Установка турбин на атмосферные двигатели: Установка турбины на атмосферный двигатель

Содержание

Установка турбины на атмосферный двигатель ✔ Турбо-движок

Установка турбины на атмосферный двигатель

Любовь к скорости не всегда может сочетаться с возможностями эту скорость обеспечить. Довольно слабые атмосферные двигатели не позволяют в полной мере насладиться стремительным стартом и ускорением, а постоянное выкручивание мотора на пределе возможностей значительно сокращает срок его службы. Установка турбины на атмосферный двигатель обеспечит значительный рост мощности и позволит превратить в скоростной болид рядовой автомобиль из Тольятти.

Устройство и обзор турбированного двигателя

Турбированные двигатели менее распространены в России, но их количество в Европе составляет большинство. Турбодвигатели более чувствительны к качеству заправляемого топлива. Выйти из строя турбированный двигатель может после первой заправки некачественным или поддельным торпливом. Кстати, летом необходимо заправлять летнее ДТ, а зимой — только зимнее ДТ, содержащее большую пропорцию парафина.

Главным компонентом дизельного ДВС являтся турбина. Установка турбины на автосферный двигатель реальна и не доставит больших хлопот автовладельцу или сервису СТО. Турбина «засасывает» в себя воздух для приготовления топливно-воздушной смеси, создавая для цилиндров с поршнями необходимое давление.

Мощность турбо-движка не зависит от его объема — решающим фактором является давление (измеряется в Па). По сравнению с обычными атмосферниками, турбированный силовой агрегат развивает большую мощность при равных размерах камер сгорания. Явным плюсом является огромная мощность двигателя при небольшом рабочем объеме камеры сгорания.

Кстати, еще одним важным фактором установки турбины на атмосферный двигатель является экономичность — потребление топлива на турбо-движках меньше. Более того, дизельное топливо (ДТ) вцелом является более экономичным и экологически-безопасным, по сравнению с бензином (АИ).

Устройство и обзор атмосферного двигателя

Атмосферный двигатель — это обычный бензиновый или дизельный ДВС, который устанавливается на большинство автомобилей. Атмосферный двигатель состоит из входного коллектора, головки блока цилиндров, самих цилиндров, кривошипно-шатунной группы, выходного коллектора, множества датчиков для функционирования двигателя.

В состав такого ДВС не включена турбинная система — потому что наддув обеспечивать нет необходимости: атмосферного давления этому двигателю достаточно для правильного функционирования всей конструкции.

Цена атмосферного мотора намного дешевле турбированного. Обслуживанием простого «атмосферника» заниматься намного удобнее и дешевле, чем ремонтировать конструкторски сложный турбированный мотор.

Моторесурс атмосферных двигателей считается выше, и может составлять до 500 тыс. км. до первого капитального ремонта. Заправлять эти движки можно не самым качественным топливом и тем самым возможность повредить двигатель ничтожно низки.

Основным минусом автомсферных двигателей является их высокая масса, низкая динамика движения, большие габариты, низкий показатель крутящего момента.

Еще одним важным определением «атмосферника» является тот фактор, что на низких оборотах ДВС он еще плохо «тянет», а на высоких оборотах этот тип двигателя уже «не тянет». Для любителей «погонять» стоит сделать выбор в сторону турбированного двигателя.

Устройство турбины

Турбина и компрессор выглядят как сдвоенная улитка с разнонаправленными отверстиями. В средней части улитки установлен вал с крыльчатками на концах. Одна крыльчатка заставляет вращаться и работать компрессор, который нагнетает воздух в двигатель. Усиленная подача воздуха вкупе с увеличенной порцией впрыска топлива в камеру сгорания заставляет двигатель авто работать эффективнее, выдавая больше мощности при незначительном увеличении расхода топлива.

Установка турбины на атмосферный двигатель – это возможность самостоятельно разогнать мощность автомобиля. Компрессор и турбина, установка которой своими руками по силам автолюбителю с базовыми навыками механика, полностью изменят характеристики двигателя железного коня.

Как компрессор и турбина улучшают мощность двигателя авто

Сама по себе установка турбины на атмосферный двигатель показывает плюсы в парадигме «выиграл-выиграл». Компрессор и турбина, установка, выполненная подготовленным человеком, благотворно влияют на характеристики и работу двигателя авто:

  • с сохранением надёжности атмосферного двигателя появляется мощность без увеличения объёма;
  • установка турбины на атмосферный двигатель не усложняет его, не меняет параметры, но увеличивает крутящий момент;
  • двигатель авто остаётся столь же ремонтопригодным, по прибавка компрессора позволяет заставить приносить пользу и выхлопные газы.

Цена замены деталей новой конструкции под капотом не ввергает в значительные издержки и позволяет обслуживать более мощный мотор и компрессор без увеличения затрат.

Установка турбины на атмосферный двигатель: перечень деталей

Очевидно, что местом установки турбины на атмосферный двигатель должно быть отверстие для подачи воздуха к месту сгорания смеси. Перечень деталей и алгоритм сборки основывается на этом постулате:

  1. необходима собственно турбина;
  2. коллектор для выхлопа отработанного воздуха, вращающего компрессор;
  3. интеркулер для охлаждения воздушной смеси перед подачей в двигатель авто;
  4. набор алюминиевых трубок с хомутами, цена которых невелика, но значение огромно, для монтажа воздушной магистрали;
  5. трубки для охлаждающей жидкости и масла;
  6. соединение с системой выхлопа, труба даун-пайп;
  7. форсунки высокой продуктивности для подачи более богатой смеси;
  8. блок электроники (ЭБУ), ибо другой алгоритм работы требует особых настроек.

Порядок работы при установке турбины на атмосферный двигатель

Системой коллекторных труб соединяют место отвода выхлопных газов из двигателя с местом нагнетания воздушной смеси. В центре этой конструкции необходимо жёстко закрепить турбину с компрессором, за которыми установить интеркулер. Особое внимание уделите прочности соединений различных трубок во избежание возможных утечек воздуха и создания жёсткой конструкции.

Монтаж электронных датчиков, новых, мощных форсунок и отладка системы завершает процесс усовершенствования мотора автомобиля. При самостоятельной работе не лишним будет обратиться за консультацией к опытным мастерам для минимизации ошибок и правильности порядка действий. После удачных пробных запусков двигателя с новой конструкцией обязательно продиагностируйте его на стенде, что покажет на корректность работы агрегатов в новых реалиях.

Установка турбины на атмосферный двигатель способна совершить маленькое чудо, вдохнув новую жизнь в довольно средний автомобиль и превратив его в звезду автострады.

Установка турбины на атмосферный двигатель

Установка турбины на атмосферный двигатель кажется автовладельцу весьма привлекательным решением. Давайте разберём, почему.

Большинство автовладельцев хотели бы увеличить мощность своего авто. Зачем? Иногда мощность автомобиля действительно важна, почему бы не иметь лучшее?

Мощность автомобиля можно увеличить разными методами: увеличить камеру сгорания двигателя, подать сжиженный или сжатый воздух, можно вместо воздуха подать другой газ. Если рассматривать поступление воздуха, то всё сводится к тому, что за цикл сгорает большее количество топлива, что требует также и большего поступления воздуха. Доработка двигателя без увеличения его объёма обычно не приводит к значительному эффекту, поскольку скорость поступления воздуха в камеру заметно не изменяется. Одним из выходов в таком случае является подача сжатого воздуха или подача воздуха при помощи турбины или компрессора.

Виды турбин, устанавливаемых на атмосферный двигатель

Принцип работы турбинного двигателя

Основным элементом турбины, какой бы конструкции она ни была, является крыльчатка, установленная в трубе. Эта крыльчатка, вертясь, нагнетает воздух в трубу, который в дальнейшем попадает в двигатель. Следовательно, задача состоит в том, как раскрутить крыльчатку.

На сегодняшний день используется два подхода к тому, как раскрутить крыльчатку – ременная передача с подсоединением к двигателю и использование выхлопных газов для генерации крутящего момента (здесь устанавливается ещё одна турбина). Конечно, при небольшой мощности можно было бы соорудить и электрическую систему подачи воздуха, но что-то о такой не слышно.

Ременная передача крутящего момента на крыльчатку от двигателя, конечно, позволит увеличить мощность двигателя, но не увеличит его КПД, поскольку часть энергии будет отбирать турбина наддува. Другое дело, если использовать для раскрутки крыльчатки выхлопные газы. Идея состоит в том, что они очень горячие и потому гораздо легче воздуха. Газы, являясь легче воздуха, стремятся вверх, что можно использовать для раскрутки крыльчатки или соорудить двигатель наподобие парового. В этом случае нет затрат на раскрутку турбины и всё решение может привести к повышению КПД нашего двигателя (уменьшится расход топлива). В настоящее время подобные системы имеют две крыльчатки, расположенные на одном валу, но располагающиеся в разных трубах. Выхлопные газы раскручивают одну крыльчатку, в свою очередь крутящий момент через вал передаётся на вторую крыльчатку.

Автотурбина

Как бы ни была выгодна турбина, установка её дело не тривиальное. С ременной передачей было бы проще, но от неё эффект меньше. Тем не менее, многие умельцы стремятся установить турбину своими руками. Однозначного решения по монтажу турбины здесь нет, давайте рассмотрим, какие задачи здесь возникают.

Самостоятельная установка турбины

Принцип турбонаддува

Итак, вы решили установить своими руками турбину, которая раскручивается выхлопными газами. Задачи возникают при этом следующие:

  1. Работа атмосферного двигателя настроена достаточно оптимально, теперь же в двигатель начнёт поступать больше кислорода. Логично, если будет поступать и больше топлива, собственно, это и приведёт к большей мощности. Большее поступление топлива потребует более мощного насоса.
  2. Теперь в двигатель поступает большее количество взрывной смеси в тот же объём, следовательно, давление в системе возрастает. В такой ситуации возможна детонация ещё до того момента, как цилиндры двигателя займут свои крайние точки. Значит, необходимо будет переделать двигатель так, чтобы детонация не происходила раньше времени.
  3. Изменился режим подачи горючего, значит, надо поработать над настройками электроники, чтобы поступало такое количество горючего, какое нужно.
  4. Выхлопные газы горячи. К тому же при работе крыльчатки разогреваются. Горячий воздух, расширяясь, в том же объёме содержит меньше кислорода, нежели холодный, поэтому систему необходимо охлаждать. Для этого используют масло и воздушный радиатор.
  5. Для раскрутки крыльчатки будут использоваться лишь часть выхлопных газов. Излишек через клапан надо будет выводить.
  6. Предохранительный клапан должен стоять и на трубе подачи воздуха под давлением.
  7. Придется модернизировать сцепление.

Установленное оборудование

Кроме того, потребуется усилить опоры двигателя, заменить распредвалы. Все вместе это влетит в копеечку. Но этого мало, ведь потребуется специальный блок управления с индивидуальной программой, который позволит мотору хотя бы завестись.

Это основные моменты, над которыми надо будет подумать.

Видео

Как установить турбину на восьмиклапанный мотор ВАЗ 2109, показано ниже:

Как работает ветряная турбина — текстовая версия

Сила ветра

Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии. На этой странице представлена ​​текстовая версия интерактивной анимации: Как работает ветряная турбина.

Как работает ветряная турбина

Ветряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют физически уменьшить генератор. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Как работает ветряная электростанция

Ветряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте. На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. В ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.

Передача инфекции

Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.

Трансформеры

Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (таким образом, уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач. Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.

Подстанция

Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению. Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.

Башня ветряной турбины

Изготовленная из трубчатой ​​стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.

Направление ветра

Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные — в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.

Флюгер

Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

 

 

 

Анемометр

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Лезвия

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.

Наземная турбина с редуктором

Трансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Гондола

Гондола находится на вершине башни и содержит редуктор, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.

Система рыскания

Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.

Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.

Система подачи

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Центр

Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.

Коробка передач

Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Ротор

Лопасти и ступица вместе образуют ротор турбины.

Тихоходный вал

Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.

Подшипник главного вала

Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Высокоскоростной вал

Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.

Генератор

Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.

Контроллер

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз

Турбинные тормоза не похожи на автомобильные тормоза.

Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Морская ветряная турбина с прямым приводом

Турбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.

Морской флюгер и анемометр с прямым приводом

Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Система рыскания с прямым приводом

Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.

Лопасти генератора с прямым приводом

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую ​​же длину, как футбольное поле!

Система шага с прямым приводом

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Концентратор прямого привода

Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.

Ротор с прямым приводом

Лопасти и ступица вместе образуют ротор турбины.

Генератор с прямым приводом

Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.

Контроллер прямого привода

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз с прямым приводом

Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Подшипник ротора прямого привода

Подшипник ротора поддерживает основной вал и снижает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Узнайте больше об энергии ветра

Как работают ветряные турбины?

Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.

Узнать больше

Основы ветроэнергетики

Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.

Узнать больше

History of U.S. Wind Energy

На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…

Узнать больше

Сколько мощности составляет 1 гигаватт?

Дата, которую большинство любителей кино знает наизусть, 21 октября 2015 года — это день, когда Марти МакФлай и Док Браун путешествуют в «Назад в будущее, часть 2».

Узнать больше

Уникальная концепция двигателя для гибридных судов Cadeler для установки фундамента и ветряных турбин

Компания MAN Energy Solutions получила четвертый заказ на поставку двигателей китайской судостроительной компании COSCO Heavy Industries в Цидуне для строительства второго монтажного судна F-класса, используемого для установки морских ветряных турбин и фундаментов. Предыдущие три заказа были на двигатели для двух судов X-класса и одного судна F-класса. Все четыре судна предназначены для датского поставщика услуг Cadeler, который специализируется на оффшорной ветроэнергетике, установке, эксплуатации и техническом обслуживании, а также на выводе из эксплуатации. Поставка четырех судов запланирована на период с 2024 по 2026 год9.0005

Суда X-класса предназначены для работы на самых сложных участках по всему миру с площадью палубы 5 600 м 2 , грузоподъемностью более 17 600 тонн и грузоподъемностью главного крана > 2 000 тонн на высоте 53 метра. F-класс имеет аналогичные характеристики, но обладает уникальной гибкостью и может быть быстро преобразован из установки для установки фундамента в судно для установки ветряных турбин и генераторов.

Генеральный директор Cadeler Миккель Глеруп сказал: «В настоящее время мы строим четыре уникальных морских судна, предназначенных для установки фундаментов и ветряных турбин будущего. Для оптимальной работы наших судов нам нужны двигатели, отвечающие нашим требованиям и обеспечивающие необходимую грузоподъемность. Наше сотрудничество с MAN на протяжении многих лет было хорошим и стабильным. Мы выбрали их в качестве поставщика, поскольку они продемонстрировали способность поставлять инновационный продукт высокого стандарта, который будет хорошо сочетаться с остальными возможностями судов».

Каждое судно будет оснащено конфигурацией двигателей, основанной на концепции смешанных средне- и высокоскоростных двигателей MAN с 2 двигателями 6L32/44CR + 2 двигателями 9L32/44CR + 2 двигателями 12V175D. В результате новостройки будут иметь наибольшую грузоподъемность среди всех судов, когда-либо использовавшихся в полевых условиях, в соответствии с растущими размерами современных ветряных турбин. Каждый двигатель также будет оснащен системой SCR (селективная каталитическая нейтрализация) и будет соответствовать стандартам выбросов IMO Tier III.

Элвис Эттенхофер, глава отдела морских четырехтактных двигателей в Азиатско-Тихоокеанском регионе, MAN Energy Solutions, сказал: «Это уникальное приложение, которое установит новый стандарт для установки морских турбин и устойчивых морских операций, а также станет отличной демонстрацией наших смешанных — концепция двигателя. Благодаря своей надежности и длительному времени между капитальными ремонтами двигатель 175D обладает ДНК среднеоборотного двигателя, поэтому он так хорошо сочетается с нашими агрегатами 32/44. Только MAN может предоставить эту уникальную конфигурацию двигателя с высочайшей эффективностью, меньшим весом и большей полезной нагрузкой; это представляет реальную ценность для нашего клиента Cadeler».

Самоподъемные устройства класса F смогут перевозить и устанавливать семь комплектных турбинных установок мощностью 15 МВт на груз или шесть комплектов монолитных фундаментов 2XL за рейс туда и обратно, что значительно повышает эффективность по сравнению с существующими судами. Суда также будут иметь уникальную конструкцию, позволяющую переоборудовать их с установки на фундаменте на суда с установкой ветряных турбин (WTIV).

Концепция средне- и высокоскоростного двигателя MAN

 

Эта концепция включает в себя бескаркасные 2 × MAN 6L32/44CR + 2 × MAN 9L32/44CR + 2 двигателя MAN 12V175D и предлагает ряд преимуществ:

  • экономия места, в том числе небольшая общая занимаемая площадь генераторной установки и компактные размеры SCR, минимизирует машинное отделение и пространство воронки, что приводит к увеличению площади палубы;
  • оптимизированное соотношение мощности и веса с концепцией смешанного двигателя, включая бескаркасную конструкцию для среднеоборотных двигателей 32/44CR.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *