Датчик тока на эффекте холла: Работа с датчиками тока на эффекте Холла: ACS758 / Хабр

Контрактное производство электроники — Контракт Электроника

А. Маргелов

Датчики тока на основе эффекта Холла Honeywell позволяют решить множество задач в области силовой электроники, которые связаны с созданием систем обратной связи в электроприводном оборудовании для управления и защиты, а также измерении и контроле постоянного, переменного и импульсного токов в широких пределах с высокой точностью.

Несмотря на то, что в мире существует множество методов измерения тока, только три из них объединяет низкая стоимость и соответственно массовое производство. Среди них известные нам технологии: резистивная на основе токового трансформатора и на основе эффекта Холла. В таблице 1 приведен сравнительных анализ основных характеристик датчиков тока, выполненных с использованием этих трех технологий. Другие методы находят применение лишь в дорогостоящем лабораторном оборудовании.

Резистивный метод с использованием токового шунта является очень распространенным и недорогим.

Однако ему свойствены два недостатка: поглощение мощности и, соответственно, нагрев и отсутствие электрической изоляции. Вместе с этим индуктивность большинства мощных резисторов ограничивает частотный диапазон. Низкоиндуктивные мощные шунты для ВЧ-при-ложений более дорогие, но и позволяют работать в диапазоне выше 500 кГц.

Токовые трансформаторы применяются только в случае измерения переменных токов. Большинство недорогих токовых трансформаторов работают в очень узком диапазоне частот и не способны измерять постоянный ток. Широкополосные же трансформаторы превосходят по стоимости датчики тока на эффекте Холла и резистивные. Однако токовые трансформаторы не вносят потерь, не требуют питания и не имеют напряжения смещения.

Рисунок 1 Структуре датчика

Датчики тока на эффекте Холла (открытого типа и компенсационные), которым и посвящена данная статья, представляют наиболее интересную группу распространенных на сегодняшний день устройств измерения тока.

К их главным достоинствам следует отнести отсутствие вносимых с систему потерь мощности (и как следствие, выделение теплоты), хорошую электрическую изоляцию, широкий диапазон частот и возможность измерения постоянных токов. Недостатком, по сравнению с вышерассмотренными методами, является необходимость внешнего источника питания.

Компания Honeywell выпускает широкую линейку датчиков тока на эффекте Холла трех типов. Это датчики тока открытого типа, датчики тока компенсационного типа и датчики тока открытого типа с логическим выходом.

ДАТЧИКИ ТОКА ОТКРЫТОГО ТИПА

Эти датчики предназначены для бесконтактного измерения постоянного тока на эффекте Холла открытого типа

Рисунок 2 Внешний вид датчиков тока откРытого типа

го, переменного и импульсного токов в диапазонах ±57…±950 А. Структура приборов приведена на рис. 1.

Датчики тока открытого типа фирмы Honeywell (рис. 2) построены на базе интегрированных линейных датчиков Холла 91SS12-2 и SS94A1 (производятся Honeywell), обладающих повышенной температурной стабильностью и линейностью характеристики. Датчики имеют аналоговый выход, напряжение на котором прямо пропорционально величине тока, протекающего через контролируемый проводник. При нулевом токе на выходе действует напряжение смещения, равное половине напряжения источника питания. Размах выходного напряжения и, соответственно, чувствительность линейно зависят от напряжения источника питания (пропорциональный выход, 0,2511пит < UBUX < 0,75UJ. Дополнительная регулировка чувствительности производится путем увеличения числа витков проводника с током вокруг кольца магнитопровода датчика. Датчики на базе сенсора SS94A1 имеют двухтактный выходной каскад, построенный на комплементарной паре из биполярных p-n-p- и n-p-n-транзисторов, а на базе 91SS12-2 — каскад на p-n-p-транзис-торе с открытым коллектором. В таблице 2 приведены основные технические характеристики датчиков тока открытого типа.

ДАТЧИКИ ТОКА КОМПЕНСАЦИОННОГО ТИПА

Компенсационные датчики тока позволяют бесконтактным способом измерять постоянный, переменный и импульсный токи в диапазонах ±5… ±1200 А. Структура приборов приведена на рис. 3.

Таблица 1. Характеристики датчиков тока, выполненных на основе различных технологий

Датчики тока

Поглощение

Электрическая

Внешнее

Частотный

Напряжение

Относительная

 

мощности

изоляция

питание

диапазон

смещения

стоимость

Резистивные DC

да

нет

нет

< 100 кГц

нет

самая низкая

Резистивные AC

да

нет

нет

> 500 кГц

нет

низкая

На эфффекте Холла

нет

да

да

< 100 кГц

да

средняя

открытые

      

На эфффекте Холла

нет

да

да

> 1 МГц

нет

высокая

компенсационные

      

Токовые трансформаторы

да (для АС)

нет

нет

фиксирован

нет

высокая

ИНЖЕНЕРНАЯ МИКРОЭЛЕКТРОНИКА

Таблица 2

. Основные технические характеристики датчиков тока открытого типа компании Honeywell

 

Наименование Диапазон, А

Чувствительность, мВхЫ*

Напряжение Темп. дрейф Время 1п, мА

Ч/ В

 

(ампл. знач.)

номин. значение

откл.

смещ., В смещ., %/°С откл., мкс

 

Линейные датчики тока на базе сенсора 915512-2, выходной каскад — р-п-р откр. коллектор, вертикальный монтаж

CSLA1CD

±57

49,6

   

5,8

  

CSLA1CE

±75

39,4

4,4

  

CSLA1DE

±75

39,1

4,8

  

CSLA1CF

±100

29,7

2,7

  

CSLA1DG

±120

24,6

2,1

  

CSLA1CH

±150

19,6

1,8

  

CSLA1DJ

±225

13,2

1,2

  

CSLA1EJ

±225

13,2

1,5

  

CSLA1DK

±325

9,1

1,7

  

CSLA1EK

±325

9,4

1,3

  

CSLA1EL

±625

5,6

1,3

Un/2 ±0,05 3 19

8…16

Линейные датчики тока на базе сенсора 5594А, выходной каскад — двухтактный р-п-р+п-р-п, вертикальный монтаж

CSLA2CD

±72

32,7

3

  

CSLA2CE

±92

26,1

2,1

  

CSLA2DE

±92

25,6

2,2

  

CSLA2CF

±125

19,6

1,3

  

CSLA2DG

±150

16,2

1,1

  

CSLA2DJ

±225

8,7

0,6

±0,02

 

CSLA2DH

±235

9,8

1,1

  

CSLA2EJ

±310

7,6

0,7

  

CSLA2DK

±400

5,8

0,5

  

CSLA2EL

±550

4,3

0,4

±0,0125

 

CSLA2EM

±765

3,1

0,36

  

CSLA2EN

±950

2,3

0,2

Un/2 ±0,007 3 20

6…12

Линейные датчики тока на базе сенсора 915512-2, выходной каскад — р-п-р откр.

коллектор, горизонтальный монтаж

CSLA1GD

±57

49,6

5,8

  

CSLA1GE

±75

39,4

4,4

  

CSLA1GF

±100

29,7

2,7

Un/2 ±0,05 3 19

8…16

Линейные датчики тока на базе сенсора 5594А, выходной каскад — двухтактный р-п-р+п-р-п, горизонтальный монтаж

3

2,1 1,3

0,6 Un/2 ±0,02 8 20 6.12

CSLA2GD CSLA2GE CSLA2GF CSLA2GG

±72 ±92 ±125 ±150

32,7 26,1

12,7

Рисунок Структура датчика тока на эффекте Холла компенсационного типа

Ток, протекающий через контролируемый проводник, создает магнитное поле, пропорциональное величине этого тока, которое концентрируется внутри кольцевого магнитопровода и воздействует на линейный интегрированный датчик Холла. Сигнал датчика усиливается УПТ, нагрузкой которого является катушка ООС. Катушка создает в магнитопроводе противоположенное по направлению магнитное поле, полностью компенсирующее исходное. Выходом датчика служит второй вывод катушки. Таким образом, выходной сигнал — это ток, пропорциональный величине тока в контролируемом проводнике и числу витков катушки обратной связи (I ~ 1Ы).

Рисунок 4 Внешний вид датчиков тока компенсационного типа

К примеру, датчик с катушкой в 1000 витков формирует выходной ток в 1 мА на 1 А измеряемого тока. Токовый выход конвертируется в вольтовый при помощи внешнего резистора, рекомендованные значения которого всегда приводятся в технической документации на датчик. Дополнительная регулировка чувствительности производится путем увеличения числа витков проводника вокруг кольца магнитопровода датчика или установкой перемычек, задающих число витков внутренней компенсационной катушки датчика (например, в моделях СБЫЕШ, СБЫЕ381). В таблице 3 приведены основные технические характеристики датчиков тока компенсационного типа.

Рисунок 5 Структура датчика тока с логическим выходом

Таблица Основные технические характеристики датчиков тока компенсационного типа компании Honeywell

Наименование

Диапазон, A Un, В

Хар-ка катушки

Номин 1вых

RmrD при

t

зад

, мкс

Изол.,

Точн.,

 

(ампл. знач)

N

R, Ом

при 1ит

1ном, Ом

  

кВ

% от 1ном

CSNN191

±15

±15

200

20

50 мА при 10 А

100. 200

<

1,0

±2,5

CSNE151

±5…±36*

±15

1000

110

25 мА при 25 А

100.320

<

1,0

5

±0,5

CSNE151-005

±5…±36*

±15

1000

110

25 мА при 25 А

100.320

<

1,0

5

±0,5

CSNE381

±5…±36*

±5

1000

110

25 мА при 25 А

0.84

<

1,0

5

±0,5

CSNh251

±4…±43*

±15

1000

110

25 мА при 30 А

100. 320

<

1,0

5

±0,5

CSNX25

±56

4,75.5,25

2000

50

12,5 мА при 25 А

0.80

<

0,2

±0,24

CSNA111

±70

±15

1000

90

50 мА при 50 А

40.130

<

1,0

2,5

±0,5

CSNE151-100

±90

±12…±15

1000

66

25 мА при 25 А

54.360

<

0,2

±0,5

CSNP661

±90

±12…±15

1000

30

50 мА при 50 А

70. 195

<

0,5

3

±0,5

CSNP661-002

±90

±12…±15

1000

30

50 мА при 50 А

70.195

<

0,5

3

±0,5

CSNB121

±100

±15

2000

160

25 мА при 50 А

40.270

<

1,0

2,5

±0,5

CSNB131

±100

±15

2000

130

25 мА при 50 А

40.300

<

1,0

2,5

±0,5

CSNF161

±150

±12…±15

1000

30

100 мА при 100 А

10. 40

<

0,5

3

±0,5

CSNF161-002

±150

±12…±15

1000

30

100 мА при 100 А

10.40

<

0,5

3

±0,5

CSNT651

±150

±12…±15

1000

100

25 мА при 50 А

40.75

<

0,5

3

±0,5

CSNT651-001

±150

±12…±15

1000

100

25 мА при 50 А

40.75

<

0,5

3

±0,5

CSNF151

±180

±12…±15

2000

100

50 мА при 100 А

10. 75

<

0,5

3

±0,5

CSNF151-002

±180

±12…±15

2000

100

50 мА при 100 А

10.75

<

0,5

3

±0,5

CSNG251

±180

±15

2000

100

50 мА при 100 А

0.125

<

0,5

±0,5

CSNG251-

±180

±15

2000

100

50 мА при 100 А

0.125

<

0,5

±0,5

CSNR151

±200

±12…±15

2000

100

62,5 мА при 100 А

10. 40

<

0,5

3

±0,5

CSNR151-002

±200

±12…±15

2000

100

62,5 мА при 100 А

10.40

<

0,5

3

±0,5

CSNR161

±200

±12…±15

1000

30

125 мА при 125 А

30.40

<

0,5

3

±0,5

CSNR161-002

±200

±12…±15

1000

30

125 мА при 125 А

30.40

<

0,5

3

±0,5

CSNJ481

±600

±12…±18

2000

25

150 мА при 300 А

0. 70

<

1,0

7,5

±0,5

CSNJ481-001

±600

±12…±18

2000

25

150 мА при 300 А

0.70

<

1,0

7,5

±0,5

CSNJ591

±1200

±12…±24

5000

50

100 мА при 500 А

0.130

<

1,0

6

±0,5

CSNK591-001

±1200

±12…±24

5000

50

100 мА при 500 А

0.130

<

1,0

6

±0,5

Рисунок 6 Внешний вид датчиков тока с логическим выходом

ДАТЧИКИ ТОКА С ЛОГИЧЕСКИМ ВЫХОДОМ

Датчики тока с логическим выходом (рис. 5) позволяют обнаружить превышение тока в контролируемом проводнике выше определенного значения и сформировать логический сигнал тревоги.

Основой этих приборов является интегрированный датчик Холла с логическим выходом. Структура датчиков приведена на рисунке справа. Значение порога срабатывания определяется моделью датчика и может иметь следующие значения: 0,5, 3,5, 5,0, 7,0, 10,0 и 54,00 А. Порог срабатывания может быть установлен меньше номинального значения путем увеличения числа витков проводника вокруг кольца датчика. В таблице 4 приведены основные технические характеристики датчиков тока с логическим выходом.

Таблица 4. Основные технические характеристики датчиков тока c логическим выходом компании Honeywell

Наименование

 

I „„„,,„,,„,, A

 

!выхmax,

Чвых (0/1),

 
 

(при 25С)

(при 25С)

 

мА

В

мкс

CSDA1AA

0,5

0,08

6. 16

20

0,4/Un

100

CSDA1AC

3,5

0,6

6.16

20

0,4/Un

100

CSDC1AA

0,5

0,08

5…±0,2

20

0,4/Un

100

CSDC1AC

3,5

0,6

5…±0,2

20

0,4/Un

100

CSDA1BA

0,5

0,08

6.16

20

0,4/Un

100

CSDA1BC

3,5

0,6

6.16

20

0,4/Un

100

CSDC1BA

0,5

0,08

5…±0,2

20

0,4/Un

100

CSDC1BC

3,5

0,6

5…±0,2

20

0,4/Un

100

CSDC1DA

0,5

0,08

5…±0,2

20

0,4/Un

100

CSDA1DA

0,5

0,08

6. 16

20

0,4/Un

100

CSDC1DC

3,5

0,6

5…±0,2

20

0,4/Un

100

CSDA1DC

3,5

0,6

6.16

20

0,4/Un

100

CSDD1EC

5

3,8

4,5.24

40

0,4/Un

60

CSDD1GK2

7

4

4,5.24

40

0,4/Un

60

CSDD1EG

10

7,6

4,5.24

40

0,4/Un

60

CSDD1FR

54,12

35,36

4,5. 24

40

0,4/Un

60

Более подробную информацию о датчиках компании Honeywell можно найти по адресу http://content.honeywell.com/sensing/ products или запросить у официального дистрибьютора компании КОМПЭЛ (www.compel.ru, e-mail: [email protected]).

www.chip-news.ru

Решения для счетчиков энергии Microchip »

ДАТЧИКИ ТОКА И НАПРЯЖЕНИЯ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА — Coretech

Датчики тока замкнутого контура.

переходи в раздел замкнутого контура

Датчики тока разомкнутого конура.

переходи в раздел разомкнутого контура

Датчики утечки постоянного тока.

переходи в раздел датчики утечки тока

Датчики напряжения.

переходи в раздел датчики напряжения

КРИТЕРИИ ВЫБОРА ДАТЧИКОВ
1. Напряжение питания.
Промышленные датчики тока и напряжения могут подключаться к однополярному или к симметричному (биполярному) электропитанию.
Стандартные значение однополярного питания: +3,3 В, +5,0 В.
Стандарные уровни симметричного питания: ±12 В, ±15 В, ±18 В, ±24 В.
2. Точность измерения.
Выбирая прибор по данному параметру, следует учитывать, что увеличение точности влечёт за собой удорожание изделия, и зачастую, приводит к увеличению массы и габаритов изделия.
3. Уровень номинального и максимального измеряемого (первичного) электрического тока.
Датчики тока могут измерять значения от единиц ампер до тысяч ампер. Увеличение номинального и максимального измеряемого тока влечёт за собой увеличение стоимости и массо-габаритных параметров датчиков.
4. Тип корпуса.
Датчики тока и напряжения выполняются к корпусах, которые предназначены для монтажа на печатной плате или для монтажа на рейку (на панель).
5. Диапазон рабочих температур.
Варианты рабочих диапазонов достигают в нижней части до -40 °C, а в верхней части диапазона достигают до +85 °C и даже до +105 °C.

По этим данным мы составили кросс таблицу наших датчиков и всеми известных датчиков LEM.

CoretechLEM

Внешний вид Coretech

Внешний вид LEMПитание. Общий параметрВыходной сигнал. Общий параметр
CHB5DS5S6LESR6-NP±5V2.5±0.625V
CHB15DS5S6LESR15-NP±5V2.5±0.625V
CHB25DS5S6LESR25-NP±5V2.5±0.625V
CHB50DS5S6LESR50-NP±5V2.5±0.625V
CHB100LTA15D

LF205-S

±12-15V100mA
CHB200LTA15DLF205-S±12-15V100mA
CHB300LTA15DLF306-S±12-15V150mA
CHB200LTB15DHTA200-S±15-24V±4. 0V
CHB300LTB15DHTA300-S±15-24V±4.0V
CHB400LTB15DHTA400-S±15-24V±4.0V
CHB500LTB15DHTA500-S±15-24V±4.0V
CHB500TBh25DLF505-S±15-24V100mA
CHB1000LFD15DLF1010-S±15-24V200mA
CHB1000LF15DLF2005-S/SP3±15-24V400mA
CHB2000LF15DLF2005-S/SP9±15-24V400mA

CHB50AP15D

LA55-P

LA55-TP

±12-15V50mA
CHB100AP15DLA100-P

±12-15V100mA
CHB125AP15DLA125-P±12-15V125mA
CHB200AP15DLA200-P±12-15V100mA
CHB05SY15D4HX5-P±12-15V±4. 0V
CHB10SY15D4HX10-P±12-15V±4.0V
CHB20SY15D4HX20-P±12-15V±4.0V
CHB30SY15D4HX30-P±12-15V±4.0V
CHB50SY15D4HX50-P±12-15V±4.0V
CHB10HXS5SHXS10-NP±5V2.5±0.625V
CHB20HXS5SHXS20-NP±5V2.5±0.625V
CHB30HXS5SHXS22-NP±5V2.5±0.625V
CHB50HXS5SHXS50-NP±5V2. 5±0.625V
CHB05LX15DHY5-P±12-15V±4.0V
CHB10LX15DHY10-P±12-15V±4.0V
CHB15LX15DHY15-P±12-15V±4.0V
CHB20LX15DHY20-P±12-15V±4.0V
CHB50LX15DHY50-P±12-15V±4.0V
CHB50LX5S6HY50-PS±5V2.5±0.625V
CHB25C15DLh35-P±12-15V±25mA
CHB50C15DLH50-P±12-15V±50mA
CHB5DS5S6

LTS5-NP

LTSR5-NP

±5V2. 5±0.625V
CHB15DS5S6

LTS15-NP

LTSR15-NP

±5V2.5±0.625V
CHB25DS5S6

LTS25-NP

LTSR25-NP

±5V2.5±0.625V
CHB500Sh25DLT505-S±15-24V

250mA

CHB1000Sh25DLT1005-S±15-24V±200mA
CoretechLEMВнешний вид CoretechВнешний вид LEMПитание. Общий параметрВыходной сигнал. Общий параметр

CHK50BR5S2

CHK50BS5S2

HASS50-S±5V2.5±0.625V

CHK100BR5S2

CHK100BS5S2

HASS100-S±5V2.5±0.625V

CHK200BR5S2

CHK200BS5S2

HASS200-S±5V2.5±0.625V

CHK300BR5S2

CHK300BS5S2

HASS300-S±5V2.5±0.625V

CHK400BR5S2

CHK400BS5S2

HASS400-S±5V2.5±0.625V

CHK500BR5S2

CHK500BS5S2

HASS500-S±5V2.5±0.625V

CHK600BR5S2

CHK600BS5S2

HASS600-S±5V2. 5±0.625V

CHK50BS15D4

CHK50BR15D4

HAS50-S±12-15V±4.0V

CHK100BS15D4

CHK100BR15D4

HAS100-S±12-15V±4.0V

CHK200BS15D4

CHK100BR15D4

HAS200-S±12-15V±4.0V

CHK300BS15D4

CHK300BR15D4

HAS300-S±12-15V±4.0V

CHK600BS15D4

CHK600BR15D4

HAS600-S±12-15V±4.0V

CHK100LB5S2

CHK100LB15D4

HTB100-Р

±5V

±12-15V

2.5±2.0V

±4.0V

CHK200LB5S2

CHK200LB15D4

HTB200-Р

±5V

±12-15V

2. 5±2.0V

±4.0V

CHK300LB5S2

CHK300LB15D4

HTB300-Р

±5V

±12-15V

2.5±2.0V

±4.0V

CHK50HAL15D4HAL50-S±12-15V±4.0V
CHK100HAL15D4HAL100-S±12-15V±4.0V
CHK200HAL15D4HAL200-S±12-15V±4.0V
CHK300HAL15D4HAL300-S±12-15V±4.0V
CHK400HAL15D4HAL400-S±12-15V±4.0V
CHK600HAL15D4HAL600-S±12-15V±4. 0V

CHK200F15D4

CHK200FK15D4

HOP200-SB±12-15V±4.0V

CHK400F15D4

CHK400FK15D4

HOP400-SB±12-15V±4.0V

CHK800F15D4

CHK800FK15D4

HOP800-SB±12-15V±4.0V

CHK1000F15D4

CHK1000FK15D4

HOP1000-SB±12-15V±4.0V

CHK2000F15D4

CHK2000FK15D4

HOP2000-SB±12-15V±4. 0V
СHK200HAT15D4HAT200-S±12-15V±4.0V
СHK400HAT15D4HAT400-S±12-15V

±4.0V

СHK600HAT15D4HAT600-S±12-15V±4.0V
СHK800HAT15D4HAT800-S±12-15V±4.0V
СHK1000HAT15D4HAT1000-S±12-15V±4.0V
СHK1500HAT15D4HAT1500-S±12-15V±4.0V
CHK500HAX15D4HAX500-S±12-15V±4.0V
CHK800HAX15D4HAX800-S±12-15V±4.0V
CHK1000HAX15D4HAX1000-S±12-15V±4.0V
CHK1500HAX15D4HAX1500-S±12-15V±4. 0V
CoretechLEMВнешний вид CoretechВнешний вид LEMПитание. Общий параметрВыходной сигнал. Общий параметр
CHV200AC15D25LV25-200±12-15V±25mA
CHV400AC15D25LV25-400±12-15V±25mA
CHV600AC15D25LV25-600±12-15V±25mA
CHV800AC15D25LV25-800±12-15V±25mA
CHV1000AC15D25LV25-1000±12-15V±25mA
CHV10A15D25LV25-P±12-15V±25mA
CHV-LV15D5LV100±12-15V±50mA


Предлагаем ознакомится с технической документацией. Датчики приведенные в данной таблице не являются прямым аналогом датчикам LEM.

docs/Sensors-hall-2020/Open-loop/CHK-LB15D4.pdf

Теория измерения тока — NK Technologies

При заданном протекании тока вокруг проводника с током создается пропорциональное магнитное поле. Датчики тока NK Technologies измеряют это поле по одной из двух технологий. Для постоянного тока мы используем «эффект Холла», а для переменного тока используем «индуктивную» технологию.

Щелкните изображение, чтобы увеличить его

Датчик Холла имеет ядро, устройство на эффекте Холла и схему формирования сигнала. Проводник с током проходит через магнитопроницаемый сердечник, который концентрирует магнитное поле проводника. Устройство на эффекте Холла установлено в сердечнике под прямым углом к ​​сосредоточенному магнитному полю. Постоянный ток в одной плоскости возбуждает устройство Холла. Когда включенное устройство Холла подвергается воздействию магнитного поля от сердечника, оно создает разность потенциалов (напряжение), которую можно измерить и усилить в сигналы уровня процесса, такие как 4-20 мА или замыкание контактов.

Индуктивный датчик имеет проволочный сердечник и формирователь сигнала. Проводник с током проходит через сердечник, который усиливает магнитное поле проводника. Переменный ток постоянно меняет потенциал с положительного на отрицательный и обратно, как правило, с частотой 50 или 60 Гц. Расширяющееся и сжимающееся магнитное поле индуцирует ток в обмотках. Этот вторичный ток преобразуется в напряжение и преобразуется в выходные сигналы уровня процесса, такие как 4–20 мА или замыкание контактов.

[ч]

Знай свою силу

Датчик тока — это экономичный и надежный инструмент, незаменимый для контроля состояния оборудования, выявления отклонений в технологических процессах и обеспечения безопасности персонала.

Для управления насосами, компрессорами, нагревателями, конвейерами и другими электрическими нагрузками требуется точная обратная связь о состоянии в режиме реального времени. Традиционный подход к этой проблеме контроля заключается в использовании реле давления, оптических датчиков и переключателей нулевой скорости. Однако за последние 10 лет все большее число инженеров-проектировщиков и инженеров-технологов пришли к выводу, что измерение тока является более надежным и экономичным способом контроля и управления электрическими нагрузками. Твердотельные датчики тока проще в установке и более надежны, чем электромеханические устройства, и они предоставляют больше информации.

Проще говоря, измерение тока, потребляемого оборудованием, дает вам больше информации о фактической производительности оборудования. Мгновенное наблюдение за изменениями нагрузки может помочь вам повысить пропускную способность, сократить количество отходов и предотвратить катастрофический отказ оборудования. Непрерывный мониторинг потребляемого тока в режиме реального времени также можно использовать для анализа тенденций или оповещения о состоянии.

Методы измерения тока

Датчики тока облегчают автоматизацию промышленных насосных станций, позволяя в режиме реального времени контролировать насосы, компрессоры, нагреватели, вентиляторы и другое электрооборудование. Измерение потребляемой мощности может помочь повысить эффективность, защитить персонал и снизить затраты на техническое обслуживание двигателей в широком диапазоне промышленных применений. Эта фотография была сделана с мостового крана на компрессорной станции природного газа National Fuel Gas в Эллисбурге, штат Пенсильвания. Пять встроенных двигателей/компрессоров (крупнокалиберные, тихоходные, ~200 об/мин, ~2200 л.с.) производства Dresser-Rand работают параллельно. Каждая панель слева управляет и контролирует блок двигателя/компрессора. (С разрешения Basic Systems, Inc.)

Наиболее распространенными способами измерения тока являются резистивный шунт, эффект Холла и индукция.

Резистивный шунт

Резистивный шунт представляет собой калиброванный резистор, размещенный на пути тока, который создает падение напряжения, пропорциональное протекающему току согласно:

В = IR

где:

В = падение напряжения ток

R = сопротивление шунта

Измерение падения напряжения обычно находится в диапазоне милливольт переменного тока. Этот выход должен преобразовываться отдельным преобразователем в технологический сигнал, такой как 4-20 мА или замыкание контакта.

К сожалению, шунт представляет серьезные проблемы в работе и потенциальную угрозу безопасности. Обе стороны шунтирующего резистора находятся под сетевым напряжением, что на практике означает подачу 480 В переменного тока на низковольтную панель управления. Отсутствие изоляции может привести к серьезным травмам ничего не подозревающего обслуживающего персонала.

Поскольку по сути это резистор, шунт часто воспринимается как наименее дорогое решение. Хотя на самом деле это недорогое устройство, формирователь сигналов должен быть рассчитан на 480 В переменного тока и стоит очень дорого. Затраты на установку и эксплуатацию резистивного шунта еще больше ограничивают его использование. Установка этого устройства требует обрезки и повторной заделки токоведущего проводника, а это дорого и требует много времени. Кроме того, поскольку шунт представляет собой фиксированное падение напряжения (вносимое сопротивление) в контролируемой цепи, он выделяет тепло и теряет энергию. Шунт подходит только для измерения постоянного тока и измерения низкочастотного переменного тока (<100 Гц).

Датчик на эффекте Холла

Рис. 1. На эффекте Холла и индукции используются разные методы измерения магнитного поля вокруг проводника с током. Датчик Холла лучше всего подходит для постоянного тока, а индуктивный датчик — для переменного тока.

Эффект Холла и индукция представляют собой бесконтактные технологии, основанные на том принципе, что при заданном протекании тока вокруг проводника с током создается пропорциональное магнитное поле. Обе технологии измеряют это магнитное поле, но используют разные методы измерения (см. рис. 1).

Датчик Холла состоит из трех основных компонентов: ядра, датчика Холла и схемы формирования сигнала. Проводник с током проходит через магнитопроницаемый сердечник, который концентрирует магнитное поле проводника. Устройство на эффекте Холла аккуратно установлено в небольшой щели в сердечнике под прямым углом к ​​концентрированному магнитному полю. Его возбуждает постоянный ток в одной плоскости. Когда включенное устройство Холла подвергается воздействию магнитного поля от сердечника, оно создает разность потенциалов (напряжение), которую можно измерить и усилить в сигналы уровня процесса, такие как 4-20 мА или замыкание контактов.

Поскольку датчик Холла полностью изолирован от контролируемого напряжения, он не представляет угрозы безопасности и практически не имеет импеданса. Он также обеспечивает точное и воспроизводимое измерение как переменного, так и постоянного тока. Преобразователи на эффекте Холла требуют больше энергии, чем обычные двухпроводные системы с питанием от контура. Впоследствии большинство датчиков Холла представляют собой трехпроводные или четырехпроводные устройства.

В зависимости от конструкции датчики Холла могут измерять частоты от постоянного тока до нескольких килогерц. Поскольку они, как правило, дороже шунтов или индуктивных преобразователей, их использование обычно ограничивается измерением мощности постоянного тока. По сравнению с индуктивным датчиком их основным недостатком является ограниченный диапазон измерения.

Индуктивные датчики

Фото 1. Индуктивные переключатели тока доступны как в конфигурациях со сплошным сердечником, так и в конфигурациях с разъемным сердечником. Эти компактные устройства с автономным питанием обеспечивают регулируемые в полевых условиях уставки и встроенные монтажные кронштейны для упрощения установки.

Индуктивный датчик состоит из проволочного сердечника и преобразователя сигнала. Проводник с током проходит через магнитопроницаемый сердечник, который усиливает магнитное поле проводника. Переменный ток постоянно меняет потенциал с положительного на отрицательный и обратно, как правило, с частотой 50 или 60 Гц. Расширяющееся и сжимающееся магнитное поле индуцирует ток в обмотках. Это принцип, которым руководствуются все трансформаторы.

Токонесущий проводник обычно называют первичной обмоткой, а сердечник обмотки — вторичной. Вторичный ток преобразуется в напряжение и преобразуется в выходные сигналы уровня процесса, такие как 4–20 мА или замыкание контактов. Индуктивное измерение обеспечивает как высокую точность, так и широкий динамический диапазон, а выходной сигнал изначально изолирован от контролируемого напряжения. Эта изоляция обеспечивает безопасность персонала и создает практически незаметные вносимые потери (падение напряжения) в контролируемой цепи.

Индуктивные датчики предназначены для измерения мощности переменного тока и обычно работают в диапазоне частот от 20 до 100 Гц, хотя некоторые датчики могут работать в диапазоне килогерц. Хорошо спроектированный индуктивный датчик может быть сконфигурирован как двухпроводное устройство для снижения затрат на установку.

Применение бесконтактных датчиков тока

Датчики тока часто используются для предоставления важной информации автоматизированным системам управления и в качестве первичных контроллеров в схемах релейной логики. Двумя наиболее распространенными типами являются преобразователи тока и переключатели тока.

Датчики тока. Преобразователи тока преобразуют контролируемый ток в пропорциональное напряжение переменного или постоянного тока или миллиамперный сигнал. Эти небольшие устройства имеют чрезвычайно низкий вносимый импеданс. Индуктивные преобразователи проще в установке, поскольку они двухпроводные, с автономным питанием (выход 0–5 В постоянного тока или 0–10 В постоянного тока) или с питанием от контура (выход 4–20 мА). Преобразователи на эффекте Холла обычно представляют собой четырехпроводные устройства и требуют отдельного источника питания. Поскольку оба типа могут быть подключены непосредственно к системам данных и устройствам отображения, они идеально подходят для мониторинга двигателей, насосов, конвейеров, станков и любой электрической нагрузки, требующей аналогового представления в широком диапазоне токов.

Рисунок 2. Преобразователи со средней чувствительностью подходят для измерения чистых синусоидальных волн.

Преобразователи частоты (ЧРП) экономят энергию и улучшают управление движением за счет улучшенного регулирования скорости двигателя. Кремниевые управляемые выпрямители (SCR) продлевают срок службы нагревателя, сводя к минимуму термоциклирование. Импульсные источники питания — это небольшие, эффективные и компактные устройства, которые легко интегрируются с разнообразным электрическим оборудованием. Все три технологии основаны на высокоскоростном переключении, которое искажает синусоиду переменного тока. Понимание двух основных методов измерения силы тока может помочь вам выбрать правильное устройство для этих требовательных приложений.

Большинство преобразователей тока имеют средний отклик, выпрямляя и фильтруя синусоиду для получения средней пиковой силы тока. Чтобы вычислить среднеквадратичное значение тока чистой синусоидальной волны, преобразователи просто делят пиковый ток на квадратный корень из 2 (1,1414). Этот метод обеспечивает быстрый отклик (100·200 мс) при умеренных затратах, но он работает только с чистыми синусоидальными сигналами (см. рис. 2).

Форма выходного сигнала типичного ЧРП или SCR не является чистой синусоидой. Моделируемая волна может иметь пики, в несколько раз превышающие средний ток, и их относительные размеры меняются в зависимости от несущей и выходной частоты. В этих приложениях датчик средней чувствительности может быть точным при 20 Гц, но на 10% выше при 30 Гц и на 10% ниже при 40 Гц. Преобразователи со средним откликом просто не могут точно измерить эти искаженные формы волны.

Рис. 3. Для точного измерения искаженных сигналов от частотно-регулируемых приводов требуется преобразователь истинного среднеквадратичного значения.

Только истинное среднеквадратичное значение позволяет точно измерять несинусоидальные формы сигналов частотно-регулируемых приводов, тиристоров, электронных балластов, входов импульсных источников питания и других нелинейных нагрузок. Приборы True RMS измеряют мощность или теплотворную способность любой формы волны тока или напряжения. Это позволяет сравнивать очень разные формы сигналов друг с другом и с эквивалентным значением постоянного тока (нагрева).

Измерение истинного среднеквадратичного значения начинается с возведения входного сигнала в квадрат для математического выпрямления сигнала. Следующим шагом является усреднение волны за определенный период времени и вычисление квадратного корня. Результатом является истинная мощность (теплотворная способность) волны (см. рис. 3).

Как определить, что у вас датчик истинного среднеквадратичного значения? Если в спецификации продукта или листе технических данных выходной сигнал описывается как «истинное среднеквадратичное значение для синусоидальных сигналов», у вас есть преобразователь со средней чувствительностью и умный составитель спецификаций. Спецификация преобразователя с истинным среднеквадратичным значением будет описана в техническом описании как «истинное среднеквадратичное значение для всех форм сигналов» и «точно измеряет частотно-регулируемые приводы или тиристоры». Датчики с истинным среднеквадратичным значением обычно обеспечивают более медленный отклик, чем датчики со средним откликом (400·800 мс), и могут стоить на 30%·50% больше, чем датчик со средним откликом.

Большинство современных преобразователей доступны в конфигурациях со сплошным сердечником или с разъемным сердечником для облегчения установки. В типичном преобразователе используются регулируемые в полевых условиях потенциометры диапазона. Более продвинутые устройства имеют диапазоны, выбираемые с помощью перемычек, чтобы исключить трудозатраты на калибровку. Типичные диапазоны датчиков составляют от 0–2 А до 0–2000 А с апертурой от 0,5 до >3 дюймов (12–76 мм).

Токовые переключатели. Разработанные для контроля и переключения цепей переменного и постоянного тока, токовые переключатели сочетают в себе измерение тока и преобразование сигналов с сигнализацией предельных значений. Релейный выход активируется, когда уровень тока, определяемый аварийным сигналом предельного значения, превышает пороговое значение, выбираемое пользователем. Индуктивные переключатели тока обычно имеют полупроводниковые выходные переключатели. Они имеют автономный источник питания и, следовательно, являются хорошим выбором для модернизации, ремонта и временного мониторинга (см. Фото 1). Токовые переключатели на эффекте Холла имеют полупроводниковый или релейный выход. Их высокие требования к мощности не позволяют использовать конструкцию с автономным питанием, а потребность в отдельном источнике питания увеличивает стоимость их установки.

Некоторые выключатели тока поставляются с фиксированной уставкой. В более новых конструкциях предусмотрены регулируемые в полевых условиях заданные значения с помощью потенциометра и обратной связи со светодиодом или ЖК-дисплеем. Их диапазон уставок находится в диапазоне от 0–5 А до 0–2000 А. Для систем релейной логики переключатели должны быть оснащены встроенными временными задержками, чтобы учесть броски при запуске и мгновенные провалы или выбросы.

Мониторинг и управление двигателем

Одним из наиболее распространенных применений датчиков индукционного тока является мониторинг двигателя. Поскольку потребляемый ток является отличным индикатором состояния двигателя, датчик тока можно использовать для решения широкого круга проблем, связанных с управлением технологическим процессом, безопасностью и техническим обслуживанием.

Автоматизация механизма подачи в дробилки и дробилки часто осуществляется путем установки датчика тока на провод двигателя. Выходной сигнал используется для управления с обратной связью между дробилкой и механизмом подачи. Падение нагрузки сигнализирует конвейеру или загрузчику о необходимости увеличить скорость подачи, а увеличение нагрузки инициирует уменьшение скорости подачи. В этой операции контроль скорости подачи помогает предотвратить заклинивание, улучшает однородность или структуру продукта помола и повышает эффективность последующих операций обработки.

Та же логика управления может использоваться для блокировки двух или более двигателей для обеспечения безопасности персонала. Здесь цель состоит в том, чтобы запустить второй двигатель только после того, как первый двигатель заработает и будет управлять своей нагрузкой. Этот тип защитной блокировки используется на различных коммерческих и промышленных объектах.

Автоматическое переключение нагрузки и оповещение о состоянии также являются типичными приложениями для токовых выключателей. Часто их используют вместо вспомогательных контактов, сигнализирующих только о положении контактора. Большинство двигателей оснащены местными разъединителями при фактической нагрузке для облегчения обслуживания. Если оборудование выводится из эксплуатации при отключении, вспомогательный контакт контактора будет давать ложную индикацию включения, что может иметь серьезные последствия для безопасности или эксплуатации.

Интеллектуальные самокалибрующиеся выключатели тока можно запрограммировать на сигнализацию о перегрузке и недостаточной нагрузке или на запуск резервного оборудования. Эти микропроцессорные устройства оснащены встроенными программируемыми таймерами, компенсирующими кратковременные сбои и броски двигателя во время запуска. В этих операциях переключатель тока более надежен, поскольку он не подвержен коррозии контактов или дрейфу уставки и не требует периодического обслуживания или калибровки.

Датчики тока и выключатели также используются для обеспечения защиты двигателя и облегчения процедур обслуживания оборудования. Крупные электродвигатели нуждаются в периодическом капитальном ремонте или восстановлении. График профилактического обслуживания, основанный на фактическом количестве пусков двигателя, обеспечивает правильную работу и снижает риск отказа двигателя. Установка выключателя тока на проводе двигателя и использование сигнала для запуска счетчика или подачи в автоматизированную систему обеспечивает точный подсчет пусков двигателя. Эта информация может быть использована для планирования профилактического обслуживания и сокращения дорогостоящего аварийного ремонта.

Датчики тока также устанавливаются на режущие инструменты для диагностики их эффективности. Если инструмент потребляет слишком много тока, возможно, его режущая кромка затупилась. Сигнализация оператору о том, что требуются процедуры технического обслуживания, снижает количество бракованного материала и предотвращает прерывание процесса.

Насосы, нагреватели и другие устройства контроля

Датчики тока часто используются для защиты от заклинивания насосов и потерь на всасывании. При работе со сточными водами органические вещества могут заблокировать насосы и вызвать повреждение как двигателя, так и насоса до того, как сработает термическая перегрузка. Кроме того, засорение линии всасывания насоса может привести к работе насоса всухую, перегреву и повреждению уплотнений. Установка преобразователя тока на одну ветвь выводов двигателя позволяет оператору контролировать условия как перегрузки, так и недогрузки и принимать корректирующие меры до того, как оборудование будет нарушено.

Тот же метод используется для мониторинга оборудования, которое обеспечивает теплом промышленные товары, системы хранения или рециркулирующие материалы. Если нагреватель выйдет из строя, партия или процесс, возможно, придется отменить. Интеграция текущего сигнала переключения с системой автоматизации позволяет оператору контролировать состояние включения/выключения, сигнализировать о сбое или автоматически включать резервный нагреватель.

Новые тенденции в современной технологии переключателей/реле

На современном рынке переключателей/реле появляются две новые тенденции. Современные панели управления меньшего размера и перегруженные распределительные устройства стимулируют спрос на более компактные устройства с более высокими характеристиками и более универсальными вариантами монтажа.

Реле обычно используются для запуска нагрузок, а реле давления или переключатели нулевой скорости используются для их контроля. Этот подход требует двух установок и нескольких кабелепроводов, что увеличивает сложность системы. Сегодня модульные реле могут быстро подключаться к широкому спектру датчиков тока, от переключателей тока с регулируемой уставкой до цельных преобразователей. Этот модульный подход позволяет оператору включать двигатель, подавать сигнал о включении/выключении и контролировать состояние нагрузки двигателя с помощью одного установленного устройства.

Вторая тенденция — более интеллектуальные реле. Новые микропроцессорные датчики тока автоматически калибруются при первом запуске. Другие интеллектуальные устройства оснащены программируемыми пользователем таймерами, которые компенсируют кратковременные сбои и скачкообразный запуск двигателя. Эти расширенные возможности управления, более высокие рейтинги и надежность полупроводниковых приборов привели к более широкому признанию современных технологий датчиков в качестве замены традиционных приборов.

Резюме

Датчики тока предлагают инженерам-конструкторам и инженерам-технологам богатый источник «знаний» об оборудовании. Это экономичные и надежные инструменты для мониторинга состояния оборудования, обнаружения отклонений в технологических процессах и обеспечения безопасности персонала.

Датчики постоянного тока на эффекте Холла — серия HAK

Наведите курсор мыши для увеличения

Датчики постоянного тока на эффекте Холла Accuenergy серии HAK точно измеряют постоянный ток до 1000 А со стандартным выходным сигналом 4–20 мА или 0–5 В сигнал. Конструкция с разъемным сердечником облегчает установку в существующие установки. Датчик тока на эффекте Холла HAK доступен как в однонаправленном, так и в двунаправленном измерительном устройстве.

  • Класс точности: 0,5 %
  • Доступны различные варианты ввода тока
  • Выберите номинальный выход 4–20 мА или 0–5 В
  • Конструкция с разъемным сердечником для быстрой установки
  • Измерение постоянного тока до 1000 А
  • Дополнительные однонаправленные или двунаправленные измерения

2

Что такое датчик постоянного тока на эффекте Холла?

Эффект Холла, названный в честь Эдвина Холла, представляет собой распространенный метод измерения направления и напряженности магнитного поля. Когда электричество проходит по проводу, создается магнитное поле. Датчик тока на эффекте Холла измеряет силу магнитного поля, чтобы определить, какой ток протекает по проводу. Датчики на эффекте Холла в сочетании с измерителями мощности постоянного тока обеспечивают точные измерения в возобновляемых источниках энергии, транспорте, распределении электроэнергии и других приложениях постоянного тока.

HAK Models

HAK21
Input Ratings
Output Ratings
Accuracy
Window Size
Direction
50A 4–20 мА, 0–5 В 0,5 % 0,83 дюйма Двунаправленный,
Однонаправленный
100 А 4-20mA, 0-5V 0. 5% 0.83″ Bi-directional,
Un-directional
200A 4-20mA, 0-5V 0.5% 0.83″ Bi-directional,
Un-directional

Input Ratings
Output Ratings
Accuracy
Window Size
Direction
50A 4-20mA, 0-5V 0.5% 0.83″ Bi-directional,
Un-directional
100A 4-20MA, 0-5V 0,5% 0,83 « ДВУМЕНТАЯ,
UN-направление
200A 4-20-40169 200A 4-20-20-5w. Двусторонняя,
Un-directional

HAK40
Input Ratings
Output Ratings
Accuracy
Window Size
Direction
400A 4–20 мА, 0–5 В 0,5 % 1,58 дюйма Двунаправленный,
Однонаправленный
600A 4-20mA, 0-5V 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *