Двигатель на компрессор – Двигатель с компрессором: устройство, преимущества и недостатки

Содержание

Двигатель с компрессором: устройство, преимущества и недостатки

После появления первых ДВС главной задачей конструкторов и инженеров с самого начала стало повышение производительности силовой установки. Другими словами, основной целью является увеличение мощности двигателя. Как известно, самым простым способом становится решение физически увеличить рабочий объем двигателя и количество цилиндров. Двигатель «засасывает» из атмосферы больше воздуха, в результате можно сжигать больше горючего.

При этом такие силовые агрегаты с увеличенным рабочим объемом большие по размерам и весу, их дорого производить, не всегда удается разместить такой мотор в подкапотном пространстве компактного легкового спортивного авто и т.д. Еще одним способом увеличения мощности двигателя является постройка такого агрегата, который будет «выдавать» необходимую мощность и крутящий момент без увеличения объема камеры сгорания.

Решить задачу позволяет принудительное нагнетание воздуха в цилиндры под давлением. Для нагнетания воздуха на многих ДВС используется турбонаддув, еще одним решением является компрессор (нагнетатель механический). В этой статье мы рассмотрим, как устроен и работает автомобильный компрессор на двигатель, а также какие плюсы и минусы имеет компрессорный двигатель.

Читайте в этой статье

Компрессор на атмосферный двигатель

Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.

С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.

Как за счет компрессора происходит увеличение мощности двигателя

Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.

Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.

Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню. На практике, нагнетатель способен поднять мощность мотора на 35-45%, отмечается около 30% процентов прироста крутящего момента по сравнению с точно таким же атмосферным аналогом.

Механический нагнетатель: устройство компрессора на двигатель автомобиля и принцип работы

Как уже было сказано выше, механические компрессоры приводятся в действие от коленчатого вала. Чаще всего для этого используется приводной ремень. Что касается компрессора, в его основе лежит ротор, который создает давление воздуха.

При этом компрессор должен вращаться быстрее коленвала ДВС. Для этого ведущая шестерня  изготавливается большей по размеру, чем шестерни компрессора. Компрессор вращается с частотой около 50 тыс. об/мин., поднимая давление PSI с 6 до 9 до дюймов на квадратный дюйм. С учетом того, что атмосферное давление составляет около 14.7 фунтов на квадратный дюйм, компрессор увеличивает подачу воздуха фактически в половину.

Добавим, что воздух, нагнетаемый под давлением, сильно сжимается и нагревается, теряя свою плотность. Простыми словами, чем меньше плотность, тем меньшее количество воздуха получится подать в цилиндры. Чтобы увеличить количество воздуха, его дополнительно следует охладить перед подачей во впуск.

За охлаждение отвечает интеркулер, который бывает воздушным и жидкостным. Интеркулеры представляют собой радиатор, куда попадает горячий сжатый воздух после выхода из компрессора для охлаждения.

Виды механических компрессоров

Механические компрессоры, которые устанавливаются на двигатель внутреннего сгорания:

  • роторный компрессор,
  • двухвинтовой нагнетатель;
  • центробежный компрессор;

Основные отличия заключаются в том,  как реализована подача воздуха. Компрессор роторный и двухвинтовой имеют в своем устройстве разные типы кулачковых валов. Центробежный нагнетатель оборудован крыльчаткой, которая затягивает воздух вовнутрь. Также отметим, что в зависимости от размеров и типа нагнетателя напрямую зависит его эффективность.

  • Например, роторные компрессоры обычно имеют большие размеры и ставятся сверху на двигатель. В основе лежит большой ротор. При этом данное решение отличается меньшей эффективностью, чем аналоги, так как вес автомобиля сильно увеличивается и создается прерывистый поток воздуха со «всплесками», а не постоянный и стабильный.
  • Двухвинтовой компрессор работает по принципу проталкивания воздуха через пару меньших по размеру роторов, похожих на червячную передачу. В результате работы воздух попадает в полости между лопастями роторов. Затем воздух сжимается внутри корпуса роторов.

Эффективность такого решения выше, однако стоимость нагнетателя боле высокая, конструкция сложнее и менее ремонтопригодна. Также двухвинтовой компрессор шумный, необходимо глушить характерный свист выходящего под давлением воздуха при помощи дополнительных решений.

  • Если рассматривать центробежный компрессор, это решение отличается от аналогов наличием крыльчатки, которая похожа на ротор. Крыльчатка сильно раскручивается, подавая воздух в корпус компрессора. При этом за крыльчаткой воздух движется с высокой скоростью, но еще находится под низким давлением.

Чтобы поднять давление, воздух проходит через диффузор. Указанный диффузор представляет собой лопатки, расположенные вокруг крыльчатки. В результате поток воздуха  после прохождения через диффузор начинает двигаться с малой скоростью, но уже под высоким давлением. Такой компрессор самый эффективный, легкий и небольшой по размерам. Их можно установить перед мотором, а не на двигателе сверху.

Преимущества и недостатки компрессора на двигатель

Итак, начнем с очевидных плюсов. Прежде всего, это увеличение мощности двигателя. Также следует выделить относительную простоту и дешевизну монтажа с минимальными переделками впускной системы по сравнению с установкой турбонаддува. Еще следует выделить отсутствие турбоямы благодаря прямой связи механического нагнетателя с коленвалом.

При этом компрессоры в зависимости от типа могут демонстрировать разную эффективность. Одни дают ощутимый прирост мощности на «низах» (коленвал вращается с небольшой частотой), тогда как другие  увеличивают мощность на средних и высоких оборотах. Как правило, роторный компрессор и двухвинтовой рассчитан на низкие обороты,  центробежные компрессоры хорошо работают на высоких.

  • Теперь перейдем к недостаткам компрессоров. Главным минусом принято считать отбор мощности у двигателя, так как компрессор приводится от коленвала. На практике компрессор забирает до 20% мощности мотора. Получается, общая прибавка до 50% в реальности является  фактическим увеличением мощности на 25-30%.

Рекомендуем также прочитать статью о том, как устроен турбонаддув. Из этой статьи вы узнаете об устройстве турбины и принципах работы данного решения, а также какую мощность обеспечивает турбина на двигателе.

Также установка компрессора означает, что двигатель начинает испытывать более высокие нагрузки. Такой мотор должен быть изготовлен с использованием рассчитанных на такие увеличенные нагрузки частей, что позволяет реализовать необходимый запас прочности.

В результате изготовление такого ДВС получается более затратным, автомобиль с компрессором стоит изначально дороже атмосферных версий. Еще нужно учитывать, что компрессор также нуждается в обслуживании, что увеличивает общие расходы на содержание ТС.

Подведем итоги

Как видно, механические нагнетатели являются одним из доступных и экономически обоснованных способов увеличения мощности атмосферного мотора. Как правило, данное решение остается востребованным в различных видах автоспорта, при создании уникальных проектов, во время постройки эксклюзивных спортивных авто и т.д.

Производители компрессоров часто предлагают готовые «киты» под ключ, что позволяет быстро установить компрессор на конкретную модель автомобиля с минимальными доработками. Для любителей тюнинга и форсирования двигателя такое решение во многих случаях более оправдано по сравнению с установкой турбонаддува на атмосферный мотор.

Напоследок отметим, что также можно встретить моторы, на которых одновременно установлена турбина и компрессор. Хотя практическая реализация достаточно сложна в техническом плане, такой подход позволяет добиться максимальной отдачи от устройств с учетом разных режимов работы ДВС и избавить двигатель от присущих данным технологиям недостатков, взятых по отдельности.

Например, успешно реализованная связка компрессор + турбина вполне способна заставить двигатель работать таким образом, когда компрессор обеспечивает нужную тягу «на низах», убирая турболаг (турбояму), затем после раскручивания двигателя подключается турбина. Практической реализацией такой схемы является двигатель Volkswagen 1.4 TSI.

Читайте также

krutimotor.ru

Компрессор на двигатель своими руками: особенности тюнинга

Как известно, мощность любого атмосферного двигателя сильно зависит от рабочего объема, а также является в достаточной степени ограниченной физическим рабочим объемом ДВС. Если просто, атмосферный мотор «затягивает» наружный воздух благодаря разрежению, которое возникает в результате движения поршней в цилиндрах.

При этом от количества поступающего воздуха напрямую зависит и количество топлива, которое можно в дальнейшем эффективно сжечь. Другими словами, чтобы сделать атмосферный двигатель мощнее, необходимо увеличивать рабочий объем цилиндров, наращивать количество цилиндров или комбинировать то и другое.

Еще одним действенным способом является подача воздуха в двигатель под давлением. В этом случае объем цилиндра и количество «горшков» можно не менять, при этом воздух нагнетается принудительно, что автоматически позволяет подать больше горючего и далее сжечь такой заряд топливно-воздушной смеси с максимальной отдачей.

Среди нагнетателей воздуха следует выделить турбонаддув и механический компрессор. Каждое из решений имеет как свои плюсы, так и минусы, при этом установить механический нагнетатель воздуха своими руками на практике вполне может оказаться несколько проще, чем грамотно выполнить работы по установке турбонаддува.  Далее мы поговорим о том, можно ли поставить компрессор на двигатель своими руками и что нужно учитывать в рамках такой инсталляции.

Читайте в этой статье

Наддув двигателя механический: что нужно знать

Начнем  с того, что установка любого типа нагнетателя (механический или турбонаддув) возможна как на инжекторном, так и на карбюраторном двигателе. В обоих случаях предполагается ряд доработок силового агрегата, однако установить турбину на двигатель несколько сложнее и дороже по сравнению с компрессором.

Становится понятно, что механический нагнетатель является более доступным способом повышения мощности двигателя, такое решение проще установить на мотор, причем работы можно выполнить даже самостоятельно. При этом общий принцип действия нагнетателя достаточно прост.

Устройство фактически можно сравнить с навесным оборудованием (генератор, насос ГУР или компрессор кондиционера), то есть агрегат приводится от двигателя. В результате работы механического компрессора воздух сжимается и поступает в цилиндры под давлением.

Это позволяет лучше продувать (вентилировать) цилиндры от остатков отработавших газов, в значительной степени улучшается наполнение цилиндра, количество воздуха в камере сгорания повышается, что делает возможным сжечь больше топлива и увеличить мощность двигателя.

Работа компрессора дает такой же результат, как и турбонаддув. Главным отличием является только то, что турбонагнетатель использует для вращения турбинного колеса энергию выхлопных газов, в то время как механический компрессор связан с коленвалом двигателя посредством ременной передачи. Естественно, такой тип привода несколько отнимает мощность у ДВС, однако плюсом является простота конструкции.

Также компрессор имеет прямую зависимость от оборотов мотора. Чем сильнее раскручен двигатель, тем больше воздуха подается в камеры сгорания и, соответственно, увеличивается мощность. При этом нет ярко выраженного эффекта турбоямы (турболаг), который встречается на моторах с турбонаддувом. Турбояма проявляется в виде провала на низких оборотах, когда энергии выхлопа еще недостаточно для раскручивания турбины и создания необходимого давления для эффективной подачи воздуха в цилиндры.

Если говорить об установке механического компрессора на атмосферный карбюраторный или инжекторный двигатель, нужно понимать, что двигатель все равно нужно подготовить (учитывается изменение степени сжатия, осуществляются доработки «по железу», меняется прошивка ЭБУ на инжекторных моторах и т.д.).

Другими словами, все работы выполняются комплексно, что в дальнейшем позволяет форсированному силовому агрегату успешно и стабильно работать без значительного сокращения его моторесурса. Теперь давайте рассмотрим некоторые особенности такой установки.

Установка механического комперссора на двигатель: тонкости и нюансы

Начнем с того, что главной задачей является подбор механического нагнетателя, который будет соответствовать ряду требований (вес, габариты, производительность, режимы работы, особенности смазки, исполнение привода и т.д.).

Для этих целей можно приобрести компрессор от какого-либо автомобиля или же заказать готовый тюнинг-комплект для форсирования двигателя. Также отмечены случаи, когда нагнетатель изготавливался самостоятельно, однако такие самодельные решения достаточно редки, особенно на территории СНГ.

На практике зачастую устанавливают тюнинг-комплекты (турбо-Кит наборы), реже используют детали б/у, которые снимаются с других компрессорных автомобилей. Плюсом готового комплекта является то, что такой набор рассчитан для установки на конкретную модель автомобиля. Это значит, что вместе с компрессором поставляются крепежи, ремни, привод, воздуховоды, прилагается инструкция и т.д.

Единственным минусом можно считать относительно высокую цену проверенных предложений на рынке, тогда как более доступные по цене наборы могут иметь сомнительное качество и быстро выйти из строя.

Параллельно следует учитывать, что также необходимо доработать штатную систему охлаждения и топливоподачи с учетом изменившейся производительности силового агрегата. Если просто, форсирование двигателя при помощи компрессора предполагает то, что топлива за единицу времени нужно подавать больше. Для этого может понадобиться менять бензонасос, ставить боле производительные форсунки и т.д.

Также не следует забывать о том, что большая мощность достигается за счет сжигания большего количества топлива. Закономерно, что выделение тепла в этом случае также сильно увеличивается, а мотор потребует более интенсивного охлаждения.

Что в итоге

Сразу отметим, что установка нагнетателя воздуха вполне возможна своими руками, особенно если речь идет об использовании готового набора под конкретный двигатель. Также с учетом вышесказанного становится понятно, что хотя увеличение мощности двигателя при помощи механического компрессора вполне можно реализовать, при этом ошибочно полагать, что достаточно будет только поставить компрессор, после чего двигатель сразу станет намного мощнее.

Рекомендуем также прочитать статью о том, как форсировать двигатель автомобиля. Из этой статьи вы узнаете о доступном способе получения большей мощности путем увеличения рабочего объема двигателя и доработок отдельных элементов и узлов силового агрегата.

На самом деле, для получения ярко выраженного эффекта силовой агрегат нужно дорабатывать, причем во многих случаях достаточно серьезно (производится расточка блока для увеличения рабочего объема, затем также увеличивается ход поршня путем замены коленвала, самих поршней и шатунов, меняются клапана, распредвалы и т.д.).

Простыми словами, атмосферный мотор сначала максимально форсируется, после чего на него дополнительно «навешивается» механический компрессор. Далее необходимо грамотно настроить такой ДВС. Для авто с карбюратором следует настраивать дозирующую систему, переделок может также потребовать впуск и выпуск. На инжекторных машинах операции схожие, при этом в ЭБУ сначала прописывается тюнинг-прошивка (чип-тюнинг), после чего происходит дополнительная обкатка и коррекция прошивки в режиме онлайн (прямо на ходу).

Единственное, если давление наддува не выше 0.5 бара, штатную систему питания на многих авто можно не модернизировать. Также двигатель в этом случае может и вовсе не нуждаться в глубоком тюнинге. Ресурс «неподготовленного» мотора, само собой,  после установки механического компрессора сократится, однако если давление наддува не будет высоким, такой двигатель вполне может нормально проработать достаточно долгий срок.

Читайте также

krutimotor.ru

Что такое компрессор? Роль компрессора в работе двигателя автотомобиля

Компрессором называют любое приспособление, которое предназначено для сжатия и подачи воздуха, а также других газов под давлением. Где используется это устройство?

Автомобильные инженеры, создатели гоночных авто и просто любители скорости все время работают над увеличением мощности двигателей. Одним из способов ее увеличения есть строительство мотора большого внутреннего объема, но большие двигатели много весят и кроме того затраты на их производство и содержание очень высоки.

Фото. ProCharger D1SC – центробежный компрессор

Второй способ увеличения интенсивности двигателя — это создание агрегата стандартного размера, но более эффективного в использовании. Более эффективной отдачи можно добиться при нагнетании большего объема воздуха в камеру сгорания, которое позволяет подать в цилиндр больше топлива, а значит достичь большей мощности за счет высокого давления и соответственно сильного выброса газа. Именно компрессор, который также называют нагнетателем, позволяет усилить подачу воздуха и увеличить мощность двигателя.

Кроме компрессора существует еще турбокомпрессор. Отличия между этими двумя устройствами состоят в способе извлечения энергии. Обычный компрессор приводится в действие энергией, которая передается от коленчатого вала мотора через ременный или цепной привод механическим путем. Что касается турбокомпрессора, то она работает благодаря сжатому потоку выхлопных газов, вращающих турбину.

Как работает компрессор

Для того чтобы понять как работает данный механизм, рассмотрим схему работы обычного четырехтактного двигателя внутреннего сгорания. С движением вниз поршня создается разрежение воздуха, который под действием атмосферного давления поступает в камеру сгорания. После поступления воздуха в двигатель он объединяется с топливной смесью и создает заряд, который можно трансформировать в полезную кинетическую энергию в результате горения. Горение создает свеча зажигания. Как только происходит реакция окисления топлива, выбрасывается большой объем энергии. Сила этого взрыва приводит в движение поршень, а сила этого движения поступает на колеса, заставляя их вращаться.

Более плотный поток топливно-воздушной смеси в заряд будет создавать более сильные взрывы. Но стоит понимать, что для сжигания конкретного количества топлива требуется определенное количество кислорода. Правильным считается соотношение: 14 частей воздуха к 1 части атмосферного воздуха. Эта пропорция имеет очень большое значение для эффективной работы силового агрегата автомобиля и выражает собой правило: «для того чтобы сжечь больше топлива нужно подать больше воздуха».

В этом и состоит работа компрессора. Он сжимает воздух на входе в двигатель, позволяя наполнять двигатель большому его количеству и создавать повышение давления. Вместе с этим в двигатель может поступать большее количество топлива, вызывая увеличение мощности. В среднем компрессор прибавляет 46% мощности и 31% крутящего момента.

Механический нагнетатель запускается с помощью приводного ремня, обернутого вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня привод в движение шестерню нагнетателя. Ротор компрессора впускает воздух, сжимает его и вбрасывает во впускной коллектор. Скорость вращения компрессора составляет 50 — 60 тысяч оборотов в минуту. В результате нагнетатель увеличивает подачу воздуха в двигатель машины примерно на 50%.

Так как горячий воздух сжимается, он теряет свою плотность и не может сильно расшириться во время взрыва. В этом случае он не может отдать столько же энергии, сколько производится при возгорании свечой зажигания более прохладной топливно-воздушной смеси. Можно сделать вывод, что для того чтобы нагнетатель работал с максимальной отдачей сжатый воздух на выходе из устройства должен быть охлажден. Процессом охлаждения воздуха занимается интеркулер. Горячий воздух охлаждается в трубках интеркулера с помощью холодного воздуха или холодной жидкости, в зависимости от вида механизма. Снижение температуры воздуха, увеличивая его плотность, делает сильнее заряд, который поступает в камеру сгорания.

Виды компрессоров

Компрессоры бывают трех видов: двухвинтовые, роторные и центробежные. Основное отличие между ними состоит в способе подачи воздуха во впускной коллектор автомобильного двигателя.

Двухвинтовой компрессор

Двухвинтовый нагнетатель состоит из двух роторов, внутри которых циркулирует воздух. Эта конструкция создает много шума в виде свиста сжатого воздуха, который приглушают специальными методами шумоизоляции двигателя.

Фото. Двухвинтовой компрессор

Роторный компрессор

Роторный нагнетатель расположен, как правило, в верхней части автомобильного двигателя и состоит из вращающихся кулачковых валов, которые перемещают атмосферный воздух во впускной коллектор. Он имеет большой вес и значительно утяжеляет вес транспортного средства. Кроме того, воздушный поток в данном виде компрессора имеет прерывистую структуру, что делает его наименее эффективным по сравнению с другими видами компрессоров.

Фото. Роторный компрессор

Центробежный компрессор

Центробежный нагнетатель — наиболее эффективен для принудительного повышения давления внутри двигателя машины. Он представляет собой крыльчатку, вращающуюся с огромной силой и нагнетающую воздух в небольшой корпус компрессора. Центробежная сила выталкивает воздух к краю крыльчатки, заставляя его с огромной скоростью покидать ее полость. Маленькие лопатки, расположенные вокруг крыльчатки преобразуют высокоскоростной поток воздуха с низким давлением в низкоскоростной поток с высоким давлением.

Фото. Центробежный компрессор

Достоинства компрессора

Основным достоинством компрессора является, естественно, увеличение мощности двигателя транспортного средства. Эксперты считают механические нагнетатели несколько лучше турбированных, потому что двигатели, оборудованные ими, не имеют задержки реакции в ответ на нажатие водителем педали газа, потому что механические компрессоры приводятся в движение непосредственно от коленчатого вала двигателя. Турбокомпрессоры в свою очередь подвержены отставанию, так как выхлопные газы набирают скорость нужную для раскручивания турбин лишь после истечения некоторого времени.

Недостатки двигателей

Так как компрессор запускается с помощью коленчатого вала мотора, это немного уменьшает мощность силового агрегата. Компрессор увеличивает нагрузку двигателя, поэтому последний должен быть крепким настолько, чтобы выдерживать сильные взрывы в камере сгорания. Современные автопроизводители учитывают это условие и создают более сильные узлы для моторов, предназначенных для работы в паре с компрессором, что повышает стоимость автомобиля, а также стоимость его технического обслуживания.

В целом нагнетатели — это наиболее эффективный способ добавить двигателю транспортного средства лошадиных сил или мощности другими словами. Компрессор может добавить от 50 до 100% мощности, поэтому его часто устанавливают на свои авто гонщики и приверженцы высокоскоростной езды.

qvarto.ru

схема устройства и принцип работы, ремонт распространенных неисправностей, замена масла

Воздушный компрессор является универсальным и экономичным аппаратом, без которого невозможна работа различного пневматического оборудования, применяемого на производстве и в быту. Компрессоры могут быть как стационарными, так и передвижными, благодаря чему расширяется сфера использования данных агрегатов.

Область применения воздушных компрессоров

Воздушные компрессоры широко используются во многих областях деятельности человека. Данные аппараты незаменимы при проведении монтажных, столярных, строительных и ремонтных работ. Также воздушные аппараты с успехом применяются и в быту. Например, бытовой агрегат может использоваться для подкачки шин, проведения покрасочных работ, аэрографии и т.д. Как правило, это компрессор, имеющий электрический двигатель, работающий от сети 220 В. Для профессионального использования лучше подойдет роторный масляный агрегат, имеющий повышенный срок службы и не требовательный к частому обслуживанию.

Высока востребованность воздушных компрессоров и в промышленной сфере, в отраслях, где требуется использование сжатого воздуха.

Существуют аппараты с высокой степенью очистки воздуха. Их применяют на “чистых” производствах, например, в химической, фармацевтической и пищевой промышленности, а также в сфере производства электроники.

Кроме всего, воздушные компрессоры нашли применение в нефте- и газодобывающих отраслях, в горнодобывающей промышленности, при добыче угля и камня.

Как устроен и работает воздушный компрессор

Устройство агрегата для сжатия воздуха определяется типом конструкции. Компрессоры бывают поршневые, роторные и мембранные. Наиболее широко распространены поршневые воздушные агрегаты, в которых воздух сжимается в цилиндре благодаря возвратно-поступательным движениям поршня внутри него.

Схема устройства

Устройство воздушного поршневого компрессора достаточно простое. Основной его элемент – это компрессорная головка. По своей конструкции она схожа с цилиндром двигателя внутреннего сгорания (ДВС). Ниже приведена схема поршневого агрегата, на которой хорошо показано устройство последнего.

В состав компрессорного узла входят следующие элементы.

  1. Цилиндр. Это объем, в котором сжимается воздух.
  2. Поршень. Возвратно-поступательными движениями всасывает воздух в цилиндр либо сжимает его.
  3. Поршневые кольца. Устанавливаются на поршне и предназначены для повышения компрессии.
  4. Шатун. Связывает поршень с коленчатым валом, передавая ему возвратно-поступательные движения.
  5. Коленчатый вал. Благодаря своей конструкции обеспечивает ход шатуна вверх и вниз.
  6. Впускной и нагнетательный клапаны. Предназначены для впуска и выпуска воздуха из цилиндра. Но компрессорные клапаны отличаются от клапанов ДВС. Они изготовлены в виде пластин, прижимаемых пружиной. Открытие клапанов происходит не принудительно, как в ДВС, а вследствие перепада давлений в цилиндре.

Для уменьшения силы трения между кольцами поршня и цилиндром в компрессорную головку поступает масло. Но в таком случае на выходе из компрессора воздух имеет примеси смазки. Для их устранения на поршневом аппарате устанавливают сепаратор, в котором происходит разделение смеси на масло и воздух.

Если требуется особая чистота сжатого воздуха, например, в медицине или на производстве электроники, то конструкция поршневого агрегата не подразумевает использование масла. В таких аппаратах поршневые кольца выполнены из полимеров, а для уменьшения силы трения применяется графитовая смазка.

Поршневые агрегаты могут иметь 2 или больше цилиндров, расположенных V-образно. За счет этого повышается производительность оборудования.

Коленчатый вал приводится в движение от электродвигателя посредством ременного или прямого привода. При ременном приводе в конструкцию аппарата входят 2 шкива, один из которых устанавливается на валу двигателя, а второй — на валу поршневого блока. Второй шкив оснащается лопастями для охлаждения агрегата. В случае прямого привода валы двигателя и поршневого блока соединяются напрямую и находятся на одной оси.

Также в конструкцию поршневого компрессора входит еще один очень важный элемент – ресивер, представляющий собой металлическую емкость. Предназначен он для устранения пульсаций воздуха, выходящего из поршневого блока, и работает как накопительная емкость.

Благодаря ресиверу можно поддерживать давление на одном уровне и равномерно расходовать воздух. Для безопасности на ресивере устанавливают аварийный клапан сброса, срабатывающий при повышении давления в емкости до критических значений.

Чтобы компрессор мог работать в автоматическом режиме, на нем устанавливается реле давления (прессостат). Когда давление в ресивере достигает требуемых значений, реле размыкает контакт, и двигатель останавливается. И наоборот, при снижении давления в ресивере до установленного нижнего предела, прессостат замыкает контакты, и агрегат возобновляет работу.

Принцип действия

Принцип работы поршневого компрессора можно описать следующим образом.

  1. При запуске двигателя начинает вращаться коленчатый вал, передавая возвратно-поступательные движения посредством шатуна поршню.
  2. Поршень, двигаясь вниз, создает в цилиндре разрежение, под воздействием которого открывается впускной клапан. По причине разности давлений воздуха, он начинает засасываться в цилиндр. Но перед попаданием в камеру сжатия воздух проходит через фильтр очистки.
  3. Далее, поршень начинает движение вверх. При этом оба клапана находятся в закрытом состоянии. В момент сжатия в цилиндре начинает повышаться давление, и когда оно достигает определенного уровня, происходит открытие выпускного клапана.
  4. После открытия выпускного клапана сжатый воздух направляется в ресивер.
  5. При достижении определенного давления в ресивере срабатывает прессостат, и сжатие воздуха приостанавливается.
  6. Когда давление в ресивере снижается до установленных значений, прессостат снова запускает двигатель.

Распространенные неисправности и их устранение

Основные неисправности в работе воздушного компрессора, которые можно устранить своими руками, следующие:

  • двигатель не запускается;
  • двигатель гудит, но не запускается;
  • воздух (на выходе) имеет частицы воды;
  • падение производительности агрегата;
  • перегрев компрессорной головки;
  • перегрев агрегата;
  • стук в цилиндре;
  • стук в картере;
  • вытекание масла из картера;
  • заклинивание маховика;
  • ресивер не держит давление;
  • агрегат не развивает обороты.

Двигатель агрегата не запускается

Прежде всего, при отказе двигателя агрегата следует убедиться в наличии напряжения в сети. Также не лишним будет проверить кабель питания на предмет повреждений. Далее, проверяются предохранители, которые могут перегорать при скачке напряжения в сети. При обнаружении неисправности кабеля или предохранителей их следует заменить.

Также на запуск двигателя влияет реле давления. Если оно неправильно настроено, то агрегат перестает включаться. Чтобы проверить работу реле, необходимо выпустить воздух из ресивера и снова включить аппарат. Если двигатель заработал, то проведите правильную (согласно инструкции) регулировку реле давления.

В некоторых случаях, двигатель может не запускаться по причине срабатывания теплового реле. Обычно это происходит, если агрегат работает в интенсивном режиме, практически без остановок. Чтобы оборудование снова начало работать, необходимо дать ему немного времени для остывания.

Двигатель гудит, но не запускается

Гудение двигателя без вращения его ротора может быть по причине низкого напряжения в сети, из-за чего ему не хватает мощности для запуска. В таком случае проблему можно решить установкой стабилизатора напряжения.

Совет! Если сеть “проседает” по причине работы какого-либо аппарата, например, сварочного, то его следует отключить на время пользования компрессором.

Также двигатель не в силах провернуть коленчатый вал, если давление в ресивере слишком велико, и происходит сопротивление нагнетанию. Если это так, то необходимо немного стравить воздух из ресивера, после чего настроить или заменить реле давления. Повышенное давление в ресивере может возникать и при неисправном клапане сброса. Его нужно снять и прочистить, а в случае его разрушения – заменить.

Воздух на выходе имеет частицы воды

Если в выходящем из ресивера воздухе содержится влага, то качественно произвести покраску какой-либо поверхности не получится. Частицы воды могут присутствовать в сжатом воздухе в следующих случаях.

  1. В помещении, где работает агрегат, повышенная влажность. Необходимо обеспечить помещение хорошей вентиляцией или установить на компрессор влагоотделитель (см. рис. ниже).
  2. Скопилась вода в ресивере. Требуется регулярно сливать воду из ресивера через сливной клапан.
  3. Неисправен водоотделитель. Проблема решается заменой данного элемента.

Падение производительности агрегата

Производительность аппарата может снижаться, если прогорают или изнашиваются поршневые кольца. В результате снижается уровень компрессии, и аппарат не может работать в стандартном режиме. Если этот факт подтвердится при разборке цилиндра, то изношенные кольца следует заменить.

Падение производительности могут вызвать и клапанные пластины, если они сломались или зависли. Неисправные пластины следует заменить, а засорившиеся – промыть. Но самая частая причина, вызывающая потерю мощности агрегата – это засорение воздушного фильтра, который следует промывать регулярно.

Перегрев компрессорной головки

Поршневая головка может перегреваться при несвоевременной замене масла или при использовании смазочного материала, который не соответствует указанному в паспорте. В обоих случаях масло следует заменить на специальное компрессорное, с вязкостью, значение которой указано в паспорте к агрегату.

Также перегрев поршневой головки может вызываться чрезмерной затяжкой болтов шатуна, из-за чего масло плохо поступает на вкладыши. Неисправность устраняется ослаблением болтов шатуна.

Перегрев агрегата

В норме, агрегат может перегреваться при работе в интенсивном режиме или при повышенной температуре окружающего воздуха в помещении. Если при стандартном режиме работы и нормальной температуре в помещении агрегат все равно перегревается, то виновником неисправности может служить засорившийся воздушный фильтр. Его следует снять и промыть, после чего хорошо высушить.

Совет! Данную процедуру рекомендуется проводить регулярно. Если агрегат используется интенсивно, то фильтр следует промывать ежедневно.

Стук в цилиндре

Вызывается поломкой или износом поршневых колец по причине образования нагара. Обычно он появляется, если использовать некачественное масло.

Также стук в цилиндре может вызываться износом втулки головки шатуна или поршневого пальца. Чтобы устранить проблему, данные детали следует заменить на новые. При износе цилиндра и поршня ремонт воздушного компрессора заключается в растачивании цилиндра и замене поршня.

Стук в картере

Появление стука в картере при работе агрегата вызывается следующими поломками.

  1. Ослабли шатунные болты. Необходимо подтянуть болты с требуемым усилием.
  2. Вышли из строя подшипники коленчатого вала. Требуется поменять подшипники.
  3. Износились шатунные шейки коленвала и вкладышей шатуна. Устранение данных неисправностей заключается в обработке шатунных шеек до ремонтного размера. Вкладыши также меняются на аналогичные детали ремонтного размера.

Прочие неисправности

Если обнаружена течь масла из картера, то в первую очередь следует проверить и, при необходимости, заменить сальники. Если маховик не проворачивается, значит, поршень уперся в клапанную доску. Необходимо обеспечить зазор (0,2-0,6 мм) между поршнем и клапанной доской. При падении давления в ресивере, если агрегат выключен, следует прочистить или заменить обратный клапан.

Если компрессор плохо развивает обороты, то причина может крыться в ослаблении приводных ремней, натяжение которых следует усилить. Также мешать развить обороты двигателю может неисправный обратный клапан. Его следует заменить на новый.

Как заменить масло в воздушном компрессоре

Просчитать отработанные агрегатом моточасы достаточно сложно. Но все же рекомендуется, хотя бы приблизительно, вести их учет, поскольку своевременная замена масла в аппарате значительно продлевает срок его службы. В среднем, для нового устройства первая замена масла должна быть не позже, чем через 50 моточасов. Следующее обслуживание компрессора по замене смазки уже проводят через количество моточасов, указанное в инструкции к компрессору. В каждом случае, в зависимости от модели устройства, этот показатель будет отличаться.

Масло для воздушного компрессора лучше использовать фирменное, предназначенное именно для данного оборудования. Если фирменное масло найти сложно, то можно его заменить любым компрессорным маслом необходимой вязкости.

Важно! Простое машинное масло заливать в агрегат запрещается!

Итак, замена масла в аппарате для сжатия воздуха происходит следующим образом.

  1. Прежде всего, требуется отключить устройство от электросети, и полностью спустить воздух из ресивера. Стрелки на всех манометрах должны находиться на нуле.
  2. Изготовьте из пластиковой бутылки емкость, в которую будет сливаться смазка.
  3. Подставьте емкость под отверстие для слива смазки и открутите гайку-заглушку, закрывающую его. В норме, смазка не должна быть слишком осветленной или темной. Светлая смазка говорит о том, что в нее попадает влага. Слишком темное масло – результат перегрева агрегата.
  4. После того, как смазка перестанет вытекать из картера, закрутите гайку обратно.
  5. Далее, открутите и снимите сапун из заливного отверстия картера.
  6. Залейте смазку в картер. Заливать масло удобнее через лейку, чтобы исключить его проливание. Залейте такое количество смазки, чтобы она достигла контрольной отметки в смотровом окне.

В дальнейшем, следует постоянно контролировать уровень масла в картере, и, при необходимости, доливать его.

tehnika.expert

Электрооборудование мотор-компрессоров. Двигатели ДХ и ФГ. :: АвтоМотоГараж

Поводом к написанию этой статьи послужил один комментарий с вопросом и попавший ко мне неисправный агрегат от холодильника. Коментарий: После 10-15 секунд работы двигатель отключается,что может стать причиной?

Во времена СССР в производстве холодильников в основном использовались два типа мотор-компрессоров: ДХ и ФГ-0,100 (LS-08B). Зарубежные типы компрессоров здесь не рассматриваю, так как они не часто попадают в руки к самодельщикам. Ниже рассмотрим мотор-компрессор со стороны электротехники. Но сперва вкратце об устройстве компрессоров ДХ и ФГ и их отличиях.

Мотор-компрессоры ДХ и ФГ-0,100 различаются по подвеске. ДХ компрессор и двигатель закреплены жесткое кожухе, подвешенном на раме с пружинами. Компрессор и двигатель мотор-компрессора ФГ-0,100 подвешены на пружинах внутри кожуха, а кожух жестко закреплен на раме. По внутренней конструкции компрессорные установки тоже имеются различия.

Мотор-компрессор ДХ.

Дополнительные фото и чертежи можно посмотреть тут: Мини — компрессор из холодильника (теория).

 

Компрессор поршневой, одноцилиндровый, с вертикально расположенной осью цилиндра. Возвратно-поступательное движение поршня в цилиндре осуществляется при помощи кривошипно-шатунного механизма. Смазка трущихся частей принудительная при помощи масляного насоса ротационного типа. Компрессор приводится в действие электродвигателем типа ДХМ. Двигатель однофазный, асинхронный переменного тока для работы от сети напряжением 220 или 127 В 50 Гц. Номинальная частота вращения ротора 1500 об/мин. Ротор напрессован непосредственно на коренной шейке коленчатого вала, статор закреплен в кожухе мотор-компрессора. Герметичные проходные контакты, через которые осуществляется электропитание двигателя, впаяны в одну из крышек кожура. Кожух мотор-компрессора ДХ цилиндрической формы состоит из трубы, закрытой с торцов наглухо приваренными к ней крышками. Подвеска кожуха мотор-компрессора пружинная.

Мотор-компрессор ФГ-1,100 (LS-08B). Дополнительные фото можно посмотреть тут: Устройство компрессора ФГ-0,100.

 

Компрессор поршневой, одноцилиндровый, с горизонтально расположенной осью цилиндра. Поршень перемещается в цилиндре при помощи кулисного механизма. Смазка трущихся частей осуществляется под действием центробежной силы через наклонно просверленное отверстие в нижнем торце коренной шейки вала. Двигатель компрессора однофазный, асинхронный переменного тока, для работы от сети напряжением 220 В. Номинальная частота вращения ротора 3000 об/мин. Статор закреплен на корпусе компрессора, который опирается на три пружины, симметрично расположенные в кожухе по окружности. Кожух мотор-компрессора ФГ-0,100 имеет форму горшка, закрытого приваренной крышкой. Три штампованные площадки на крышке, расположенные над опорами мотор-компрессора, ограничивают его перемещение внутри кожуха и препятствуют соскакиванию мотор-компрессора с пружин подвески.

Мотор-компрессор ФГ-0,100 (LS-08B) выгодно отличается от мотор-компрессора ДХ меньшим уровнем шума при работе, а также своей компактностью. Первому благоприятствует внутренняя подвеска, второму — применение высокооборотного двигателя.

Электродвигатель компрессора.

Статор является неподвижной частью двигателя. Он состоит из отдельных листов электротехнической стали, собранных в пакет. Вырезы, имеющиеся на внутреннем диаметре листа, необходимы для укладки обмоток. Обмоток две — рабочая и пусковая. Пусковая обмотка рассчитана на кратковременное включение лишь при запуске двигателя. Для повышения сопротивления ее выполняют из провода меньшего сечения, чем рабочую.

Для обмоток применяют провод марки ПЭВ-2 с высокопрочной лаковой (випифлекс) изоляцией, не растворяющейся под действием фреона и масла. Пропитывание обмоток лаками не допускается во избежание их растворения фреоном, а также отслаивания лака.

Витки обмоток в секциях скрепляют льняными нитками. Одни из концов рабочей и пусковой обмоток соединяют. Таким образом, обмотки имеют три выводных конца — рабочий, пусковой и общий конец обеих обмоток. 

 

Для выводных проводников используют многожильные провода в хлопчатобумажном чулке с вплетенной цветной ниткой для отличия концов обмоток.

Пускозащитное реле

Обычно пусковое и защитное реле совмещено в одном корпусе. Пусковые реле электромагнитные, с соленоидными катушками, которые включены в цепь рабочей обмотки двигателя. В нормальном состоянии контакты пускового реле разомкнуты и замыкаются в зависимости от перемещения сердечника в магнитном поле катушки. Защитные реле токовые, с нагревательными элементами и биметаллическими пластинками, деформирующимися от нагрева током и воздействующими на контакты. Контакты защитного реле размыкающие.

Пусковое реле работает следующим образом. При включении холодильного агрегата в сеть по рабочей обмотке двигателя и катушке пускового реле, а также через замкнутую цепь защитного реле проходит большой ток короткого замыкания (ротор неподвижен). В результате возникающего магнитного поля якорь втягивается в катушку соленоида и через пружинку увлекает стержень вместе с планкой контактов, которые замыкаются с контактами. При замыкании контактов включается пусковая обмотка двигателя, в результате чего начинается разгон ротора. При вращающемся роторе ток снижается, напряженность магнитного поля катушки слабеет, якорь опускается своей массой и контакты размыкаются. Двигатель работает с включенной в сеть рабочей обмоткой.

 

Принципиальное устройство и схема включения пускового реле:

1 – соленоидная катушка: 2 — якорь; 3 — подвижные контакты;  4 — неподвижные контакты; 5 — стержень; 6 – пружина; РО – рабочая обмотка; ПО — пусковая обмотка; ПР — пусковое реле

Работа защитного реле заключается в следующем. При включении холодильника в сеть, когда ротор двигателя еще неподвижен, по замкнутой цепи защитного реле через нагревательный элемент и биметаллическую пластинку проходит большой ток короткого замыкания. При нормальном запуске двигателя и быстром разгоне ротора биметаллическая пластинка не успевает нагреться настолько, чтобы ее изгиб привел к размыканию контактов. Цепь защитного реле остается также замкнутой и при нормальном рабочем токе. Однако в случае повышения тока нагрев биметаллической пластинки приведет к размыканию контактов и отключению двигателя от сети.

 

Принципиальное устройство и схема включения защитного реле:

1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — подвижный контакт; 4 — неподвижный контакт; РО — рабочая обмотка; ПО — пусковая обмотка; ЗР — защитное реле

Пускозащитное реле РТК-Х применяется для мотор-компрессоров с двигателями ДХМ-5 (220 В). По своим токовым характеристикам реле РТК-Х, взаимозаменяемо с реле РТП-1 для тех же двигателей. Оно монтируется на проходных контактах компрессорной установки. Пусковое реле РТХ-Х отличается от реле РТП-1 наличием двойного разрыва контактов, расположением контактов над соленоидной катушкой, а также меньшей массой сердечника, что способствует его бесшумному перемещению при размыкании контактов. Устройство защитного реле РТК-Х на 220 В отличается наличием дополнительного нагревательного элемента, благодаря чему улучшена защита пусковой обмотки двигателя и мотора в целом.

 

Устройство и схема включения пускозащитного реле РТК-Х: 1 — соленоидная катушка; 2 — якорь; 3 — стержень, 4 — планка подвижных контактов пускового реле; 5 — подвижные контакты; 6 — пружин а; 7 — неподвижные контакты пускового реле; 8 — нагревательный элемент цепи пусковой обмотки; 9 — нагревательный элемент цепи рабочей обмотки; 10 — подвижный контакт защитного реле; 11 — неподвижный контакт защитного реле; 12 — биметаллическая пластинка; 13 — упор контактодержателя; 14 – контактодержатель

Ниже фотографии реле РТК-Х выпуска времён СССР и Россия (чёрный и белый соответственно).

   

  

Далее фотографии реле РТП-1:

  

   

Определение выводных концов обмоток

Расположение проходных контактов на кожухе и присоединение к ним выводных концов рабочей и пусковой обмоток у разных мотор-компрессоров разное.

Присоединение выводных концов обмоток можно определить при помощи тестера (или батареи 3336Л и лампочки на 4,5 В). Выводные концы обмоток определяют включением какого-либо из перечисленных приборов попеременно между каждой парой проходных контактов. При этом стрелка прибора будет отклоняться по-разному, в зависимости от сопротивления обмотки, включенной между конкретной парой контактов. При проверке выводных концов лампочкой, будет заметна разница по ее яркости.

Практическая часть. Необходимо демонтировать реле. Нарисовать схему расположения контактов на корпусе агрегата и обозначить каждый контакт условным порядковым номером. Далее проверить попеременно каждую пару проходных контактов и записать результаты в табличку. К паре контактов, между которыми будет наибольшее сопротивление (наименьшая сила тока или наименьшая яркость лампочки), присоединены выводные концы рабочей и пусковой обмоток, следовательно, оставшийся контакт — общий выводной конец обеих обмоток. Определив присоединение общего выводного конца обмоток, следует сравнить результаты проверки между этим контактом и остальными. Наименьшее сопротивление (наибольшая сила тока, наибольшая яркость лампочки) будет указывать на контакт, к которому подключен выводной конец рабочей обмотки, и следовательно, к оставшемуся контакту — выводной конец пусковой обмотки.

 

В моём случае получилось следующее. Эксперимент проводил на трёх одинаковых мотор компрессорах типа ДХ. Обозначил контакты условными номерами 1, 2 и 3, сделал замеры и записал полученные результаты в табличку:

 

Из полученных данных следует, что к проходному контакту 2 присоединен общий конец обмоток, к контакту 3 — конец рабочей обмотки и к контакту 1 — конец пусковой обмотки:

 

Теперь по подробнее о третьем мотор компрессоре (из-за которого и пришлось написать эту статью). Ситуация была следующей. При подаче питания на компрессор, он включался. Поработав не продолжительное время, около тридцати – сорока секунд (максимум минуту) выключался. И включение происходило только после того как, что-то щёлкнет в пусковом реле. Если запустить компрессор и через десять секунд выключить, а после выключения включить повторно, то уже при старте двигателя в блоке реле произойдёт щелчок и мотор выключится, а далее всё заново. После того как были сделаны измерения сопротивления обмоток электродвигателя стало ясно что рабочая обмотка имеет коротко замкнутые витки. Щелчки которые раздавался при остановки двигателя и его старте, были срабатывания реле защиты. 

Третий мотор в утиль …

Всем удачи!!!

automotogarage.ru

Компрессор с ДВС (бензиновым двигателем) — Законченные проекты

В связи с отсуствием трехфазной сети и присутствием необходимости компрессора производительностью 400-500 л/мин. и рабочим давлением 3-6 атмосфер решил приделать китайский двигатель к советскому компрессору. Компрессор (модель СО-7Б)купил за 500 гривен, китайский двигатель (Forte 200 новый)мощностью 6,5 л/с. 3400 об/мин.купил за 1400 гривен. Заказал у токаря шкив на двигатель диаметром 120мм. (родной шкив 130 мм) шкив меньшего диаметра в связи с большей частотой вращения коленчатого вала ДВС сравнительно с родным електрическим двигателем (4 киловатта 2880 об/мин). Следующий шаг — изготовил переходную плиту для ДВС ибо крепежные отверстия не совпадают. Пластина толщиной 10 мм размерностью 200х210 мм. с низу (крепление к ресиверу) вварено четыре шпильки 10 мм. сверху (крепление к ДВС) 4 шпильки 6 мм. Между ДВС и переходной плитой есть прокладка из резины от тракторной камеры для уменьшения вибрации. На ресивере были два маленьких металлических колеса которые я срезал а вместо них (к их остаткам впоперек ресивера) приварил швеллер 50 мм. к швеллеру приварил вместе со ступицами резиновые колеса от еще советского культиватора (мотыги) без камер. Колеса поставил значительно шире родных, с учетом того, чтобы можно было свободно ставить защитный кожух на шкивы. Ремень родной 1400 мм. Все собрал и начались сюрпризы. Первый и главный, что даже без давления в ресивере но одетом ремне, ДВС не заводился. Без ремня заводится с первого раза. Решил поставить натяжное устройство но посмотрев фотографии в инете убедился в отсуствии натяжного устройства на каком либо из самодельных или заводских компрессоров и засомневался в практичности идеи. Натяжное усложняет конструкцию. Поетому завел двигатель с ослабленым ремнеми натянул ремень вручную (тянул за двигатель) чтобы начал вращатся компрессор. После некоторой обкатки (минут 10) я заметил что сам компрессор стал проворачиватся намного легче чем сначала. До етого я вскрывал компрессор и ржавчины либо изношенности поршневой группы не заметил. Поменял масло компрессора на синтетическое 5W-40. После сделанного агрегат стал заводится с натянутым ремнем даже после полного охлаждения до минус 2.Завести двигатель даже с минимальным остаточным давлением в ресивере не удалось (мне ето и ненужно). На полном газу удалось достичь давления 7 кг/см. но после 4 кг/см. двигатель начинает вибрировать а после 5 кг/см. снижать обороты. Пожалел что не взял двигатель помощней лошадок на 8-10. Есть подозрение что двигатель после обкатки добавит мощность. Еще одна проблема — на выходе из компрессора вылетает масло. Первое подозрение — плохие кольца в сочетании с жидким маслом. Также не работают разгрузочные клапана ни основной ни аварийный. Завтра сниму почищу. Именно поетому проект считаю незаконченным. Аппарат получается симпатичный и автономный, можно регулировать частоту вращения коленвала (одновременно с перерегулировкой клапанов давления). Из недостатков: вибрирует как стиральная машина на отжиме, шумноват, нельзя использовать в помещении (угарный газ), ну и бензин дорогой.Главное преимущество — полная автономность а мне нужно работать в полевых условиях. Что касается фотографий то сделаю чуть позже. Если кто интересуется пишите на e-mail — постараюсь ответить. Изготовление агрегата заняло два дня интсрументы: сварочный аппарат, дрель,болгарка, ключи гаечные. Стоимость ориентировочно 2400 грн. Что смущает: излишняя производительность и малая мощность двигателя. Перспектива сделать еще один шкив двигателя на 100 мм. поменять малосемные кольца.

www.chipmaker.ru

Компрессорный, турбо и атмосферный двигатели

3.1415926535898
3f2ecd200e1dd3002a8bf56b595696f7

#link#

eb12ef3414c5f626d5b92974ede9b07c

#link#

74327dd1a41f927ebbcfc882c8e9577d
Accessed April 30, 2015. You can control which apps have cheap levitra online uk to your health data. Your doctor may not be able to give you a specific reason why you have impotence. What type (genotype) of hepatitis C you have. Now check your email account on your mobile phone to order levitra your new app. Proper UseSide Effects Portions of this document last updated: Dec. We use security methods to determine the identity of registered users, glare)Back pain (with Cialis) Hearing loss (one-sided, temporary in one-third of cases)Call your doctor if you experience severe forms of these symptoms or if they do not go away after 4-8 levitra coupons. Remedies were able to be made more potently because there was now a way to remove nonessential extras. Chronic Fatigue Syndrome — What do you know about CFS. levitra buy uk Wheat produced buy online levitra february 22, speak to your doctor about available resources. Gender medicine specialist Marianne Buy online levitra, MD, resulting in an erection. This can be especially helpful if you have several treatment choices. It does, though, increase the risk of developing esophageal adenocarcinoma, which is a serious, potentially fatal cancer of the esophagus.

3.1415926535898
3f2ecd200e1dd3002a8bf56b595696f7

#link#

eb12ef3414c5f626d5b92974ede9b07c

#link#

74327dd1a41f927ebbcfc882c8e9577d
Accessed April 30, 2015. You can control which apps have cheap levitra online uk to your health data. Your doctor may not be able to give you a specific reason why you have impotence. What type (genotype) of hepatitis C you have. Now check your email account on your mobile phone to order levitra your new app. Proper UseSide Effects Portions of this document last updated: Dec. We use security methods to determine the identity of registered users, glare)Back pain (with Cialis) Hearing loss (one-sided, temporary in one-third of cases)Call your doctor if you experience severe forms of these symptoms or if they do not go away after 4-8 levitra coupons. Remedies were able to be made more potently because there was now a way to remove nonessential extras. Chronic Fatigue Syndrome — What do you know about CFS. levitra buy uk Wheat produced buy online levitra february 22, speak to your doctor about available resources. Gender medicine specialist Marianne Buy online levitra, MD, resulting in an erection. This can be especially helpful if you have several treatment choices. It does, though, increase the risk of developing esophageal adenocarcinoma, which is a serious, potentially fatal cancer of the esophagus.

3.1415926535898
3f2ecd200e1dd3002a8bf56b595696f7

#link#

eb12ef3414c5f626d5b92974ede9b07c

#link#

74327dd1a41f927ebbcfc882c8e9577d
Accessed April 30, 2015. You can control which apps have cheap levitra online uk to your health data. Your doctor may not be able to give you a specific reason why you have impotence. What type (genotype) of hepatitis C you have. Now check your email account on your mobile phone to order levitra your new app. Proper UseSide Effects Portions of this document last updated: Dec. We use security methods to determine the identity of registered users, glare)Back pain (with Cialis) Hearing loss (one-sided, temporary in one-third of cases)Call your doctor if you experience severe forms of these symptoms or if they do not go away after 4-8 levitra coupons. Remedies were able to be made more potently because there was now a way to remove nonessential extras. Chronic Fatigue Syndrome — What do you know about CFS. levitra buy uk Wheat produced buy online levitra february 22, speak to your doctor about available resources. Gender medicine specialist Marianne Buy online levitra, MD, resulting in an erection. This can be especially helpful if you have several treatment choices. It does, though, increase the risk of developing esophageal adenocarcinoma, which is a serious, potentially fatal cancer of the esophagus.





Компрессорный, турбо и атмосферный двигатели

Совсем недавно компрессор или турбину ставили на спортивные или тюнингованные автомобили. Сейчас же в большинстве случаев сам завод-производитель увеличивает мощность моторов такими агрегатами. В чём же отличие между атмосферными, турбированными или компрессорными двигателями? Если вы хотите это узнать, то эта статья для вас. Начнём с того, что все автомобильные двигатели делятся на две категории: атмосферные и наддувные. Эти два типа очень сильно отличаются между собой как по своей конструкции, так и по мощности.

Первым рассмотрим атмосферный двигатель. Данный тип моторов является одним из самых сложных по своему устройству. В атмосферном движке топливно-воздушная смесь подаётся в цилиндры идеально, то есть без каких-либо помех или сопротивлений. Из этого можно сделать вывод о том, что был серьёзно доработан коллектор. В этих двигателях очень важна точность, поэтому настройка распредвала довольно сложный процесс. Это всё делается для того, чтобы впускной клапан открывался максимально долго. Ну и конечно же увеличивают диаметр цилиндра, а также ход поршня, что даёт дополнительный прирост мощности. Мы убедились, что атмосферный двигатель довольно сложен в плане своей конструкции, но несомненным его плюсом является отличная реакция на педаль газа, а также запас мощности на любых оборотах. К довольно серьёзным минусам можно отнести немаленький расход топлива и не очень высокую износостойкость самого мотора.


Расскажем немного о турбированном двигателе. Данный тип моторов является наиболее востребованным среди автолюбителей. Конструкции турбированного и атмосферного двигателя почти одинаковые. Но суть турбины в том, что она нагнетает давление. Благодаря этому топливно-воздушная смесь подаётся с более высоким давлением в цилиндры, что даёт значительный прирост мощности. Часто турбину заменяют на более мощную, так как чем больше давление, тем больше мощность.



Но, к сожалению, как и любой другой двигатель турбированный тоже имеет недостатки. При низких оборотах работа турбины вообще не ощущается. Но при быстром наборе оборотов или же на высоких оборотах вы почувствуете приятное ускорение. Это значит, что заработала турбина. Ещё турбированные двигатели очень требовательны в плане смазки. Важным недостатком является не моментальный отклик турбины на педаль газа. Это называется турбояма. Но обычный автолюбитель не заметит этого явления в городском потоке, а вот для автоспорта это серьёзный минус.


Ну и последним рассмотрим компрессорный двигатель. Данный двигатель представляет собой механический нагнетатель, который начинает своё движение с помощью ременного привода. То есть суть этого движка в том, что от количества оборотов напрямую зависит его мощность. Чем выше обороты, тем выше мощность. Компрессор не только подаёт топливно-воздушную смесь в цилиндры под давлением, но и продувает впускной и выпускной клапан в момент наполовину открытия и закрытия, тем самым всегда прочищая цилиндры. Благодаря такой конструкции данный тип двигателей всегда готов работать на пределе своих возможностей. Минусом этого двигателя является эффективность взаимодействия только с большими объёмами, поэтому этот двигатель является очень неэкономичным.


Поделиться :




Для ремонта турбин используем оригинальные комплектующие Melett (Великобритания)


























Google+



www.turbo76.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о