Поршневой электродвигатель – Поршневой электродвигатель своими руками.

Содержание

Роторно-поршневой двигатель — Энциклопедия журнала «За рулем»

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов.
Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала.
Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 — впускное окно; 2 выпускное окно; 3 — корпус; 4 — камера сгорания; 5 – неподвижная шестерня; 6 — ротор; 7 – зубчатое колесо; 8 — вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания.
Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач.
В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80.
Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов — Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 — спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Любопытные факты

1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

Статья в журнале «За рулем» №2, 1960

Статья в журнале об РПД польского инженера Рожицкого, «За рулем» №12, 1961

Статья в журнале «За рулем» №12, 1965

Статья в журнале «За рулем» №12, 1970

wiki.zr.ru

Поршневой двигатель

Статья опубликована 26.06.2014 06:16
Последняя правка произведена 16.11.2015 18:28

Определение.

Поршневой двигатель – один из вариантов двигателя внутреннего сгорания, работающий за счет превращения внутренней энергии сгорающего топлива в механическую работу поступательного движения поршня. Поршень приходит в движение при расширении рабочего тела в цилиндре.

Кривошипно-шатунный механизм преобразует поступательное движение поршня во вращательное движение коленчатого вала.

Рабочий цикл двигателя состоит из последовательности тактов односторонних поступательных ходов поршня. Подразделяют двигатели с двумя и четырьмя тактами работы.

Принцип работы двухтактного и четырехтактного поршневых двигателей.










4-х тактный цикл работы поршневого ДВС:

1. Всасывание горючей смеси.

2. Сжатие.

3. Рабочий ход.

4. Выхлоп.


2-х тактный цикл работы поршневого ДВС:

1. Поршень движется вверх и происходит сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем.

2. Поршень опускается обратно — рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую полость цилиндра.

Количество цилиндров в поршневых двигателях может варьироваться в зависимости от конструкции (от 1-го до 24-х). Объем двигателя принято считать равным сумме объемов всех цилиндров, вместимость которых находят по произведению поперечного сечения на ход поршня.

В поршневых двигателях различных конструкций по-разному происходит процесс воспламенения топлива:

Электроискровым разрядом, который образуется на свечах зажигания. Такие двигатели могут работать как на бензине, так и на других видах топлива (природный газ).

Сжатием рабочего тела:

• В дизельных двигателях, работающих на дизельном топливе или газе (с 5% добавлением дизтоплива), сжимается воздух, и при достижении поршнем точки максимального сжатия, происходит впрыск топлива, которое воспламеняется от контакта с нагретым воздухом.

Двигатели компрессионной модели. Подача топлива в них точно такая же, как и в бензиновых двигателях. Поэтому, для их работы, необходимы особенный состав топлива (с примесями воздуха и диэтилового эфира), а также точная регулировка степени сжатия. Компрессорные двигатели нашли свое распространение в авиастроении и автомобилестроении.

Калильные двигатели. Принцип их действия во многом схож с двигателями компрессионной модели, однако не обошлось без конструкционной особенности. Роль зажигания в них выполняет – калильная свеча, накал которой поддерживается энергией сгорающего на предыдущем такте топлива. Состав топлива также особенный, за основу берут метанол, нитрометан и касторовое масло. Применяются такие двигатели, как на автомобилях, так и на самолетах.

Калоризаторные двигатели. В этих двигателях воспламенение происходит при контакте топлива с горячими частями двигателя (обычно – днище поршня). В качестве топлива применяется мартеновский газ. Используются они в качестве приводных двигателей на прокатных станах.

Виды топлива, применяющиеся в поршневых двигателях:

Жидкое топливо – дизтопливо, бензин, спирты, биодизель;

Газы – природные и биологические газы, сжиженные газы, водород, газообразные продукты крекинга нефти;

• Вырабатываемый в газогенераторе из угля, торфа и древесины, монооксид углерода также используется в качестве топлива.

Работа поршневых двигателей.

Циклы работы двигателей подробно расписаны в технической термодинамике. Различные циклограммы описываются различными термодинамическими циклами: Отто, Дизеля, Аткинсона или Миллера и Тринклера.

Причины поломок поршневых двигателей.


Существует множество причин поломок двигателей. Например, если вы стали замечать вибрации двигателя или повышенный расход топлива, то очень вероятно что необходимо отремонтировать насос-форсунки, с этим вопросом вам помогут здесь — http://www.spbparts.ru/remont/remont_nasos_forsunki/1.htm.

КПД поршневого ДВС.

Максимальный КПД который удалось получить на поршневом двигателе составляет 60%, т.е. чуть меньше половины сгорающего топлива расходуется на нагрев деталей двигателя, а также выходит с теплом выхлопных газов. В связи с чем, приходится оснащать двигатели системами охлаждения.

Классификация систем охлаждения:

Воздушные СО – отдают тепло воздуху за счет ребристой внешней поверхности цилиндров. Применяются ли
бо на слабых двигателях (десятки л.с.), либо на мощных авиационных двигателях, которые охлаждаются быстрым потоком воздуха.

Жидкостные СО – в качестве охладителя используется жидкость (вода, антифриз или масло), которая прокачивается через рубашку охлаждения (каналы в стенках блока цилиндров) и поступает в радиатор охлаждения, в котором она охлаждается воздушными потоками, естественными или от вентиляторов. Редко, но в качестве теплоносителя также используется металлический натрий, который расплавляется от тепла прогревающегося двигателя.

Применение.

Поршневые двигатели, благодаря своему мощностному диапазону, (1 ватт – 75 000 кВт) обрели большую популярность не только в автомобилестроении, но и авиастроении и судостроении. Они также используются для привода боевой, сельскохозяйственной и строительной техники, электрогенераторов, водяных насосов, бензопил и прочих машин, как мобильных так и стационарных.

autohis.ru

Самый невероятный поршневой мотор » Военное обозрение


Допустим, сын спросит вас: «Папа, а какой самый-самый удивительный мотор на свете»? Что вы ему ответите? 1000-сильный агрегат от Bugatti Veyron? Или новый турбодвигатель AMG? Или мотор Volkswagen с двойным наддувом?

В последнее время появилось немало крутых изобретений, и все эти наддувы-впрыски кажутся удивительными… если не знать историю. Ибо самый удивительный мотор, о котором я знаю, был сделан в Советском Союзе и, как вы догадались, не для «Лады», а для танка Т-64. Он назывался 5ТДФ, и вот несколько удивительных фактов.

Он был пятицилиндровым, что само по себе необычно. У него было 10 поршней, десять шатунов и два коленчатых вала. Поршни двигались в цилиндрах в противоположных направлениях: сначала навстречу друг другу, потом обратно, снова навстречу и так далее. Отбор мощности осуществялся с обоих коленчатых валов, чтобы было удобно для танка.

Двигатель работал по двухтактному циклу, и поршни играли роль золотников, открывавших впускные и выпускные окна: то есть никаких клапанов и распредвалов у него не было. Конструкция была гениальной и эффективной – двухтактный цикл обеспечивал максимальную литровую мощность, а прямоточная продувка – высокое качество наполнение цилиндров.

Ко всему прочему 5ТДФ был дизелем с непосредственным впрыском, где топливо подавалось в пространство между поршнями незадолго до момента, когда они достигали максимального сближения. Причем, впрыск осуществлялся четырьмя форсунками по хитрой траектории, чтобы обеспечить мгновенное смесеобразование.

Но и этого мало. Двигатель имел турбокомпрессор с изюминкой – огромных размеров турбина и компрессор размещались на валу и имели механическую связь с одним из коленчатых валов. Гениально — на режиме разгона компрессор подкручивался от коленчатого вала, что исключало турбояму, а когда поток выхлопных газов как следует раскручивал турбину, мощность от нее передавалась на коленчатый вал, повышая экономичность мотора (такая турбина называется силовой).

Ко всему прочему мотор был многотопливным, то есть мог работать на дизтопливе, керосине, авиационном топливе, бензине или любой их смеси.

Плюс к этому еще полсотни необычных решений, вроде составных поршней со вставками из жаропрочной стали и системы смазки с сухим картером, как у гоночных автомобилей.

Все ухищрения преследовали две цели: сделать мотор максимально компактным, экономичным и мощным. Для танка важны все три параметра: первый облегчает компоновку, второй улучшает автономность, третий – маневренность.

И результат получился впечатляющим: при рабочем объеме 13,6 литра в самой форсированной версии мотор развивал более 1000 л.с. Для дизеля 60-х годов это был великолепный результат. По удельной литровой и габаритной мощностям мотор превосходил аналоги других армий в несколько раз. Я видел его вживую, и компоновка действительно поражает воображение – прозвище «Чемодан» ему очень идет. Я бы даже сказал «плотно набитый чемодан».

Он не прижился из-за чрезмерной сложности и дороговизны. На фоне 5ТДФ любой автомобильный мотор – даже от Bugatti Veyron – кажется каким-то до нельзя банальным. И чем черт не шутит, техника может сделать виток и снова вернуться к решениям, когда-то использованным на 5ТДФ: двухтактному дизельному циклу, силовым турбинам, многофорсуночному впрыску.

Началось же массовое возвращение к турбомоторам, которые одно время считались слишком сложными для неспортивных машин…

topwar.ru

Роторно — поршневой двигатель (двигатель Ванкеля)

Роторно-поршневой двигатель или двигатель Ванкеля представляет собой мотор, где главным рабочим элементом осуществляются планетарные круговые движения. Это принципиально другой вид двигателя, отличный от поршневых собратьев в семействе ДВС.

В конструкции такого агрегата используется ротор (поршень) с тремя гранями, внешне образующим треугольник Рело, осуществляющий круговые движения в цилиндре особого профиля. Чаще всего поверхность цилиндра исполнена по эпитрохоиде (плоской кривой, полученной точкой, которая жестко связана с окружностью, осуществляющей движение по внешней стороне другой окружности). На практике можно встретить цилиндр и ротор иных форм.

Составные элементы и принцип работы

Устройство двигателя типа РПД предельно проста и компактна. На ось агрегата устанавливается ротор, который крепко соединяется с шестерней. Последняя сцепляется со статором. Ротор, имеющий три грани, двигается по эпитрохоидальной цилиндрической плоскости. В результате чего сменяющиеся объемы рабочих камер цилиндра отсекаются с помощью трех клапанов. Уплотнительные пластины (торцевого и радиального типа) прижимаются к цилиндру под действием газа и за счет действия центростремительных сил и ленточных пружин. Получаются 3 изолированные камеры разные по объемным размерам. Здесь осуществляются процессы сжимания поступившей смеси горючего и воздуха, расширения газов, оказывающих давление на рабочую поверхность ротора и очищающих камеру сгорания от газов. На эксцентриковую ось передается круговое движение ротора. Сама ось находится на подшипниках и передает момент вращения на механизмы трансмиссии. В этих моторах осуществляется одновременная работа двух механических пар. Одна, которая состоит из шестерен, регулирует движение самого ротора. Другая — преобразует вращающиеся движение поршня во вращающиеся движения эксцентриковой оси.

Детали Роторно-поршневого двигателя

   Принцип работы двигателя Ванкеля

На примере двигателей, установленных на автомобилях ВАЗ, можно назвать следующие технические характеристики:
— 1,308 см3 – рабочий объем камеры РПД;
— 103 кВт/6000 мин-1 – номинальная мощность;
— 130 кг масса двигателя;
— 125000 км – ресурс двигателя до первого полного его ремонта.

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Особенности РПД

Преимущества

Преимущества двигателей роторно-поршневого типа по сравнению со стандартными бензиновыми двигателями:

— Низкие показатели уровня вибрации.
В моторах типа РПД отсутствует преобразование возвратно-поступательного движения во вращательное, что позволяет агрегату выдержать высокие обороты с меньшими вибрациями.

— Хорошие динамические характеристики.
Благодаря своему устройству такой мотор, установленный в машине, позволяет ее разогнать выше 100 км/ч на высоких оборотах без избыточной нагрузки.

— Хорошие показатели удельной мощности при малой массе.
Из-за отсутствия в конструкции двигателя коленчатого вала и шатунов достигается небольшая масса движущихся частей в РПД.

— В двигателях такого типа практически отсутствует система смазки.
Непосредственно в топливо добавляется масло. Топливно-воздушная смесь сама осуществляет смазывание пар трения.

— Мотор роторно-поршневого типа имеет небольшие габаритные размеры.
Установленный роторно-поршневой мотор позволяет максимально использовать полезное пространство моторного отсека автомобиля, равномерно распределить нагрузку на оси автомашины и лучше рассчитать расположение элементов коробки передач и узлов. Например, четырехтактный двигатель такой же мощности будет в два раза больше роторного двигателя.

Недостатки двигателя Ванкеля

— Качество моторного масла.
При эксплуатации такого типа двигателей необходимо уделять должное внимание к качественному составу масла, применяемого в двигателях Ванкеля. Ротор и находящаяся внутри камера двигателя имеют большую площадь соприкосновения, соответственно, износ двигателя происходит быстрее, а также такой двигатель постоянно перегревается. Нерегулярная смена масла наносит огромный урон двигателю. Износ мотора возрастает в разы из-за наличия абразивных частиц в отработанном масле.

— Качество свечей зажигания.
Эксплуатантам таких двигателей приходится быть особо требовательным к качественному составу свечей. В камере сгорания из-за ее небольшого объема, протяженной формы и высокой температуры затруднен процесс зажигания смеси. Следствием является повышенная рабочая температура и периодическая детонация камеры сгорания.

— Материалы уплотнительных элементов.
Существенной недоработкой мотора типа РПД можно назвать ненадежную организацию уплотнений промежутков между камерой, где сгорает топливо, и ротором. Устройство ротора такого мотора достаточно сложное, поэтому уплотнения требуются и по граням ротора, и по боковой поверхности, имеющей соприкосновение с крышками двигателя. Поверхности, которые подвергаются трению, необходимо постоянно смазывать, что выливается в повышенный расход масла. Практика показывает, что мотор типа РПД может потребить от 400 гр до 1 кг масла на каждые 1000 км. Снижаются экологичные показатели работы двигателя, так как горючее сгорает вместе с маслом, в результате в окружающую среду выбрасывается большое количество вредных веществ.

Из-за своих недоработок такие моторы не получили широкого распространения в автомобилестроении и в изготовлении мотоциклов. Но на базе РПД изготавливаются компрессоры и насосы. Авиамоделисты часто используют такие двигатели для конструирования своих моделей. Из-за невысоких требований к экономичности и надежности конструкторы не применяют сложную систему уплотнений в таких моторах, что значительно снижает его себестоимость. Простота его конструкции позволяет без проблем встроить в авиамодель.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.
В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke. Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.
Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Российские РПД

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам. Исследовательские работы по роторно-поршневым двигателям начались в 1961 году, соответствующим постановлением Минавтопрома и Минсельхозмаша СССР. Промышленное же изучение с дальнейшем выводом на производство данной конструкции началось в 1974 году на ВАЗе. специально для этого было создано Специальное конструкторское бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. На ВАЗе разрабатывали целую линейку РПД от 40 до 200 сильных двигателей. Доработка конструкции тянулась почти шесть лет. Удалось решить целый ряд технических проблем связанные с работоспособностью газовых и маслосъемных уплотнений, подшипников, отладить эффективный рабочий процесс в камере неблагоприятной формы. Свой первый серийный автомобиль ВАЗ с роторным двигателем под капотом представил публике в 1982 году, это был Ваз-21018. Машина внешне и конструктивно была как и все модели данной линейки, за одним исключением, а именно, под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 опытных машинах при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Ваз 21018 с Роторно-поршневым двигателем

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы предприняли спасти проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

С 80-ых годов 20 века СКБ был увлечён новой темой – применение роторных двигателей в смежной отрасли — авиационной. Отход от основной отрасли применения РПД привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «Ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.

Роторно-поршневой двигатель ВАЗ-414

На данный момент проект по разработке и внедрения отечественного РПД заморожен.

Ниже представлено видео устройства и работы двигателя Ванкеля.

zewerok.ru

Поршень на свободе: двигатель со свободным поршнем

«Современный двигатель внутреннего сгорания по определению не самый выдающийся продукт с точки зрения технологий. Это значит, что его можно совершенствовать до бесконечности» (Мэтт Тревитник, президент венчурного фонда семьи Рокфеллер Venrock).

Уже в ноябре этого года на американский рынок выйдет Chevrolet Volt, электромобиль с бортовым генератором электроэнергии. Volt будет оснащен мощным электродвигателем, вращающим колеса, и компактным ДВС, который лишь подзаряжает истощенную литий-ионную батарею. Этот агрегат всегда работает на максимально эффективных оборотах. С этой задачей легко справляется обычный ДВС, привыкший к куда более тяжкому бремени. Однако в скором времени его могут сменить куда более компактные, легкие, эффективные и дешевые агрегаты, специально созданные для работы в качестве электрогенератора.

Когда речь заходит о принципиально новых конструкциях ДВС, скептики начинают морщить носы, кивать на сотни пылящихся на полках псевдореволюционных проектов и трясти святыми мощами четырех горшков и распредвала. Сто лет господства классического двигателя внутреннего сгорания кого хочешь убедят в бесполезности инноваций. Но только не профессионалов в области термодинамики. К таковым относится профессор Питер Ван Блариган.

Энергия взаперти

Одна из самых радикальных концепций ДВС в истории — двигатель со свободным поршнем. Первые упоминания о нем в специальной литературе относятся к 1920-м годам. Представьте себе металлическую трубу с глухими концами и цилиндрический поршень, скользящий внутри нее. На каждом из концов трубы расположены инжектор для впрыска топлива, впускной и выпускной порты. В зависимости от типа топлива к ним могут добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Позднее появились более изощренные модели ДВС со свободным поршнем (FPE) — с двумя или даже четырьмя оппозитными поршнями, но это не изменило сути. Принцип работы таких моторов остался прежним — возвратно-поступательное линейное движение поршня в цилиндре между двумя камерами сгорания.


Куда уходит КПД Двигатель Питера Ван Бларигана отличается от обычного ДВС значительно более высоким КПД за счет отсутствия паразитных потерь. В конструкции отсутствуют вращающиеся массы, инерция которых увеличивается за счет центробежной силы. На поршни не действуют боковые силы, прижимающие их к стенкам цилиндра, благодаря чего уменьшается трение. Подшипники коленчатого вала и шатунов, поршневые пальцы, распредвал, кулачки и клапаны — все те узлы двигателя ОТТО, в которых свирепствует трение, отсутствуют в FPLA. Кроме того, на каждый цикл работы двигателя со свободным поршнем приходится два рабочих такта. При этом FPLA намного компактнее, проще и надежнее обычного ДВС. Рабочий прототип мотора Ван Бларигана уже был воплощен в металле и успешно прошел первую стадию испытаний.

Теоретически КПД FPE переваливает за 70%. Они могут работать на любом виде жидкого или газообразного топлива, крайне надежны и великолепно сбалансированы. Кроме того, очевидны их легкость, компактность и простота в производстве. Единственная проблема: как снять мощность с такого мотора, механически представляющего собой замкнутую систему? Как оседлать снующий с частотой до 20000 циклов в минуту поршень? Можно использовать давление выхлопных газов, но эффективность при этом падает в разы. Эта задача долго оставалась неразрешимой, хотя попытки предпринимались регулярно. Последними о нее обломали зубы инженеры General Motors в 1960-х годах в процессе разработки компрессора для экспериментального газотурбинного автомобиля. Действующие образцы судовых насосов на основе FPE в начале 1980-х были изготовлены французской компанией Sigma и британской Alan Muntz, но в серию они не пошли.

Возможно, об FPE еще долго бы никто не вспомнил, но помогла случайность. В 1994 году Департамент энергетики США поручил ученым Национальной лаборатории Sandia изучить эффективность бортовых генераторов электроэнергии на базе ДВС различных типов, работающих на водороде. Эта работа была поручена группе Питера Ван Бларигана. В ходе осуществления проекта Ван Блариган, которому концепция FPE была отлично известна, сумел найти остроумное решение проблемы превращения механической энергии поршня в электричество. Вместо усложнения конструкции, а значит — снижения результирующего КПД, Ван Блариган пошел путем вычитания, призвав на помощь магнитный поршень и медную обмотку на цилиндре. Несмотря на всю простоту, такое решение было бы невозможным ни в 1960-х, ни в 1970-х годах. В то время еще не существовало достаточно компактных и мощных постоянных магнитов. Все изменилось в начале 1980-х после изобретения сплава на основе неодима, железа и бора.


Схема двигателя Штельзера Единая деталь сочетает в себе два поршня, топливный насос и клапанную систему.

За эту работу в 1998 году на Всемирном конгрессе Общества автомобильных инженеров SAE Ван Бларигану и его коллегам Нику Парадизо и Скотту Голдсборо была присвоена почетная премия имени Харри Ли Ван Хорнинга. Очевидная перспективность линейного генератора со свободным поршнем (FPLA), как назвал свое изобретение Ван Блариган, убедила Департамент энергетики продолжить финансирование проекта вплоть до стадии экспериментального агрегата.

Электронный пинг-понг

Двухтактный линейный генератор Бларигана представляет собой трубу из электротехнической кремнистой стали длиной 30,5 см, диаметром 13,5 см и массой чуть более 22 кг. Внутренняя стенка цилиндра представляет собой статор с 78 витками медной проволоки квадратного сечения. Во внешнюю поверхность алюминиевого поршня интегрированы мощные неодимовые магниты. Топливный заряд и воздух поступают в камеру сгорания двигателя в виде тумана после предварительной гомогенизации. Зажигание происходит в режиме HCCI — в камере одновременно возникает множество микроочагов возгорания. Никакой механической системы газораспределения у FPLA нет — ее функции выполняет сам поршень.


Труба Франка Штельзера

В 1981 году немецкий изобретатель Франк Штельзер продемонстрировал двухтактный мотор со свободным поршнем, который он разрабатывал в своем гараже с начала 1970-х. По его расчетам, движок был на 30% экономичнее обычного ДВС. Единственная движущаяся деталь мотора — сдвоенный поршень, снующий с бешеной частотой внутри цилиндра. Стальная труба длиной 80 см, оснащенная карбюратором низкого давления от мотоцикла Harley-Davidson и блоком катушек зажигания Honda, по грубым прикидкам Стельзера, могла вырабатывать до 200 л.с. мощности при частоте до 20 000 циклов в минуту. Штельзер утверждал, что его моторы можно делать из простых сталей, а охлаждаться они могут как воздухом, так и жидкостью. В 1981 году изобретатель привез свой мотор на Франфуртский международный автосалон в надежде заинтересовать ведущие автокомпании. Поначалу идея вызвала определенный интерес со стороны немецких автопороизводителей. По отзывам инженеров Opel, прототип двигателя демонстрировал великолепный термический КПД, а его надежность была совершенно очевидной — ломаться там было практически нечему. Всего восемь деталей, из которых одна движущаяся — сдвоенный поршень сложной формы с системой уплотнительных колец общей массой 5 кг. В лаборатории Opel были разработаны несколько теоретических моделей трансмиссии для мотора Штельзера, включая механическую, электромагнитную и гидравлическую. Но ни одна из них не была признана достаточно надежной и эффективной. После Франкфуртского автосалона Штельзер и его детище пропали из поля зрения автоиндустрии. Еще пару лет после этого в прессе то и дело появлялись сообщения о намерениях Штельзера запатентовать технологию в 18 странах мира, оснастить своими моторами опреснительные установки в Омане и Саудовской Аравии и т. д. С начала 1990-х Штельзер навсегда пропал из виду, хотя его сайт в интернете все еще доступен.

Максимальная мощность FPLA составляет 40 кВт (55 лошадок) при среднем потреблении топлива 140 г на 1кВтч. По эффективности двигатель не уступает водородным топливным ячейкам — термический КПД генератора при использовании в качестве топлива водорода и степени сжатия 30:1 достигает 65%. На пропане чуть меньше — 56%. Помимо этих двух газов FPLA с аппетитом переваривает солярку, бензин, этанол, спирт и даже отработанное растительное масло.

Однако ничто не дается малой кровью. Если проблема превращения тепловой энергии в электрическую Ван Блариганом решена успешно, то управление капризным поршнем стало серьезной головной болью. Верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда. Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленвалом. В FPLA же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в одну из боковых стенок.


Зеленый и плоский Двигатель Ecomotors отличается не только скромными габаритами и массой. Внешне плоский агрегат напоминает оппозитные моторы Subaru и Porsche, которые дают особые компоновочные преимущества в виде низкого центра тяжести и линии капота. Это означает, что автомобиль будет не только динамичным, но и хорошо управляемым.

Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой. Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о термодинамике FPE и научиться управлять процессом сгорания смеси». Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для FPE удастся разработать простую и дешевую систему управления».

Ван Блариган более оптимистичен, чем его коллеги по цеху. Он утверждает, что управление положением поршня может быть надежно обеспечено посредством той же пары — статор и магнитная оболочка поршня. Более того, он считает, что полноценный прототип генератора с настроенной системой управления и КПД не менее 50% будет готов уже к концу 2010 года. Косвенное подтверждение прогресса в этом проекте — засекречивание в 2009 году многих аспектов деятельности группы Ван Бларигана.


У кого шатун длиннее Значительная часть потерь на трение в обычных ДВС приходится на повороты шатуна относительно поршня. Короткие шатуны поворачиваются на больший угол, нежели длинные. В OPOC очень длинные и сравнительно тяжелые шатуны, которые снижают потери на трение. Уникальная конструкция шатунов OPOC не требует использования поршневых пальцев для внутренних поршней. Вместо них применяются радиальные вогнутые гнезда большого диаметра, внутри которых скользит головка шатуна. Теоретически такая конструкция узла позволяет сделать шатун длиннее обычного на 67%. В обычном ДВС серьезные потери на трение возникают в нагруженных подшипниках коленвала во время рабочего такта. В OPOC этой проблемы не существует вовсе — линейные разнонаправленные нагрузки на внутренний и внешний поршни полностью компенсируют друг друга. Поэтому вместо пяти опорных подшипников коленвала для OPOC требуется лишь два.

Конструктивная оппозиция

В январе 2008 года знаменитый венчурный инвестор Винод Хосла рассекретил один из своих последних проектов — компанию EcoMotors, созданную годом ранее Джоном Колетти и Петером Хоффбауэром, двумя признанными гуру моторостроения. В послужном списке Хоффбауэра немало прорывных разработок: первый турбодизель для легковых автомобилей Volkswagen и Audi, оппозитный двигатель для Beetle, первый 6-цилиндровый дизель для Volvo, первый рядный 6-цилиндровый дизель Inline-Compact-V, впервые установленный в Golf, и его близнец VR6, созданный для Mercedes. Джон Колетти не менее известен в среде автомобильных инженеров. Долгое время он руководил подразделением Ford SVT по разработке особых серий заряженных автомобилей.

В общем активе Хоффбауэра и Колетти более 150 патентов, участие в 30 проектах по разработке новых двигателей и в 25 проектах новых серийных автомобилей. EcoMotors была создана специально для коммерциализации изобретенного Хоффбауэром модульного двухцилиндрового двухтактного оппозитного турбодизеля с технологией OPOC.

Небольшой размер, сумасшедшая удельная мощность 3,25 л.с. на 1 кг массы (250 л.с. на 1л объема) и танковая тяга в 900 Н•м при более чем скромном аппетите, возможность собирать из отдельных модулей 4-, 6- и 8-цилиндровые блоки — вот основные преимущества стокилограммового модуля OPOC EM100. Если современные дизели на 20−40% эффективнее бензиновых ДВС, то OPOC — на 50% эффективнее лучших турбодизелей. Его расчетный КПД — 57%. Несмотря на свою фантастическую заряженность, двигатель Хоффбауэра отличается идеальной сбалансированностью и очень мягкой работой.

В OPOC поршни соединяются с коленвалом, расположенным в центре, длинными шатунами. Пространство между двумя поршнями служит камерой сгорания. Топливный инжектор находится в области верхней мертвой точки, а впускной воздушный порт и выпускной порт для отработанных газов — в области нижней мертвой точки. Такое расположение вкупе с электрическим турбонагнетателем обеспечивает оптимальную продувку цилиндра — в OPOC нет ни клапанов, ни распредвала.

Турбонагнетатель — неотъемлемая часть мотора, без которой его работа невозможна. Перед запуском двигателя турбонагнетатель в течение одной секунды нагревает порцию воздуха до температуры 100 °C и закачивает ее в камеру сгорания. Дизелю OPOC не нужны калильные свечи, а запуск в холодную погоду не доставляет проблем. При этом Хоффбауэру удалось снизить степень сжатия с привычных для дизелей 19−22:1 до скромных 15−16. Все это, в свою очередь, приводит к снижению рабочей температуры в камере сгорания и расхода топлива.

Троянский конь

Уже сегодня у EcoMotors имеются три полностью готовых к производству оппозитных агрегата различной мощности: модуль мощностью 13,5 л.с. (размеры — 95 мм / 155 мм / 410 мм, вес — 6 кг), 40 л.с. (95 мм / 245 мм / 410 мм, 18 кг) и модуль 325л.с. (400 мм / 890 мм / 1000 мм, 100 кг). Хоффбауэр и Колетти намерены продемонстрировать электрогибридный пятиместный седан среднего класса с дизельным генератором OPOC на базе одной из массовых моделей уже в текущем году. Средний расход солярки у этого автомобиля не превысит 2 л на сотню в комбинированном электрическом и смешанном режимах. Недавно EcoMotors открыла собственный технический центр в городке Троя, штат Мичиган, и уже подыскивает подходящее предприятие для организации серийного производства своих моторов. Несмотря на рассекреченность проекта, из недр компании поступает крайне скудная информация. По‑видимому, Винод Хосла решил придержать до поры убойные козыри.

Статья опубликована в журнале «Популярная механика»
(№4, Апрель 2010).

www.popmech.ru

Роторно-поршневой двигатель описание фото видео история

 Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.

Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель – механик-самоучка — стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.

Краткая биография изобретателя

Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве. Благодаря этому он пристрастился к чтению. Феликс изучал технические характеристики двигателей, автомобилестроение, механику самостоятельно. Знания он черпал из книг, которые продавались в лавке. Считается, что реализованная позднее схема двигателя Ванкеля (точнее, идея ее создания) посетила во сне. Неизвестно, правда это или нет, но точно можно сказать, что изобретатель обладал незаурядными способностями, тягой к механике и своеобразным 

 

 

Плюсы и минусы

Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и различными частями корпуса. Вращательные движения ротор осуществляет помощью сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения. Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньше, чем обычный поршневой двигатель эквивалентной мощности.

Роторный двигатель имеет один главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса. С помощью этого контакта образуются камеры сгорания, или три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образованных камер сгорания все время меняется, напоминая действия обычного насоса. Все три боковых поверхности ротора работают, как поршень.

Внутри у ротора является шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубы в большей шестерни внутренние.

По той причине, что вместе с выходным валом ротор связан эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал. Выходной вал станет делать оборот три раза за каждый из оборотов ротора.

Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучше. Меньше масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.

Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет гораздо лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.

Все из частей роторного двигателя осуществляют непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как в поршней традиционного двигателя. Роторные двигатели внутренне сбалансированы. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя кажется намного более гладким и равномерным образом.

Двигатель Ванкеля имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель «Мазда» является первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.

Что это такое РПД?


В классическом четырехтактным двигателем одно и то же цилиндр используется для различных операций — впрыск, сжатие, сжигание и выпуска. В роторном же двигателе каждый процесс выполняется в отдельном отсеке камеры. Эффект мало чем отличается от разделения цилиндра на четыре отсека для каждой из операций.
В поршневом двигателе давление возникает при сгорании смеси заставляет поршни двигаться вперед и назад в своих цилиндрах. Шатуны и коленчатый вал преобразуют этот толкательной движение во вращательное, необходимое для движения автомобиля.
В роторном двигателя нет прямолинейного движения которое надо было бы переводить во вращательное. Давление образуется в одном из отсеков камеры заставляя ротор вращаться, это снижает вибрацию и повышает потенциальную величину оборотов двигателя. В результате всего большая эффективность, и меньшие размеры при той же мощности, что и обычного поршневого двигателя.

 

Как работает РПД?

Функцию поршня в РПД выполняет трьохвершинний ротор , преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса) обеспечивается парой шестерен, одна из которых жестко закреплена на роторе, а вторая на боковой крышке статора. Сама шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора из зубчатым колесом как бы обкатывается вокруг нее.
Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор. Взаимодействие этих шестерен обеспечивает целесообразное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2: 3, поэтому за один оборот эксцентрикового вала ротор возвращается на 120 градусов, а за полный оборот ротора в каждой из камер происходит полный четырехтактный цикл.

Газообмен регулируется вершиной ротора при прохождении ее через впускной и выпускной окно. Такая конструкция позволяет осуществлять 4-тактный цикла без применения специального механизма газораспределения.

Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаются к цилиндру центробежными силами, давлением газа и ленточными пружинами. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала Смесеобразование, воспаление , смазка, охлаждение, запуск — принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Технические характеристики роторно-поршневого двигателя

параметры ВАЗ-4132 ВАЗ-415
число секций 2 2
Рабочий объем камеры двигателя, куб.см 1,308 1,308
степень сжатия 9,4 9,4
Номинальная мощность, кВт (л.с.) / мин-1 103 (140) / 6000 103 (140) / 6000
Максимальный крутящий момент, Н * м (кгс * м) / мин-1 186 (19) / 4500 186 (19) / 4500
Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-1 1000 900

Масса двигателя, кг

136

113

Габаритные размеры, мм

   

высота

560

570

ширина

546

535

длина

495

665

Минимальный удельный расход топлива (по ВСХ), г / кВт * ч (г / л.с. * Час)

312.2 (230)

312.2 (230)

Расход масла в% от расхода топлива

0,7

0,6

Ресурс двигателя до первого капитального ремонта, тыс. Км

125

125

назначение

ВАЗ-21059/21079

ВАЗ-2108/2109/21099/2115/2110

 

выпускаются модели

модель

двигатель РПД

Время разгона 0-100, сек

Максимальная скорость, км \ ч

ВАЗ 21018

ВАЗ-311

160

ВАЗ 21019

ВАЗ-411

178

ВАЗ 21059

ВАЗ-4132

9

180

ВАЗ 21079

ВАЗ-4132

9

180

ВАЗ 2108-91

ВАЗ-415

8

200

ВАЗ 2109-91

ВАЗ-415

9

190

ВАЗ 21099-91

ВАЗ-415

9

190

ВАЗ 2110-91

ВАЗ-415

9

190

ВАЗ 2115-91

ВАЗ-415

9

190

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Роторно-поршневой двигатель Ванкеля

 

seite1.ru

Поршневой авиационный двигатель | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Работа радиального поршневого двигателя.

Привет, друзья!

Сегодня начинаем серию статей о конкретных типах авиационных двигателей. Первый движок, который удостоится нашего внимания – это поршневой авиационный двигатель. Он имеет полное право быть первым, потому что он – ровесник современной авиации. Один из первых самолетов, поднявшихся в воздух был Флайер-1 братьев Райт (я думаю вы читали об этом здесь :-)). И на нем стоял поршневой двигатель авторской разработки, работавший на бензине.

Долгое время этот тип движка оставался единственным, и только в 40-е годы 20-го века началось внедрение двигателя совсем иного принципа действия. Это был турбореактивный двигатель. Из-за чего это произошло читайте тут. Однако поршневой движок, хоть и утратил свои позиции, но со сцены не сошел, и теперь в связи с достаточно интенсивным развитием так называемой малой авиации (или же авиации общего назначения) он просто получил второе рождение. Что же из себя представляет авиационный поршневой двигатель?

Работа двигателя внутреннего сгорания (тот же рядный поршневой двигатель).

Как всегда :-)… В принципиальном плане ничего сложного (ТРД значительно сложнее :-)). По сути дела – это обычный двигатель внутреннего сгорания (ДВС), такой же, как на наших с вами автомобилях. Кто забыл, что такое ДВС, в двух словах напомню. Это, попросту говоря, полый цилиндр, в который вставлен цилиндр сплошной, меньший по высоте (это и есть поршень). В пространство над поршнем в нужный момент подается смесь из топлива (обычно это бензин) и воздуха. Эта смесь воспламеняется от искры (от специальной электрической свечи) и сгорает. Добавлю, что воспламенение может происходить и без искры, в результате сжатия. Так работает всем известный дизельный двигатель. В результате сгорания получаются газы высокого давления и температуры, которые давят на поршень и заставляют его двигаться. Вот это самое движение и есть суть всего вопроса. Далее оно передается через специальные механизмы в нужное нам место. Если это автомобиль, значит на его колеса, а если это самолет, то на его воздушный винт. Таких цилиндров может быть несколько, точнее даже много :-). От 4-х до 24-х. Такое количество цилиндров обеспечивает достаточную мощность и устойчивость работы двигателя.

Еще одна схема работы одного ряда цилиндров.

Конечно авиационный поршневой двигатель только принципиально похож на обычный ДВС. На самом деле здесь обязательно присутствует авиационная специфика. Двигатель самолета выполнен из более совершенных и качественных материалов, более надежен. При той же массе, он значительно мощнее автомобильного. Обычно может работать в перевернутом положении, ведь для самолета (особенно истребителя или спортивного) пилотаж – обычное дело, а автомобилю это, естественно, не нужно.

Двигатель М-17, поршневой, рядный, V-образный. Устанавливался на самолеты ТБ-3 (конец30-хгодов 20 в.)

Двигатель М-17 на крыле ТБ-3.

Поршневые двигатели могут различаться как по количеству цилиндров, так и по их расположению. Бывают рядные двигатели (цилиндры в ряд) и радиальные (звездообразные). Рядные двигатели могут быть однорядные, двухрядные, V-образные и т.д. В звездообразных цилиндры расположены по окружности (в виде звезды) и бывает их обычно от пяти до девяти (в ряду). Эти двигатели, кстати, тоже могут быть многорядными, когда цилиндры блоками стоят друг за другом. Рядные двигатели обычно имеют жидкостное охлаждение (как в автомашине :-), они и по виду больше похожи на автомобильные), а радиальные – воздушное. Они обдуваются набегающим потоком воздуха и цилиндры, как правило, имеют ребра для лучшего теплосъема.

Двигатель АШ-82, радиальный, двухрядный. Устанавливался на самолеты ЛА-5, ПЕ-2.

Самолет ЛА-5 с двигателем АШ-82.

Авиационные поршневые двигатели часто имеют такую особенность, как высотность. То есть с увеличением высоты, когда плотность и давление воздуха падают, они могут работать без потери мощности. Подвод топливно-воздушной смеси может осуществляться двумя способами. Здесь полная аналогия с автомашиной. Либо смесь готовится в специальном агрегате, называемом карбюратором и потом подается в цилиндры (карбюраторные двигатели), либо топливо непосредственно впрыскивается в каждый цилиндр в соответствии с количеством поступающего туда же воздуха. На автомобилях такого типа двигатели часто обзывают «инжекторными».

Современный поршневой радиальный двигатель ROTEC R2800.

Более мощный R3600 (большее количество цилиндров).

В отличие от обычного автомобильного ДВС, для самолетного поршневого движка не нужны громоздкие (ну и, естественно, тяжелые :-)) передаточные механизмы от поршней к колесам. Все эти оси, мосты, шестерни. Для самолета ведь вес очень важен. Здесь движение от поршня сразу через шатун передается на главный коленчатый вал, а на нем уже стоит вторая важная часть самолета с поршневым двигателем – воздушный винт. Винт – это, так сказать, самостоятельная (и очень важная) единица. В нашем случае он является «движителем» самолета, и от его корректной работы зависит качество полета. Винт – это не часть двигателя, но работают они в тесном сотрудничестве :-). Винт всегда подбирается или проектируется и рассчитывается под конкретный двигатель, либо же они создаются одновременно, так сказать комплектом :-).

Радиальный двигатель М-14П. Устанавливается на спортивные СУ-26, ЯК-55.

СУ-26 с двигателем М-14П.

Принцип работы винта – это достаточно серьезный ( и не менее интересный :-)) вопрос, поэтому я решил выделить его в отдельную статью, а сейчас пока вернемся к «железу».

Я уже говорил, что сейчас поршневой авиационный двигатель опять «набирает обороты». Правда состав авиации использующей эти двигатели теперь другой. Соответственно изменился и состав применяемых двигателей. Тяжелые и громоздкие рядные движки практически отошли в прошлое. Современный поршневой двигатель (чаще всего) – радиальный с количеством цилиндров 7-9, с хорошей топливной автоматикой с электронным управлением. Один из типичных представителей этого класса, например, двигатель ROTEC 2800 для легких самолетов, создан и производится в Австралии (между прочим выходцами из России :-)). Однако о рядных двигателях тоже не забывают. Таков, например, ROTAX-912. Так же хорошо известен двигатель отечественного производства М-14П, который устанавливается на спортивные самолеты ЯК-55 и СУ-26.

Двигатель Rotax-912, рядный. Устанавливается на легкие спортивные самолеты Sports-Star Max

Спортивный самолет Sport-Star Max c двигателем Rotax-912.

Существует практика применения дизельных двигателей ( как разновидность поршневых) в авиации, еще со времен войны. Однако широко этот двигатель пока не применяется из-за существующих проблем в разработке, в частности в области надежности. Но работы все равно ведутся, особенно в свете грядущего дефицита нефтепродуктов.

Поршневой авиационный двигатель вообще еще рано списывать со счетов :-). Ведь, как известно, новое – это хорошо забытое старое… Время покажет…

No related posts.

avia-simply.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о