Инжекторный двигатель ваз 2107 | 🚘Авто Новости Онлайн
Содержание
- Как работает инжекторный двигатель ваз 2107
- Описание преимуществ и недостатков инжекторов ВАЗ 2107
- Наиболее распространенные неисправности мотора ВАЗ 2107
- Почему появляются проблемы в системе впрыска
- Возможности переоснащения авто ВАЗ 2107
Раньше на автомобиле ВАЗ 2107 устанавливали карбюраторный движок, имеющий объем равный полутора литрам. В данный момент в «семерках» под капотом находится 1,7 литровый инжекторный двигатель ВАЗ 2107.
Как работает инжекторный двигатель ваз 2107
В карбюраторных движках воздушно-топливная жидкость образуется внутри камер карбюратора, а в инжекторах топливо впрыскивается прямо в цилиндры. Двигатели седьмой модели имеют раздельный впрыск 4-х форсунок для каждого цилиндра.
Контроль за работой каждой форсунки ведется при помощи микроконтроллера, расположенного в электронном блоке управления (ЭБУ) двигателем. В задачу элемента входит регулировка поступления горючей смеси в камеры сгорания в соответствии с положениями педали газа, с рабочими режимами и другими параметрами, которые считываются при помощи специальных датчиков и передаются на ЭБУ.
Основные функции ЭБУ — электронного блока управления:
- Контроль количества воздуха и топлива, поступающих в цилиндры двигателя.
- Формирование искры зажигания на свечах, устанавливая угол опережения в соответствии с оборотами двигателя.
- Включение и выключение топливного насоса.
- Регулирование оборотов холостого хода.
- Контроль количества углекислого газа, содержащегося в выхлопе.
- Слежение за температурой жидкости в системе охлаждения блока цилиндров.
Работа происходит в соответствии с определенным алгоритмом:
Электронный модуль зажигания в ВАЗ 2107 включает в свой состав пару катушек и электронную плату. Этот узел отличается надежностью и не требует регулярных обслуживаний. В зависимости от количества оборотов коленвала и благодаря сигналам, поступающим с электронного блока управления двигателем, формируется искра.
Описание преимуществ и недостатков инжекторов ВАЗ 2107
Устройство двигателя инжекторного типа дает все основания говорить о неоспоримых преимуществах в сравнении с карбюраторными движками:
Инжекторные двигатели также могут работать на газе. Наиболее предпочтительным является четвертое поколение газового оборудования.
К наиболее часто встречающимся недостаткам относятся следующие пункты:
- Инжекторный двигатель, расположенный в прежнем неудобном подкапотном пространстве, имеет затрудненный доступ к рабочим узлам и деталям.
- Повышенные требования к качеству бензина, при использовании топлива низкого качества наблюдается ускоренное загрязнение топливной системы, требующее проводить внеплановые обслуживающие мероприятия.
- При выходе из строя впрыскивающей системы необходимо обращаться к услугам специалистов, чтобы они произвели необходимое обслуживание, настройки, восстановление работы мотора.
Самостоятельно найти поломку и произвести ремонт инжекторного двигателя ваз 2107 своими руками стало не так-то просто. Переборка мотора также производится в условиях автомастерских, оснащенных специализированным оборудованием.
В условиях гаража можно производить такую операцию, как срочная или плановая замена масла в двигателе ВАЗ 2107.
Наиболее распространенные неисправности мотора ВАЗ 2107
Во время эксплуатации движка «семерки«инжекторного типа автовладельцы часто сталкиваются со следующими проблемами:
- Неустойчивая работа силового агрегата.
- Засорение форсунок.
- Увеличение расхода бензина.
- Повышенное содержание углекислого газа в выхлопе.
- Проваливается педаль акселератора.
- Мощность снижается.
Диагностика и ремонт двигателя ВАЗ 2107 также, как и замена двигателя ВАЗ 2107 должны производиться на специальном оборудовании в автомастерской при участии высококвалифицированных специалистов. Считывание ошибок, проверка показаний датчиков, оценка работы электронного блока управления производятся при помощи компьютера с установленной специальной программой.
Автовладельцы часто задаются вопросом, где расположен номер двигателя. Индивидуальный номер двигателя находится в сопроводительных документах на автомобиль. Возможно также искать и находить номер двигателя в области расположения свечи 4-го цилиндра на наплыве корпусной детали. Номер двигателя на корпусе должен быть идентичен номеру, указанному в документации.
Почему появляются проблемы в системе впрыска
Низкое качество бензина является основной причиной засорения форсунок. Всему виной служат парафиновые отложения, оседающие на стенках и перекрывающие пути прохождения топлива.
При производстве горючего высокого качества производители включают в его состав специальные присадки (детергенты), способствующие растворению тяжелых отложений. Некачественные сорта топлива имеют в своем составе парафин в избыточных количествах, с которыми присадки не успевают справиться.
Низкая температура окружающей среды также оказывает негативное влияние на интенсивность образования вредных отложений. Частая эксплуатация автомобиля с холодным движком вызывает ускоренное засорение форсунок инжекторной системы.
Кроме форсунок, от парафиновых скоплений страдает также заслонка дроссельная, что может вызвать изменение пропорций воздуха и топлива в смеси, подаваемой в цилиндры. Впускные клапаны также собирают на своих поверхностях тяжелые отложения, что приводит к их прогоранию и детонационным взрывам.
Очищение впускной системы от отложений можно произвести самостоятельно в условиях гаража при помощи специальной промывочной жидкости и спринцовки.
Порядок действий для промывки инжектора:
Раствор сначала запускается маленькими количествами при выключенном моторе, затем — при работающем. Нейтрализованные отложения проходят в цилиндры и полностью сгорают, о чем свидетельствует дым, кратковременно выходящий из выхлопной трубы.
Возможности переоснащения авто ВАЗ 2107
Для усовершенствования возможностей своего автомобиля водители часто применяют тюнинг двигателя ВАЗ 2107, производя замену штатного силового агрегата на мотор, имеющий большую мощность. Для проведения данного мероприятия необходимо проконсультироваться с квалифицированными специалистами. При переоснащении авто нужно учитывать следующие возможности:
Практика показывает, что по совместимости с автомобилем ВАЗ 2107 наиболее близки силовые агрегаты фирм Фиат либо Ниссан. Установка таких моторов требует минимальных последующих доработок.
Источник
Поделиться в социальных сетях
Вам может понравиться
Переделка карбюраторного двигателя в инжекторный
Двигатели
0
Время прочтения:
Выпускаемые с завода автомобили не способны полностью раскрыть свои динамические характеристики, так как они ориентированы на среднестатистического пользователя. Доработка авто путем перехода от карбюратора к инжектору и последующий чип-тюнинг позволяют улучшить показатели мощности и экологичности, а также повысить надежность железного коня.
Для установки электронного впрыска топлива вместо карбюратора потребуется переделка топливной системы и установка датчиков. После переделки подкапотное пространство преобразится, как показано на рисунке ниже.
Подкапотное пространство ВАЗ 2107 после установки электронного впрыска
Уход от карбюраторной системы питания рекомендуется по инструкции ниже. Для примера рассматривается установка инжектора на ВАЗ 2107.
- Слить охлаждающую жидкость. Для удобства проведения работ желательно убрать весь антифриз из системы. Допустимым является снижение уровня тосола ниже головки блока цилиндров;
- Произвести демонтаж карбюратора;
- Открутить крепления коллекторов;
- Для удобства выполнения работ рекомендуется снять прерыватель;
- Снять шкив с коленчатого вала;
- Установить новую переднюю крышку двигателя. В автомобилях ВАЗ 2107 с инжектором она идет с местом для датчика коленвала;
- Заменить шкив на новый;
- Сверить совпадение меток.
Есть несколько вариантов, как переделать карбюраторный ВАЗ 2107 путем установки инжектора при установке головки блока цилиндров:
- приобретение сборной головки 2124;
- перестановка деталей с родной ГБЦ на новую инжекторную;
- растачивание старой, классической головки блока цилиндров под овальные окна впуска под форсунки и дополнительные шпильки.
После установки ГБЦ требуется произвести монтаж следующих элементов:
- рампа с форсунками;
- ресивер;
- датчик детонации;
- фильтр тонкой очистки.
Управление зажиганием осуществляется специальным модулем. Так как в карбюраторной версии часто данный элемент не предусмотрен, то и места для его установки нет, поэтому каждый автовладелец самостоятельно выбирает место, где ему удобно смонтировать модуль управления.
Модуль зажигания
Завершающим этапом установки инжектора является работа с электропроводкой. При выполнении данной операции следует придерживаться правил:
- минимальное использование клемм, так как они повержены окислению в процессе эксплуатации;
- точное соблюдение цветовой разметки, что облегчит последующие внесение изменений и ремонт;
- правильный подбор длины электропровода.
Выполнив тюнинг таким образом, автовладелец избавится от всех проблем, которые преследуют карбюраторные двигатели.
Преимущества получаемые при тюнинге инжекторного двигателя
Тюнинг инжектора способствует полному раскрытию потенциала двигателя автомобиля. Обусловлено улучшение работы двигателя следующими факторами:
- порции подаваемого топлива становятся более точно дозированными и зависят от режима работы двигателя;
- уменьшение доли несгоревшего бензина в выхлопе приводит к снижению загрязнения окружающей среды;
- повышение скорости реакции на нажатие педали газа;
- чувствительность к нагрузке на двигатель позволяет подавать оптимальное количество топлива;
- повышение КПД двигателя в результате полного сгорания порции подаваемого топлива;
- в результате перепрошивки электронного блока управления можно избавится от первоначально неисправленных багов;
- все изменения, вносимые в электронный модуль, являются полностью обратимыми;
- холостые обороты становятся более стабильными и менее зависят от температуры окружающей среды.
Обычно тюнинг инжектора сопровождается приростом мощности двигателя до 20 лошадиных сил. В случае, если главная цель тюнинга — повышение экономичности автомобиля, то столь существенного прироста лошадок не наблюдается. Рекомендуемой золотой серединой вносимых изменений является максимальное улучшение динамических характеристик, сопровождающиеся приемлемым увеличением расхода топлива.
Начало чип-тюнинга
Результатом чип-тюнинга инжектора является не только изменение динамических характеристик автомобиля, но и продление срока службы системы питания и цилиндропоршневой группы. Проводить все изменения требуется на полностью исправном автомобиле, так как при наличии технических неисправностей получить желаемый результат от тюнинга становится затруднительным.
Электронный блок управления ВАЗ 2107
Начинать чип тюнинг необходимо с выбора программного обеспечения. Источниками необходимого ПО могут быть:
- Разработки тюнинговых сервисных центров. Доступа к данным программам у обычного автовладельца часто нет, поэтому для перепрошивки модуля потребуется обращение в специализированное ателье;
- Выложенные в открытый доступ ПО, созданное другими автовладельцами. К данному способу чип-тюнинга следует отнестись с осторожностью, так как большинство программного обеспечения не проходит испытания на влияние на двигатель, что может быстро вывести его из строя или ухудшить динамические характеристики;
- Самостоятельно написать исполнительный код. Такой вариант подходит только автолюбителям, разбирающимся в программировании и имеющим возможность проконтролировать параметры двигателя по завершению тюнинга.
При недостаточных знаниях и отсутствии программного обеспечения, в качестве которого автовладелец уверен, доверять модернизацию лучше специализированным мастерским.
Самостоятельный тюнинг
Начинать перепрошивку модуля следует с его демонтажа. Для этого необходимо отсоединить идущие к электронному блоку управления провода и ослабить крепежи. После извлечения ЭБУ следует перейти к подбору нового программного обеспечения.
Выбор оптимального ПО происходит по критериям:
- режим работы системы впрыска при прежней программе;
- токсичность и состав отработанных газов;
- желаемый расход топлива;
- динамические характеристики двигателя до и после тюнинга;
- состояние остальных сопутствующих узлов автомобиля.
Далее при помощи стационарного компьютера либо ноутбука происходит перезапись памяти электронного блока управления. Во время записи следует избегать перемещений модуля и шлейфов, так как это может привести к возникновении ошибок в работе программы.
Самостоятельный чип-тюнинг
Выполнив перезапись программного обеспечения, требуется аккуратно смонтировать электронный блок управления назад в автомобиль. Необходимо избегать любых механических повреждений при выполнении манипуляций с модулем. В отличие от программных ошибок физическое повреждение элементов системы питания невозможно устранить без финансовых затрат.
Выполнение чип-тюнинга непосредственно на автомобиле
Выполнив тюнинг инжектора, важно протестировать автомобиль в различных режимах работы. Нестабильные обороты двигателя, чрезмерный расход топлива или провалы при нажатии на педали газа говорят о неподходящем программном обеспечении. Эксплуатировать автомобиль, если наблюдаются ухудшения какого либо параметра, запрещено, так как это приведет к чрезмерному износу узлов и скорому капитальному ремонту.
Service Solutions: Скрипт CKP
Сигнал положения или скорости вращения датчика положения коленчатого вала (CKP). ) содержит много информации о двигателе. Когда двигатель работает, цилиндры двигателя нажимают на шейку коленчатого вала.
Вот почему коленчатый вал кратковременно ускоряется после верхней мертвой точки (ВМТ) в такте расширения (или сгорания). Если бы топливо не воспламенялось в цилиндре, ускорения не было бы.
Вместо этого коленчатый вал замедлится. Таким образом, вклад мощности от каждого цилиндра можно определить, наблюдая за ускорением и замедлением коленчатого вала.
Даже если блок управления двигателем постоянно регулирует скорость оборотов двигателя на холостом ходу, чтобы поддерживать скорость в заданном диапазоне, ускорение и замедление от цилиндров двигателя присутствуют.
Сигнал датчика CKP вместе с сигналом зажигания от цилиндра ГРМ (обычно цилиндр №1) содержит информацию о значительном количестве параметров двигателя.
Анализ этих сигналов позволяет:
оценить статическую и динамическую компрессию для каждого цилиндра;
выявления неисправностей в системе зажигания;
оценить состояние форсунок;
получить информацию об угле опережения зажигания;
определение характеристик вращения маховика; и
определить отсутствующие и погнутые зубья маховика.
Сигнал датчика CKP вместе с сигналом опережения зажигания можно записать с помощью USB-автоскопа (или осциллографа) и проанализировать с помощью скрипта «CKP».
Скрипт CKP способен анализировать сигнал датчика скорости/положения коленчатого вала двигателя, работающего в паре с маховиками с любым количеством зубьев и с зазорами или без них типа 60-2, 36-1, 60-2- 2, 36-2-2-2 и так далее.
Основным требованием является жесткое крепление маховика или гибкой пластины к коленчатому валу. Цепные или ременные крепления маховика дадут плохой результат, так как в этом случае происходит значительное сглаживание сигнала от коленчатого вала.
Скрипту CKP требуется минимум информации для анализа сигнал датчика коленвала, сигнал зажигания от цилиндра ГРМ, количество цилиндров в двигателе, порядок включения и начальный угол опережения зажигания. Подробное описание результатов анализа, отображаемых во вкладках скрипта отчета «CSS», приведено ниже.
Вкладка «Отчет» (Кадр 1)
В первой строке данной вкладки указано название и версия анализатора сценариев. Это помогает убедиться, что используется последняя версия программного обеспечения.
Затем отображаются результаты анализа, выполненного этим скриптом:
Количество зубьев на один оборот коленчатого вала:
Формула привода маховика, который работает совместно с датчиком частоты вращения/CKP.
Например, «60-2» означает, что диск имеет 60 зубьев, два из которых отсутствуют.
Примечание: Ford часто использует маховики с формулой 36-1; новый дизель Volkswagen 60-2-2, Subaru 36-2-2-2.
Если сигнал с ДКП записывается с помощью зубчатого венца маховика, зазоров не будет и зубцов обычно будет 136.
Отклонение при определении количества зубьев:
Значение отклонения формулы расчета маховика.
ВМТ первого цилиндра совпадает с номером зуба: Это число зубьев от маркерного зуба. Этот зуб может располагаться прямо напротив датчика скорости/CKP, когда поршень синхронизирующего цилиндра находится в ВМТ.
ВМТ также может указываться как количество зубов, удаленных от отсутствующего зуба (сигнал).
Если на тормозном колесе коленчатого вала обнаружен отсутствующий зуб, то приложение рассчитывает количество зубьев от отсутствующего зуба до ВМТ 0° цилиндра ГРМ.
Если отсутствуют зубья, то первым зубом будет зуб, расположенный под углом 180° к датчику положения коленчатого вала, когда поршень первого цилиндра находится в ВМТ.
Следует отметить, что точность количества зубьев по прохождению зубьев до ВМТ зависит от точности заданного пользователем начального угла опережения зажигания. Также на этой вкладке находятся советы для диагноста, а также сообщения об ошибках, которые могут отображаться.
Вкладка «Эффективность (ускорение)»
(кадры 2-6)
В нашем первом наборе кадров (2-6) мы видим, как серая кривая показывает мгновенную частоту вращения коленчатого вала.
Цветные кривые показывают эффективность каждого цилиндра двигателя. Чем выше кривая ускорения, тем мощнее цилиндр. Цилиндр, который вообще не работает, создает замедление коленчатого вала, в результате чего форма волны находится ниже черной горизонтальной оси.
Тестовый автомобиль: Audi A6 1995 V6 2.6L :
Симптом: Попеременное отключение форсунки цилиндра №4 и цилиндра №5.
Во время записи двигатель изначально работал на холостом ходу. Электрический разъем форсунки четвертого цилиндра был отсоединен, а затем снова подсоединен. Затем такая же процедура применялась для цилиндра № 5.
Заметили интересную особенность в алгоритме работы блока управления двигателем. После отключения форсунки двигатель начал трясти.
В результате ЭБУ моментально реагировал на уменьшение мгновенной частоты вращения коленчатого вала, и для сохранения заданных оборотов двигателя на холостом ходу увеличивал КПД следующего по порядку зажигания цилиндра за счет опережения опережения зажигания. Во время записи дроссельная заслонка плавно открывалась.
Эти графики показывают, что вклад мощности от каждого цилиндра увеличивался при открытии дроссельной заслонки. Затем дроссельная заслонка была резко закрыта.
Вклад мощности от каждого цилиндра упал ниже нулевой линии. После этого двигатель продолжал работать на холостых оборотах.
Затем резко открылась дроссельная заслонка. Графики также показывают значительное увеличение вклада мощности от каждого цилиндра. Как только обороты двигателя достигли 3000 об/мин, зажигание выключилось, но дроссельная заслонка удерживается в полностью открытом положении до полной остановки двигателя.
Как только зажигание выключается, частота вращения коленчатого вала начинает снижаться.
В этот момент двигатель работает как воздушный насос. Двигатель всасывает воздух, сжимает его, а затем выбрасывает. (Зажигание отсутствует и обычно нет топлива, так как зажигание выключено.)
В результате сжатый воздух в цилиндре (после прохождения поршнем ВМТ на такте сжатия) действует как пружина и давит на шейку коленчатого вала.
Чем больше воздуха было сжато в цилиндре, тем мощнее «толчок». Расчетное ускорение коленчатого вала на этом этапе зависит только от механической работы двигателя и не зависит от состояния системы зажигания или состояния системы подачи топлива.
Другой пример был записан на карбюраторный двигатель ВАЗ 2109 1,5л .
Эффективность цилиндра №3 снизилась из-за утечки. Кривая ускорения третьего цилиндра на холостом ходу расположена ниже черной нулевой линии ( кадр 5 ).
Это свидетельствует о значительном снижении КПД данного цилиндра. Двигатель имеет пропуски зажигания. Другими словами, двигатель трясется.
Интересно, что при открытии дроссельной заслонки КПД этого цилиндра увеличивается. Однако по сравнению с другими цилиндрами он имеет более низкий КПД.
По этому графику фазы разгона (по мере замедления оборотов двигателя при полностью открытой дроссельной заслонке и при выключенном зажигании) видно, что с уменьшением оборотов двигателя форма ускорения третьего цилиндра отклоняется больше и более вниз от кривой ускорения всех других цилиндров.
Этот символ диаграммы отклонения указывает на пониженную рабочую компрессию в данном цилиндре.
Измерение компрессии с помощью манометра обычным способом с использованием пускового устройства дало следующие результаты: цилиндр 1 = 12 бар, цилиндр 2 = 14 бар, цилиндр 3 = 7 бар и цилиндр 4 = 12 бар (174, 203, 102, 174 psi соответственно).
Примечание: Двигатель в этом примере не оснащен датчиком положения коленчатого вала. В данном случае сигнал регистрировался с помощью индуктивного датчика (датчика Lx), установленного вблизи зубьев маховика, который входит в зацепление с шестерней стартера при запуске двигателя. Датчики индуктивного типа (часто называемые переменным магнитным сопротивлением или VRS) часто используются в качестве датчиков коленчатого вала, распределительного вала и скорости вращения колеса.
(Можно также использовать датчик оптического типа.) Ранее мы заявляли, что скрипт «CKP» способен записывать и анализировать сигнал практически любого датчика вращения, а также определять любую скорость любого маховика, пока на нем жестко закреплен на коленчатом валу диагностируемого двигателя.
На последней фазе графиков разгона ( Кадр 6 ) учитывается падение оборотов двигателя при полностью открытой дроссельной заслонке, при выключенном зажигании. Вклад одних цилиндров меньше, чем других во всем диапазоне оборотов двигателя. Это свидетельствует либо о недостаточном наполнении цилиндра воздухом, либо о том, что степень сжатия в цилиндре снижена (возможно, из-за погнутого штока).
Таким образом, скрипт «CKP» может точно определить неисправности в механической части двигателя. Поскольку топливо и/или искра исключены из уравнения, изменения момента зажигания и подачи топлива не влияют на измерение.
Аналогично, сценарий «CKP» может идентифицировать периодические и трудно диагностируемые механические проблемы, такие как клапаны, которые периодически заедают в открытом или закрытом положении. Вклад цилиндра в мощность зависит от качества и количества воздушно-топливной смеси, качества искры зажигания, точности опережения зажигания, а также механических условий, влияющих на компрессию двигателя (клапаны, погнутые штоки).
Неисправности системы зажигания могут быть эффективно диагностированы, потому что этот тип неисправности будет влиять на работу цилиндра при определенных условиях и никак не влияет на другие условия.
Неисправная катушка зажигания
Кривая ускорения, относящаяся к неисправной катушке зажигания, выделит затронутые цилиндры.
Отказ системы зажигания, как правило, приводит к тому, что затронутые цилиндры вообще не вносят вклад в мощность. Частичное снижение вклада мощности обычно не наблюдается при отказах системы зажигания.
Возможны некоторые исключения из этого правила (например, слабая искра или искра в неподходящее время). Неисправность системы зажигания может привести к снижению компрессии, если ее не остановить в течение определенного периода времени. (На кольцевое уплотнение может повлиять снижение давления в цилиндре, вызванное недостаточным сгоранием.)
Диагностика загрязненных форсунок
На холостом ходу этот двигатель имеет явные пропуски зажигания. Последняя фаза графиков разгона (во время торможения двигателя из-за выключения зажигания) указывает на то, что двигатель механически исправен. Наполнение цилиндра и компрессия нормальные и одинаковые для всех цилиндров.
КПД цилиндров неодинаков во время торможения, но ни один цилиндр не дает пропусков зажигания полностью. Наиболее вероятной причиной этого типа проблем без каких-либо явных механических проблем является подача топлива. Измерение расхода форсунок на испытательном стенде дало следующие результаты: 64 мл, 80 мл, 40 мл, 60 мл.
В заключение, если последняя фаза графика (при выключенном зажигании) не указывает на проблему, а график при зажигании указывает на частичную потерю вклада цилиндра (но не полностью), наиболее вероятной причиной является проблема с подачей топлива, например неисправная или забитая форсунка. Этот метод может обнаружить частично забитую форсунку до того, как это окажет существенное влияние на эффективность двигателя. Это избавляет техника от необходимости демонтировать форсунки для проверки их расхода без уважительной причины.
Следует отметить, что если двигатель оснащен двумя свечами зажигания на цилиндр и искра есть только на одной из свечей зажигания, вклад мощности от этого цилиндра может быть уменьшен на 10-20%.
Сценарий «CKP» может служить хорошим инструментом для диагностики периодических пропусков зажигания и/или неравномерной работы двигателя. Сценарий сам по себе не может определить, является ли причиной проблема с зажиганием или подачей топлива, если цилиндр вообще не вносит вклад в мощность.
Однако, если мы подливаем топливо в двигатель во время его работы и на неисправном цилиндре увеличивается вклад цилиндра, причиной пропусков зажигания является нехватка топлива, например, из-за забитой форсунки.
Вкладка «Момент зажигания до ВМТ1 (Относительный угол опережения зажигания)» (Кадры 7 и 8)
Скрипт может рассчитать угол опережения зажигания и отобразить результат в графическом виде. Кадры 7 и 8 относятся к результату анализа сценария опережения зажигания. Результат показывает изменения синхронизации, вызванные оборотами двигателя и нагрузкой.
Тестовый автомобиль: Renault Laguna:
Графики показывают, что момент зажигания больше опережает при средней нагрузке на двигатель по мере увеличения оборотов (зеленая кривая), чем при большой нагрузке.
Следующий пример записан с бензиновым двигателем ВАЗ 2108.
В этом двигателе используется карбюратор и распределитель с механическим вакуумом и центробежным опережением.
График показывает отсутствие коррекции угла опережения зажигания при увеличении оборотов двигателя.
Центробежный механизм опережения зажигания не работает. Однако изменение синхронизации при манипулировании дроссельной заслонкой показывает, что опережение вакуума работает так, как предполагалось. Этот скрипт в чем-то похож на скрипт «Px». Сценарий «Px» вычисляет абсолютное значение момента зажигания, тогда как сценарий «CKP»
вычисляет относительное значение. Это означает, что когда сценарий «Px» вычисляет угол опережения зажигания как 10°, тогда угол опережения зажигания составляет это число градусов от ВМТ. Если сценарий «CKP» отображает 10°, то угол опережения зажигания отклоняется на это число градусов от начального момента, который был установлен.
По этой причине сценарий «CKP» не может использоваться для установки начального угла опережения зажигания. На графике область нуля градусов выделена серым цветом, чтобы показать, что это не абсолютное измерение.
Даже если на графике или диаграмме представлены только относительные значения, можно легко увидеть проблемы опережения синхронизации, вызванные неисправностью механизмов управления синхронизацией (будь то электронных или механических).
Вкладка «Зубчатый диск к ВМТ1 (Маховик)» ( Рамы 9 и 10 )
Скрипт «CKP» автоматически определяет количество зубьев и зазоров на маховике, а также их расположение относительно ВМТ маховика. синхронизирующего цилиндра и создает диаграммы, показывающие характеристики маховика и датчика положения коленчатого вала.
Один пример записан с двигателя ВАЗ 2107, оснащенного впрыском топлива. Черная диаграмма (кадр 9) показывает наличие и/или отсутствие зубов. В этом случае отсутствуют два зуба в области 120° до ВМТ.
Красная диаграмма показывает отклонение между зубьями. Если расстояние между зубьями меняется (например, из-за погнутого или сломанного зуба), будет показано отклонение.
Также здесь будет отображаться погнутый или иным образом деформированный маховик. Если вариация составляет более 2%, красная диаграмма будет находиться за пределами розовой области.
На некоторых двигателях маховик может быть специально сконструирован с отсутствующим одним или несколькими зубьями. Цель отсутствующего зуба или зубьев состоит в том, чтобы создать ссылку для компьютера управления двигателем. ВМТ цилиндра ГРМ может быть показана, например, с отсутствующим зубом. В 1-, 2- и 4-цилиндровых двигателях красная диаграмма будет иметь циклическое, почти синусоидальное изменение. Это связано с тем, что все цилиндры будут находиться в мертвой точке одновременно.
Например, в 4-цилиндровом двигателе, когда цилиндры №1 и №4 находятся в ВМТ, цилиндры №2 и №3 будут в НМТ (нижняя мертвая точка).
В этот момент времени вся кинетическая энергия накапливается в маховике и коленчатом валу. Из-за этого даже без нагрузки на двигатель вращение коленчатого вала неравномерно и изменение скорости распознается скриптом «CKP» как небольшое отклонение положения зубьев.
Для 3-, 5- и 6-цилиндровых двигателей и более характер вращения коленчатого вала более равномерный. Зеленая диаграмма показывает уровень сигнала от датчика CKP. Амплитуда выходного сигнала этого датчика, в том числе, зависит от скорости вращения коленчатого вала.
Алгоритм расчета уровня сигнала на данном графике разработан таким образом, что расчетный уровень сигнала не зависит от скорости вращения коленчатого вала. Таким образом, расчетная мощность сигнала зависит от самого датчика, маховика и расстояния между датчиком и зубьями маховика.
Если зеленая диаграмма расположена ниже оси светло-зеленого цвета, воздушный зазор между датчиком и маховиком может быть слишком большим. Кроме того, на зеленой диаграмме четко показано изменение скорости маховика.
На следующем кадре показан маховик с более выраженными проблемами, чем в предыдущем примере.
Этот пример был записан для автомобиля Alfa Romeo 146 с двухконтурным двигателем объемом 1,4 л. Точность соосности зубьев низкая и шаг зубьев «гуляет» в пределах ±2%. Отсутствующие зубы расположены ближе к ВМТ, чем в предыдущем примере.
Следует отметить, что диаграммы во вкладке «Маховик» показывают только постоянные неисправности, связанные с конкретным маховиком. Если сигнал с датчика CKP будет периодически искажаться, это отразится только на графике мгновенных оборотов двигателя во вкладке «Разгон» в виде искажений этого графика.
Искажения сигнала датчика скорости/положения из-за ненадежных электрических соединений.
Диагностика дизеля
Скрипт «CKP» применим для диагностики дизеля, и актуален тем, что не все системы управления дизелями позволяют выводить через сканер информацию о работоспособности каждого цилиндра. И те, которые позволяют вам видеть такую информацию, в большинстве случаев будут отображать только данные о значениях подачи топлива по цилиндрам на холостом ходу или на более низких оборотах. Это связано с тем, что компьютеру требуется относительно стабильная скорость вращения для выполнения этого типа теста.
При работе с дизельным двигателем мы должны использовать другие средства синхронизации с цилиндром ГРМ, так как нет свечи зажигания, от которой можно получить сигнал синхронизации. Если на топливораспределительной рампе есть датчик давления, этот датчик можно использовать для синхронизации.
Если датчик встроен, например, в форсунку третьего цилиндра, начните с цилиндра №3 в порядке зажигания. Итак, для четырехцилиндрового двигателя с порядком работы 1-3-4-2 используйте 3-4-2-1. Запустите порядок зажигания с номером цилиндра, который используется для синхронизации.
Для систем впрыска дизельного топлива, использующих систему Common Rail, и для систем со встроенными форсунками можно использовать датчик тока с чувствительностью 100 мВ/А.