Турбиновый двигатель: принцип работы, плюсы и минусы

Содержание

Турбированный двигатель – ответы на все вопросы

Содержание статьи:

Я думаю, вы слышали фразу: «турбина», «турбированный», «турбонаддув» и т.д. Но не все точно знают значение этих слов и почему двигатель с наддувом называют турбированным – это не всегда верно. Ведь в нем может и не быть турбины. Эту разницу рассмотрим позже, когда разберемся с самим понятием, и как работает турбомотор.

Ответим на все вопросы, возникающие в умах неискушенных автолюбителей. Я уверен, что после прочтения этого материала, вы будите самым «подкованным» в вопросе турбонагнетателей. Сможете друзьям по гаражам рассказать, чем отличается турбированный мотор от атмосферного и какие в нем плюсы и минусы. Затронем вопрос масла, какое заливать в такие силовые агрегаты.

Давайте начнем с определения, что это такое. Пойдем дальше, повышая ваш уровень знаний.

Что такое турбированный двигатель и что это значит

Вы уже знаете, что в природе существуют обычные атмосферные двигатели, MPI моторы с распределенным впрыском топлива. Те же атмосферники, но конструкторы заморочились с дополнительными форсунками на каждый цилиндр (не путаем с непосредственным впрыском). Все они работают за счет всасывания воздуха самим силовым агрегатом. Давление во впускном коллекторе атмосферное, поэтому они так называются.

В конце 19, начале 20 века многие инженеры задумывались о повышении мощности за счет сжатия воздуха, подаваемого в камеры сгорания. Некий Альфред Бюхи в 1911 году запатентовал принцип турбонаддува. Он же смог впервые осуществить принудительное нагнетание воздуха в ДВС и увеличить его мощность на 120% . С того времени началась эра турбированных моторов.

Заканчиваем с историей, переходим к физике. Горение топлива в камерах цилиндров происходит с присутствием в них воздуха. Чтобы повысить мощность, нужно больше подать в них бензина. Но большое количество «горючки» не сможет воспламениться без повышенного количества кислорода, значит, его тоже нужно увеличить. А его увеличение возможно только за счет увеличение рабочего объема цилиндра. До определенного времени так оно и было. Безразмерно росли размеры двигателей – три, четыре, шесть литров с целью наращивания лошадиных сил.

Это приводило к большому потреблению топлива, а значит повышенным выбросам вредных веществ в атмосферу. Это экологам не понравилось. Они на государственном уровне стали лоббировать запрет на многообъемные силовые агрегаты. В результате автопроизводителям запретили безразмерно «раздувать» ДВС, ввели экологические нормы. В этот момент они вспомнили про принудительный наддув воздуха.

Им пришлось научиться к моторам, с малым рабочим объемом, прикручивать турбину или компрессор. Кстати, разница между этими двумя понятиями есть, об этом я подробно писал в статье «Отличия и достоинства компрессора и турбины для автомобиля». Поэтому, не стоит путать эти два определения. Назначение одинаковые, но принципы работы разные.

Простыми словами: турбированный двигатель – это «обычный» атмосферный мотор, к которому прикрутили турбинку.

Что дает турбина

Она увеличивает мощность силового агрегата. Пусть то будет бензиновый или дизельный ДВС. Мощность и крутящий момент с одного кубического сантиметра полезного объема цилиндра, возрастает в разы, в сравнении с «атмосферниками».

Кроме возросших лошадиных сил получаем экономию топлива, а соответственно – меньше вредных выбросов. Экологи испытывают экстаз. Есть свои недостатки, о них позже. Появилась проблема «турбоямы» – когда при резком нажатии на педаль газа на низких оборотах, автомобиль рычит, но не едет. Подхват начинается, когда мотор раскручивается до 2500-3000 оборотов в минуту. Это связано с особенностями работы турбины.

Рекомендую к прочтению: «Термотрансферная печать и ее преимущества»

Принцип работы турбонагнетателя

На гражданском автомобиле он представляет собой агрегат, состоящий из двух камер – горячей и холодной. Они герметически изолированы друг от друга. В них находится крыльчатка, лопасти вентилятора в каждой из них. Они насажены на общий вал. При вращении одной, синхронно вращается другая.

Нагнетание воздуха во впускной коллектор происходит крыльчаткой холодной части турбины. Воздух засасывается с улицы, сжимается, под давление поступает в цилиндры турбодвигателя.

Чтобы раскрутить лопасти холодной камеры, нужна энергия. А где ее взять? Догадались использовать энергию выхлопных газов. Они из выхлопного коллектора поступают в горячую часть турбинки, раскручивают крыльчатку. Она в свою очередь разгоняет лопасти холодной камеры, которые всасывают уличный воздух. Вот так, без дополнительных затрат энергии получилось принудительно надувать кислород в камеры сгорания.

Поэтому возникает эффект «турбоямы». При маленьких оборотах ДВС, скорости отработанных газов недостаточно, чтобы раскрутить крыльчатки. В холодной части не создается достаточного давления, всасывается воздуха меньше, чем необходимо. Поэтому происходит кратковременный провал мощности при резком нажатии на педаль газа. Нужно крутить мотор, чтобы он вышел на рабочие обороты, и смог «надуть» цилиндры. Скорость вращения крыльчаток турбоагрегата доходит до 100-150 тысяч об/мин.

Именно из-за того, что турбонагнетатель работает за счет энергии выхлопных газов и вращается с большой скоростью, у турбомоторов возникает ряд определенных проблем. Поэтому их многие недолюбливают, обходят стороной при покупке.

Атмосферный двигатель или турбированный – какой лучше

Для сравнения, рассмотрим достоинства и недостатки турбодвигателей. Хочу сразу сказать, что многие минусы могут быть минимизированы правильным обслуживание, соблюдением рекомендаций. Об этом поговорим позже.

Недостатки:

  1. Качество топлива.
  2. Качество масла.
  3. Турбояма.
  4. Необходимость остужать турбонагнетатель после длительной поездки на «холостых».
  5. Небольшой ресурс.
  6. Расход топлива и масла.

Разберем подробно каждый пункт.

1. Чем хуже бензин, тем он хуже сгорает. Так как турбина работает за счет выхлопных газов, на крыльчатке горячей части турбонагнетателя образуется нагар от несгоревшего топлива. Он со временем увеличивается, уменьшая эффективность наддува, сокращая срок службы лопастей и самого агрегата.

2. В турбированных нагнетателях используются подшипники скольжения. Они смазываются моторным маслом. Если его качество будет низкое или оно будет старое, подшипник разрушиться. Плюс ко всему высокие температуры от отработанных газов, просто могут «поджарить» его, оставив в подшипнике отличный нагар, который впоследствии «сожрет» его поверхности скольжения.

3. В последнее время инженеры научились уменьшать негативный эффект от этого явления. Используют системы с двумя турбокомпрессорами – битурбо или твин-турбо. Устанавливаются турбины с изменяемой геометрией, способные раскручиваться с самых низов.

4. Причину подробно описывал в этой статье, повторяться не буду. Знайте, дайте поработать ДВС на холостом ходу несколько минут, чтобы масло остудило подшипник и оно там не пригорело. Не рекомендуется глушить турбодвигатель сразу.

5. В некоторых случаях турбина «ходит» максимум до 150 тыс. километров пробега. Чаще её срок эксплуатации заканчивается на 100 тысячах. Большие нагрузки, температуры, да и не все соблюдают регламент обслуживания. Где-то, что-то сэкономить – вот главный девиз многих автовладельцев.

6. Это спорный вопрос. Если сравнивать турбодвигатель и атмосферный мотор одного объема, то расход у турбированного будет выше. Но и мощность будет выше, значит динамика лучше. Вы куда-то сможете поехать, а не пытаться обогнать велосипедиста всю дорогу.

7. Например. Два мотора объемом 1,4 с турбиной и без нее. У одного 150 лошадиных сил, у второго 70 лошадок. У первого расход будет выше – 6-8 литров, у второго 4-5 литра на сто километров. Но с каким двигателем вы получите больше удовольствия от вождения? Для городской езды атмосферника вполне может хватить, если кто привык ездить в стили сонной черепахи. Поэтому каждый должен для себя сам решить, атмосферный мотор или турбированный выбирать в плане экономии бензина.

8. По поводу смазочных материалов.

Вопреки расхожему мнению, которое активно культивируют противники турбомоторов, исправный турбонагнетатель не «жрет» масло.

Если заметите небольшую посадку уровня на щупе, то он, возможно, садится из-за двигателя, угорает от его «высочайшего качества» или ошибок в конструкции. Помните эпопею с масложором фольксвагеновских моторов? Если турбина «подходит» к концу, тогда да, маслице через подшипник может вылетать как во впускной коллектор, засерая интеркулер, воздушные заслонки, впуск или в выпускной – привет катализатору или сажевому фильтру в случае с дизелем.

Плюсы:

  1. Мощность и динамика разгона. Больше лошадиных сил с одного кубического сантиметра полезного объема двигателя.
  2. Расход топлива. Если сравнивать с аналогичным атмосферным ДВС такой же мощности. Например, лошадиных сил по 150, но у атмосферника объем 2 литра, у турбированного – 1,4. Значит, последний будет меньше потреблять горючки, при одинаковой мощности. Вы будите радоваться такой же динамике, но не считать деньги на заправке.
  3. Вес и размер. Маленький рабочий объем – меньше габариты и вес силового агрегата. В свое время были исследования, что если сократить массу автомобиля или его агрегатов на 50 килограмм, то расход топлива уменьшиться в пределах 1 литра на 100 километров.

А теперь делайте выводы, что для вас лучше, турбированный двигатель или атмосферный. Вам нравится быстро ездить и экономить на топливе, но тратиться больше на обслуживание, или «надежность» атмосферных лошадиных сил? Насчет последнего могу поспорить, особенно это касается моторов Киа Спортаж и Хёндай Сантафе – сто тысяч и привет – капиталка.

Рекомендуется при покупке подержанного автомобиля тщательно диагностировать турбину не предмет масленых потеков и посторонних звуков во время ее работы. Если они есть, возможно скоро придется её ремонтировать или менять.

Моторные масла

Масло для турбированных бензиновых или дизельных двигателей должно соответствовать рекомендациям завода-изготовителя авто. Не поленитесь, найдите инструкцию по эксплуатации. Там должно быть все подробно описано, начиная от  допусков, заканчивая стандартами и вязкостью.

Если таковую не нашли, то рекомендуется использовать синтетические масла вязкостью 30. Например 5W-30 или 0W-30. Обязательно смотреть допуск. Например, для турбодвигателей Skoda он составляет 502,00. На канистре обозначается 502000.

Хочется еще отметить, что вязкость изменяется от температурного режима, где оно работает. В подшипнике турбины температура достигает больших значение. Чем выше она, тем вязкость становится ниже. Значит, нам нужно масло, которое сможет сохранять свои характеристики при температурах выше 100 градусов.

За это отвечает критерий «кинематическая вязкость». В 0W-40 она составляет 12,5. Вязкость W-30 – 9,3. Использовать ГСМ с более низкой вязкостью может быть опасно. При высоких температурах оно станет жидким, плохо будет смазывать поверхности подшипника турбины. Например, концерн Шкода рекомендует для своих турбированных двигателей заливать масло 0W-40.

Опять, смотрим допуск, Shell Ultra 0W-40 находится в заводском допуске, 0W-30, которое любит лить дилер – 504, небольшое отклонение от допустимого значения заводом-изготовителем моторов. Источник: drive2.ru

Вторым главным критерием масла для турбированных двигателей – периодичность замены. В этом случае не стоит обращать внимание на заводские рекомендации. В большинстве случаев они уходят далеко за 10 тысяч километра пробега. Этого делать нельзя.

Редакция «За рулем» провела испытание масел на разных пробегах. Пришла к выводу, что если мотор и турбина эксплуатируется в теплое время года и не имеют большого износа, то можно придерживаться заявленного заводом интервала замены масла. Если движок и его агрегаты уже «видали виды», то интервал нужно сократить. Вязкость при высоких температурах, которые наблюдаются в турбонагнетателе, при больших пробегах возрастает, что свидетельствует таблица результатов теста:

Рекомендуется на подержанных автомобилях менять масло не реже чем 7-8 тысяч километров. Это будет полезно для двигателя и для турбины. Вы сильно не разоритесь, но срок замены турбинки отодвинете.

Кроме того. Если у вас трассовый пробег, то желательно интервал замены масла в турбомоторах сократить до 5-6 тысяч. Это связано с постоянными нагрузками на турбонагнетатель, постоянным её разогревом. В городе он испытывает меньше нагрузок, так как работает в пол силы.

Важно! При городском пробеге рекомендуется ориентироваться не на километры пройденного пути от замены до замены масла, а на моточасы. Об этом подробно написано здесь.

Газовое оборудование

На турбодвигатели можно ставить газобаллонное оборудование. Есть ограничение. На подобные силовые агрегаты устанавливается только четвертое и пятое поколение ГБО. Более старые модификации устанавливать категорически нельзя. Это связано с невозможностью получить корректную топливовоздушную смесь. Что влечет к детонации и прогару выпускных клапанов и последующему разрушению турбины.

Отличие четвертого от пятого поколения газового оборудования для турбированного двигателя заключается:

  1. Использование в 5 модификации более точного оборудования и способа подачи газа. Он поступает к газовым форсункам в жидком виде, в четвертом – в газообразном.
  2. Пятое поколение персонализировано. То есть, на конкретный мотор устанавливается определенный комплект ГБО, перенести его на другой нельзя.
  3. Срок службы 5 поколения рассчитан на весь период эксплуатации турбомотора.

Главный плюс газового оборудования для турбированных двигателей – экономия на топливе. Газ не имеет присадок, поэтому масло в паре с ним меньше окисляется, дольше сохраняет свои физические свойства.

Вывод

Заканчиваем словесный понос накуренного моториста, подведем итог. Турбированный двигатель – обычный мотор с турбиной. В угоду экологическим нормам и сокращению потребления топлива инженеры были вынуждены уменьшать объемы силовых агрегатов. Пользователи хотели больше мощности, поэтому пришлось «тулить» турбонагнетатель или компрессор.

Все недостатки турбомоторов перекрывает хорошая динамика автомобиля при небольших размерах ДВС и значительная экономия топлива в сравнении с большими моторами схожей мощности. Если хотите надежность – выбирайте атмосферники. Но стоит помнить, что это уже не те двигатели в стиле BSE от Фольксваген, где пробег до капиталки мог доходить до 500 тысяч километров.

Если сравнивать турбированные и атмосферные, то в современных реалиях выбор склоняется в сторону первых. При должном уходе вы получите удовольствие от вождения такого автомобиля. Да, затраты на его содержания будут выше, но незначительнее, чем у современных GDI-моторов, например.

Масло льем только качественное, стараемся покупать у проверенных продавцов. Экономия выйдет боком. Бензин – не ниже 98. В регионах 95 будет по качеству как 92, помните об этом. Интервал замены – 7-8 тысяч километров, если авто с пробегом, то чаще.

ГБО можно смело ставить. Только на силовые агрегаты с турбонаддувом устанавливаются 4 и 5 поколения казовое оборудование. Рекомендуется именно последняя модификация. Она дороже, но эффективнее и надежнее.

Почему турбированный двигатель автомобиля лучше, чем обычный?

Привычные атмосферные бензиновые двигатели, которые раньше демонстрировали престижность и высокий класс автомобиля, сегодня вытесняются турбированными моторами. Наддувные движки даже с маленьким объемом позволяют развить высокую скорость. При этом российские автовладельцы все еще не доверяют турбомоторам. Мы сравним турбированные движки и атмосферные, чтобы понять, какие из них лучше.

Чем отличается современный турбодвигатель от атмосферного

Различие этих двух вариантов моторов заключается в технологии поступления воздуха. В атмосферном силовом агрегате воздух проходит туда, где наблюдается более низкое давление. Он проникает в цилиндры под влиянием разрежения, которое создается на такте впуска. Поршень притягивает воздух.

Надувные силовые агрегаты работают по другой схеме. Чтобы в цилиндры попал воздух, применяется принудительный наддув. На впуске установлен своеобразный вентилятор.

Чтобы мощность силового агрегата увеличилась, в нем должно сгореть как можно больше топлива. Вызвать сгорание горючего может большой объем воздуха. На 1 л топлива требуется примерно один куб. м воздуха. Добиться этого можно двумя способами:

  • сделать ДВС больше. Несколько лет назад конструкторы пытались использовать эту схему и увеличивали объемы цилиндров и их количество. Так были созданы двигатели W12 и V16, имеющие объем 100 л. Но такая схема оказалась нецелесообразной, поскольку в итоге мотор получался очень тяжелым;

  • повысить объем сжигаемого топлива без расширения объема движка.

    Эта технология более целесообразна. Она предполагает принудительный наддув воздуха в цилиндре.

 

Рассмотрим принцип работы турбокомпрессора, на основе которого в цилиндры нагнетается много воздуха:

  1. Воздух нагнетается в воздушный фильтр, а затем на турбокомпрессор.

  2. После этого он сжимается и повышает объем кислорода. При сжатии воздушных масса происходит их нагрев, что уменьшает плотность воздуха.

  3. Из турбокомпрессора воздух передается в интеркулер, где он охлаждается. После восстановления температуры повышается его плотность, что еще и сокращает риск детонации ТВС.

  4. После этого воздух переходит через дроссель во впускной коллектор, а затем поступает в цилиндры силового агрегата. Кислорода в нем оказывается намного больше, чем в «атмосфернике». Большой объем кислорода дает возможность сжигать огромное количество горючего. В результате этого мощность двигателя увеличивается.

  5. После сгорания ТВС выходит в выпускной коллектор, а затем горячей воздушный поток оказывается в турбине.

  6. В процессе прохождения через турбину отработанные газы поворачивают вал турбины. Так происходит сжатие воздуха. Температура выхлопных газов становятся ниже, снижается давление, поскольку некоторое количество энергии тратится на поддержание функционирования компрессора.

В зависимости от вида движка и его комплектации турбокомпрессор может быть оборудован различными элементами:

  • blow-off. Это перепускной клапан, который предотвращает переход компрессора на режим Surge. Если дроссель внезапно закрывается, скорость воздушного потока в системе стремительно сокращается. При этом турбина еще поворачивается по инерции некоторое время с той же скоростью. Это приводит к перепадам давления за компрессором. Режим Surge может привести к поломке опорных подшипников турбины. Blow-off определяет момент внезапного закрытия заслонки и уводит в атмосферу лишнее давление, защищая турбокомпрессор от поломки;

  • wastegate. Это механический клапан, который контролирует давление, производимое турбокомпрессором. Большое количество бензиновых движков работает с Wastegate. Главной задачей этого клапана является создание свободного выхода выхлопов из системы, исключая прохождения через турбину. Это позволяет отслеживать энергию газов, регулировать давление наддува.

Почему турбодвигатель лучше, чем обычный

Современные турбодвигатели автомобилей имеют множество плюсов:

  1. Хорошие показатели крутящего момента. Разгон автомобиля с любым видом коробки передач зависит от того, насколько быстро движок может достичь наивысшей мощности. Важно, чтобы мотор на маленьких оборотах мог обеспечивать хороший крутящий момент. Современные турбо двигатели изготавливают так, что повышенное давление наддува создается достаточно быстро. В итоге даже на невысоких оборотах можно получить отличный крутящий момент. Поскольку рост крутящего момента может вызвать высокую нагрузку на двигатель, в работу включается перепускной клапан. Он направляет потоки воздуха в обход турбины. Получается ровная полка крутящего момента. В «атмосфернике» такая полка отсутствует, поскольку тяга зависит от оборотов движка. Атмосферные движки на невысоких оборотах обеспечивают не такой же высокий крутящий момент, для получения хорошей динамики его нужно постоянно увеличивать.

  2. Низкий расход топлива. Часть энергии отработанных газов атмосферных двигателей выходит вместе с выхлопами. В современном наддувном моторе используется давление и температура отработанных газов. Это экономит энергию и позволяет автомобилю развивать высокую скорость. Процесс заполнения цилиндров горючим полностью контролирует электроника. Наполнение атмосферных моторов зависит от температуры воздуха снаружи, оборотов коленвала, атмосферного давления и т.д.

  3. Меньший вес. Поскольку турбомоторы имеют не очень большой объем, их масса невелика. При этом турбодвигатель обеспечивает высокую мощность.

 

Можно уверенно сказать, что новые турбодвигатели значительно превосходят атмосферные. И все же большинство выпускаемых легковых авто оборудуются старыми «атмосферниками». Это объясняется несколькими недостатками турбомоторов:

  • небольшой ресурс турбин. Как правило, турбина бензинового мотора служит до 150 тыс. км. Ее ремонт обходится дорого;

  • работа двигателя в неблагоприятных условиях. Поскольку давление и температура в цилиндрах турбины выше, это ускоряет износ мотора;

  • нестабильная тяга. На старых наддувных движках турбине требовалось некоторое время, чтобы заставить вращаться крыльчатку. Но новые технологии решили эту проблему.

Если вы приобретаете новое авто, выбирайте его с турбированным двигателем. Оно будет более экономичным и мощным. При бережной эксплуатации мотор долго не выйдет из строя. Если вы приобретаете подержанную машину, учитывайте пробег и состояние движка. Если автомобиль уже проехал 100 000 км, есть смысл заменить двигатель turbo на новый.

Приобрести новые и подержанные автомобили с турбированными двигателями можно у официального дилера РОЛЬФ. Компания предлагает широкий портфель брендов. Клиенты могут воспользоваться программой лояльности или выгодно оформить автокредит, подобрать оптимальную программу страхования. РОЛЬФ – лидер рынка и надежный партнер для клиентов.

25.08.2022

Турбинные двигатели — Glenn Research Center

На этой странице:

Газотурбинная тяга

Тяга и сила

Тяга — это сила, которая перемещает любой самолет по воздуху. Тяга создается двигательной установкой самолета. Различные двигательные установки развивают тягу по-разному, но вся тяга создается за счет применения третьего закона Ньютона. На каждое действие есть равное и противоположное противодействие. В любой силовой установке рабочая жидкость  ускоряется системой, и реакция на это ускорение создает силу в системе. Общий вывод уравнения тяги показывает, что величина создаваемой тяги зависит от массового расхода через двигатель и скорости газа на выходе.

Газотурбинный/реактивный двигатель

Во время Второй мировой войны в Германии и Англии независимо друг от друга был разработан новый тип авиационного двигателя. Этот двигатель назывался газотурбинным двигателем . Мы иногда называем этот двигатель реактивный двигатель . Ранние газотурбинные двигатели работали так же, как ракетный двигатель, создавая горячий выхлопной газ, который пропускался через сопло для создания тяги. Но в отличие от ракетного двигателя, который должен нести кислород для сгорания, газотурбинный двигатель получает кислород из окружающего воздуха. Газотурбинный двигатель не работает в открытом космосе, потому что там нет окружающего воздуха. Для газотурбинного двигателя ускоренный газ или рабочее тело является реактивным выхлопом. Большая часть массы реактивного выхлопа приходится на окружающую атмосферу. Большинство современных высокоскоростных пассажирских и военных самолетов оснащены газотурбинными двигателями. Поскольку газотурбинные двигатели так важны для современной жизни, мы будем предоставлять много информации о газотурбинных двигателях и их работе.

Газотурбинный двигатель

Газотурбинные двигатели бывают самых разных форм и размеров из-за множества различных задач самолетов. Однако все газотурбинные двигатели имеют некоторые общие детали. На слайде мы видим фотографии четырех разных самолетов, оснащенных газотурбинными двигателями. Каждый самолет имеет уникальную миссию и, следовательно, уникальные требования к силовой установке. Вверху слева — авиалайнер DC-8. Его задача — перевозить большие грузы пассажиров или грузов на большие расстояния на высокой скорости. Он проводит большую часть своей жизни в высокоскоростном круизе. Внизу слева — истребитель F-14. Его задача — сбивать другие самолеты в воздушном бою. Он проводит большую часть своей жизни в крейсерском режиме, но в бою ему требуется большое ускорение. Внизу справа грузовой самолет С-130. Как и DC-8, он перевозит грузы на большие расстояния, но не требует высокой скорости, как DC-8. Справа вверху — учебно-тренировочный Т-38. Он используется для обучения пилотов управлению реактивными самолетами и не имеет требований к ускорению F-14. DC-8 оснащен четырьмя ТРДД большой двухконтурности, F-14 — двумя ТРДД малой двухконтурности с дожиганием, C-130 — четырьмя ТРД, а Т-38 — двумя ТРД.

Турбинный двигатель

Интерактивный симулятор реактивного двигателя — это интерактивный Java-апплет, позволяющий изучать различные типы реактивных двигателей. Вы можете изучить основы движения газотурбинного двигателя с помощью симулятора EngineSim. RangeGames – это интерактивный Java-апплет, который позволяет вам изучать, как разные типы самолетов используют разные типы двигателей для выполнения своих задач.

Главная | Решения для газотурбинных двигателей

Предоставление лучших услуг

Турбинный двигатель


Ремонт и капитальный ремонт

Turbine Engine Solutions — это независимое предприятие по капитальному ремонту двигателей FAR 145 FAA/EASA, основанное в 2004 году. Первоначально мы специализировались на двигателях Pratt and Whitney серий JT8D-100 и JT8D-200, а теперь специализируемся на двигателях серии CFM 56. и серии CF6. Посмотрите наши возможности.

КОНКУРЕНТНОЕ ЦЕНООБРАЗОВАНИЕ

У нас высочайшее качество индивидуального обслуживания клиентов.

УДОБНОЕ РАСПОЛОЖЕНИЕ

Наш объект расположен в 20 минутах от международного аэропорта Майами.