Системы впрыска топлива бензиновых двигателей: Системы впрыска бензиновых двигателей

Система впрыска

На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование — инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.

Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.

В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.

Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор).

Системы впрыска бензиновых двигателей

В зависимости от способа образования топливно-воздушной смеси различают следующие системы центрального впрыска, распределенного впрыска и непосредственного впрыска. Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе.

Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели.

Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.

Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).

Для снижения выбросов твердых частиц в атмосферу с отработавшими газами применяется комбинированная система впрыска, объединяющая систему непосредственного впрыска и систему распределенного впрыска на одном двигателе внутреннего сгорания.

Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.

Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.

В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.

Системы впрыска дизельных двигателей

Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.

Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.

Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).

На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска: с рядным ТНВД, с распределительным ТНВД, насос-форсунками, Сommon Rail. Прогрессивные системы впрыска — насос-форсунки и система Сommon Rail.

В системе впрыска насос-форсунками функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Насос-форсунка имеет постоянный (неотключаемый) привод от распределительного вала двигателя, поэтому подвержена интенсивному износу. Это качество насос-форсунки направляет предпочтения автопроизводителей в сторону системы Сommon Rail.

Работа системы впрыска Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы (в переводе common rail — общая рампа). Другое название системы — аккумуляторная система впрыска. Для снижения уровня шума, улучшения самовоспламенения и снижения вредных выбросов в системе реализован многократный впрыск топлива — предварительный, основной и дополнительный.

Системы впрыска дизельных двигателей могут иметь механическое или электронное управление. В механических системах регулирование давления, объема и момента подачи топлива производится механическим способом. Электроника образует систему управления дизелем.

 

 

Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании

дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

 

 

Бензиновые системы прямого впрыска топлива

Концепция впрыска бензина непосредственно в цилиндры двигателя была изобретена шведским инженером Йонасом Хессельманом в 1925 году. Во время Второй мировой войны Германия начала оснащать некоторые свои истребители системой прямого впрыска топлива для предотвращения остановки двигателя. во время скоростных маневров в воздухе. После Второй мировой войны отечественные и импортные производители автомобилей обнаружили, что их попытки механического впрыска бензина непосредственно в цилиндры двигателя были крайне ограничены современными технологиями. Но, несмотря на ряд проблем, связанных с популярным внедрением системы непосредственного впрыска бензина (GDFI), кажется, что большинство ошибок было устранено, и концепция открыла двери для ряда эксплуатационных улучшений.

ИСТОРИЧЕСКАЯ ПЕРСПЕКТИВА
Большинство специалистов по запчастям помнят, что система впрыска дроссельной заслонки (TBI) была одной из первых отечественных систем впрыска топлива, появившихся на рынке. Основная идея TBI состоит в том, чтобы создать систему впрыска топлива, которая могла бы легко заменить карбюратор в существующих двигателях. Для TBI требовался простой компьютер, способный управлять одной или двумя топливными форсунками, распыляющими топливо непосредственно в поток воздуха, поступающий во впускной коллектор. Датчик положения дроссельной заслонки (TPS), датчик температуры охлаждающей жидкости (CTS), датчик абсолютного давления во впускном коллекторе (MAP) и датчик кислорода (O2) были основными датчиками, необходимыми для точного управления подачей топлива в двигатель. Топливо подавалось в двигатель топливным насосом в баке и регулировалось регулятором давления топлива, встроенным в узел TBI.

Несмотря на то, что TBI был чрезвычайно простым, капли топлива отделялись от воздушного потока по мере того, как всасываемый заряд следовал за изогнутыми внешними окружностями впускных каналов. Образовавшийся «влажный поток» или струя жидкого топлива по впускным каналам создавал неравномерное распределение топлива по цилиндрам двигателя.

Чтобы уменьшить расход жидкости и, таким образом, улучшить распределение топлива между цилиндрами, отечественные производители автомобилей внедрили многоточечный впрыск (MPI) на ограниченном количестве автомобилей более высокого класса. Поскольку федеральное правительство установило более строгие стандарты выбросов выхлопных газов и экономии топлива, MPI стала предпочтительной топливной системой для всех отечественных и импортных производителей. Для дальнейшего улучшения распределения топлива цикл впрыска топлива в конфигурациях MPI может быть синхронизирован с открытием впускного клапана двигателя, что еще больше снижает эффект влажного потока во впускных каналах и цилиндрах. К сожалению, распределение топлива внутри цилиндра имело тенденцию оставаться неравномерным, что приводило к незначительной неэффективности сгорания топлива от цилиндра к цилиндру.

ПРЯМОЙ ВПРЫСК ТОПЛИВА
Поскольку автопроизводители должны постоянно соответствовать более строгим федеральным стандартам выбросов выхлопных газов и корпоративной экономии топлива (CAFE), концепция непосредственного впрыска бензина была усовершенствована до такой степени, что эта некогда экзотическая технология теперь предлагается. на нескольких популярных транспортных платформах. Базовая конфигурация GDFI почти такая же, как у обычных систем MPI. Фактически, единственным видимым отличием может быть механический топливный насос высокого давления, установленный на одной из крышек верхнего распределительного вала двигателя.

Большинство систем GDFI включают обычный встроенный в бак модульный электрический топливный насос, который подает нормальное давление топлива на механический насос высокого давления, установленный на двигателе. Отдельный модуль топливного насоса также можно использовать для регулирования скорости и давления насоса в баке.

Давление топливного насоса высокого давления контролируется модулем управления силовым агрегатом (PCM) с помощью датчика и может регулироваться путем изменения объема топлива, поступающего на вход насоса. В то время как удельное давление варьируется в зависимости от различных транспортных средств, большинство насосов высокого давления способны создавать давление топлива не менее 2000 фунтов на квадратный дюйм. Эти чрезвычайно высокие уровни давления топлива необходимы для преодоления давления сжатия и сгорания внутри цилиндра и для впрыска относительно большого объема топлива непосредственно в цилиндр за очень короткий промежуток времени.

В некоторых случаях купол поршня содержит углубление в форме пончика, которое формирует поступающее топливо в виде «тороидального» или круглого шлейфа. Когда двигатель работает в режиме обедненной смеси, тороидальный шлейф позволяет топливу сгорать вместе с воздухом гораздо более контролируемым и эффективным образом.

Для систем GDFI требуются пьезоэлектрические топливные форсунки, способные быстро открывать игольчатые клапаны форсунок при давлении топлива более 2000 фунтов на квадратный дюйм. В отличие от обычных соленоидных топливных форсунок, в пьезоэлектрических топливных форсунках используется набор кристаллических пластин, которые расширяются при подаче электричества. Физическое расширение этих пластин заставляет игольчатый клапан открываться при чрезвычайно высоком давлении топлива. Пьезоэлектрические топливные форсунки работают очень быстро и точно, особенно при высоких оборотах двигателя и давлении топлива.

ПРЕИМУЩЕСТВА GDFI
Наиболее непосредственными преимуществами впрыска бензина непосредственно в цилиндр двигателя являются повышенная экономия топлива и мощность. Поскольку дополнительные функции, такие как изменение фаз газораспределения, изменяемая длина или «настроенные» впускные коллекторы и турбонаддув, могут повлиять на то, как GDFI используется в конкретных приложениях, я буду обсуждать следующие режимы работы GDFI в общих чертах.

Двигатель GDFI может работать в стехиометрическом режиме, на полной мощности и на обедненной смеси. В стехиометрическом режиме 14,7 единиц воздуха смешиваются с 1 единицей бензина (соотношение воздух/топливо 14,7:1) по весу, чтобы создать химически правильную реакцию, которая теоретически производит только углекислый газ (CO2) и воду (h3O). В режиме полной мощности соотношение воздух/топливо смешивается между 13:1 и 14:1 для достижения наибольшей мощности. Эта немного более богатая воздушно-топливная смесь снижает детонацию и смягчает другие проблемы, ограничивающие выходную мощность. Ультрабедная обедненная смесь включает в себя любое соотношение воздух/топливо выше стехиометрического соотношения 14,7:1. Точное сверхбедное соотношение воздух/топливо очень сильно зависит от применения автомобиля, но может превышать 50:1.

Стратегия работы с послойным впрыском топлива (FSI) также может использоваться для повышения экономии топлива. Стратифицированное соотношение воздух/топливо может быть создано путем впрыска обедненной воздушно-топливной смеси в цикл рабочего такта сразу после того, как происходит начальное «обогащенное» сгорание. Из-за различных эксплуатационных проблем, включая износ выпускного клапана, послойный цикл зарядки имеет ограниченное применение в большинстве приложений.

Непосредственный впрыск бензина также позволяет инженерам запускать двигатель, впрыскивая топливо в цилиндр, находящийся в состоянии покоя на рабочем такте. Топливо, впрыскиваемое в цилиндр, затем воспламеняется свечой зажигания, которая создает давление сгорания, толкающее поршень вниз. Следующий цилиндр в последовательности запуска берет на себя поддержание вращения коленчатого вала до тех пор, пока двигатель не достигнет скорости холостого хода.

Этот аспект GDFI позволяет инженерам управлять двигателем в микрогибридном режиме, который позволяет PCM выключать двигатель на светофоре, а затем снова запускать его при нажатии педали газа на дроссельную заслонку. Эта особая функция «стоп-старт» снижает количество расходуемого топлива, поддерживая работу двигателя, когда автомобиль временно останавливается.

Наконец, скрытая теплота испарения топлива, впрыскиваемого непосредственно в цилиндр, фактически охлаждает поверхности поршня и головки цилиндра. Этот технический дивиденд позволяет инженерам увеличить степень сжатия примерно с 9.5:1 до 14:1, что значительно увеличивает мощность и экономию топлива.

ТЕКУЩИЕ ПРОБЛЕМЫ GDFI
Поскольку вычислительная мощность и скорость современных PCM были значительно увеличены, большинство диагностических средств GDFI основаны на сканирующем инструменте. Другими словами, не ищите диагностику на основе симптомов для решения проблем с автомобилями GDFI. Когда в 1996 году Mitsubishi широко представила свои системы прямого впрыска бензина (GDI), большинство первоначальных проблем было вызвано топливом, состав которого был неправильным для систем прямого впрыска топлива. Самой последней проблемой в современных системах GDFI является образование нагара на седлах впускных клапанов, что вызывает потерю герметичности клапанов, что, в свою очередь, вызывает проблемы с пропусками зажигания в цилиндрах.

Поскольку GDFI впрыскивает бензин непосредственно в цилиндры, поступающее топливо не очищает клапаны. Большая часть этого образования нагара вызвана масляным туманом, выходящим из системы принудительной вентиляции картера (PCV) и системой рециркуляции отработавших газов (EGR), поступающей во впускной коллектор. Наконец, механические топливные насосы высокого давления, по-видимому, являются ранней точкой отказа современных серийных автомобилей. Как и в случае с любой системой впрыска топлива под высоким давлением, помните, что система подающего насоса также должна работать правильно, прежде чем можно будет проверить механический насос.

Все специалисты по запчастям также должны знать, что многим производителям может потребоваться полная замена топливной рампы при замене одной топливной форсунки. Поскольку топливные рампы должны безопасно выдерживать давление топлива не менее 2000 фунтов на квадратный дюйм, рампы и другие указанные детали должны быть заменены по соображениям безопасности. Как и в случае с любой новой технологией, информационная система обслуживания профессионального уровня жизненно важна для успешной диагностики исходной проблемы и успешного завершения ремонта.

Гэри Гомс — бывший преподаватель и владелец магазина, который по-прежнему активно работает в сфере послепродажного обслуживания. Гэри является сертифицированным ASE главным автомобильным техником (CMAT) и получил сертификат расширенных характеристик двигателя L1. Он также является выпускником Университета штата Колорадо и состоит в Ассоциации автомобильного обслуживания (ASA) и Обществе автомобильных инженеров (SAE).

Integrated Publishing — ваш источник военных спецификаций и образовательных публикаций

Администрация — Навыки, процедуры, обязанности и т. д. военного персонала

Продвижение — Военный карьерный рост книги и т. д.

Аэрограф/метеорология — Метеорология основы, физика атмосферы, атмосферные явления и др.
Руководства по аэрографии и метеорологии военно-морского флота

Автомобилестроение/Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным деталям, руководства по деталям дизельных двигателей, руководства по деталям бензиновых двигателей и т. д.

Автомобильные аксессуары | Перевозчик, персонал | Дизельные генераторы | Механика двигателя | Фильтры | Пожарные машины и оборудование | Топливные насосы и хранение | Газотурбинные генераторы | Генераторы | Обогреватели | HMMWV (Хаммер/Хамви) | и т. д…

Авиация — Принципы полетов, авиастроение, авиационная техника, авиационные силовые установки, справочники по авиационным частям, справочники по авиационным частям и т. д.
Руководства по авиации ВМФ | Авиационные аксессуары | Общее техническое обслуживание авиации | Руководства по эксплуатации вертолетов AH-Apache | Руководства по эксплуатации вертолетов серии CH | Руководства по эксплуатации вертолетов Chinook | и т.д…

Боевой — Служебная винтовка, пистолет меткая стрельба, боевые маневры, органическое вспомогательное вооружение и т. д.
Химико-биологические, маски и оборудование | Одежда и индивидуальное снаряжение | Боевая инженерная машина | и т.д…

Строительство — Техническое администрирование, планирование, оценка, планирование, планирование проекта, бетон, кирпичная кладка, тяжелый строительство и др.
Руководства по строительству военно-морского флота | Совокупность | Асфальт | Битумный корпус распределителя | Мосты | Ведро, Раскладушка | Бульдозеры | Компрессоры | Обработчик контейнеров | дробилка | Самосвалы | Землеройные машины | Экскаваторы | и т.

д…

Дайвинг — Руководства по водолазным работам и спасению различного снаряжения.

Чертежник — Основы, методы, составление проекций, эскизов и т. д.

Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. д.
Кондиционер | Усилители | Антенны и мачты | Аудио | Батареи | Компьютерное оборудование | Электротехника (NEETS) (самая популярная) | техник по электронике | Электрооборудование | Электронное общее испытательное оборудование | Электронные счетчики | и т.д…

Машиностроение — Основы и приемы черчения, составление проекций и эскизов, деревянное и легкокаркасное строительство и др.
Военно-морское машиностроение | Армейская программа исследований прибрежных бухт | и т.

д…

Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.

Логистика — Логистические данные для миллионов различных деталей.

Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.

Медицинские книги — Анатомия, физиология, пациент уход, средства первой помощи, фармация, токсикология и т. д.
Медицинские руководства военно-морского флота | Агентство регистрации токсичных веществ и заболеваний

Военные спецификации — Государственные спецификации военного образца и другие сопутствующие материалы

Музыка — Мажор и минор масштабные действия, диатонические и недиатонические мелодии, паттерны такта, и т.д.

Основы ядра — Теории ядерной энергии, химия, физика и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *