Степень сжатия дизельного двигателя: Геометрические параметры двигателя: объем и степень сжатия

Что такое степень сжатия

Степень сжатия является величиной, которая характерна для двигателей внутреннего сгорания. Степень сжатия двигателя является отношением полного объема цилиндра к объему камеры сгорания. Другими словами, это отношение объема пространства над поршнем во время его нахождения в НМТ (нижняя мертвая точка) к объему такого же пространства над поршнем при его нахождении в ВМТ (верхняя мертвая точка).

Стоит отметить, что понятие степени сжатия двигателя зачастую ошибочно принимается за показатель компрессии.  Компрессия представляет собой максимальный уровень давления в цилиндре, которое создается в результате движения поршня из НМТ в ВМТ. Показатель компрессии принято измерять в атмосферах, тогда как степень сжатия выражается математически в виде определенного отношения. В качестве примера можно указать степень сжатия 11:1.

Рекомендуем также прочитать статью о том, что такое компрессия в двигателе. Из этой статьи вы узнаете, как измерить компрессию своими руками.

На самом деле показатель степени сжатия условно является разницей давлений в камере сгорания между моментом подачи  топливно-воздушной смеси (или только дизтоплива для дизельных ДВС) в цилиндр и тем моментом, когда происходит воспламенение топливного заряда. Различные двигатели могут иметь разный параметр  степени сжатия, что зависит от типа мотора и его конструктивных особенностей.  Принято выделять низкую или высокую степень сжатия.

Содержание статьи

  • Увеличение степени сжатия: плюсы и минусы
  • Доработка двигателя: изменение степени сжатия
  • Дефорсирование ДВС

Увеличение степени сжатия: плюсы и минусы

Любой ДВС в основе имеет принцип воспламенения смеси воздуха и распыленного топлива в камере сгорания. Результатом сгорания смеси становится тепловое расширение газов, которые толкают поршень. Такая энергия толчка от поршня передается на коленчатый вал двигателя посредством работы КШМ, что означает преобразование сгорания топлива в полезную механическую работу.

Чем большим оказывается показатель степени сжатия двигателя, тем сильнее итоговое давление газов на поршень. Увеличение давления будет означать, что за один такт силовая установка способна выполнить больше механической работы. Если проще, то мощность и отдача от двигателей с большей степенью сжатия выше сравнительно с аналогами, которые имеют меньший показатель. Также необходимо добавить, что количество самого подаваемого топлива в моторах с большей степенью сжатия не увеличивается, при этом такой двигатель имеет больший КПД. Бензиновые двигатели могут демонстрировать показатель степени сжатия от 8 до 12. Что касается дизельных моторов и особенностей воспламенения смеси в таких агрегатах, степень сжатия дизеля выше и находится в рамках от 14 до 18 единиц.

При всех положительных аспектах сильно увеличить степень сжатия не представляется возможным, так как значительное уменьшение объема камеры сгорания приводит к детонации топлива. Детонация в результате увеличения степени сжатия свойственна бензиновым ДВС. Дизельный двигатель, в котором воздух подается и сжимается отдельно, также может детонировать после впрыска дизтоплива. Детонация в дизеле связана с неисправностями топливной аппаратуры, неправильно установленным моментом впрыска, закоксовкой и сильным нагаром в цилиндрах двигателя и т.п.

Большинство современных моторов легковых автомобилей имеют высокую степень сжатия, так как двигатель становится мощнее и экономичнее. Топливно-воздушная смесь в таких ДВС сгорает более полноценно и равномерно, позволяя улучшить ряд характеристик двигателя во всем диапазоне оборотов. Главной особенностью моторов с высокой степенью сжатия является повышенная требовательность к качеству топлива. Для таких силовых агрегатов обязательно использование дорогих марок бензина с высоким октановым числом и солярки с необходимым цетановым числом. Большинство современных бензиновых ДВС предполагают использование топлива с октановым числом не ниже АИ-95 или АИ-98.

Доработка двигателя: изменение степени сжатия

Среди распространенных решений для форсирования двигателя или езды на более дешевом бензине является самостоятельное изменение объема камеры сгорания. Далее мы рассмотрим, как увеличить или уменьшить степень сжатия своими руками.

Если вы планируете форсировать двигатель, тогда степень сжатия нужно увеличить. Следует помнить, что увеличение закономерно приводит к тому, что детонационный порог будет снижен. Слишком высокая степень сжатия для двигателя будет означать, что устранить детонацию при помощи высокооктанового бензина, настройки УОЗ и других манипуляций не получится.

Стоит добавить, что более ощутимый прирост мощности способен обеспечить такой двигатель, который изначально был рассчитан на меньшую степень сжатия. Другими словами, больше мощности после тюнинга выдаст агрегат, штатно имеющий показатель 9:1 и доработанный до 10:1 сравнительно с мотором, который в стоке имел 12:1 и был форсирован путем увеличения показателя степени сжатия до 13:1.

Для прибавки мощности существуют такие способы:

  • доработка ГБЦ и/или установка тонкой прокладки ГБЦ;
  • расточка цилиндров и общее увеличение объема ДВС;

Под тюнингом головки блока в этом случае стоит понимать фрезеровку нижней части, которая стыкуется с блоком цилиндров. ГБЦ таким образом укорачивается, что и приводит к уменьшению камеры сгорания двигателя, а также увеличению степени сжатия. Аналогичную задачу преследует и установка более тонкой прокладки ГБЦ.

Необходимо учитывать, что при таком тюнинге существует риск встречи клапанов с поршнем. Перед началом работ необходимы детальные расчеты. В ряде случаев требуется замена поршней на такие, которые имеют увеличенные выемки под клапан. Фазы газораспределения также сбиваются, что потребует их последующей настройки.

Что касается расточки блока цилиндров, данный способ также требует замены поршней. Результатом становится увеличение рабочего объема ДВС и более высокая степень сжатия, так как объем камеры сгорания по отношению к увеличенному объему цилиндра не меняется.

Дефорсирование ДВС

Вполне очевидно, что после понижения степени сжатия двигатель будет дефорсирован. Делается такая доработка в том случае, если мощность двигателя отодвигается на второй план. Уменьшение степени сжатия позволяет эксплуатировать мотор на низкооктановом бензине без риска появления детонации, что и обеспечивает определенную экономию на разнице стоимости горючего.

Необходимо добавить, что подобное решение зачастую применяется на старых карбюраторных автомобилях. Что касается инжекторных авто с электронным блоком управления, в этом случае данный способ доработки настоятельно не рекомендуется.

Для уменьшения степени сжатия двигателя нужно реализовать увеличение высоты прокладки под ГБЦ. Для этого используются две обычные прокладки, между которыми укладывается третья, изготовленная из алюминия. Результатом станет увеличение высоты ГБЦ и объема камеры сгорания, что позволит в итоге перейти на более дешевый бензин.

Степень сжатия турбированного двигателя и ее изменение

Изменение степени сжатия двигателя

После того, как степень сжатия будет точно определена, перед настройщиком встанет новый вопрос – каким образом добиться необходимой для того или иного случая степени сжатия. В этом плане изначально придется рассчитать, на какое значение придется дополнительно увеличивать камеры сгорания. В целом, выполнить это несложно. Для этого существует специальная формула, по которой вычисляется объем существующей камеры сгорания, из него далее вычитается объем вычисленной таким же образом желаемой камеры сгорания. А разница, которая получится в результате этих вычислений и будет представлена в виде интересующего вас значения, на которое и придется увеличивать камеру сгорания.

Увеличить камеру сгорания сегодня можно самыми разными способами, однако, далеко не каждый из них является верным. В современном автомобильном двигателе камеры сгорания спроектированы таким образом, чтобы в момент достижения поршнем верхней мертвой точки топливовоздушная смесь вытеснялась непосредственно к центральной части камеры. Эту разработку можно назвать самой важной, потому как она действительно эффективно препятствует возникновению детонационного эффекта.

Самостоятельно доработать камеры сгорания в головке блока цилиндров смогут далеко не все специалисты. Обусловлена эта сложность тем, что вы в этом случае рискуете нарушить саму форму камер сгорания, кроме того, при выполнении подобных доработок можно ненароком вскрыть их стенки, потому как толщина стенок никому не известна.

Не рекомендовано в такой ситуации также заниматься разжиманием двигателя с помощью толстых прокладок и любых других способов. Такой подход ведет к нарушению процессов вытеснения в камерах сгорания. Самый же правильный и простой способ – это установка новый поршней с уже заданным необходимым размером камер сгорания. Для турбированных двигателей наиболее эффективной, к примеру, считается сферическая форма камер. Для этих целей также лучше всего воспользоваться специально разработанными, рассчитанными и изготовленными поршнями. Разумеется, всегда можно попробовать доработать штатные поршни, однако в этом случае придется принимать во внимание тот факт, что толщина донной части поршня должна быть не меньше 6% от его общего диаметра.

Степень сжатия в турбированном двигателе

Самая важная и, наверное, самая сложно выполнимая задача в процессе проектирования турбированного двигателя – принять решение по степени сжатия. Как известно, данный показатель способен оказать ощутимое влияние на огромный набор факторов в общих характеристиках автомобиля.

Экономичность, динамика, устойчивость к детонационному эффекту, мощность – каждый из этих факторов в определенной степени зависит именно от степени сжатия. Кроме того, степень сжатия оказывает непосредственное влияние также и на показатели расхода топлива и на конечный состав выхлопных отработавших газов. С теоретической точки зрения, степень сжатия для турбированного двигателя рассчитать достаточно просто. В этом случае для начала стоит разобраться с таким понятием, как геометрическая степень сжатия. Этим термином определяют отношение объема цилиндра двигателя к чистому пространству сжатия. Стоит также помнить о наличии некоторых расхождений между фактической и геометрической степенью сжатия, которые наблюдаются даже на атмосферных двигателях. В турбированных силовых установках к этому же перечню процессов будет также добавлена и топливовоздушная смесь, предварительно сжатая в компрессоре.

В ходе таких расчетов можно прийти к выводу, что чем более высоким будет давление наддува, тем менее выраженным окажется геометрическое сжатие. Впрочем, это лишь теория, потому как все без исключения современные турбированные двигатели работают с куда более высокими значениями. Оптимальная степень сжатия для полноценной работы может быть определена путем сложных термодинамических вычислений, протекающих при непременных испытаниях. Разумеется, что в этом случае речь уже идет о самых настоящих высоких технологиях и максимально сложных расчетах. Впрочем, достаточно большое количество тюнинговых силовых установок собирается, основываясь лишь на наличии определенного опыта, причем, не только собственного, но и заимствованного у крупных производителей автомобилей. Применение таких правил обосновано тем, что в большинстве случаев они оказываются весьма справедливыми.

Существует также ряд весьма важных факторов, способных оказать прямое влияние на расчет степени сжатия, а потому эти факторы стоит также принимать во внимание при разработке очередного проекта. Попробуем перечислить лишь наиболее заметные из них:

— желаемое давление наддува;

— октановое число используемого топлива;

— эффективность работы промежуточного охлаждения – интеркулера;

— форма камер сгорания;

— а также все мероприятия, на которые вы готовы пойти для снижения термальной напряженности непосредственно в камерах сгорания.

Наконец отметим, что добиться частичной компенсации значительно повысившихся нагрузок можно также и посредством манипуляций с углом опережения зажигания. Впрочем, это уже тема для совсем другого разговора.

Дизельные двигатели — Mypdh.engineer

Дизельный двигатель аналогичен бензиновому двигателю, используемому в большинстве автомобилей. Оба двигателя являются двигателями внутреннего сгорания, то есть они сжигают топливно-воздушную смесь внутри цилиндров. Оба являются поршневыми двигателями, приводимыми в движение поршнями, движущимися в двух направлениях. Большинство их частей похожи. Хотя дизельный двигатель и бензиновый двигатель работают с аналогичными компонентами, дизельный двигатель по сравнению с бензиновым двигателем равной мощности тяжелее из-за более прочных и тяжелых материалов, используемых для противостояния большим динамическим силам от более высоких давлений сгорания, присутствующих в дизельном топливе. двигатель.

Более высокое давление сгорания является результатом более высокой степени сжатия, используемой в дизельных двигателях. Степень сжатия является мерой того, насколько двигатель сжимает газы в цилиндре двигателя. В бензиновом двигателе степень сжатия (контролирующая температуру сжатия) ограничена топливно-воздушной смесью, поступающей в цилиндры. Более низкая температура воспламенения бензина приведет к его воспламенению (сгоранию) при степени сжатия менее 10:1. Средний автомобиль имеет степень сжатия 7:1. В дизельном двигателе обычно используется степень сжатия от 14:1 до 24:1. Более высокие степени сжатия возможны, потому что сжимается только воздух, а затем впрыскивается топливо. Это один из факторов, который позволяет дизельному двигателю быть таким эффективным. Степень сжатия будет обсуждаться более подробно позже в этом курсе.

Еще одно различие между бензиновым двигателем и дизельным двигателем заключается в способе управления частотой вращения двигателя. В любом двигателе скорость (или мощность) напрямую зависит от количества топлива, сжигаемого в цилиндрах. Бензиновые двигатели самоограничивают скорость из-за метода, который двигатель использует для контроля количества воздуха, поступающего в двигатель. Скорость двигателя косвенно контролируется дроссельной заслонкой в ​​карбюраторе. Дроссельная заслонка в карбюраторе ограничивает количество воздуха, поступающего в двигатель. В карбюраторе скорость потока воздуха определяет количество бензина, которое будет смешиваться с воздухом. Ограничение количества воздуха, поступающего в двигатель, ограничивает количество топлива, поступающего в двигатель, и, следовательно, ограничивает скорость двигателя. Ограничивая количество воздуха, поступающего в двигатель, добавление большего количества топлива не увеличивает скорость двигателя выше точки, при которой топливо сжигает 100% доступного воздуха (кислорода).

Дизельные двигатели не имеют самоограничения скорости, потому что воздух (кислород), поступающий в двигатель, всегда является максимальным. Поэтому частота вращения двигателя ограничивается исключительно количеством топлива, впрыскиваемого в цилиндры двигателя. Таким образом, в двигателе всегда достаточно кислорода для сгорания, и двигатель будет пытаться разогнаться, чтобы соответствовать новой скорости впрыска топлива. Из-за этого ручное управление подачей топлива невозможно, поскольку эти двигатели в ненагруженном состоянии могут разгоняться со скоростью более 2000 оборотов в секунду. Дизельным двигателям требуется ограничитель скорости, обычно называемый регулятором, для контроля количества топлива, впрыскиваемого в двигатель.

В отличие от бензинового двигателя, дизельному двигателю не требуется система зажигания, потому что в дизельном двигателе топливо впрыскивается в цилиндр, когда поршень достигает верхней точки такта сжатия. Когда топливо впрыскивается, оно испаряется и воспламеняется за счет тепла, создаваемого сжатием воздуха в цилиндре.

Что такое степень сжатия — бензиновый и дизельный двигатель?

Введение

Когда речь идет о двигателе внутреннего сгорания, мы часто говорим о выходной мощности. На протяжении более века проводились различные исследования для изучения и изменения факторов, влияющих на выходную мощность двигателя внутреннего сгорания, конфигурация двигатель, такой как CC, решается после этих различных исследований. Теперь давайте просто подумаем, влияет ли размер цилиндра на выходную мощность двигателя? Какое влияние конфигурация двигателя, такая как кубатура, оказывает на мощность двигателя?

Что такое степень сжатия?

Степень сжатия (CR) двигателя внутреннего сгорания представляет собой отношение общего объема камеры сгорания к объему, оставшемуся после полного сжатия, т. е. объему клиренса. Проще говоря, это отношение между общим объемом камеры сгорания, который остается, когда поршень находится в своей нижней мертвой точке, и объемом, остающимся внутри камеры сгорания, когда поршень перемещается в свою верхнюю мертвую точку.

 

Например, рассмотрим двигатель с общим объемом 1000 куб. см, из которых 900 куб. см — это рабочий объем, т. е. объем, покрываемый поршнем, когда он движется от НМТ к ВМТ, и имеющий клиренс 100 куб. см, т. е. объем, остающийся внутри цилиндра, когда поршень достиг своей ВМТ. Так что степень сжатия этого двигателя будет 1000:100 или 10:1.

Установлено, что чем больше степень сжатия, тем больше будет выходная мощность двигателя.

Степень сжатия дизельного двигателя намного выше, чем у бензинового двигателя. то есть для бензинового двигателя CR варьируется от 10: 1 до 14: 1, а для дизельных двигателей CR варьируется от 18: 1 до 23: 1.

Читайте также:

  • Двигатель с воспламенением от сжатия – определение, основные компоненты, применение
  • Как работает автомобильная система кондиционирования воздуха? – Хорошее пояснение
  • Диаграмма фаз газораспределения двухтактного и четырехтактного двигателя

Какая степень сжатия требуется?

Степень сжатия (CR) двигателя внутреннего сгорания является конструктивным критерием, который должен быть определен группой разработчиков при проектировании двигателя; CR выбирается в соответствии с потребностью двигателя в мощности, поскольку он напрямую влияет на мощность двигателя, а также на общий размер двигателя.

Потребность в CR различна для дизельных и бензиновых двигателей:

1. Бензиновый двигатель —

Если мы говорим о 4-тактном бензиновом двигателе, то степень сжатия имеет свое значение:

  • Как мы все знаем, в бензиновом двигателе воздушно-топливная смесь поступает в камеру сгорания во время такта всасывания, и для правильного смешивания и правильного сгорания этой воздушно-топливной смеси требуется сжатие этой смеси, которое производится двигателем в его такт сжатия, поэтому для правильного сгорания топливно-воздушной смеси требуется хорошая степень сжатия бензинового двигателя, что, в свою очередь, обеспечивает лучший тепловой КПД.
  • Давление внутри цилиндра увеличивается во время такта сжатия, что, в свою очередь, повышает температуру воздушно-топливной смеси, что приводит к полному или правильному сгоранию топлива, когда свеча зажигания производит искру, что, в свою очередь, обеспечивает лучшую экономию топлива, а также предотвращает двигатель с различными дефектами вроде стука.
  • Бензиновый двигатель с надлежащим CR обеспечивает сбалансированное количество мощности и скорости.
  • Бензиновый двигатель обычно имеет степень сжатия от 10:1 до 14:1 в зависимости от области применения и конструктивных требований.

 2.  Дизельный двигатель-

Для дизельных двигателей степень сжатия имеет большее значение, так как

  • любая свеча зажигания, поэтому сгорание топлива полностью зависит от сжатия воздуха, обеспечиваемого тактом сжатия дизельного цикла, из-за чего дизельный двигатель также известен как двигатель с воспламенением от сжатия.
  • Дизельный двигатель с высокой степенью сжатия обеспечивает двигателю высокую степень сжатия, т.е. обеспечивает высокий подъем давления, что необходимо для повышения температуры сжатого воздуха до температуры самовоспламенения топлива, которое должно распыляться топливные форсунки, которые, в свою очередь, обеспечивают полное или правильное сгорание топлива.
  • Дизельные двигатели известны тем, что обеспечивают высокую выходную мощность, что связано с высокой степенью сжатия дизельного двигателя, поскольку мы знаем, что чем выше CR, тем выше будет тепловой КПД или производительность.
  • Дизельный двигатель с высоким CR обеспечивает высокую экономию топлива благодаря более высокому тепловому КПД, обеспечиваемому сгоранием при высокой степени сжатия.
  • Дизельные двигатели обычно имеют более высокую степень сжатия, варьирующуюся от 18:1 до 23:1 в зависимости от области применения и конструктивных требований.

Читайте также:

  • Как работает двигатель с искровым зажиганием?
  • Как работает антиблокировочная тормозная система (ABS)?
  • Как работает двигатель DTSi – объяснение?
1. Длина хода –

Длина хода двигателя – длина камеры сгорания или расстояние между ВМТ и НМТ цилиндра двигателя, степень сжатия зависит от длины хода, чем больше длина хода цилиндра двигателя выше будет его CR.

2. Диаметр отверстия —

Форма цилиндра двигателя цилиндрическая, поэтому диаметр отверстия двигателя — это диаметр или внутренний диаметр цилиндра двигателя, внутри которого движется поршень. Степень сжатия двигателя зависит от диаметр отверстия, чем больше диаметр отверстия двигателя, тем выше будет степень сжатия.

3. Квадратный двигатель –

Это двигатели типа , в которых длина хода цилиндра равна диаметру отверстия цилиндра двигателя, что обеспечивает надлежащий баланс мощности и скорости.

Примечание –  В этом мире практически ни один двигатель не является квадратным двигателем, но двигатели формулы 1 сделаны приблизительно квадратными.

4. Количество цилиндров –

Количество цилиндров также влияет на CR двигателя, поскольку двигатель с большим количеством поршней обеспечивает более высокую степень сжатия.

Таким образом, из приведенных выше критериев проектирования можно сделать вывод, что двигатели большего размера имеют более высокую степень сжатия, чем двигатели меньшего размера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *