитирования эссе

Узнать цену вашей бумаги

Силовая установка MEGI – FLEX LNG

В течение многих лет паровые турбины были единственной силовой установкой для судов, работающих на СПГ, хотя их эффективность была значительно ниже, чем у дизельных двигателей. Основным преимуществом была простота использования отпарных газов паровых котлов для производства пара для паровых турбин. Однако с внедрением установок повторного сжижения и газовых дизелей сегодня появилась возможность устанавливать высокоэффективные дизельные двигатели в качестве первичных двигателей и тем самым значительно сокращать расходы на топливо.

Представляем двухтактный двигатель для газовозов Двигатель M-типа с электронным управлением впрыском газа (MEGI)

В дизельном двигателе MEGI используется принцип сгорания без предварительного смешения (дизельный принцип). Двухтопливный двухтактный двигатель основан на принципе сгорания на тяжелом топливе (HFO) или судовом дизельном топливе (MDO) вместе с природным газом под высоким давлением, где топливо впрыскивается и сжигается напрямую, в отличие от горение с предварительным смешением или циклом Отто.

Вкратце, два или три газовых топливных клапана впрыскивают природный газ под высоким давлением в камеру сгорания, а для обеспечения оптимально контролируемого сгорания небольшое количество пилотного масла впрыскивается одновременно с природным газом через два или три обычных топливных инжектора. .

Двигатель МЭГИ оборудован дополнительными системами безопасности, обеспечивающими безопасную работу на газе без использования разрывных мембран в ресивере продувочного воздуха, ресивере ОГ и трубопроводе ОГ.

Флот FLEX станет одним из самых экономичных и технически совершенных газовозов в мире

Владельцам и операторам предоставляется максимальная гибкость в отношении топлива и, в зависимости от относительной цены и доступности газа и мазута, они могут бесплатно выбрать наиболее конкурентоспособное топливо, так как двигатель работает с одинаковой эффективностью как на газе, так и на топливе. Дизельный цикл обеспечивает стабильное сгорание газа при любых погодных условиях, таких как суровая погода и высокая температура окружающей среды, без риска пропусков зажигания или детонации.

СПГ всех сортов можно сжигать с одинаково высокой эффективностью, и у двигателя нет особых требований к метановому числу. Двухтопливный двигатель может работать на природном газе в диапазоне нагрузок от 10% до 100%. Кроме того, в зависимости от наличия топлива на борту, двигатель может работать на природном газе и HFO/MDO в любом соотношении. Двигатель MEGI зажигается на дизельном топливе, а переход на работу на газе может происходить при 10% нагрузке двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *