Бензин и его свойства: основные характеристики бензина – petrolcards.ru

Содержание

основные характеристики бензина – petrolcards.ru

Бензином регулярно пользуется практически каждый автовладелец. Нефтеперерабатывающие компании и АЗС по всей стране предлагают большое разнообразие горючего. Оно различается составом, наличием присадок, физическими и химическими свойствами, маркировкой. 

Несложно заметить, что использование бензина разных марок обычно сразу же сказывается на работе двигателя и общих ходовых характеристиках авто. Но от правильного выбора топлива зависит не только скорость, но также надежность, безопасность и долговечность топливной и иных систем. 

Какие параметры следует учитывать и на что обратить внимание владельцам автомобилей с бензиновыми двигателями?

Виды и типы бензинов

На отечественных заправках представлен бензин разного типа. Топливо различается составом, чистотой и некоторыми другими параметрами. Все они обычно маркируются с учетом их основного показателя – октанового числа. 

Требованиями ГОСТ, ТУ и других нормативных документов в РФ предусмотрены следующие марки бензинов: А-72, А-76, А-80, АИ-91, А-92, АИ-93, АИ-95, А-96, АИ-98.

Потребление низкооктанового топлива в последнее время существенно снижается, высокооктанового, наоборот, растет. Бензин А-72 сегодня практически не используется, так как просто нет техники, которая бы на нем работала.

Более современная классификация бензинов насчитывает шесть основных видов этого топлива с различным октановым показателем:

  • Нормаль – АИ-80.
  • Регуляр – АИ-92.
  • Премиум – АИ-95.
  • Супер – АИ-95+.
  • Экстра – АИ-98.
  • ЭКТО – АИ-100.

Раньше в некоторые марки бензина для увеличения октанового числа добавлялись этиловые соединения, что позволяло повысить физико-химические свойства топлива с минимальным ростом его стоимости. Сегодня официально производство этилированного топлива прекращено.

Также современная маркировка предполагает указание не только отечественных, но и европейских стандартов: Евро-4, Евро-5 и т.д. Поэтому полное наименование бензина обычно выглядит следующим образом «АИ-98-5». Это означает, что бензин автомобильный (А), его октановое число определено по исследовательскому методу (И) и составляет 98, а по экологическим стандартам топливо соответствует техническим регламентам «Евро-5».

Октановое число бензина

Если говорить про основные параметры топлива, то его октановый показатель – едва ли не самая важная характеристика. При работе двигателя внутреннего сгорания топливная смесь сжимается под высоким давлением и потом воспламеняется. Происходит ее расширение. Для безопасности, надежности работы, сохранности двигателя и его отдельных элементов – важно, чтобы сгорание бензина происходило в нормальном режиме – без детонации. Октановое число как раз определяет детонационную стойкость топлива, что особенно важно в бензиновых двигателях с высокой степенью сжатия. Чем более качественный бензин, тем выше его октановое число. Кроме того, этот параметр сказывается и на расходе топлива при движении. 

Высокооктановые бензины расходуются медленнее, что заметно нивелирует разницу в цене разного топлива.

Определяется октановое число бензина соотношением содержания изомеров октана в сравнении с количеством гептана в топливе. То есть в топливе АИ-92 содержание изооктана в смеси с гептаном составляет 92%.

Следует отметить, что октановое число не определяет именно содержание, а вычисляется путем сравнения антидетонационных качеств конкретного бензина с эталонной смесью. Поэтому у некоторых специализированных видов топлива октановое число может быть больше 100. Это означает, что по устойчивости к детонации данный бензин превосходит чистый изооктан.

На показатели октанового числа влияет фракционный состав топлива (более подробно о котором мы расскажем далее). Чем больше в бензине легких фракций, тем он качественнее и безопаснее в плане детонационной составляющей. 

Также изменить октановое число топлива можно путем добавления в него различных присадок. Раньше широко использовались соединения на основе свинца и этила (например, тетраэтилсвинец). Их введение в состав бензина позволяет легко превратить АИ-92 в АИ-95. Но с 2003 года из-за высокого вреда, наносимого атмосфере и окружающей среде, от использования соединений свинца в составе бензина отказались.

Также повысить октановый показатель можно добавлением этилового спирта.

Но такой метод экономически невыгоден, поэтому в промышленных масштабах не применяется. Еще один способ повышения октанового показателя – добавление в бензин ацетона. Часто в качестве присадок используются соединения пропана и метана, у которых более высокая детонационная устойчивость, чем у изооктана.

Химическая стабильность бензина

Еще один важный показатель в бензине, особенно актуальный для топлива с присадками, – его химическая стабильность. С одной стороны, добавление присадок – например, метана и пропана в бензин позволяет повысить его октановое число. Но эти элементы достаточно легкие и летучие, а потому испаряются с большей скоростью и при более низких температурах, чем основная фракция топлива. 

Нормативными требованиями установлено, что бензин должен сохранять свои физико-химические свойства в течение пяти лет – при условии соблюдения норм и правил хранения. Поэтому, если производитель вводит в топливо присадки с целью повышения его детонационной устойчивости, то должен использовать устойчивые химические соединения.

В противном случае бензин довольно быстро потеряет свои качества.

На недобросовестность производителя или продавца указывает сильный специфический запах газа, который нередко присутствует на АЗС. Это значит, что метан и/или пропан, добавленные в бензин, активно испаряются, а само топливо заведомо не соответствует маркировке.   

Другие показатели топлива

Одним из важных показателей ГСМ является его фракционный состав. Бензин состоит из различных нефтепродуктов – легких и тяжелых углеводородов, входящих в состав топлива в разном количестве. Именно фракционным составом в первую очередь определяются основные физико-химические параметры и эксплуатационные свойства бензина, такие как летучесть, вязкость, температура замерзания. Чем больше легких фракций в топливе, тем лучше оно испаряется и тем ниже температура его замерзания. Поэтому в условиях сверхнизких температур и сурового северного климата обычно используются специализированные бензины пониженной вязкости и с низкой температурой застывания. Стоит такой бензин дороже обычного, но в некоторых случаях его использование – неизбежная необходимость.

Еще один важный фактор, определяющий экологическую безопасность бензина, – содержание различных примесей. В основном оценивается количество соединений серы и ароматических углеводородов в бензинах. Эти вещества при сгорании образуют ядовитые соединения, которые наносят вред не только окружающей среде, но и топливной и выхлопной системе автомобиля, а также жизни и здоровью людей.

Содержание опасных примесей в бензине регламентируется соответствующими нормативными документами. Оптимальным выбором сейчас является бензин с маркировкой Евро-5, который наряду с более высококачественным топливом Евро-6 сегодня применяется в большинстве европейских стран. В России же на бензин приняты и действуют экологические стандарты Евро-4 и Евро-5.

Среди основных параметров следует отметить и испаряемость, которая также зависит от фракционного состава бензина. Этот показатель важен для климатических условий, в которых эксплуатируется автомобиль с бензиновым двигателем. Так для холодной полосы важно, чтобы показатель испаряемости был высоким. В противном случае будут неизбежно возникать проблемы с запуском двигателя. В жарком климате, наоборот, высокая испаряемость – это угроза взрывоопасности.

Параллельно испаряемости существует еще один значимый показатель – давление насыщенных паров. Оно дает дополнительное представление о фракционном составе и испаряемости топлива. Чем выше это значение, тем больше вероятность образования газовых пробок в бензиновых двигателях, что также представляет опасность из-за вероятности воспламенения и взрыва.

Как выбирать бензин

Правильно подобранное топливо – залог долгой и эффективной службы авто. При выборе мы советуем прислушиваться к рекомендации производителя конкретного автомобиля (и, соответственно, бензинового двигателя). Если в руководстве указано топливо с октановым показателем 95, то лучше использовать именно АИ-95, а не 92-й или 98-й бензины. В таком случае вы сможете быть уверены в надежности и стабильности работы авто.

Еще один важный момент, на который стоит обращать внимание, экологические параметры бензинов. Стандарты Евро – 4, 5 или 6 – гарантия того, что вы сможете не только беспрепятственно выезжать на авто за границу, но и залог долгой службы двигателя, топливной и выхлопной систем автомобиля.

К сожалению, оценить, насколько качественный бензин в конкретной АЗС сложно. Как уже упоминалось выше, ключевым фактором, что свидетельствует о невысоком качестве топлива, является наличие сильного запаха газа на заправке. Таким бензином авто лучше не заправлять.

Для проверки качества можно приобрести бензин, налив его в прозрачную емкость. Топливо должно быть прозрачным с легким бледно-желтым оттенком без осадков и примесей. Если добавить в бензин марганцовку, то качественное топливо не окрасится в розовый цвет. Появление же оттенка говорит о том, что в бензин добавлена вода.


Характеристика бензина: свойства топлива

Для большей части автомобилей применяется бензин. Кроме роли топлива, он играет довольно важную роль в экономике страны, на нем построен бизнес и доходы многих организаций. Что таит в себе эта популярная жидкость?

 Загрузка ...

Бензин, как известно, бывает автомобильный и авиационный. Как уже было сказано, бензин это одно из наиболее часто используемого топлива для автомобилей. Он представляет собой смесь из углеводородов, которые закипают при температуре в диапазоне от 30 до 205 градусов Цельсия. Кроме углеводородов в бензине можно найти различные примеси: сера, азот, кислород.

Это самая легкая фракция из всех жидких фракций нефти и от этого (состава топлива) напрямую зависит функционал машины: запуск двигателя, разгон, перерасход топлива, оседание взвесей и примесей, прогрев и так далее. Как известно, экономя на качестве горючего, можно разориться на ремонте автомобиля, причем иногда капитальном.

К основным химико-физическим свойствам бензина можно отнести: его состав, способность к воспламенению, горение, испарение, детонационная стойкость, коррозионная активность. Кроме этого, значение имеют такие особенности, как октановое число (маркировка), наличие примесей, присадок, добавок, производитель и так далее.

Свойства бензина с позиции физики и химии напрямую зависят от пропорций, содержащихся в нем углеводородов и их видов. Замерзает бензин при температуре около 60 градусов, но, конечно, если использовать определенного вида присадки этот порог можно понизить до 70 градусов. Именно исходя из этих различий состава бензина, возникает его разделение на летний и зимний бензины.

Испарение бензина начинается при температуре свыше 30 градусов, увеличиваясь по мере ее роста. И если его концентрация в воздухе превысит значения 74-123 грамма на кубический метра – возникает угроза взрывоопасной смеси.

Откуда он берется?

Общеизвестный факт, что бензин делают из нефти – это смесь, которая таит в себе множество соединений и химических элементов, она имеет жидкий вид и добывается из недр земли. Нефть это «черное золото», практически наше национальное достояние, она позволяет химической промышленности извлекать из нее не только бензин. Нефть можно встретить даже в фармацевтическом производстве.

Несмотря, на то, что запасы этого ценного полезного ископаемого отнюдь не вечные и на данный момент полноценной альтернативы бензина нет. Не считая электромобилей, которые вряд ли осилят дороги нашей страны. Это ценное полезное ископаемое, которое имеет огромное влияние на экономику стран.

Сырая нефть, то есть необработанная – это совокупность сложных веществ, которые составляют C, H, S, O и N. Когда нефть извлекают из скважины, она имеет резкий запах, имеющая зеленовато-коричневый цвет, при этом она легко воспламеняется.

Основа нефти и природного газа это углеводороды. Самый простой из них это метан, который образует природный газ. Бензин могут получить разными способами, есть устаревшие, которые не позволяют качеству извлекаемого топлива быть на нужном уровне, есть более современные, однако, и более затратные. В любом из этих способов нефть подвергают перегонке, в результате чего она распадается на несколько фракций. Бензин это одна из жидких фракций нефти и при этом самая легкая.

Процесс изготовления

  1. перегонка нефти и отбор нужных фракций – такой метод был популярен, когда только появлялись первые автомобили на топливе;
  2. крекинг;
  3. риформинг.

Крекинг и риформинг наиболее часто применимы при производстве бензина и позволяют получить качественное и высокооктановое горючее (АИ-92, АИ-95).

Если рассматривать процесс перегонки, то он выглядит следующим образом: в змеевике образуются разогретые продукты, которые попадают на промежуточные уровни. В процессе нефть проходит череду ванн с жидкостью, в результате чего поднимаются пары, а вниз стекает конденсат. При обратном стекании назад в колонну образуются такие компоненты как бензин, керосин и другие светлые горючие дистилляты.

При крекинге происходит разложение фракций нефти во время кипения, углеродные связи подвергаются разрушению, водород разделяется с молекулами углеводорода. А в результате этих процессов, происходит разделение нефти на газы, бензин и остаточные продукты. Порой крекинг происходит при участии катализаторов.

Другой процесс получения бензина – риформинг представляет собой получение линейных углеводородов, они имеют более высокое октановое число и потому образуют более качественное. Риформинг бывает термический и каталитический.

Соответственно, в первом случае бензин образуется в результате действия высоких температур, а во втором при воздействии катализаторов. Термический более распространенный способ, он менее эффективен, но больше изучен, тем не менее, в развитых странах более популярен именно каталитический риформинг.

На вкус и цвет!

Характеристика бензина зависит от различных критериев. Если ранее, приезжая на заправку, водитель огорчался отсутствием выбора видов бензина, то теперь ассортимент этого топлива порой вводит водителей в замешательство. Какой выбрать? Как известно, бензин в России производят согласно ГОСТ 2084-77 и ГОСТ Р51105-97 и ТУ 38.001165-97. Требования к его производству все более ужесточаются, но, правда, в сторону понижения его влияния на экологию.

Если мы будем иметь в виду качества бензина, как топлива для автомобилей, то здесь нам важно такое его свойство как детонационная стойкость. Детонация происходит тогда, когда топливо быстро перерабатывается, иными словами, сгорает внутри автомобиля. Это образует энергию, которая заставляет автомобиль двигаться и все его внутренние системы работать.

Но при этом образуются и возникают ударные волны, они негативно влияют на «внутренности» машины, приводят к прогорании.

Поршней и выпускных клапанов. Если залив топливо в бак, по прошествии определенного количества времени вы слышите непонятный стук, ощущаете постоянную вибрацию при движении, двигатель работает не так ровно, как должен, а выхлопные газы и вовсе стали черными – следует обратить внимание на эту проблему во избежание появления еще более крупных.

Услышав новые звуки в двигатели, обратите внимание на их характер – они должны быть «металлическими», то есть звонкими. Их причина кроется вибрация деталей от действия ударной волны в процессе детонации внутри автомобиля.

Можно выделить следующие причины детонации:

  • вы выбрали для заправки топливо с слишком низким октановым числом, то есть степень его возможного сжатия не соответствует нормам и двигатель просто «не распознает» этот бензин;
  • раннее зажигание;
  • нагар в камере сгорания;
  • несвоевременная смена передачи, например с «высшей» на «низшую».

Если не решить проблемы с детонацией, то последствия для вашего авто неизбежны. Например, возможно повреждение прокладки блока цилиндров, порча поршневой системы. Конечно, если детонация возникает только в начале разгона машины и после чего стук исчезает – такая ситуация не опасна.

Цвет бензина

Как узнать какие детонационные свойства имеет тот или иной вид бензина? Они зависят от октанового числа, а оно может быть определено двумя способами – это моторный и исследовательский. При этом, помните, что чем выше октановое число бензина тем больше его стойкость к детонации. А пропорционально детонации растет и мощность автомобиля, и степень сжатия в двигателе и, конечно же, экономичность.

Высокооктановые виды бензина производят двумя путями:

  1. технологический, когда увеличивают долю компонентов, которые повысят октановое число, это так называемый неэтилированный бензин;
  2. второй способ заключен в добавлении к бензину тетраэтилсвинца (этилированный бензин).

Последний способ вызывает сомнение в своей целесообразности. Возможно, это та самая ситуация, когда польза может быть меньше, чем вред. Тетраэтилсвинец – это вещество известное и за рубежом, однако, там выпуск и производство бензина таким способом уже давно запрещено и не практикуется.

Да, оно значительно повысит детонационную стойкость бензина, но на автомобилях, у которых есть катализатор, этот способ нельзя применять. Этилированный бензин, содержащий свинец быстро выведет их из строя.

В целом этиловая жидкость крайне опасна для человека, способна его отравить и ядовита.

Маркировка

Сам по себе бензин это жидкость, обладающая резким характерным запахом, прозрачного цвета. Но каждый вид бензина имеет свою маркировку. Например, в странах СНГ производят разные виды бензина: А-72, А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95 и АИ-98. При этом они могут быть и этилированными, что как мы выяснили совсем не безопасно, а также подразделятся на летние и зимние виды. Этилированные бензины должны иметь свою окраску:

  • А-72 – розовый цвет;
  • А-76-желтый;
  • АИ-93 – красный с оранжевым оттенком;
  • АИ-98 – синий.

В других развитых странах в основном распространены две марки бензина:

Полезная информация
1Премиум – в нем октановое число колеблется в пределах 97-98
2Регуляр – это сорт похуже, там октановое число от 90 до 94

А в Англии и США можно встретить топливо «Супер», в нем октановое число может достигать цифры 102.

Из чего же, из чего же, из чего же?…

… сделано наше топливо? Нельзя забывать о других характеристиках бензина. Кроме градации по октановому числу бензин может быть разным по количеству разнообразных добавок и примесей. Что это означает? В любом виде бензина присутствует тот или иной процент загрязнения дополнительными химическими веществами: кислоты, щелочи, органические соединения, механические примеси: металл, окалина и другие вещества.

 

Помимо указанных веществ в бензине часто можно встретить самые разные присадки. Они бывают разрешенные и запрещенные, что в целом не останавливают любителей наживиться на выгоде. Посудите сами, например, добавив в бензин спирт, ацетон или какой-то другой растворитель можно добиться искусственного повышения октанового числа топлива.

Водитель, заправивший автомобиль таким топливом отмечает, что мощность увеличилась, как и разгон, а расход, напротив, снизился. К сожалению, первое впечатление часто бывает обманчивым, и такие добавки приводят к поломке автомобиля.

Таким образом, бензин подразделяется на градации в зависимости от количества примесей и присадок в нем, чем больше их, тем сильнее процессы детонации в двигателе, тем сильнее степень изнашивания двигателя и других деталей в автомобиле.

Именно для предотвращения попадания посторонних примесей и механических добавок в топливную систему она оборудована фильтром тонкой очистки, который нужно время от времени поверять и заменять. Обычно, учитывая не самое лучшее качество топлива на заправках в нашей стране, замену этого фильтра следует производить каждые пройденные 10 000 – 15 000 км. Сам топливный бак следует промывать не менее одного раза в год, при этом предварительно освободив его от остатков топлива.

Характеристики бензина ухудшаются и при его длительном хранении. Так бывает, если вдруг у вас в гараже стоит канистра с бензином «на всякий случай». Вне сомнений, она может сыграть в форс-мажорной ситуации очень полезную роль, но необходимо помнить, что качество бензина со временем снижается по мере его хранения.

Октановое число уменьшается (на пару единиц), а вот уровень смол в топливе, напротив, растет. Чем это грозит? При использовании такого «несвежего» бензина смолы и другие подобные вещества, образуя тяжелые соединения, оседают на деталях, топливной системе, в двигателе, на карбюраторе. Конечно, пользы это вашему автомобилю не принесет.

Если у вас в гараже стоит транспортное средство, в котором уже находится бензин (в топливном баке), процессы окисления не заставят себя ждать. Если в автомобиле имеется латунная заборная трубка и фильтрующая сетка, которые содержат медь, то такие процессы проходят еще быстрее, чем в металлической канистре.

Причем в теплое время года такие процессы значительно катализируются по сравнению с зимой. Кроме процессов оседания смол, окисления, происходит еще процесс выхода легколетучего бромистого этила, который отвечает за «вынос» свинца при сгорании топлива. Со временем этого вещества может остаться настолько мало, что весь свинец осядет на деталях двигатели и будет нагорать.

Исходя из этого, сделаем вывод о том, что лучше всего хранить бензин в плотно закрытых канистрах и в темном прохладном месте. Если среда вашего обитания находится в среднеклиматической зоне – срок хранения бензина может достигать 12 месяцев, если речь идет о баке автомобиля – не более 6 месяцев. Следовательно, для районов с прохладным климатом эти сроки увеличиваются в два раза, а для южных вдвое уменьшаются. Качество бензина можно слегка повысить, если добавить в него более свежего.

Исходя из вышесказанного, становится понятно, что характеристики бензина имеют прямое влияние на его качество, на состояние автомобиля, его ход, мощность и другие факторы. Понятно, что качество нашего горючего не дотягивает до европейского. Например, есть так называемый «финский бензин», за которым даже выстраиваются очереди. Найти его можно на трассах Европы, но чем он примечателен?

Его октановое число действительно равно 95, он не содержит каких-либо присадок и полностью отвечает международным стандартам. Вот и все волшебство. На наших АЗС найти более менее приличное топливо тоже вполне реально, ведь определить характеристики бензина можно используя подручные средства и без какого-либо оборудования.

YouTube responded with an error: The request cannot be completed because you have exceeded your <a href="/youtube/v3/getting-started#quota">quota</a>.

Список используемой литературы:

Автомобильные бензины: технические характеристики, классификация, назначение

По составу автомобильные бензины представляют собой смесь компонентов, получаемых в результате различных технологических процессов: прямой перегонки нефти, каталитического риформинга, каталитического крекинга и гидрокрекинга вакуумного газойля, изомеризации прямогонных фракций, алкилирования, ароматизации термического крекинга, висбрекинга, замедленного коксования. Компонентный состав бензина зависит, в основном, от его марки и определяется набором технологических установок на нефтеперерабатывающем заводе.

Базовым компонентом для выработки автомобильных бензинов являются обычно бензины каталитического риформинга или каталитического крекинга. Бензины каталитического риформинга характеризуются низким содержанием серы, в их составе практически отсутствуют олефины, поэтому они высокостабильны при хранении. Однако повышенное содержание в них ароматических углеводородов с экологической точки зрения является лимитирующим фактором. К их недостаткам также относится неравномерность распределения детонационной стойкости по фракциям. В составе бензинового фонда России доля компонента каталитического риформинга превышает 50 %.

Бензины каталитического крекинга характеризуются низкой массовой долей серы, октановыми числами по исследовательскому методу 90-93 единицы. Содержание в них ароматических углеводородов составляет 30-40 %, олефиновых - 25-35 %. В их составе практически отсутствуют диеновые углеводороды, поэтому они обладают относительно высокой химической стабильностью (индукционный период 800-900 мин. ). По сравнению с бензинами каталитического риформинга для бензинов каталитического крекинга характерно более равномерное распределение детонационной стойкости по фракциям. Поэтому в качестве базы для производства автомобильных бензинов целесообразно использовать смесь компонентов каталитического риформинга и каталитического крекинга.

Бензины таких термических процессов, как крекинг, замедленное коксование имеют низкую детонационную стойкость и химическую стабильность, высокое содержание серы и используются только для получения низкооктановых бензинов в ограниченных количествах.
При производстве высокооктановых бензинов используются алкилбензин, изооктан, изопентан и толуол. Бензины АИ-95 и АИ-98 обычно получают с добавлением кислородсодержащих компонентов: метил-трет-бутилового эфира (МТБЭ) или его смеси с трет-бутанолом, получившей название фэтерол. Введение МТБЭ в бензин позволяет повысить полноту его сгорания и равномерность распределения детонационной стойкости по фракциям. Максимально допустимая концентрация МТБЭ в бензинах составляет 15 % из-за его относительно низкой теплоты сгорания и высокой агрессивности по отношению к резинам.

Для достижения требуемого уровня детонационных свойств этилированных бензинов к ним добавляют этиловую жидкость (до 0,15 г свинца/дм3 бензина). К бензинам вторичных процессов, содержащим непредельные углеводороды, для их стабилизации и обеспечения требований по индукционному периоду разрешается добавлять антиокислители Агидол-1 или Агидол-12. В целях обеспечения безопасности в обращении и маркировки этилированные бензины должны быть окрашены. Бензин А-76 окрашивается в желтый цвет жирорастворимым желтым красителем К, бензин АИ-91 - в оранжево-красный цвет жирорастворимым темно-красным красителем Ж. Этилированные бензины, предназначенные для экспорта, не окрашиваются.

Характеристики бензина

ГК Трэйд-Ойл > Информация > Автомобильный бензин > Характеристики бензина

Основным эксплуатационным свойством всех бензинов является детонационная стойкость. Детонация - процесс быстрого сгорания рабочей смеси с образованием в камере сгорания ударных волн. Она приводит к прогоранию поршней и выпускных клапанов. К внешним признакам детонации относятся: характерный металлический стук, вибрация, черный цвет отработавших газов, перепады в работе двигателя.

Первым признаком детонации является резкий звонкий стук в двигателе. Многие автолюбители считают, что это стучат поршневые пальцы. Однако, на самом деле, причиной стука являются вибрации деталей двигателя вызываемая ударной волной. Детонация возникает вследствие: несоответствия вида бензина степени сжатия двигателя (слишком низкое октановое число), раннее зажигание, большое количество нагара в камере сгорания, работа двигателя при полностью открытой дроссельной заслонке, а также низкой частоте вращения коленчатого вала.

Детонационные свойства оцениваются октановым числом. Это число определяется двумя методами - исследовательским и моторным. Как правило, в обозначении бензина вместе с октановым числом пишется и метод, по которому оно определено. Например, буква И - исследовательский. Чем выше октановое число, тем больше стойкость к детонации, а значит больше мощность, а также экономичность.

Высокооктановые бензины получают двумя способами. Первый сложнотехнологический, при котором увеличивают долю высокооктановых компонентов при производстве (неэтилированный бензин). Второй, добавка к бензину тетраэтилсвинца (этилированный бензин). Этот способ более простой и дешевый. В развитых странах практически не используется.

Заливая к себе в бак этилированный бензин, будьте внимательны. Тетраэтилсвинец (а за границей еще и тетраметилсвинец) существенно повышает детонационную стойкость, для чего его, собственно говоря и добавляют.Однако, на автомобилях, оснащенных лямбдазондом и катализатором, поскольку свинец быстро приведет к их поломке.

Маркировка бензина

В нашей стране производят бензины следующих марок: А-72, А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95 и АИ-98. Есть этилированные, малоэтилированные, неэтилированные, летних, зимние сорта. Этилированные сорта специально окрашивают. Например, А-72 – розовый, А-76 –желтый, АИ-93 -оранжево-красный, а АИ-98 - синий. За границей две основные марки: «Премиум» (1-й сорт, октановое число 97-98) и «Регуляр» (2-й сорт, октановое число 90-94). В Англии и США, а также некоторых других странах выпускается бензин марки«Супер», в котором октановое число 99-102.

Где лучше применять?

Для легковых иномарок используйте бензин с октановым числом не менее 91-92. В машинах, произведенных в 90-е годы, лучше применять топливо с октановым числом не менее 94.

Качество бензина, определяется еще и уровнем загрязненности примесями, кислотами, щелочами, органическими соединениями, сернистыми соединениями. Бензины производимые на постсоветском пространстве часто имеют пониженное качество по указанным выше параметрам. Поэтому топливная система должна быть обязательно оборудована фильтром тонкой очистки, менять который нужно каждые 10000 - 15000 км. Полезно раз в год полностью промыть бак. Для двигателей с впрыском и катализатором используйте бензин не хуже чем АИ-95 неэтилированный или малоэтилированный.

Условия хранения

При длительном хранении бензина его качество ухудшается, поскольку смолы, содержащиеся в нем, образуют соединения коричневого цвета, которые оседают на всех деталях, что сказывается на их износе.

На процессы окисления бензина оказывает влияние ряд факторов. Медь и ее сплавы его ускоряют. Бензин в баке автомобиля, где имеются латунные заборная трубка и фильтрующая сетка, окисляется быстрее, чем в железной канистре. Способствует окислению и свободный доступ воздуха к топливу. В летний период процессы окисления протекают значительно быстрее.

При долгом хранении этилированного бензина в неплотно закрытой емкости уходит легколетучий бромистый этил. Это вещество, которое входит в состав этиловой жидкости и выводит оксиды свинца. Через какое-то время бромистого этила может остаться в бензине так мало, что он не сможет выводить свинец. Это значит, что в двигателе будет больше нагара.

Топливо эффективнее хранить в плотно закрытой таре и в прохладном месте. Здесь пригодятся канистры и аналогичные им емкости. В средней климатической зоне бензин может храниться в плотно закрытых канистрах без существенной потери качества до 12 месяцев, а в баке автомобиля - не более 6 месяцев. Для северных районов сроки увеличиваются в 1,5-2 раза, а для южных - сокращаются вдвое.


Бензин и его применение. - МОСТОПЛИВО

Полученный посредством смеси углеводородов, бензин имеет отличные физические свойства, благодаря которым его можно использовать  в суровых погодных условиях.

Характеристики топлива

Основные характеристики топлива следующие:

  • температура кипения  — +33…+205°C;
  • плотность — ,75 г/см³;
  • теплопроводность – 10 000ккал/кг;
  • температура замерзания — -71°С.

История применения бензина

Эволюция в использовании топлива привела к тому, что бензин применятся для работы двигателей внутреннего сгорания (ДВС). Однако изначально в XIX столетии, для него не нашли лучшего применения, нежели заправка примусов, также он выполнял функцию антисептического средства. Преимущественно из нефти делали керосин, а другие продукты подвергали утилизации. Сразу после изобретения ДВС, бензин стал крайне востребованным, но после того как появились дизельные моторы, набрало популярность дизтопливо в Москве, так как оно обладает повышенным КПД.

Бензин активно используется в карбюраторных двигателях, а также прекрасно подходит для инжекторов. Возможно его применение для изготовления ракетного топлива с высоким импульсом, парафина, он незаменим в качестве растворителя, может использоваться  в нефтехимической области.

Виды, маркировка и стандарты

Естественно, наиболее широкое применение имеют автомобильные бензины, которые выпускаются в России в соответствии с требованиями ГОСТа:

  • 2084-77;
  • Р 51105-97;
  • Р 51866-2002.

Топливо для автомобилей подразделяется на зимние и летние марки, первые отличаются большим содержанием низкокипящих углеводородов. Наиболее ходовые марки производятся, в соответствии с ГОСТом Р 51105-97, под которым выпускают топливо с октановым числом: 80, 92, 95, 98.

Предусмотрена единая маркировка топлива, осуществляемая в соответствии с требованиями ГОСТ Р 54283-2010. Предусмотрено использование знаков, поделённых на 3-и группы;

  • АИ – измерение октанового числа в соответствии с исследовательским методом;
  • цифровая маркировка – указывает на октановое число: 80 – 98;
  • экологический класс: 2 – 5 – соответствует нормам ЕВРО-3.

Если есть необходимость купить очищенный бензин, следует учесть, что в России законодательно приостановлено производство этилированного топлива, поэтому оно  является неэтилированным по умолчанию, что никак не отражено в маркировке.

Производство, потребление и экспорт

Производство топлива осуществляется в соответствии со спецификой рыночного спроса. Наибольшую долю рынка, занимает бензин АИ-92, который производится в объёме 18 000 000 тонн, порядка 29% рынка отведено для марки АИ-80, а топливо АИ-95 изготавливается в объёме 4 000 000 тонн.   Также небольшой сегмент рынка, порядка 8% отведён под производство прямогонного бензина, ну а топливо АИ-98 производится в незначительных объёмах (1%).

Потребление внутри России достигает 30 000 000 тонн  в год,  указанные цифры растут непропорционально медленно (1.5%), в сравнении с увеличением автомобильного парка (8%). Наиболее популярной является марка АИ-92 (62%), вслед за ней идёт АИ-80 (24%), а замыкает тройку лидеров АИ – 95 (14%).

Отметим, что потребление растёт, благодаря увеличению потребности населения  в высокооктановых марках, которые  уверено, вытесняют низкооктановое топливо. Бензин марки АИ-80, преимущественно потребляют малотоннажные грузовики, а также небольшие автобусы. Экспортируется прямогонный полуфабрикатный бензин, а также экспортная разновидность АИ-80. Объёмы экспорта составляют 5.9 – 6.3 млн. тонн в год, на сумму до 3 400 000 000$.  Необходимо учитывать конъюнктуру рынка, если есть необходимость купить бензин оптом.

Нестандартное применение бензина

Популярность бензина, сделала его инструментом для совершения противоправных деяний, в руках неблагонадёжных граждан. Преимущественно топливо применяется злоумышленниками для поджогов, но может быть использовано в виде рекреационного наркотического средства,  определённым образом, влияющего на организм:

  • гиперемия;
  • галлюцинации;
  • эйфория.

Попутно у человека начинает кружиться голова, нарушается координация, возникают боли, а речь становится не внятной.  Эффект, создаваемый бензином, отличается от прочих психотропных препаратов тем, что имеет высокий уровень токсичности и общедоступен. Зафиксированы случаи, когда масляный раствор принимали внутрь, что неизбежно приводило к эмболии и в отдельных случаях заканчивалось летальным исходом. Немцы, во времена ВОВ, делали инъекции бензином, что крайне болезненно.

Бензин, давно зарекомендовал  себя на рынке, многие пытаются найти ему замену, однако это разовые акции, которые не способны породить массовый отказ от ставшего привычным топлива. Надо отметить, что активное использование бензина в этом качестве, будет осуществляться ещё длительное время.

Бензин

АВТОМОБИЛЬНЫЕ БЕНЗИНЫ


Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации:
  • иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;
  • иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;
  • не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия;
  • иметь хорошие антидетонационные характеристики и др.
  • в последние годы экологические свойства топлива выдвигаются на первый план.

Испаряемость


Для обеспечения полного сгорания топлива в двигателе необходимо перевести его в короткий промежуток времени из жидкого состояния в парообразное и смешать с воздухом в определенном соотношении - 1:14 - т. е. создать рабочую смесь. К физико-химическим показателям, от которых зависит испаряемость бензинов, относят давление насыщенных паров, фракционный состав, скрытую теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность. Из перечисленных показателей важнейшими, определяющими испаряемость бензинов, являются давление насыщенных паров и фракционный состав. По вязкости, поверхностному натяжению, скрытой теплоте испарения, коэффициенту диффузии паров, теплоемкости бензины разного состава сравнительно мало различаются между собой, и эти различия нивелируются конструктивными особенностями двигателей. Давление насыщенных паров и фракционный состав являются функциями состава бензина, и эти показатели могут существенно различаться для разных бензинов. Эти два параметра определяют пусковые свойства бензинов, их склонность к образованию паровых пробок, физическую стабильность.

Давление насыщенных паров


Давление насыщенных паров зависит от температуры и от соотношения паровой и жидкой фаз и уменьшается с уменьшением температуры и увеличением отношения паровой фазы к жидкой. В лабораторных условиях давление насыщенных паров определяют при температуре 37,8°С и соотношении паровой и жидкой фаз (3,8-4,2):1 в "Бомбе Рейда" (ГОСТ 1756-52) или аппарате с механическим диспергированием типа "Вихрь" (ГОСТ 28781-90).

Фракционный состав


Фракционный состав бензинов определяют перегонкой на специальном приборе, при этом отмечают температуру начала перегонки, температуру выпаривания 10, 50, 90 % и конца кипения, или объем выпаривания при 70, 100 и 180°С. Требования к фракционному составу и давлению насыщенных паров бензинов определяются конструкцией автомобильного двигателя и климатическими условиями его эксплуатации.

1. С одной стороны, необходимо обеспечить запуск двигателя при низких температурах, с другой стороны - предотвратить нарушения в работе двигателя, связанные с образованием паровых пробок при высоких температурах. Пусковые свойства бензина зависят от содержания в нем легких фракций, которое может быть определено по давлению насыщенных паров и температуре перегонки 10 % или объему легких фракций, выкипающих при температуре до 70°С. Чем ниже температура окружающего воздуха, тем больше легких фракций требуется для запуска двигателя. Однако чрезмерное содержание низкокипящих фракций в составе бензинов может вызвать неполадки в работе прогретого двигателя, связанные с образованием паровых пробок в системе топливоподачи. Причиной образования паровых пробок в автомобильном двигателе является интенсивное испарение топлива вследствие его перегрева. В условиях жаркого климата это явление может иметь массовый характер. Образование паровых пробок зависит от испаряемости бензина, температуры и конструкции двигателя. Чем выше давление насыщенных паров бензина, ниже температуры начала кипения и перегонки 10 % и больше объем фракции, выкипающей при температуре до 70 °С, тем больше его склонность к образованию паровых пробок.

От содержания в бензине легкокипящих фракций зависит его физическая стабильность, т.е. склонность к потерям от испарения. Наибольшие потери от испарения имеют бензины, содержащие в своем составе низкокипящие углеводороды.

2. От фракционного состава зависят такие показатели как скорость прогрева двигателя, его приемистость, износ цилиндро-поршневой группы. Приемистость - способность бензинов к повышению детонационной стойкости при добавлении антидетонаторов. Наиболее существенное влияние на скорость прогрева двигателя и  его приемистость оказывает температура перегонки 50 % бензина. Температура выкипания 90 % бензина также влияет на эти характеристики, но в меньшей степени. Скорость прогрева двигателя, его приемистость зависят и от температуры окружающего воздуха. Чем ниже температура воздуха, тем ниже должна быть температура перегонки 50 % бензина для обеспечения быстрого прогрева и хорошей приемистости двигателя. При понижении температуры это влияние усиливается. Поэтому нормы на этот показатель также зависят от температурных условий эксплуатации и различаются по сезону и климатическим зонам.

3. Для нормальной работы двигателя большое значение имеет полнота испарения топлива, которая характеризуется температурой перегонки 90 % бензина и температурой конца кипения. При неполном испарении бензина во впускной системе часть его может поступать в камеру сгорания в жидком виде, смывая масло со стенок цилиндров. Жидкая пленка через зазоры поршневых колец может проникать в картер, при этом происходит разжижение масла. Это приводит к повышенным износам и отрицательно влияет на мощность и экономичность работы двигателя. Снижение температуры конца кипения бензинов может повысить их эксплуатационные свойства, однако это снижает ресурс бензинов. Температура конца  кипения (tк.к.)  бензинов также характеризует полноту сгорания бензинов и равномерность распределения рабочей смеси по цилиндрам двигателя; при tк.к. выше 220 оС происходит неполное сгорание бензинов, повышается его расход, а также увеличивается износ двигателя, снижаются его экономичность и мощность.

Как было указано выше, требования к испаряемости автомобильных бензинов в значительной мере зависят от температурных условий их применения. С учетом климатических особенностей нашей страны автомобильные бензины по фракционному составу и давлению насыщенных паров подразделяют на два вида: зимний и летний. Для обеспечения нормальной эксплуатации автомобилей и рационального использования бензинов введено пять классов испаряемости для применения в различных климатических районах. Наряду с определением температуры перегонки бензина при заданном объеме предусмотрено определение объема испарившегося бензина при заданной температуре 70, 100 и 180 °С (табл. 2).

Таблица 2


Характеристики испаряемости бензинов всех марок


Показатели

Класс

1

2

3

4

5

1. Давление насыщенных паров бензина, кПа

35-70

45-80

55-90

60-95

80-100

2. Фракционный состав: 

  температура начала перегонки, °С, не ниже

35

35

не нормир.

не нормир.

не нормир.

  пределы перегонки, °С, не выше: 

  - 10%

75

70

65

60

55

  - 50%

120

115

110

105

100

  - 90%

190

185

180

170

160

  конец кипения, °С,

  не выше

215

  объемная доля остатка в колбе, %

2

  остаток и потери, %

4

  объем испарившегося  бензина, %, при  температуре: 

  70 °С

10-45

15-45

15-47

15-50

15-50

  100 °С

35-65

40-70

40-70

40-70

40-70

  180 °С, не менее

85

85

85

85

85

3. Индекс испаряемости, не более

900

1000

1100

1200

1300

Детонационная стойкость


Этот показатель характеризует способность автомобильных бензинов противостоять самовоспламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер. При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Показателем детонационной стойкости автомобильных бензинов является октановое число.  Октановое число численно равно содержанию (% об.) изооктана (2,2,4,-триметилпентана) в его смеси с н - гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому на одноцилиндровом двигателе с переменной степенью сжатия в стандартных условиях на бедной рабочей смеси. В лабораторных условиях октановое число автомобильных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).

Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом. Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды.

Детонационная стойкость автомобильных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детонационной стойкости нафтены превосходят парафиновые углеводороды, но уступают ароматическим углеводородам. Октановое число углеводородов снижается в следующем порядке:

ароматические >изопарафины  > олефины > нафтены > н-парафины.


Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшую чувствительность имеют олефиновые углеводороды. Чувствительность ароматических углеводородов несколько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углеводороды имеют отрицательную чувствительность. Соответственно   более по чувствительности (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные и ароматические углеводороды. Менее чувствительны (1-2 ед.) к режиму работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов.

Для повышения октановых чисел товарных бензинов используют также специальные антидетонационные присадки и высокооктановые компоненты (этиловую жидкость, органические соединения марганца, железа, ароматические амины, метил-третбутиловый эфир).

Химическая стабильность


Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.

При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолянистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.

Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом.

Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.

Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100°С и давлении кислорода по ГОСТ 4039-88. Этим методом определяют индукционный период, т.е. время от начала испытания до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологических процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50-250 мин; каталитического крекинга - 240-1000 мин; прямой перегонки - более 1200 мин; каталитического риформинга - более 1500 мин.

Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.

Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов.

Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка.

Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12.

Склонность к образованию отложений и нагарообразованию


Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора. Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов. Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют моющие свойства бензина. Установлено, что повышенному нагарообразованию способствует высокое содержание в бензинах олефиновых и ароматических углеводородов, особенно высококипящих. Содержание ароматических и олефиновых углеводородов в товарных бензинах ограничивается соответственно 55 и 25 % (об.). Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.

Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок. Такие присадки широко применяют за рубежом. В России также разработаны и допущены к применению присадки аналогичного назначения.

Эксплуатационные свойства


Автомобильные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен выдерживать испытание на медной пластинке. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

Бензин - Что такое Бензин?

Бензин – это самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина.

Бензин - это самый важный продукт переработки нефти. 

Из сырой нефти производится до 50% бензина.

Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив.

Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина.


Состав бензина

Промышленный бензин представляет собой смесь углеводородов в интервале точки кипения 30-200° C.

Некоторые бутаны, кипящие при температуре ниже 38° С, имеют высокое давление паров.

Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов.

Октановое число углеводородов снижается в следующем порядке: 

изопарафины > ароматические > олефины > нафтены > н-парафины.

Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения.

Различные компоненты дают свой вклад в октановое число бензиновых смесей.
Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо.

Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.


Классификация бензинов

Бензины классифицируются по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы.


Интервалы температур кипения

Большинство бензинов кипит в интервале 30-200° С.

50%-ная точка, т.е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98-104° С. 

Высокое содержание низкокипящих компонентов, таких как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок.

В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива.

Октановое число

Октановое число - наиболее важная характеристика бензина.

Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации.

Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число.

Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100.

При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина - это процентное содержание изооктана в такой смеси.

Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях. 

В нефтяной промышленности используются 2 метода, делающие это сравнение более реальным: моторный метод и исследовательский метод.

Октановое число определяется как среднее из 2 таких определений.


Присадки

Практически все бензины содержат различные присадки, в том числе ингибиторы смолообразования и небольшое количество красителя.

Законодательством многих промышленно развитых стран существенно снижен допустимый уровень соединений свинца в бензине (этилированный бензин, т.е. содержащий добавки тетраэтилсвинца, повышающие октановое число бензина, составляет менее 20% от всего бензина, вырабатываемого в США).

бензин | Определение, использование и факты

Бензин , также обозначается как бензин , также обозначается как газ или бензин , смесь летучих, легковоспламеняющихся жидких углеводородов, получаемых из нефти и используемых в качестве топлива для двигателей внутреннего сгорания. Он также используется в качестве растворителя масел и жиров. Первоначально побочный продукт нефтяной промышленности (керосин был основным продуктом), бензин стал предпочтительным автомобильным топливом из-за его высокой энергии сгорания и способности легко смешиваться с воздухом в карбюраторе.

Подробнее по теме

переработка нефти: Бензин

Автомобильный бензин или бензин должен соответствовать трем основным требованиям. Он должен обеспечивать равномерный режим горения, легко запускаться в холодную погоду, ...

Бензин сначала производился путем дистилляции, простого отделения летучих, более ценных фракций сырой нефти. Более поздние процессы, разработанные для увеличения выхода бензина из сырой нефти, расщепляли большие молекулы на более мелкие с помощью процессов, известных как крекинг.Термический крекинг с использованием тепла и высокого давления был введен в 1913 году, но после 1937 года был заменен каталитическим крекингом, применением катализаторов, которые облегчают химические реакции с образованием большего количества бензина. Другие методы, используемые для улучшения качества бензина и увеличения его поставок, включают полимеризацию, преобразование газообразных олефинов, таких как пропилен и бутилен, в более крупные молекулы в диапазоне бензина; алкилирование, процесс объединения олефина и парафина, такого как изобутан; изомеризация, превращение углеводородов с прямой цепью в углеводороды с разветвленной цепью; и риформинг с использованием тепла или катализатора для перестройки молекулярной структуры.

Бензин - это сложная смесь сотен различных углеводородов. Большинство из них насыщены и содержат от 4 до 12 атомов углерода на молекулу. Бензин, используемый в автомобилях, в основном кипит от 30 ° до 200 ° C (от 85 ° до 390 ° F), смесь регулируется в зависимости от высоты и сезона. Авиационный бензин содержит меньшие доли как менее летучих, так и более летучих компонентов, чем автомобильный бензин.

Антидетонационные характеристики бензина - его способность противостоять детонации, которая указывает на то, что сгорание паров топлива в цилиндре происходит слишком быстро для повышения эффективности - выражаются в октановом числе.Добавление тетраэтилсвинца для замедления горения было начато в 1930-х годах, но было прекращено в 1980-х годах из-за токсичности соединений свинца, выделяемых с продуктами сгорания. Другие добавки к бензину часто включают детергенты для уменьшения образования отложений в двигателе, противообледенительные агенты для предотвращения остановки двигателя из-за обледенения карбюратора и антиоксиданты (ингибиторы окисления), используемые для уменьшения образования «смол».

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

В конце 20 века рост цен на нефть (и, следовательно, на бензин) во многих странах привел к увеличению использования бензина, который представляет собой смесь 90 процентов неэтилированного бензина и 10 процентов этанола (этилового спирта). Бензохол хорошо горит в бензиновых двигателях и является желательным альтернативным топливом для определенных применений из-за возобновляемости этанола, который можно производить из зерна, картофеля и некоторых других растительных веществ. См. Также нефть.

Объяснение бензина - U.S. Управление энергетической информации (EIA)

Бензин - нефтепродукт

Бензин - это топливо, производимое из сырой нефти и других жидких углеводородов. Бензин в основном используется в качестве моторного топлива в транспортных средствах. Нефтеперерабатывающие и смесительные предприятия производят автомобильный бензин для продажи на розничных автозаправочных станциях.

Большая часть бензина, производимого нефтеперерабатывающими заводами, на самом деле представляет собой неочищенный бензин (или его смеси).Смеси бензина требуют смешивания с другими жидкостями для получения готового автомобильного бензина, который отвечает основным требованиям к топливу, подходящему для использования в двигателях с искровым зажиганием.

НПЗ США производят немного готового автомобильного бензина. Однако большая часть готового автомобильного бензина, продаваемого в Соединенных Штатах, фактически производится на терминалах смешения, где смешиваются компоненты бензина, готовый бензин и топливный этанол для производства готового автомобильного бензина различных марок и составов для использования потребителями.Некоторые компании также добавляют моющие средства и другие добавки к бензину перед доставкой в ​​розничные точки.

Смесительные терминалы более многочисленны и рассредоточены по сравнению с нефтеперерабатывающими заводами, и на них есть оборудование для заправки автоцистерн, которые транспортируют готовый автомобильный бензин к торговым точкам.

Большая часть готового автомобильного бензина, продаваемого в настоящее время в Соединенных Штатах, содержит около 10% топливного этанола по объему. Этанол добавляется в бензин в основном для удовлетворения требований Стандарта на возобновляемые источники топлива, который предназначен для сокращения выбросов парниковых газов и количества нефти, которую Соединенные Штаты импортируют из других стран.

Бензин варьируется по марке

Некоторые компании имеют разные названия этих марок бензина, например, неэтилированный , супер, или супер премиум, , но все они указывают октановое число, которое отражает антидетонационные свойства бензина. Более высокое октановое число приводит к более высоким ценам.

Бензонасос для различных марок бензина

Источник: стоковая фотография (защищена авторским правом)

До 1996 года в бензин добавляли свинец в качестве смазочного материала для уменьшения износа клапанов двигателя.К 1996 году этилированный бензин был полностью исключен из топливной системы США. Производители рекомендуют сорт бензина для использования в каждой модели автомобиля.

Бензин также различается по составу

Помимо различных марок автомобильного бензина, состав бензина может отличаться в зависимости от места продажи и сезона года. Федеральные и государственные программы по контролю за загрязнением воздуха, нацеленные на сокращение содержания окиси углерода, смога и токсинов в воздухе, требуют применения оксигенированного, измененного состава и низколетучих бензинов.В некоторых районах страны требуется использовать бензин со специальной формулой для снижения определенных выбросов, и состав может меняться в зимние и летние месяцы. Эти специфические для региона требования означают, что бензин не является однородным продуктом по всей стране. Бензин, произведенный для продажи в одном районе США, может не иметь разрешения на продажу в другом районе.

Бензин меняется по сезонам.

Основное отличие зимнего бензина от летнего - давление паров.Давление паров бензина важно для правильной работы автомобильного двигателя. В зимние месяцы давление паров должно быть достаточно высоким для легкого запуска двигателя. Летом во многих районах требуется более низкое давление пара для уменьшения загрязнения воздуха.

Бензин легче испаряется в теплую погоду, выделяя более летучие органические соединения, которые способствуют проблемам со здоровьем и образованию приземного озона и смога. Чтобы сократить загрязнение окружающей среды, Агентство по охране окружающей среды США требует от нефтепереработчиков снижать давление паров бензина в летние месяцы.

Характеристики бензина зависят от типа используемой сырой нефти и установки нефтеперерабатывающего завода, на котором производится бензин. На характеристики бензина также влияют другие ингредиенты, которые могут быть включены в смесь, например этанол. Большинство автомобильных бензинов, продаваемых в Соединенных Штатах, содержат некоторое количество топливного этанола.

Последнее обновление: 5 марта 2020 г.

Химический анализ топлива и исследование свойств | Транспортные исследования

NREL стремится глубже понять, как свойства топлива влияют на работу двигателя.Мы достигаем этого, связывая свойства топлива с химией топлива и молекулярной структурой.

Мы оцениваем широкий спектр возобновляемых бензинов и дизельного топлива, начиная с текущего доступный этанол и биодизель для будущих продуктов, таких как диметилфуран и гидроочищенные масла пиролиза биомассы.

Для углеводородов с диапазоном кипения бензина NREL применяет подробный анализ углеводородов. (DHA), который представляет собой метод газовой хроматографии высокого разрешения для выявления и количественного определения более 98% компонентов бензина нефтеперерабатывающего завода.Этот богатый набор данных химической информации можно затем использовать для расчета полезных свойств.

Данные и анализ химических свойств топлива

Наши аналитические навыки и знания о данных играют жизненно важную роль в ускорении темпов развития достижений в исследованиях топлива и горения.

Газовая хроматограмма высокого разрешения, показывающая компоненты бензина нефтеперерабатывающего завода.

О метрике

Индекс твердых частиц (PMI), полученный из DHA, является широко используемым показателем для ранжирование тенденции к образованию твердых частиц в бензинах, включая бензины содержащие биотопливо. Твердые частицы состоят из мелких частиц с отрицательным влияет на здоровье человека. Их выбросы от легковых и грузовых автомобилей регулируются государством. агентства по всему миру.

PMI рассчитывается на основе DHA с учетом свойств каждого отдельного компонента. Исследования NREL по химии топлива и сгоранию двигателя показали, что образование частиц из оксигенатов, полученных из биомассы, не точно предсказывается PMI, потому что некоторые оксигенаты имеют пути реакции с низким энергетическим барьером на образование сажи. За дополнительной информацией, см. исследование сгорания двигателя.

Кроме того, спирты, такие как этанол, имеют гораздо более высокую теплоту испарения (HOV). чем бензин, а при смешивании с бензином повышенное испарительное охлаждение может вызывают образование большего количества частиц из ароматических соединений в бензине при определенных условиях. DHA также можно использовать для расчета HOV сложных смесей, таких как бензин-этанол. смеси. Текущие исследования изучают, как предсказать кривую дистилляции бензина. от DHA, а также другие свойства.

Связанные публикации

Измерение теплоты парообразования для смесей этанола до 50 объемных процентов в нескольких Углеводородные смеси и их влияние на детонацию в двигателях SI

Детонационная стойкость и выбросы мелких частиц для некоторых оксигенатов, полученных из биомассы в двигателе искрового зажигания с прямым впрыском топлива

Влияние добавления этанола в бензин на испарение ароматических соединений и содержание частиц Выбросы от двигателя с прямым впрыском бензина

Анализ воздействия металлических загрязнителей на системы контроля выбросов дизельных двигателей

Атомно-эмиссионный спектроскопический анализ СВЧ-плазмы

NREL разработал методы анализа натрия и других металлов до уровня ниже 1 частей на миллион (ppm) (предел обнаружения натрия 0.023 ppm) с помощью микроволнового плазменного излучения атомно-эмиссионная спектроскопия и атомно-эмиссионная спектроскопия с индуктивно связанной плазмой. Это исследование показало, что уровни натрия в биодизеле на рынке, как правило, значительно ниже 0,5 частей на миллион. Однако в небольшом процентном соотношении количество образцов достигало 3 ppm.

Чтобы узнать больше, прочтите "Анализ металлов смесей биодизеля".

Испытания на долговечность и физико-химические характеристики

В сотрудничестве с Cummins, Inc.и Национальная лаборатория Ок-Ридж, NREL исследовали воздействие натрия на системы контроля выбросов дизельного топлива за 1000 часов ускоренного испытание на долговечность с последующим детальным физико-химическим анализом выбросов компоненты системы управления.

Он показал, что при допустимом в настоящее время уровне 5 ppm в 100% биодизеле натрий удваивает скорость накопления золы в сажевом фильтре (остальное - зола от двигателя смазочный материал), что увеличивает противодавление двигателя и приводит к увеличению выбросов NOx.

Типичный биодизель содержит натрий менее 1 ppm. Тем не менее, заинтересованные стороны отрасли рассматривают меры по значительному снижению содержания натрия в биодизеле.

Чтобы узнать больше об исследовании, прочтите «Оценка воздействия натрия, переносимого топливом, на выбросы DOC-DPF-SCR из тяжелых двигателей». Система управления: моделирование полноценной жизни.

Примеси металлов и их проблемы

Топливо может содержать металлические примеси, такие как натрий и кальций, которые попадают в выхлоп двигателя. Они также могут откладываться на компонентах системы контроля выбросов, таких как в качестве катализаторов окисления дизельного топлива, сажевых фильтров и катализаторов восстановления NOx, в результате чего при дезактивации катализатора и засорении фильтра.

Биодизель - биотопливо, производимое из растительных масел, животных жиров и отработанного кулинарного масла. содержат натрий в качестве остатка от производственного процесса. Натрий потенциально присутствуют на уровнях ниже 1 ppm, что делает точный анализ содержания натрия в подпитывать значительную проблему.

Инновационный метод измерения теплоты парообразования бензина

NREL разработал метод измерения теплоты испарения (HOV) при испарении топлива. с использованием прибора дифференциальной сканирующей калориметрии / термогравиметрического анализа (ДСК / ТГА).Метод был применен к смесям этанола в топливах для усовершенствованного сжигания. Двигатели (FACE) Исследовательский бензин.

Результаты показывают, что добавление этанола увеличивает тепловой поток до тех пор, пока этанол не испарится, поэтому на более поздней стадии испарения происходит меньше охлаждения. Текущее исследование изучение более сложных бензинов и влияние азеотропных взаимодействий между углеводороды диапазона кипения этанола и бензина.

Прямой впрыск топлива и теплота испарения

Бензиновые двигатели, использующие прямой впрыск (DI) топлива, в настоящее время составляют примерно половина продаж новых автомобилей в США. Одним из преимуществ DI является то, что топливо испаряется в цилиндре двигателя, что снижает температуру воздуха и топлива. смесь из-за топлива ХОВ.Это испарительное охлаждение имеет несколько преимуществ. эффекты, в том числе снижение насосных потерь при подаче воздуха в двигатель и повышение эффективной детонационной стойкости топлива, позволяющее увеличить степень сжатия - как эффекты значительно повышают эффективность двигателя. Спирты, такие как этанол, имеют много более высокий HOV, чем бензиновые углеводороды (923 килоджоулей на килограмм [кДж / кг] для этанола против 350-400 кДж / кг для бензина).Таким образом, смешивание этанола увеличивает HOV и приводит к еще более низкой температуре топливовоздушной смеси.

В то время как общий HOV смеси бензина и этанола может быть рассчитан на основе DHA, двигатель разработчикам и исследователям горения необходимо понимать, как HOV развивается по мере топливо испаряется.

Связанные публикации

Измерение теплоты парообразования для смесей этанола до 50 объемных процентов в нескольких Углеводородные смеси и их влияние на детонацию в двигателях SI

Теплота испарения и эволюция видов при испарении бензина, измеренная с помощью ДСК / ТГА / МС для смесей спиртов С1-С4 в товарных бензиновых смесях

Контакт

Чтобы узнать больше о нашей работе или изучить возможности партнерства, свяжитесь с Терезой Аллеман или Джиной Фиорони.

Публикации

исследователей NREL публикуют журнальные статьи, доклады на конференциях и отчеты о топливе. химический анализ и свойства R&D.

просматривать публикации

AMF

Состав бензина и дизельного топлива

И бензин, и дизельное топливо состоят из сотен различных молекул углеводородов.Кроме того, часто встречаются некоторые компоненты биологического происхождения, такие как этанол в смеси бензина.

Бензин содержит в основном алканы (парафины), алкены (олефины) и ароматические углеводороды. Дизельное топливо состоит в основном из парафинов, ароматических углеводородов и нафтенов. Углеводороды бензина обычно содержат 4-12 атомов углерода с интервалом кипения от 30 до 210 ° C, тогда как дизельное топливо содержит углеводороды с приблизительно 12-20 атомами углерода и интервалом кипения от 170 до 360 ° C. Бензин и дизельное топливо содержат приблизительно 86 мас.% Углерода и 14 мас.% Водорода, но соотношение водорода к углероду несколько изменяется в зависимости от состава.

Парафиновые углеводороды, особенно нормальные парафины, улучшают воспламеняемость дизельного топлива, но низкотемпературные свойства этих парафинов, как правило, плохие. Ароматические углеводороды в бензине имеют высокое октановое число. Однако ароматические углеводороды и олефины могут ухудшить чистоту двигателя, а также увеличить отложения в двигателе, что является важным фактором для новых сложных двигателей и устройств для последующей обработки. Ароматические углеводороды могут приводить к образованию канцерогенных соединений в выхлопных газах, таких как бензол и полиароматические соединения.Олефины в бензине могут приводить к увеличению концентрации реакционноспособных олефинов в выхлопных газах, некоторые из которых являются канцерогенными, токсичными или могут увеличивать озонообразование. Добавки могут потребоваться для обеспечения надлежащих свойств бензина и дизельного топлива.

Традиционный бензин и дизельное топливо не рассматриваются подробно в «Системе топливной информации AMF». Вместо этого основное внимание уделяется альтернативным вариантам смешивания или замены бензина и дизельного топлива. Тем не менее, технология двигателей вместе с законодательством и стандартами для бензина и дизельного топлива рассматриваются кратко.

Бензин - законодательство и стандарты

Двигатель и технология последующей обработки предъявляют требования к качеству топлива. Базовый анализ топлива был разработан для проверки общих характеристик и работоспособности топлива в двигателях внутреннего сгорания. Впоследствии были определены свойства топлива, важные с точки зрения окружающей среды, такие как совместимость топлива с устройствами контроля выбросов. Функциональные возможности и общие характеристики бензина можно определить, например, с точки зрения октанового числа, летучести, содержания олефинов и добавок.Экологические характеристики могут быть определены, например, с точки зрения ароматических соединений, олефинов, содержания бензола, оксигенатов, летучести и серы (свинец не разрешен в большинстве стран). Свойства топлива регулируются законодательством и стандартами на топливо. Существует также ряд других региональных и национальных стандартов на топливо.

В Европе Директива о качестве топлива 2009/30 / EC определяет требования к основным свойствам топлива для бензина. Европейский стандарт EN 228 включает более обширные требования, чем Директива о качестве топлива, для обеспечения надлежащей работы бензина на рынке.CEN (Европейский комитет по стандартизации) разрабатывает стандарты в Европе.

В США ASTM D 4814 - это спецификация для бензина. Стандарт ASTM включает ряд классов, отказов и исключений с учетом климата, региона и, например, содержания этанола в бензине. В 2011 году Агентство по охране окружающей среды США приняло отказ от использования 15 об.% Этанола для автомобилей 2001 года и более новых. В США бензин-оксигенатные смеси считаются «по существу подобными», если они содержат углеводороды, алифатические простые эфиры, алифатические спирты, отличные от метанола, до 0.3 об.% Метанола, до 2,75 об.% Метанола с равным объемом бутанола или спирта с более высокой молекулярной массой. Топливо должно содержать не более 2,0 мас.% Кислорода, за исключением топлива, содержащего алифатические эфиры и / или спирты (за исключением метанола), которые не должны содержать более 2,7 мас.% Кислорода. В США для автомобилей FFV разрешено использовать так называемое топливо серии P, состоящее из бутана, пентанов, этанола и сорастворителя, полученного из биомассы, метилтетрагидрофурана (MTHF).

Производители автомобилей и двигателей определили рекомендации в отношении топлива во «Всемирной топливной хартии» (WWFC).Категория 4 является самой строгой категорией WWFC для «рынков с дополнительными передовыми требованиями к контролю за выбросами, позволяющими использовать сложные технологии последующей обработки NOx и твердых частиц».

Выбранные требования и свойства топлива показаны в таблицах 1 и 2 ниже.

Таблица 1. Отдельные требования к свойствам бензина в Европе и США вместе с рекомендациями автопроизводителей (WWFC). Полные требования и стандарты доступны в соответствующих организациях.

Таблица 2. Примеры некоторых неограниченных свойств бензина.

Дизельное топливо - законодательство и стандарты

Двигатель и технология последующей обработки предъявляют требования к качеству топлива. Базовый анализ топлива был разработан для проверки общих характеристик и работоспособности топлива в двигателях внутреннего сгорания. Впоследствии были определены свойства топлива, важные с точки зрения окружающей среды, такие как совместимость топлива с устройствами контроля выбросов.Функциональные возможности и общие характеристики дизельного топлива можно определить, например, с точки зрения качества воспламенения, дистилляции, вязкости и присадок. Экологические характеристики можно определить по содержанию ароматических углеводородов и серы.

Свойства топлива регулируются законодательством и стандартами на топливо. В Европе Директива о качестве топлива 2009/30 / EC определяет требования к основным свойствам дизельного топлива. Европейский стандарт EN 590 включает более обширные требования, чем Директива по качеству топлива, для обеспечения надлежащей работы дизельного топлива на рынке.В Европе стандарты разрабатывает CEN (Европейский комитет по стандартизации).

В США ASTM D 975 - это спецификация для дизельного топлива. Стандарт ASTM включает несколько классов. Существует также ряд других региональных и национальных стандартов на топливо.

Производители автомобилей и двигателей определили рекомендации в отношении топлива во «Всемирной топливной хартии» (WWFC). Категория 4 является самой строгой категорией WWFC для «рынков с дополнительными передовыми требованиями к контролю за выбросами, позволяющими использовать сложные технологии последующей обработки NOx и твердых частиц».

Выбранные требования и свойства топлива показаны в таблицах 3 и 4 ниже.

Таблица 3. Отдельные требования к свойствам дизельного топлива в Европе и США вместе с рекомендациями автопроизводителей (WWFC). Полные требования и стандарты доступны в соответствующих организациях.

Таблица 4. Примеры некоторых неограниченных свойств дизельного топлива. а, б

Технология двигателя

БЕНЗИН - Двигатели с искровым зажиганием, работающие на бензине, являются ведущим источником энергии для легковых автомобилей.Двигатели с искровым зажиганием просты и дешевы по сравнению с дизельными двигателями с воспламенением от сжатия. Кроме того, стехиометрическое соотношение воздух-топливо позволяет использовать трехкомпонентный катализатор (TWC), который способен одновременно и эффективно снижать выбросы моноксида углерода (CO), углеводородов (HC) и оксидов азота (NO x ). . Недостатком двигателей с искровым зажиганием является их более низкий КПД по сравнению с двигателями с воспламенением от сжатия. Поэтому расход топлива двигателей с искровым зажиганием выше, чем у дизельных двигателей, как в энергетическом, так и в объемном выражении.

Бензиновые автомобили, оснащенные карбюраторными двигателями, были доступны до конца 1980-х годов. Сегодня двигатели с искровым зажиганием - это двигатели с впрыском топлива, в основном оснащенные многоточечным впрыском топлива (MPFI, впрыск топлива во впускной канал). В 1990-х годах на рынке появились двигатели с непосредственным впрыском и искровым зажиганием с более высоким КПД и меньшим расходом топлива. Модели, использующие обедненное сжигание с избытком воздуха, также были представлены в 1990-х годах, но вскоре они исчезли с рынка. Двигатели с искровым зажиганием, как с прямым, так и с прямым впрыском, теперь основаны на стехиометрическом соотношении воздух / топливо и оснащены катализатором TWC.

Выбросы выхлопных газов двигателей с искровым зажиганием, использующих стехиометрическое соотношение воздух / топливо, можно эффективно контролировать с помощью трехкомпонентного катализатора (TWC). В TWC оксид углерода и несгоревшие углеводороды окисляются одновременно с восстановлением оксидов азота. С TWC достигается даже более чем 90% сокращение выбросов CO, HC и NO x вне двигателя, причем выбросы происходят в основном при холодном пуске или резком ускорении. Однако в некоторых условиях катализатор TWC может выделять аммиак и закись азота.TWC работают эффективно только в очень узком диапазоне лямбда, близком к стехиометрическому соотношению воздух / топливо, и поэтому TWC не могут использоваться в двигателях, работающих на бедной смеси, таких как дизельные двигатели. Преимущество бедной смеси будет заключаться в улучшении расхода топлива, но за счет увеличения выбросов NO x . Рециркуляция выхлопных газов (EGR) - одна из распространенных технологий, используемых для снижения выбросов NO x дизельных двигателей, она также используется в двигателях с искровым зажиганием.Для автомобилей с прямым впрыском и искровым зажиганием выбросы твердых частиц высоки, и поэтому могут потребоваться фильтры для твердых частиц.

Двигатели с искровым зажиганием сегодня менее чувствительны к топливу, чем двигатели более старых поколений, а абсолютная масса выбросов низка. Однако при холодном пуске, тяжелых условиях вождения и при низких температурах между видами топлива для всех автомобилей могут быть большие абсолютные и относительные различия. В прошлом карбюраторные двигатели были особенно чувствительны к топливу, например, возникали проблемы с управляемостью и паровыми пробками.Большинство автомобилей с бензиновым двигателем сегодня могут выдерживать как минимум до 10 об.% Этанола в Европе и США.

ДИЗЕЛЬ - Благодаря своему высокому КПД дизельные двигатели с воспламенением от сжатия являются ведущим источником энергии в большегрузных транспортных средствах из-за их высокого КПД. Сегодня дизельные двигатели становятся все более популярными и в легковых автомобилях. Устройства контроля выбросов и внутренние решения для двигателей имеют решающее влияние на выбросы выхлопных газов. Дизельные двигатели работают на обедненной смеси, что улучшает расход топлива, но за счет увеличения выбросов оксидов азота (NO x ).Выбросы NO x образуются из азота в воздухе при высоких температурах. Выбросы твердых частиц (ТЧ) - еще одна проблема дизельных двигателей.

Селективное каталитическое восстановление (SCR) и рециркуляция выхлопных газов (EGR) являются общими технологиями, используемыми для снижения выбросов NO x дизельных двигателей. EGR - это внутренняя технология двигателя, тогда как SCR - это устройство последующей обработки выхлопных газов с использованием восстановителя, такого как аммиак или мочевина. С помощью системы рециркуляции выхлопных газов часть выхлопных газов возвращается в цилиндры двигателя, что снижает температуру сгорания и, следовательно, выбросы NO x .Высокий коэффициент рециркуляции отработавших газов может привести к проблемам с чистотой двигателя и увеличению выбросов твердых частиц. Катализатор окисления снижает выбросы летучих органических соединений. Фильтры твердых частиц эффективно снижают выбросы твердых частиц.

Ссылки

Chiba, F., Ichinose, H., Morita, K., Yoshioka, M., Noguchi, Y. and Tsugagoshi, T. Влияние высокой концентрации этанола на двигатель SI

Дегальдо Р., Араужо А. и Фернандес В. (2007) Свойства бразильского бензина, смешанного с гидратированным этанолом, для технологии гибкого топлива.Технология переработки топлива 88 (2007) 365-368.

Выбросы (2010) Технический документ SAE 2010-01-1268.

Заявление

EMA. (2010) Техническое заявление по использованию кислородсодержащих бензиновых смесей в двигателях с искровым зажиганием. Ассоциация производителей двигателей. Январь 2010 г. http://www.enginemanufacturers.org/.

Кабасин Д. и др. (2009) Форсунки с подогревом для холодного пуска этанола. Технический документ SAE 2009-01-0615.

Лупеску, Дж., Чанко, Т., Ричерт, Дж. И Де Вриз, Дж.(2009) Обработка выбросов транспортных средств от сжигания E85 и бензина с помощью катализированных ловушек углеводородов. Общество Автомобильных Инженеров. Технический документ 2009-01-1080.

Мерфи, М. (1998) Варианты моторного топлива для дизельных двигателей тяжелых транспортных средств: свойства и спецификации топлива. Battelle.

Murtonen, T., Aakko-Saksa, P., Kuronen, M., Mikkonen, S. & Lehtoranta, K., Выбросы от дизельных двигателей и транспортных средств большой мощности, использующих топлива FAME, HVO и GTL с DOC + POC и без После лечения.SAE International Journal of Fuels and Lubricants, 2010: 2, page 147-166. Также как технический документ SAE 2009-01-2693. 20 шт.

Оуэн, К. и Коли, Т. (1995) Справочник по автомобильным топливам. Общество Автомобильных Инженеров. Варрендейл. ISBN 1-56091-589-7.

Вест, Б., Лопес, А., Тайсс, Т., Грейвс, Р., Стори, Дж. И Льюис, С. (2007) Экономия топлива и выбросы оптимизированного для этанола биоэнергетического автомобиля Saab 9-5. Технический документ SAE 2007-01-3994.

свойств бензина с течением времени | Справка по регистрации топлива, отчетности и соответствию

Эта веб-страница предоставляет общественности данные о свойствах бензинового топлива и о том, как они менялись с течением времени из-за стандартов EPA и изменений в динамике рынка.Результаты составлены на основе данных, предоставленных EPA нефтеперерабатывающими предприятиями, производителями бензина и импортерами для проверки соблюдения наших стандартов качества бензинового топлива.

Анализ и представление данных о свойствах бензина обеспечивается двумя следующими отчетами:

Для просмотра некоторых файлов на этой странице может потребоваться программа для чтения PDF-файлов. Дополнительную информацию см. На странице EPA в формате PDF.

Важные примечания относительно данных:

  • Эти данные показывают, как изменились свойства бензина из-за внедрения стандартов качества топлива EPA с течением времени, а также изменений на рынке.См .: Что показывают данные
  • Свойства бензина после 2005 г. были скорректированы с учетом последующего смешивания этанола, чтобы лучше показать свойства бензина при розничной продаже. См .: Как данные были скорректированы и предоставлены в отчет
  • Сводные данные о свойствах бензина за период с 1995 по 2016 год представлены на вкладках:
  • Хотя эти цифры рассчитаны на основе данных, взятых из отчетов о соответствии, представленных нефтеперерабатывающими предприятиями, приведенные здесь цифры не представляют фактическую информацию о соответствии, используемую для определения того, выполнила ли какая-либо конкретная регулирующая сторона свои законодательные и нормативные требования.

Если у вас есть вопросы или вы запрашиваете информацию, обратитесь в соответствующую службу поддержки или справочную службу на странице «Поддержка и помощь».

Начало страницы

О данных

  • На этой веб-странице публике представлены приблизительные средние розничные характеристики бензинового топлива и их тенденции с течением времени из-за
    • Стандарты EPA
    • рыночных сдвигов
  • Данные, представленные здесь, собраны EPA из
    • рафинеры
    • смесители бензиновые
    • импортеров
  • Данные передаются в EPA по каждой партии бензина, произведенной на нефтеперерабатывающем заводе, смешанной на терминалах или импортированной в США.S., и продается в США.
    • не распространяется на бензин экспортируемый
    • не включает бензин, продаваемый в Калифорнии
  • Этот набор данных представляет собой наиболее точный и полный набор данных, доступных для качества бензина в США.
    • Данные за 1995–2005 годы уже были опубликованы на основе предыдущего отчета 1 и повторно опубликованы вместе с новыми данными о собственности на бензин за 2006–2015 годы
  • Данные партии представлены как измеренные на нефтеперерабатывающем заводе / импортере, а не на станции розничной торговли, поэтому мы скорректировали результаты, чтобы приблизить фактические характеристики топлива для розничной торговли, как описано на вкладке «Как данные были скорректированы и предоставлены», для последующего смешивания этанола
  • Поскольку большая часть данных поступает с нефтеперерабатывающих заводов, а рынок бензина, обслуживаемый каждым нефтеперерабатывающим заводом, является неопределенным и изменчивым, мы не можем использовать эти данные, чтобы делать выводы о свойствах бензина на любом конкретном розничном рынке в любой конкретный момент времени

Начало страницы

Прочие данные

  • Существуют другие данные, которые также характеризуют свойства бензина
      Исследование
    • реформулированного бензина (RFG) проводится ежегодно, о чем сообщается в EPA.
      • Это крупное исследование розничной торговли, в ходе которого собираются данные о различных свойствах топлива для тысяч образцов топлива, ежегодно собираемых на станциях розничной торговли в регионах РФГ по всей стране
      • Однако он ограничен только пробами бензина, собранными в зонах RFG, а не в зонах обычного бензина
    • Опросы розничной торговли, проведенные Ассоциацией автопроизводителей (AAM), и предыдущие исследования топлива, проведенные TRW
      • Это точечные исследования, в которых отбирается небольшая часть всего бензина, проданного в розницу, за пару точек времени в год

Начало страницы

Что показывают данные

  • Данные показывают, как изменились свойства бензина в связи с внедрением стандартов качества топлива Агентства по охране окружающей среды с течением времени, а также изменениями на рынке.
    • Программа RFG
      • Действовали в 1995 и 1998 годах
      • По сравнению с базовыми характеристиками бензина 1990 года (представленными в диаграммах) программа RFG вызвала снижение RVP, серы, бензола, ароматических углеводородов, T50 и T90, одновременно увеличив использование оксигенатов
    • Стандарты серы Уровня 2 и начало Стандартов серы Уровня 3
      • Уровень 2 Введен поэтапно в период с 2004 по 2006 год, хотя усредненные, банковские и торговые положения послужили стимулом для нефтеперерабатывающих предприятий к началу сокращения их содержания серы в бензине до 2004 года, а некоторые небольшие исключения для нефтепереработчиков сохранялись до 2011 года
      • Уровень 2 привел к снижению среднего содержания серы в бензине с примерно 260 частей на миллион (частей на миллион) до примерно 30 частей на миллион
      • Уровень 3 вступил в силу 1 января 2017 года, хотя, чтобы воспользоваться преимуществами досрочного кредитования, нефтепереработчики уже снижали уровни серы в 2014 и 2015 годах
      • Уровень 3 уже привел к падению среднего уровня серы в бензине ниже 30 частей на миллион в 2014 и 2015 годах, и ожидается, что к 2020 году он продолжит неуклонно снижаться до 10 частей на миллион
      • Сопутствующие эффекты десульфуризации бензина
        • Восстановление олефинов
        • Увеличение РВП
          • По программе RFG бензин с низким содержанием серы позволяет нефтепереработчикам увеличивать RVP при сохранении тех же общих экологических показателей
          • Это, наряду с сокращением количества областей с низким RVP и RFG, привело к небольшому увеличению летнего RVP со временем
    • Программа по изучению токсичных веществ в воздухе мобильных источников (MSAT2)
      • Положения MSAT2 о сокращении бензола начали действовать в 2011 году, хотя нефтеперерабатывающие предприятия начали снижать уровень содержания бензола в бензине в 2007 году, чтобы получить ранние кредиты
      • Вызывает снижение среднего уровня бензола в обычном бензине с примерно 1.От 15 до примерно 0,60 объемных процентов
      • Программа MSAT2 вызвала снижение уровня бензола в обычном бензине почти до тех же уровней, что и в бензине с новой формулой
    • Программа стандартов возобновляемого топлива (RFS)
      • Началось в 2006 году и привело к добавлению гораздо большего количества этанола в бензиновый пул, так что почти весь бензин содержал 10% этанола к 2013 году
      • Из-за использования этанола массовый процент кислорода в бензине значительно увеличился.
      • Этанол с его высоким октановым числом также позволил значительно снизить содержание ароматических веществ в бензине
      • Другие прямые эффекты смешивания с этанолом описаны на вкладке «Как данные были скорректированы и представлены в отчете»
  • Первоначально программа RFG привела к тому, что RFG имел очень разные топливные свойства по сравнению с обычным бензином - реализация последующих топливных программ привела к тому, что обычный бензин и RFG стали очень похожими по свойствам топлива
    • Основное различие между RFG и обычным бензином состоит в том, что летом RFG имеет гораздо более низкую RVP, чем большинство обычных бензинов
  • Рынок также вызвал изменения в качестве топлива
    • Как видно из значений плотности API и значений E300, бензин со временем становится «легче», поскольку более тяжелые углеводороды, ранее добавляемые в бензиновый пул нефтеперерабатывающими заводами, были перемещены в дистиллятный пул для удовлетворения растущего спроса на эти продукты
    • Увеличенное смешивание этанола также сыграло роль в этом изменении плотности в градусах API и E300

Начало страницы

Как корректировались данные

  • Необходимость корректировки данных
    • RFG сообщается как смесь с этанолом, тогда как обычный бензин (CG) обычно не
    • Были необходимы корректировки пула CG, чтобы характеристики бензинового топлива соответствовали CG, продаваемому в розницу
    • Корректировки были внесены в данные CG за 2006 год и позже, но не в данные CG за 2005 год и ранее, потому что до 2006 года этанол в CG использовался мало.
      • Увеличение использования этанола в 2006 году связано с внезапным прекращением использования метил-трет-бутилового эфира (МТБЭ)
    • Какой бензин регулировал
      • Партии, представленные в EPA в качестве стандартной смеси для смешивания оксигенатов (CBOB), были скорректированы с учетом того, что денатурированный этанол был добавлен в CBOB в количестве 10 об.%
      • Объем этанола, смешанного с остальной частью пула CG, оценивается
        • Объем этанола, добавленного в пулы RFG и CBOB, был подсчитан и сравнен с общим объемом этанола, добавленного в пул бензина, по данным Управления энергетической информации (EIA) за каждый год
        • Предполагалось, что разница будет добавлена ​​в пул CG
      • Сообщенный объем бензина был увеличен, чтобы включить объем этанола, смешанного после нефтеперерабатывающего завода
  • Как были внесены корректировки для учета добавления этанола
    • Содержание серы, олефинов, ароматических углеводородов и бензола были скорректированы с учетом того, что они были восстановлены простым разбавлением.Эти свойства были снижены путем умножения параметра бензина на 0,902 - корректировки только для этанольной части денатурированного этанола.
      • Денатурант предполагался бензином или бензином, например
    • Прочие поправки, обусловленные неидеальным поведением этанола при смешивании
      • RVP было скорректировано с использованием уравнения: RVP (E10) = RVP (E0) + 6,2371 * RVP (E0) -0,794
      • E200 был настроен с использованием уравнения: E200 (E10) = 0.6988 * E200 (E0) + 23.182
      • E300 был скорректирован с использованием уравнения: E300 (E10) = 0,8681 * E300 (E0) + 12,874
      • Плотность в градусах API
      • была скорректирована с использованием уравнения: плотность в градусах API (E10) = 0,8251 * плотность в градусах API (E0) +9,5272
      • Поправки на RVP, E200, E300 и плотность в градусах API были сделаны на основе статистического анализа данных, полученных в ходе исследования смешения этанола Американского института нефти (API) 2

Начало страницы

Как представлялись данные

  • Для результатов на основе данных партии, представленных здесь, каждое значение свойства является средневзвешенным по объему на основе объемов, сообщенных для каждой партии
  • В 2006 г. изменена отчетность по содержанию кислорода в процентах по массе
    • До 2006 года средние значения содержания кислорода в процентах по массе рассчитывались только тогда, когда сообщалось значение содержания кислорода в процентах, превышающее ноль.Все массовые процентные содержания оксигенатов (этанол, МТБЭ, ТАМЭ и т. Д.) Были рассчитаны как группа, основанная на наличии заявленного значения кислорода, которое было больше нуля
    • Начиная с 2006 г., процентное содержание кислорода в массовых процентах указывается как среднее значение для всего парка бензинов для каждой подкатегории типа бензина / сезона
  • Отчетность данных T50 и T90
    • T50 и T90 не сообщаются с 2006 г. из-за неполной отчетности и отсутствия информации о партиях, которые следует корректировать с учетом содержания этанола.E200 и E300 данные полные
  • Ошибки в данных
    • Как и в любом наборе данных такого масштаба, в отчетах есть ошибки даже после значительных усилий по контролю качества со стороны EPA, чтобы найти и исправить предполагаемые ошибки или упущения
    • Если при сборке этих данных значение свойства было признано сомнительным, мы исключили данные из анализа, чтобы избежать потенциального искажения набора данных
    • Объем пропущенных данных составляет очень незначительную часть всего набора данных

Каталожные номера:
1.Определение возможных диапазонов свойств смесей этанола среднего уровня, Американский институт нефти; 23 апреля 2010 г.

Начало страницы

Топливные свойства бензина и этанола.

Контекст 1

... производится путем ферментации и дистилляции сахаров или гидратации этилена из нефти. Эти производственные процессы приводят к совершенно разным свойствам этанола из шланга с бензином, которые показаны в таблице 1. Можно видеть, что по характеристикам сгорания температура самовоспламенения и точка вспышки этанола выше, а испарение по Рейду выше. давление ниже, чем у бензина, что делает этанол более безопасным для транспортировки и хранения....

Контекст 2

... доля этанола увеличивается, требуется больше топлива для образования стехиометрической смеси. Газовая плотность смеси практически не меняется (табл. 1). Чистый эффект заключается в том, что НТС на единицу объема стехиометрической смеси падает лишь незначительно (-6%). ...

Контекст 3

... основная причина заключается в том, что свойства топлива сильно влияют на процесс горения в различных рабочих условиях.С одной стороны, ламинарная скорость пламени этанола на 24% выше, чем у бензина (см. Таблицу 1), что увеличивает скорость горения. С другой стороны, высокая скрытая теплота испарения этанола и более низкая LHV на единицу массы стехиометрической смеси являются основными факторами, способствующими более низкой температуре пламени смесей этанол-бензин. ...

Контекст 4

... BSFC будет немного увеличен из-за богатой смеси при более высоком BMEP.При сравнении топливной эффективности на основе массы этанол страдает из-за более низкого объемного содержания энергии (Таблица 1). Показав, что BTE без оптимизации остается почти постоянным в широком диапазоне нагрузок двигателя, расход топлива увеличивается с увеличением содержания этанола, что приводит к увеличению массового расхода примерно на 7% при переходе с чистого бензина на E20. Рисунок 7 ясно показывает, что выбросы углеводородов немного увеличиваются с нагрузкой для всех тестовых топлив, а выбросы смесей остаются почти такими же, как у бензина, когда BMEP ниже 0.4 МПа и немного выше, когда BMEP выше 0,4 МПа. ...

Химические и физические свойства бензина.

Во многих городах по всему миру были введены современные автопарки для сокращения выбросов газов и твердых частиц от городских автобусов. На сегодняшний день большинство исследований выбросов ограничено несколькими транспортными средствами, что затрудняет статистически значимую оценку вариантов контроля, особенно в реальных условиях вождения. Выбросы выхлопных газов 234 отдельных городских автобусов были измерены в реальных условиях движения с остановками на автобусной остановке в Гетеборге, Швеция.Автобусы состояли из моделей, соответствующих стандартам Euro III-VI и EEV (Enhanced Environmentally Friendly Vehicle), с различными технологиями двигателей, топливами и системами дополнительной очистки выхлопных газов, а также гибридно-электрическими автобусами (HEV). Как газообразные (NOx, CO, HC и SO2), так и коэффициенты выбросов с определенным размером частиц (PN) и массы (PM) (EF) были рассчитаны для транспортных средств, использующих сжатый природный газ (CNG), дизельное топливо (DSL), метиловый эфир рапса. Сложный эфир (RME) и гидроочищенное растительное масло (HVO) с использованием различных технологий последующей обработки, например.g., сажевый фильтр (DPF), системы избирательного каталитического восстановления (SCR) и рециркуляции выхлопных газов (EGR). Самый высокий средний EFPN был получен для автобусов Euro VHEV-HVO-SCR (MdEFPN = 18 × 1014 # кг-1) при использовании их двигателей внутреннего сгорания, хотя 53% их ускорений были ниже пределов обнаружения, что указывает на использование их электрического двигателя. Самый высокий MdEFPM был получен для автобусов Euro V-DSL-SCR (MdEFPM = 150 мг / кг), а самый низкий - для автобусов EEV-CNG (ниже порога обнаружения) и автобусов Euro VIHEV-HVO-SCR + EGR + DPF (MdEFPM = 19 мг / кг).Самый высокий MdEFNOx был получен для автобусов Euro V-RME-SCR (MdEFNOx = 30 г / кг) и Euro VHEV-HVO-SCR (MdEFNOx = 24 г / кг), а самый низкий - для автобусов CNG (MdEFNOx = 4.8. г кг-1) и автобусов Euro VIHEV-HVO-SCR + EGR + DPF (MdEFNOx = 7,4 г кг-1). Гибридные автобусы могут давать более высокие выбросы PN по сравнению с традиционными дизельными двигателями, вероятно, из-за уменьшенных размеров двигателей внутреннего сгорания. Замена дизельного топлива биодизельным топливом значительно снизила MdEFPM, но увеличила MdEFNOx, что может быть связано с более высокой температурой сгорания и содержанием кислорода в топливе (для RME).В целом, автобусы EEV-CNG показали наилучшие результаты как в отношении MdEF, так и в отношении низкого вклада в высокие излучатели. Также было обнаружено, что небольшая (5%) доля автобусов вносит значительный (14-30%) вклад в общие выбросы. Для улучшения качества воздуха следует рассмотреть возможность выявления и мониторинга содержания сильных выбросов в парках транспортных средств. Ключевые слова: выбросы транспортных средств, коэффициент выбросов, придорожные измерения, гибридные электрические транспортные средства (HEV), метиловый эфир рапса (RME), гидроочищенное растительное масло (HVO), сжатый природный газ (CNG)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *