Для чего предназначен газораспределительный механизм: назначение, конструкция и принцип работы :: Avto.Tatar

Содержание

Тест №2 «Газораспределительный механизм»

Бюджетное профессиональное образовательное учреждение

Омской области

«Седельниковский агропромышленный техникум»

 

ТЕСТ «Газораспределительный механизм»


 

МДК.01.02 «Устройство, техническое обслуживание и ремонт автомобилей»

ПМ. 01 «Техническое обслуживание и ремонт автотранспорта»

по профессии 23.01.03 Автомеханик


 


 


 


 

Составил: Баранов Владимир Ильич мастер производственного обучения


 


 


 


 


 


 

Седельниково, Омская область, 2017

Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Газораспределительный механизм», входящей в состав МДК 01. 02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.

Тест № 2

Газораспределительный механизм


 

1. Газораспределительные механизмы в зависимости от места установки клапана разделяются на механизмы с нижним и верхним расположением клапанов. Какой механизм имеет меньшее количество деталей?

1) с нижним расположением клапанов

 

2) с верхним расположением клапанов


 

3) имеют одинаковое количество деталей.

2. Каким способом осуществляется привод газораспределительного механизма?

1) зубчатыми колесами

2) цепной передачей или зубчатым ремнем

3) в зависимости от типа и модели двигателя способом указанным в пункте 1 или 2.

 

3. Для чего предназначен толкатель ГРМ?

1) для передачи усилия от распределительного вала

2) для передачи усилия от поршня

3) для поворота клапана вокруг своей оси.

 

4. В каком ответе перечислены только детали ГРМ?

1) распределительный вал, штанга толкателя, коромысло, поршневой палец, клапан выпускной

2) толкатель, седло клапана, сухари, тарелка пружины клапана, направляющая толкателя

3) направляющая втулка клапана, ось коромысел, головка цилиндров, пружина клапана.


 

5. Как крепится тарелка пружины клапана к стержню клапана?

1) установочным штифтом

2) при помощи резьбы

3) контактной сваркой

4) сухариками.


 

6. Как отличить впускной клапан от выпускного одного двигателя?

1) по длине стержня клапана

2) по диаметру тарелки клапана

3) по маркировке.

 

7. Какой клапан при работе двигателя нагревается до более высокой температуры?

1) впускной

2) выпускной

3) клапана одного цилиндра нагреваются до одинаковой температуры

 

8. Какие детали входят в клапанный узел ГРМ?

1) клапан, седло клапана, пружина клапана, направляющая втулка клапана, компрессионное кольцо

2) клапан, тарелка пружины клапана, маслосъемное кольцо, сухари, механизм вращения клапана

3) клапан, опорная шайба пружины, седло клапана, толкатель, сухари

 

9. Для чего предназначен газораспределительный механизм дизельного двигателя?

для подачи топлива.

для подачи воздуха

для распределения газов по цилиндрам двигателя

для впуска воздуха и выпуска отработанных газов

     

    10. В каком ответе правильно дано определение назначения газораспределительного механизма?

    1) для своевременного открывания и закрывания клапанов, впуска горючей смеси или воздуха отработанных газов

    2) для своевременного открывания и закрывания клапанов с целью впуска горючей смеси и выпуска отработанных газов

    3) для своевременного закрывания клапанов и впуска горючей смеси

     

    11. Каким термином называют моменты открытия и закрытия клапанов относительно мертвых точек, выражая в градусах поворота коленчатого вала?

    1) перекрытием клапанов

    2) фазами газораспределения

    3) порядком работы цилиндров

    4) угол опережения зажигания

     

    12. Какие клапана выполняют полыми и полость заполняют металлическим натрием?

    1) только впускные клапаны

    2) только выпускные клапаны

    3) впускные и выпускные клапана.

     

    13. В какой последовательности передается усилие в приводе клапанов?

    1) кулачковый вал, толкатель, штанга толкателя, регулировочный винт, коромысло, клапан

    2) кулачковый вал, толкатель, регулировочный винт, штанга толкателя, коромысло, клапан

    3) кулачковый вал, толкатель, штанга толкателя, клапан, коромысло, регулировочный винт

     

    14. Укажите место проверки теплового зазора в ГРМ?

    1) между штангой толкателя и регулировочным винтом

    2) между толкателем и кулачком распредвала

    3) между носком коромысла и торцом стержня клапана.

     

    15. Что обеспечивает герметичность сопряжений клапан-седло клапана?

    1) их шлифовка и притирка по месту пастами

    2) подгонка по месту с применением уплотнителей

    3) установка самоподжимных манжет

     

    16. Какое количество клапанов установлено на двигателе КамАЗ-740.10?

    1) 6 впускных и 6 выпускных клапанов

    2) 8 впускных и 8 выпускных клапанов

    3) 12 впускных и 12 выпускных клапанов

    4) 16 впускных и 16 выпускных клапанов

     

    17. С какой скоростью вращается распределительный вал?

    1) в два раза быстрее коленчатого вала

    2) в два раза медленнее коленчатого вала

    3) со скоростью вращения коленчатого вала
    4) в четыре раза быстрее коленчатого вала

     

    18. Для чего предусмотрены тепловые зазоры в ГРМ?

    1) для предотвращения разрушения коромысел и толкателей

    2) для исключения неплотного закрытия клапанов

    3) для уменьшения износа направляющих клапанов и толкателей.

     

    19. В какую часть коромысла вворачивают регулировочный винт?

    1) в конец коромысла, обращенный к штанге

    2) в конец коромысла, обращенный к стержню клапана

    3) в отверстие оси коромысла.

     

    20. Какое количество сухарей необходимо для крепления тарелки пружины со стержнем клапана?

    1) один

    2) два

    3) три

    4) четыре;

     

    21. Как влияет наличие нагара на фасках клапанов на их охлаждение?

    1) не отражается

    2) улучшает охлаждение

    3) ухудшает охлаждение.

     

    22. Что такое перекрытие клапанов.

    1) это моменты когда оба клапаны открыты;

    2) это моменты когда оба клапана закрыты;

    3) это моменты когда впускной клапан открыт, а выпускной закрыт;

     

    23. В чем измеряется перекрытие клапанов.

    1) в сантиметрах;

    2) в градусах;

    3) в миллиметрах;

     

    24. Как называется средняя часть клапана.

    1) тарелка;

    2) стержень;

    3) шток;

     

    25. Материал изготовления клапанов;

    1) из инструментальной стали;

    2) из легированного чугуна;

    3) из жаропрочной стали;

    4) из углеродистой стали.

     

    Эталон ответов:

    Вопрос

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Ответ

    1

    3

    1

    2

    4

    2

    2

    3

    4

    Вопрос

    10

    11

    12

    13

    14

    15

    16

    17

    18

    Ответ

    2

    2

    2

    1

    3

    1

    2

    2

    2

    Вопрос

    19

    20

    21

    22

    23

    24

    25

      

    Ответ

    3

    2

    3

    1

    2

    2

    3

      


     

    Критерии оценок тестирования:

    Оценка «отлично» 23 — 25 правильных ответов 25 предложенных вопросов;

    Оценка «хорошо» 18 — 22 правильных ответов из 25 предложенных вопросов;

    Оценка «удовлетворительно» 13 — 17 правильных ответов из 25 предложенных вопросов;

    Оценка неудовлетворительно» 0 — 12 правильных ответов из 25 предложенных вопросов.

     

     

    Список литературы

    Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

    Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

    Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

    Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

    Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

    Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

    Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.

    Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.

    Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.

    Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.

    Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.

    Тест «Газораспределительный механизм – 1 часть»

    Бюджетное профессиональное образовательное учреждение

     Омской области

     «Седельниковский агропромышленный техникум»

     

     

     

     

     

    Тест

    «Газораспределительный механизм – 1 часть»

    МДК.01.02  «Устройство, техническое обслуживание и ремонт автомобилей»                                            

      ПМ. 01 Техническое обслуживание и ремонт автотранспорта

    по профессии 23.

    01.03  Автомеханик

     

     

     

     

    Составил: Баранов Владимир Ильич                                                                                                             мастер производственного обучения                                     

     

     

     

     

     

    Седельниково, Омская область, 2019-2020 учебный год

     

    Целью настоящего теста является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Двигатель», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».

    Тест составлен в соответствии с требованиями программы профессионального модуля ПМ. 01 «Техническое обслуживание и ремонт автомобильного транспорта»,  по профессии 23.01.03 «Автомеханик», 1 курс.

    Тестовое задание состоит из вопроса и трёх вариантов ответов, из которых верным является один. Задачей теста является набор максимально возможного количества баллов текущей успеваемости.

     

    ГРМ – 1 часть

    1. Для чего предназначен газораспределительный механизм двигателя:
    а) для впуска в цилиндры горючей смеси и выпуска отработавших газов;
    б) для впрыска в цилиндры двигателя топлива в мелкораспыленном виде;
    в) для перераспределения рабочей смеси между цилиндрами
    двигателя?
     

    2. Из какого материала изготавливаются распределительные валы
    двигателя автомобиля ВАЗ-2112 и каким методом:
    а) из стали, штамповкой;
    б) из алюминиевого сплава, вытачиванием;
    в) из чугуна, литьем?
     

    3. Сколько и каких клапанов установлено в двигателе ЗМЗ-4062. 10:
    а) 16 — 8 выпускных и 8 впускных;
    б) 12 — 4 выпускных и 8 впускных;
    в) 8 — 4 выпускных и 4 впускных?

    4. Какие клапаны двигателя автомобиля ЗИЛ-431410 имеют механизм принудительного вращения:

    а) все клапаны;

    б) впускные;

    в) выпускные?

    5.  Какого типа толкатели установлены на двигателе автомобиля
    ВАЗ-2112:
    а) тарельчатые со сферической опорной поверхностью;
    б) рычажные подвесные;
    в) гидравлические в виде цилиндрического стакана с плунжерной парой и шариковым обратным клапаном?

    6. Чем отличаются впускные клапаны от выпускных:
    а) не отличаются;
    б) головки впускных клапанов имеют больший диаметр;
    в) головки выпускных клапанов имеют больший диаметр?
     

    7. Для чего в стержне выпускного клапана двигателя автомобиля
    ЗИЛ-508.10 имеется канал, частично заполненный натрием:

    а) для улучшения охлаждения головки клапана;
    б) для уменьшения массы клапана;
    в) для уменьшения инерционных масс при возвратно-поступательном движении клапана?
     

    8.   Сколько пружин и с какой навивкой устанавливается на клапанах двигателя автомобиля ВАЗ-2110:
    а) по одной, с правой навивкой;
    б) по две, с правой навивкой;
    в) по две, наружная с правой навивкой, а внутренняя — с левой?

     

    9.  Какова частота вращения распределительного вала относительно частоты вращения коленчатого вала:
    а) частоты одинаковые;
    б) в два раза меньше;
    в) в два раза больше?
     

    10. Сколько опорных шеек имеют распределительные валы двигателей:
    а) три;   б) четыре;   в) пять?
     

    11.  Для чего клапаны двигателя автомобиля ЗИЛ-433100 снабжены
    механизмом принудительного вращения:
    а) для обеспечения равномерного износа головки клапана и седла;
    б) для обеспечения равномерного износа головки клапана, седла и направляющих втулок;
    в) для обеспечения равномерного износа седла и направляющих  втулок?

    12. Сколько кулачков имеет распределительный вал двигателя автомобиля ГАЗ-2705 «ГАЗель»:
    а) четыре;  б) шесть;  в) восемь?
     

    13.

    Чем ограничивается осевое перемещение распределительного вала двигателя автомобиля ЗИЛ-5301:
    а) упорным болтом с контргайкой;
    б) упорным кольцом и фланцем;
    в) упорными стальными или пластмассовыми полукольцами?
     

    14. Чем приводится в действие распределительный вал двигателя
    автомобиля ВАЗ-2110:
    а) парой зубчатых колес;
    б) приводной цепью;
    в) зубчатым ремнем?

     

    Список литературы

    Пехальский А.П. Устройство автомобилей и двигателей: лабораторный практикум: учеб. пособие для студентов учреждений сред. проф. образования / А.П. Пехальский, И.А. Пехальский. – М.: Издательский центр «Академия», 2018.

    Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

    Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб.

    пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

    Справочная и техническая информация о деталях двигателей

    Механизм газораспределения предназначен для впуска в цилиндры двигателя свежей горючей смеси (в бензиновых) или воздуха (в дизелях) и для выпуска отработавших газов.
    Механизм должен обеспечивать четкое открытие и закрытие клапанов в соответствии с тактами работы двигателя, при этом должно быть выполнено обязательное условие герметичности камеры сгорания и длительное сопротивление износу и высоким температурным нагрузкам.
    В современных автомобильных и тракторных двигателях применяют клапанные механизмы газораспределения, характеризующиеся простотой конструкции, малой стоимостью изготовления и ремонта, совершенством уплотнения и главное надежностью работы. Все детали клапанного механизма могут быть либо отремонтированы (седла клапанов, клапаны) либо заменены на новые детали (распредвал, втулки клапанов, толкатели, пружины и д.

    р.).

    Конструктивные варианты размещения привода клапанов.

    1. Привод клапанов с помощью штанги при нижнем расположении распределительного вала.
    2. Привод клапанов рычажным толкателем.
    3. Привод клапанов двумя коромыслами от одного кулачка верхнего распределительного вала.
    4. Непосредственный привод от распределительного вала через толкатель при верхнем расположении клапанов.
    OHV OHV / OHC
    OHV / SOHC OHV / DOHC

    (1)-вал распределительный; (2)-клапан; (3)-ось коромысел; (4)-толкатель клапана; (5)-коромысло клапана; (6)-штанга толкателя.

    Широко распространены следующие схемы клапанного механизма:
    Верхнее расположение клапанов, приводимых цилиндрическими толкателем: непосредственно от распределительного вала толкатель перемещается в головке возвратно-поступательно и воспринимает поперечное усилие со стороны кулачка с одновременной передачей воздействующего усилия на стержень клапана с одновременной передачей воздействующего усилия на стержень клапана.
    Верхнее расположение распределительного вала с приводом клапанов при помощи рычажного толкателя: здесь силы при подъеме кулачка воспринимаются и передаются установленным в головке блока качающимся рычажным толкателем, перемещающимся между кулачком и клапаном. Кроме функции передачи усилий, толкатель, может изменить величину подъема клапана.

    Привод двух коромысел от кулачков верхнего распределительного вала: ось каждого коромысла располагается между распределительным валом и клапаном. Коромысло обычно конструируется так, что бы оно увеличивало перемещение клапана.

    В современной мировой практике для уточнения типа клапанного механизма применяются следующие сокращения:

    • OHV (Over Head Valves) — означает верхнее расположение клапанов в двигателе. Никакой информации о расположении распределительного вала в этом сокращении не содержится.
    • OHC (Over Head Camshaft) — означает верхнее расположение распредвала (распредвалов) и не содержит никакой информации об их количестве, и о их способе воздействия на клапан.

    Аббревиатура SOHC и DOHC обозначает количество распределительных валов в двигателе.

    • SOHC (Single Over Head Camshaft) — обозначает один распределительный вал верхнего расположения.
    • DOHC (Double Over Head Camshaft) — конструкция газораспределительного механизма с двумя распределительными валами расположенными сверху.
    • Существует еще одно распространенное сокращение СVH (Compound Valve angle Hemispherical chamber ). В свободном переводе, это двигатель: «…с разными углами наклона клапанов и сферической камерой сгорания » В принципе, это верхнее расположение одного распредвала и клапанов приводимых с помощью «качалок» (вид коромысел клапанов ). Отличительной особенностью является разные углы наклона для впускных и выпускных клапанов, как в продольных, так и в поперечных плоскостях относительно распредвала.

     Газораспределительный механизм включает в себя:

    1. Распределительный вал (один или два).
    2. Клапана впускные и выпускные.
    3. Вал (ось) крепления коромысел клапанов.
    4. Толкатели клапанов (гидравлические или механические).
    5. Коромысла клапана.
    6. Штанги толкателей.
    7. Седла клапанов.
    8. Направляющие втулки клапанов.
    9. Пружины клапанов.
    10. Сухари клапанов.
    11. Упорные верхние шайбы.
    12. Нижние тарелки клапанных пружин.

    Газораспределительный механизм (ГРМ) — назначение, конструкция и устройство, принцип работы, типы газораспределительных механизмов

    Назначение и характеристика

    Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.

    Газораспределительный механизм (ГРМ) служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним расположением клапанов. Верхнее расположение клапанов позволяет увеличить степень сжатия двигателя, улучшить наполнение цилиндров горючей смесью или воздухом и упростить техническое обслуживание двигателя в эксплуатации. Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1), что зависит от компоновки двигателя и, главным образом, от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.

    Рисунок 1 – Типы газораспределительных механизмов, классифицированных по различным признакам

    При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны. Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или рычаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.

    Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы про большой частоте вращения коленчатого вала двигателя.

    Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.

    При нижнем расположении распределительный вал устанавливается в блоке цилиндров рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала. При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма. Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр зависят от типа двигателя. Так, при большем числе впускных и выпускных клапанов обеспечивается лучшие наполнение цилиндров горючей смесью и их очистка от отработавших газов. В результате двигатель может развивать большие мощность и крутящий момент. При нечетном числе клапанов на цилиндр число впускных клапанов на один клапан больше, чем выпускных.

    Конструкция и работа газораспределительного механизма

    Газораспределительные механизмы независимо от расположения распределительных валов в двигателе включают в себя клапанную группу, передаточные детали и распределительные валы с приводом.

    В клапанную группу входят впускные и выпускные клапаны, направляющие втулки клапанов и пружины клапанов с деталями крепления.

    Передаточными деталями являются толкатели, направляющие втулки толкателей, штанги толкателей, коромысла, ось коромысел, рычаги привода клапанов, регулировочные шайбы и регулировочные болты. Однако при верхнем расположении распределительного вала толкатели, направляющие втулки и штанги толкателей, коромысла и ось коромысел обычно отсутствуют.

    На рисунке 2 представлен газораспределительный механизм двигателя с верхним расположением клапанов, с верхним расположением распределительного вала с цепным приводом и с двумя клапанами на цилиндр. Он состоит из распределительного вала 14 с корпусом 13 подшипников, привода распределительного вала, рычагов 11 привода клапанов, опорных регулировочных болтов 18 клапанов 1 и 22, направляющих втулок 4, пружин 7 и 8 клапанов с деталями крепления.

    Рисунок 2 – Газораспределительный механизм легкового автомобиля с цепным приводом

    1, 22 – клапаны; 2 – головка; 3 – стержень; 4, 20 – втулки; 5 – колпачок; 6 – шайбы; 7, 8, 17 – пружины; 9 – тарелка; 10 – сухарь; 11 – рычаг; 12 – фланец; 13 – корпус; 14 – распределительный вал; 15 – шейка; 16 – кулачок; 18 – болт; 19 – гайка; 21 – пластина; 23 – кольцо; 24, 27, 28 – звездочки; 25 – цепь; 26 – успокоитель; 29 – палец; 30 – башмак; 31 – натяжное устройство

    Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Распределительный вал – пятиопорный, отлит из чугуна. Он имеет опорные шейки 15 и кулачки 16 (впускные и выпускные). Внутри вала проходит канал, через который подводится масло от средней опорной шейки к другим шейкам и кулачкам. К переднему торцу вала крепится ведомая звездочка 24 цепного привода. Вал устанавливается в специальном корпусе 13 подшипников, отлитом из алюминиевого сплава, который закреплен на верхней плоскости головки блока цилиндров. От осевых перемещений распределительный вал фиксируется упорным фланцем 12, который входит в канавку передней опорной шейки вала и прикрепляется к торцу корпуса подшипников.

    Привод распределительного вала осуществляется через установленную на нем ведомую звездочку 24 двухрядной роликовой цепью 25 от ведущей звездочки 28 коленчатого вала. Этой цепью также вращается звездочка 27 вала привода масляного насоса. Привод распределительного вала имеет полуавтоматический натяжной механизм, состоящий из башмака и натяжного устройства. Цепь натягивается башмаком 30, на который воздействуют пружины натяжного устройства 31. Для гашения колебаний ведущей ветви цепи служит успокоитель 26. Башмак и успокоитель имеют стальной каркас с привулканизированным слоем резины. Ограничительный палец 29 предотвращает спадание цепи при снятии на автомобиле ведомой звездочки распределительного вала.

    Клапаны открывают и закрывают впускные и выпускные каналы. Клапаны установлены в головке блока цилиндров в один ряд под углом к вертикальной оси цилиндров двигателя. Впускной клапан 1 для лучшего наполнения цилиндров горючей смесью имеет головку большего диаметра, чем выпускной клапан. Он изготовлен из специальной хромистой стали, обладающей высокой износостойкостью и теплопроводностью. Выпускной клапан 22 работает в более тяжелых температурных условиях, чем впускной. Он выполнен составным. Его головку делают из жаропрочной хромистой стали, а стержень – из специальной хромистой стали.

    Каждый клапан состоит из головки 2 и стержня 3. Головка имеет конусную поверхность (фаску), которой клапан при закрытии плотно прилегает к седлу из специального чугуна, установленному в головке блока цилиндров и имеющему также конусную поверхность.

    Стержень клапана перемещается в чугунной направляющей втулке 4, запрессованной и фиксируемой стопорным кольцом 23 в головке блока цилиндров, обеспечивающей точную посадку клапана. На втулку надевается маслоотражательный колпачок 5 из маслостойкой резины. Клапан имеет две цилиндрические пружины: наружную 8 и внутреннюю 7. Пружины крепятся на стержне клапана с помощью шайб 6, тарелки 9 и разрезного сухаря 10. Клапан приводится в действие от кулачка распределительного вала стальным кованным рычагом 11, который опирается одним концом на регулировочный болт 18, а другим – на стержень клапана. Регулировочный болт имеет сферическую головку. Он ввертывается в резьбовую втулку 20, закрепленную в головке блока цилиндров и застопоренную пластиной 21, и фиксируется гайкой 19. Регулировочным болтом устанавливается необходимый зазор между кулачком распределительного вала и рычагом привода клапана, равный 0,15 мм на холодном двигателе и 0,2 мм на горячем двигателе (прогретом до 75…85 °C). Пружина 17 создает постоянный контакт между концом рычага привода и стержнем клапана.

    Принцип работы

    Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки в соответствии с порядком работы цилиндров двигателя поочередно набегают на рычаги 11. Рычаги, поворачиваясь одним концом на сферических головках регулировочных болтов 18, другим концом воздействуют на стержни клапанов, преодолевают сопротивление пружин 7, 8 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с рычагов, которые возвращаются в исходное положение под действием пружин 17, а клапаны закрываются под действием пружин 7 и 8.

    При работе двигателя распределительный вал вращается в два раза медленнее, чем коленчатый вал. Это связано с тем, что за период рабочего цикла двигателя, протекающего за два оборота коленчатого вала, впускной и выпускной клапаны каждого цилиндра должны открываться по одному разу.

    Нормальная работа газораспределительного механизма (ГРМ) во многом зависит от теплового зазора между кулачками распределительного вала и рычагами привода клапанов. Этот зазор обеспечивает плотное закрытие клапанов при их удлинении в результате нагрева во время работы. При недостаточном тепловом зазоре или его отсутствии происходит неполное закрытие клапанов, что приводит к утечке газов, быстрому обгоранию фасок головок клапанов и снижению мощности двигателя.

    Привод распределительного вала

    Особенностью привода распределительного вала (рисунок 3) является применение ременной передачи. Привод распределительного вала осуществляется через установленный на нем зубчатый шкив 4 ремнем 5 от зубчатого шкива 1 коленчатого вала. С помощью этого ремня также вращается зубчатый шкив 8 вала привода масляного насоса.

    Рисунок 3 – Ременный привод распределительного вала

    1, 4, 8 – шкивы; 2 – болты; 3 – ролик; 5 – ремень; 6 – кронштейн; 7 – пружина

    Ремень – зубчатый, изготовлен из резины, армированной стекловолокном. Зубья ремня имеют трапециевидную форму. Ремень натягивается с помощью натяжного ролика 3, закрепленного на кронштейне 6. Натяжение ремня регулируют пружиной 7 на неработающем двигателе при ослабленных болтах 2 крепления кронштейна натяжного ролика. Привод распределительного вала работает без смазки и снаружи закрыт тремя пластмассовыми крышками.

    Газораспределительный механизм двигателя, представленный на рисунке 4, состоит из распределительного вала 2 с двумя корпусами 1 подшипников, привода распределительного вала, толкателей 4, регулировочных шайб 3, направляющих втулок 6, клапанов 7, пружин 5 клапанов с деталями крепления.

    Рисунок 4 – Газораспределительный механизм (а) с верхним расположением распределительного вала и его привод (б):

    1 – корпус; 2 – распределительный вал; 3 – шайба; 4 – толкатель; 5 – пружина; 6 – втулка; 7 – клапан; 8, 9, 11 – шкивы; 10 – ролик; 12 – ремень; 13 – ось

    Распределительный вал чугунный, литой, пятиопорный. В задней части вала 2 находится эксцентрик для привода топливного насоса. Корпуса 1 подшипников распределительного вала отлиты из алюминиевого сплава. В них находятся верхние половины опор под шейки распределительного вала: две в переднем корпусе и три в заднем. Толкатели 4 клапанов – стальные, цилиндрические, передают усилия от кулачков распределительного вала на клапаны. В верхней части толкателей имеется гнездо для установки регулировочной шайбы. Регулировочные шайбы 3 – плоские, стальные, толщиной 3,00…4,25 мм с интервалом через каждые 0,05 мм. Подбором толщины этих шайб регулируется тепловой зазор между шайбой и кулачком распределительного вала. Клапаны 7 (впускной, выпускной) отличаются по конструкции и изготовлены из разных сталей. Впускной клапан имеет головку большего диаметра, чем выпускной. Он выполнен из хромоникельмолибденовой стали. Выпускной клапан – составной, сварен из двух частей. Головка клапана изготавливается из жаропрочной хромоникельмарганцовистой стали, а стержень – из хромоникельмолибденовой стали. Направляющие втулки 6 клапанов – чугунные, запрессовываются и фиксируются стопорными кольцами в головке блока цилиндров.

    Пружины 5 (наружная, внутренняя) прижимают клапан к седлу и не дают ему отрываться от толкателя. Они также исключают возникновение резонансных колебаний деталей.

    Привод распределительного вала производится через установленный на нем зубчатый шкив 11 ремнем 12 от зубчатого шкива 8 коленчатого вала. Этим же ремнем вращается зубчатый шкив 9 насоса охлаждающей жидкости. Ремень – зубчатый, резиновый, армирован стекловолокном. Зубья ремня имеют полукруглую форму. Ремень натягивается роликом 10, который вращается на эксцентриковой оси 13, установленной на шпильке, закрепленной в головке блока цилиндров. При повороте эксцентриковой оси относительно шпильки изменяется натяжение ремня. Привод распределительного вала работает без смазочного материала. Он закрыт двумя крышками – передней пластмассовой и задней стальной.

    При вращении распределительного вала его кулачок набегает на шайбу 3 и толкатель 4. Толкатель действует на стержень клапана 7, преодолевает сопротивление пружин 5 и открывает клапан. При дальнейшем повороте кулачок сходит с толкателя, который возвращается в исходное положение под действием пружин 5, закрывающих клапан.

    Газораспределительный механизм с нижним расположением распределительного вала

    На рисунке 5 показан газораспределительный механизм двигателя с нижним расположением распределительного вала. Газораспределительный механизм верхнеклапанный, с шестеренным приводом и двумя клапанами на цилиндр.

    Рисунок 5 – Газораспределительный механизм с нижним расположением распределительного вала

    1 – распределительный вал; 2 – клапан; 3, 20 – втулки; 4 – пружина; 5 – коромысло; 6 – ось; 7 – винт; 8 – штанга; 9 – толкатель; 10, 11, 12 – шестерни; 13 – шейка; 14 – эксцентрик; 15 – кулачок; 16 – сухарь; 17, 19 – шайбы; 18 – колпачок

    Механизм включает в себя распределительный вал 1, привод распределительного вала, толкатели 9, штанги 8 толкателей, регулировочные винты 7, ось 6 коромысел, коромысла 5, клапаны 2, направляющие втулки 3 клапанов и пружины 4 с деталями крепления.

    Распределительный вал – стальной, кованый, имеет пять опорных шеек 13, кулачки 15 (впускные и выпускные), шестерню 12 привода масляного насоса и распределители зажигания, а также эксцентрик 14 привода топливного насоса. Вал установлен в блоке цилиндров двигателя на запрессованных биметаллических втулках, изготовленных из стали и покрытых изнутри слоем свинцовистого баббита.

    Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню 10, изготовленную из текстолита. Она находится в зацеплении с ведущей стальной шестерней 11, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и обеспечения плавной работы. Передаточное отношение шестеренного привода – отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни – равно 1:2, т.е. ведомая шестерня 10 имеет в два раза больше зубьев, чем ведущая шестерня 11. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.

    Толкатели 9 служат для передачи усилия от кулачков распределительного вала к штангам 8. Они изготовлены из стали, и их торцы, соприкасающиеся с кулачками, выполнены сферическими и наплавлены отбеленным чугуном для уменьшения изнашивания. Внутри толкатели имеют сферические углубления для установки штанг. Толкатели перемещаются в направляющих отверстиях блока цилиндров.

    Штанги 8 передают усилие от толкателей к коромыслам 5. Они изготовлены из алюминиевого сплава, и на их концы напрессованы стальные наконечники.

    Коромысла 5 предназначены для передачи усилия от штанг к клапанам. Коромысла стальные, имеют неравные плечи для уменьшения высоты подъема толкателей и штанг, в их короткие плечи ввернуты винты 7 для регулирования теплового зазора. Коромысла установлены на втулках на полой оси 6, закрепленной в головке цилиндров.

    Клапаны 2 изготовлены из легированных жаропрочных сталей. Для лучшего наполнения цилиндров двигателя горючей смесью диаметр головки у впускного клапана больше, чем у выпускного.

    Пружины 4 изготовлены из рессорно-пружинной стали. Деталями их крепления являются шайбы 17 и 19, сухари 16 и втулки 20. Резиновые маслоотражательные колпачки 18, установленные на впускных клапанах, исключают проникновение масла через зазоры между направляющими втулками и стержнями впускных клапанов.

    Работа механизма

    Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки поочередно набегают на толкатели 9 в соответствии с порядком работы цилиндров двигателя. Усилие от толкателей 9 через штанги 8 передается к коромыслам 5, которые, поворачиваясь на оси 6, воздействуют на стержни клапанов 2, преодолевают сопротивление пружин 4 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с толкателей, которые вместе со штангами и коромыслами возвращаются в исходное положение под действием пружин, закрывающих также клапаны.

    Другие статьи по двигателю

    Основные типы механизмов газораспределения

    Категория:

       Техническое обслуживание автомобилей

    Публикация:

       Основные типы механизмов газораспределения

    Читать далее:



    Основные типы механизмов газораспределения

    Газораспределительный механизм предназначен для своевременного впуска в цилиндры горючей смеси (карбюраторные двигатели) или очищенного воздуха (дизели) и выпуска отработавших газов. На поршневых четырехтактных карбюраторных двигателях впуск горючей смеси и выпуск отработавших газов осуществляются клапанами, которые могут иметь нижнее или верхнее расположение. При нижнем расположении клапаны устанавливают в блоке цилиндров (у двигателей ГАЗ-52-04, ЗИЛ-157КД), а при верхнем — в головке цилиндров (у двигателей автомобилей ЗИЛ-130, КамАЭ-5320, ГАЗ-24-10 «Волга», ВАЗ-2108 «Спутник» и др.).

    При нижнем расположении клапанов (в блоке цилиндров) усилие от кулачка (рис. 3.1, а) распределительного вала передается толкателю, а затем через регулировочный болт с контргайкой клапану, головка которого отходит от седла.

    При работе газораспределительного механизма стержень клапана движется возвратно-поступательно в направляющей втулке. На нижнем конце втулки свободно устанавливается пружина, верхний торец которой упирается в блок, а нижний — в тарелку, закрепленную на конце стержня клапана сухариками. Закрытие клапана происходит под действием пружины по мере того, как выступ кулачка выходит из-под толкателя.

    Рекламные предложения на основе ваших интересов:

    Современные двигатели обычно имеют газораспределительные механизмы с верхним расположением клапанов, так как в этом случае камера сгорания получается компактной, улучшается наполнение цилиндров, упрощается регулировка клапанов и значительно уменьшаются потери тепла с охлаждающей жидкостью.

    В рядных двигателях при верхнем расположении клапанов (рис. 3.1, б) усилие от кулачка распределительного вала передается толкателю, а от него — штанге. Штанга через регулировочный винт воздействует на короткое плечо коромысла, которое, поворачиваясь на оси, нажимает своим носком на стержень клапана. При этом пружина сжимается, а клапан перемещается вниз, отходит от седла, обеспечивая в зависимости от назначения клапана впуск горючей смеси или выпуск отработавших газов. После того как выступ кулачка выйдет из-под толкателя, клапанный механизм возвращается в исходное положение под действием пружины. При работе клапанного механизма положение направляющей втулки, запрессованной в головку цилиндров фиксируется стопорным кольцом, а регулировочного винта — контргайкой. Верхний конец стержня клапана закреплен сухариками, установленными в тарелке при помощи втулки.

    Рис. 3.1. Схемы газораспределительных механизмов с различным расположением клапанов:
    а — нижним; б — верхним

    Распределительные валы при верхнем расположении клапанов могут быть установлены в блоке цилиндров — нижнее расположение (двигатели автомобилей ЗИЛ-130, -4331, КамАЭ-5320) или на головке блока— верхнее расположение (однорядные двигатели автомобилей семейств ВАЗ и «Москвич»).

    При верхнем расположении распределительного вала (рис. 3.2) отсутствуют толкатели и штанги, вследствие чего уменьшаются масса и инерционные силы клапанного механизма, что дает возможность увеличить частоту вращения коленчатого вала и уменьшить уровень шума при работе двигателя.

    В двигателях автомобилей ВАЗ (с приводом на задние колеса) (рис. 3.2, а) распределительный вал расположен в отдельном картере на головке блока цилиндров и вращается в подшипниках скольжения. Привод к клапанам, размещенным в один ряд, осуществляется непосредственно от кулачков распределительного вала через одноплечие рычаги (рокеры). Одним концом одноплечий рычаг опирается на стержень клапана, другим — на сферическую головку болта и удерживается на ней при помощи шпилечной пружины.

    Рис. 3.2. Газораспределительные механизмы двигателей с верхним расположением распределительных валов автомобилей:
    а — ВАЗ-2105, -2107 «Жигули»; б — «Москвич-2140»; в — ВАЗ-2108 «Спутник», BA3-2109

    В двигателях автомобилей семейства «Москвич» (рис. 3.2, б) клапаны расположены в два ряда и приводятся в действие коромыслами от кулачков распределительного вала. Для регулировки теплового зазора в клапанах служит регулировочный болт с контргайкой, который связан со сферическим наконечником.

    В двигателях переднеприводных автомобилей ВАЗ-2108 «Спутник», ВАЗ-2109, верхний распределительный вал установлен в отдельном корпусе (рис. 3.2, в), расположенном на головке цилиндров, в которую запрессованы чугунные седла и направляющие втулки клапанов. Верхняя часть втулок уплотняется металлорезиновыми маслоот-ражательными колпачками.

    Рис. 3.3. Газораспределительный механизм V-образного двигателя

    Клапаны приводятся в действие непосредственно кулачками через цилиндрические толкатели без промежуточных рычагов. В гнездах толкателей находятся шайбы для регулировки зазора h в клапанном механизме.

    Рекламные предложения:


    Читать далее: Механизм газораспределения V-образного двигателя

    Категория: — Техническое обслуживание автомобилей

    Главная → Справочник → Статьи → Форум


    Назначение и состав механизма газораспределения. Детали газораспределительного механизма. Механизм газораспределения двигателя ЯМЗ-236. Контрольная работа

    Модуль предназначен для контроля знаний по теме: «Двигатель внутреннего сгорания», содержит текстовые материалы, звуковые файлы и изображения и включает в себя следующие задания: «Назначение и состав механизма газораспределения», «Детали газораспределительного механизма», «Механизм газораспределения двигателя ЯМЗ-236», и «Классификация газораспределительных механизмов»

    Тип: Контрольный;

    версия: 1. 0.0.2 от 27.05.2010

    Внимание! Для воспроизведения модуля необходимо установить на компьютере проигрыватель ресурсов.

    Категория пользователей

    Обучаемый, Преподаватель

    Контактное время

    30 минут

    Интерактивность

    Высокая

    Дисциплины

    Специальные дисциплины / Автомобили и тракторы / Двигатель внутреннего сгорания / Кривошипно-шатунный и газораспределительный механизмы / Газораспределительный механизм

    Статус

    Завершенный вариант (готовый, окончательный)

    Тип ИР сферы образования

    Контрольный модуль

    Язык

    Русский

    Ключевые слова

    Классификация газораспределительных механизмов

    Автор

    Издатель

    Правообладатель

    Беляев Михаил Борисович

    ИНФОСТУДИЯ ЭКОН ЗАО

    Закрытое акционерное общество «ИНФОСТУДИЯ ЭКОН»

    Федеральное агентство по образованию России Федеральный орган исполнительной власти

    Федеральное агентство по образованию России

    Россия, 115998, Москва, Люсиновская ул. , 51

    Тел. — +7-495-237-9763, +7-495-236-0171

    Сайт — http://www.ed.gov.ru

    Эл. почта — [email protected]

    Характеристики информационного ресурса

    Тип используемых данных:

    application/xml, text/javascript, text/html, image/jpeg, image/png, audio/mpeg, text/xml

    Объем цифрового ИР

    3 993 226 байт

    Проигрыватель

    OMS-player версии от 2. 0

    Категория модифицируемости компьютерного ИР

    открытый

    Признак платности

    бесплатный

    Наличие ограничений по использованию

    есть ограничения
    Рубрикация

    Ступени образования

    Среднее профессиональное образование

    Целевое назначение

    Учебное

    Тип ресурса

    Открытая образовательная модульная мультимедийная система (ОМС)

    Классы общеобразовательной школы

    Уровень образовательного стандарта

    Федеральный

    Характер обучения

    Механизм газораспределения — Сайт ЦентрТТМ

    Назначение и схемы действия ГРМ

    Механизм газораспределения (ГРМ) открывает и закрывает в определенные моменты впускные и выпускные клапаны для впуска в цилиндры свежего воздуха и выпуска из них отработавших газов.

    В зависимости от расположения клапанов механизмы различают:

    — с нижним (боковым) расположением клапанов в блоке цилиндров; используется только у карбюраторных двигателей;
    — с верхним подвесным расположением клапанов — в головке цилиндров.

    Техобслуживание и ремонт тракторов

    При расположении клапанов в головке цилиндров обеспечиваются компактность камеры сгорания, высокая степень сжатия, лучшее наполнение цилиндров воздухом, меньшие потери тепла через стенки вследствие компактности камеры. Механизм газораспределения с верхним расположением клапанов может быть однорядным и двухрядным. Двухрядное расположение клапанов используется на V-образных двигателях.

    Механизм газораспределения включает следующие части. Распределительный вал, преобразующий вращательное движение вала в поступательное движение толкателей. Механизм привода распределительного вала, включающий набор распределительных шестерен, передающих движение от коленчатого вала на распредвал.

    Клапанный механизм, открывающий и закрывающий впускные и выпускные клапаны в строго определенный момент и с заданным порядком последовательности. Клапанный механизм включает впускные и выпускные клапаны, направляющие втулки, возвратные пружины и детали крепления клапанов.

    Передающий механизм, осуществляющий передачу возвратно-поступательного движения от распределительного вала на клапаны. Сюда входят толкатели, штанги, коромысла с регулировочными винтами, оси и стойки коромысел. У механизма с боковым расположением клапанов штанги и коромысла с осями и стойками отсутствуют.

    Работа ГРМ

    Вращение от коленвала передается через зубчатую или цепочную передачу на распредвал. При повороте распредвала его кулачок своим выступом поднимает толкатель и штангу, которая упирается нижним концом в толкатель, а верхним — в регулировочный винт коромысла. При подъеме штанга давит на регулировочный винт и коромысло, поворачиваясь вокруг оси, своим вторым плечом нажимает на стержень клапана и, преодолевая силу пружины, открывает клапан.

    При дальнейшем повороте распредвала выступ кулачка выходит из под толкателя и толкатель, штанга и коромысло возвращаются в исходное положение, а клапан под действием пружины закрывается.

    Во время работы клапаны нагреваются, а стержень клапана удлиняется, что может привести к открытию клапана и нарушению работы двигателя. Чтобы дать возможность стержню клапана удлиниться, и чтобы клапан в то же время был закрыт, между торцами клапана и бойком коромысла оставляют зазор, называемый тепловым.

    У двигателей с боковым расположением клапанов этот зазор делается между клапаном и регулировочным винтом толкателя. Зазор должен быть в пределах: для двигателей СМД-60 в холодном состоянии — 0,48-0,50; АМ-41, Д-21А, ЯМЗ-240Б — 0,25-0,30; Д-65Н, Д-240 — 0,25 мм (на прогретом двигателе).

    Фазы газораспределения

    Начало подачи топлива насосом по мениску д.м.т не точно в мертвых точках, а с некоторым опережением при открытии и запаздыванием при закрытии. Периоды от момента открытия клапанов до момента закрытия, выраженные в градусах поворота коленчатого вала, называются фазами газораспределения. Диаграмма фаз газораспределения: начало открытия впускного клапана; начало закрытия впускного клапана; начало открытия выпускного клапана; конец закрытия выпускного клапана.

    Фазы газораспределения, выраженные в виде круговой диаграммы, называют диаграммой газораспределения. На рис. представлена диаграмма газораспределения дизельного двигателя Д-240. Впускной клапан открывается с некоторым опережением (16°) до прихода поршня в верхнюю мертвую точку, а закрывается с запаздыванием (в 46°) после того, как поршень уже пройдет нижнюю мертвую точку и пойдет вверх.

    Это позволяет увеличить продолжительность впуска до 242° и улучшить наполнение цилиндра свежим воздухом, вначале за счет уменьшения сопротивления проходу воздуха и ускорения поступления свежего заряда воздуха (опережение открытия), а затем за счет инерции поступающего в цилиндр воздуха (запаздывание закрытия клапанов).

    После сжатия и рабочего хода начинается выпуск отработавших газов. Опережение открытия выпускного клапана (56°) позволяет газам выходить из цилиндра под собственным давлением, что уменьшает затраты мощности на выталкивание газов при движении поршня вверх. Закрываются выпускные клапаны с запаздыванием, что улучшает очистку цилиндра от отработавших газов.

    У всех двигателей есть периоды, когда одновременно впускной и выпускной клапаны открыты. Такое положение называют перекрытием клапанов. Чтобы правильно установить фазы газораспределения двигателя при сборке, необходимо совместить метки на шестернях газораспределения.

    В течение одного рабочего цикла у четырехтактного двигателя впускной и выпускной клапаны должны открываться по одному разу. Поэтому распределительный вал вращается в 2 раза медленнее коленчатого вала и делает за цикл один оборот, а коленчатый вал — два.

    Устройство ГРМ

    Принцип действия механизма газораспределения изучаемых двигателей и взаимное расположение деталей одинаковые, однако устройство отдельных деталей, их размеры и крепления различны.

    В конструкции распределительного вала различают опорные шейки, в которых вал вращается в блоке, и кулачки (по два на каждый цилиндр). Распределительный вал штампуют из стали, а его опорные шейки и рабочие поверхности кулачков закалены токами высокой частоты. Вращается вал в бронзовых или чугунных втулках, запрессованных в гнезда блок-картера.

    Осевые перемещения распредвала во втулках ограничиваются различными способами. На двигателе СМД-14 осевое перемещение устраняется упорным регулировочным винтом. Винт заворачивают до отказа, затем отворачивают и затягивают контргайкой.

    У двигателя СМД-60 осевое перемещение распределительного вала ограничивает упорная шайба, а необходимый зазор между упорной шайбой и торцом опорной шейки в пределах 0,16-0,28 мм обеспечивается при сборке двигателя. Упорная шайба ограничивает осевое перемещение распределительного вала и у дизелей АМ-41 и А-01М.

    От продольного перемещения распределительный вал двигателей Д-240 и Д-65Н удерживается опорным кольцом, привернутым к блоку двумя винтами. Клапанный механизм включает впускной и выпускной клапаны, направляющие втулки, клапанные пружины, опорные шайбы (тарелки) и сухарики. Клапаны подвергаются воздействию высоких давлений и температур, поэтому они изготовляются из особо прочных сталей: впускной — из хромоникелевой, выпускной — из жаростойкой стали.

    В клапанах различают тарелку клапана и стержень. В верхней части стержня имеется выточка под выступы сухариков; на некоторых двигателях делаются выточки под стопорное кольцо, которое удерживает клапан от падения в цилиндр при поломке пружины или выпадении сухариков.

    Боковые поверхности тарелки (фаски) и гнезда клапанов в головке выполнены под углом 45°. Чтобы эти поверхности плотно прилегали, их шлифуют и притирают. Передающий механизм включает толкатели, штанги, коромысла с регулировочными винтами, валики коромысел, стойки коромысел и распорные пружины коромысел.

    Толкатель передает движение от кулачков распредвала штангам. Толкатели могут быть выполнены в виде стакана (СМД-14, СМД-60, Д-65Н) или грибовидной формы (Д-240, Д-37). На двигателях АМ-41, А-01М, ЯМЗ-240Б применяют качающие роликовые толкатели. На этом рисунке представлен механизм газораспределения двс ЯМЗ-240 Б.

    Роликовый толкатель качается относительно оси. При набегании кулачка распределительного вала на ролик толкателя толкатель поворачивается вокруг оси и поднимает штангу. Штанги передают возвратно-поступательное движение от толкателя к коромыслу. Они могут быть изготовлены из стального прутка или пустотелой трубки.

    Коромысло представляет собой стальной двуплечий рычаг. В коротком плече в резьбовое отверстие устанавливается регулировочный винт. Боек коромысла, давящего на клапан, подвергается закалке. В отверстие средней части коромысла запрессовывается бронзовая втулка для установки коромысла на валик.

    Валики коромысел, на которых устанавливаются коромысла, закреплены в стоиках, размещенных на верхней плоскости головки цилиндров. Продольное перемещение коромысел по валику предотвращается распорными пружинами. Валики стальные, пустотелые, внутренняя полость их используется для подвода масла к коромыслам, для чего против каждого коромысла в валике просверлены отверстия.

    Декомпрессионный механизм предназначен для облегчения прокручивания коленчатого вала в первый момент запуска двигателя, путем открытия впускных, а у некоторых двигателей и всех клапанов. При открытых клапанах воздух в цилиндре не сжимается при такте сжатия, чем и облегчается прокручивание коленчатого вала. Когда же коленчатый вал разовьет 250-300 об/мин, декомпрессионный механизм выключают, подают топливо и двигатель заводится.

    Этим механизмом пользуются и для экстренной остановки двигателя. Декомпрессионный механизм устанавливается на двигателях А-01М, АМ-41, СМД-14, Д-37М, Д-21Д. На моторах Д-240, ЯМЗ-240 Б, СМД-60 его нет.

    Декомпрессионный механизм двигателя СМД-14 состоит из валиков, установленных над бойками коромысел в стойках. С нижней стороны под коромыслами валики имеют лыски, и когда механизм выключен, валики декомпрессионного механизма не касаются коромысел и не действуют на клапаны.

    При включении механизма рычагом 25 валик поворачивается и своей несрезанной частью нажимает на коромысла и открывает клапаны. При выключении механизма валики поворачиваются своими лысками к коромыслам и не воздействуют на них.

    На двигателях АМ-41 и А-01М в валиках против каждого коромысла ввернуты болты, которые при повороте валика своими головками давят на коромысла и открывают клапаны. Этими же болтами регулируют и величину открытия клапанов. На двигателях Д-37М, Д-21А декомпрессионный механизм воздействует не на коромысла, а на толкатели.

    Обслуживание механизмов газораспределения

    Обслуживание ГРМ сводится к периодическому осмотру наружных деталей, их креплений, проверке и установлению нормальных зазоров и обеспечению плотности прилегания клапанов к гнездам. Осмотры и регулировку газораспределительного механизма проводят при техническом обслуживании № 2 (ТО-2).

    Перед началом регулировки клапанов подтягивают крепления головки цилиндров и стоек валиков коромысел. Затяжку гаек крепления головки цилиндров ведут динамометрическим ключом по определенной для каждого двигателя схеме в следующей последовательности: сначала затягивают гайки, расположенные в центре головки, затем производят поочередную подтяжку гаек, расположенных по обе стороны от центра головки цилиндров.

    Для регулировки клапанов выполняют следующие операции: ставят поршень первого цилиндра на такт сжатия, в верхнюю мертвую точку. В этом положении поршня, когда клапаны закрыты, проверяют и регулируют зазоры. Чтобы выполнить это условие, наблюдая за коромыслами клапанов первого цилиндра, вращают коленчатый вал до тех пор, пока оба клапана (сначала выпускной, а затем впускной) откроются и закроются и после впуска начнется сжатие.

    После этого вывинчивают установочный винт из картера маховика и вставляют его в то же отверстие не нарезанной частью и, нажимая на винт, продолжают вращать коленчатый вал до тех пор, пока винт не войдет в углубление на маховике.

    При этом поршень будет в ВМТ на такте сжатия. Такая установка применяется на двигателях СМД-14, АМ-41, Д-240, Д-65 Н, Д-50. На последних трех двигателях это будет не точно ВМТ, а положение поршня в момент впрыска топлива.

    Для регулировки зазора отвертывают контргайку регулировочного винта и, удерживая ее гаечным ключом, заворачивают или отворачивают регулировочный винт отверткой до получения необходимого зазора. Например, при зазоре 0,25-0,30 мм щуп толщиной 0,25 мм должен свободно входить между бойком коромысла и торцом клапана, а толщиной 0,30 мм — с усилием.

    Затем регулируют (если он есть и регулируется) механизм декомпрессии в первом цилиндре (АМ-41, А-01М, Д-65Н). Для этого валик декомпрессора устанавливают так, чтобы ось регулировочных винтов была вертикальной. Заворачивают винт до соприкосновения с коромыслом и еще на один оборот и затягивают контргайку.

    После регулировки клапанов и декомпрессионного механизма в первом цилиндре приступают к регулировке их в следующем цилиндре в соответствии с порядком работы двигателя (например, в третьем цилиндре при порядке 1-3-4-2), для чего коленчатый вал проворачивают на пол-оборота (для четырехцилиндровых, указанных выше).

    У шестицилиндрового V-образного двигателя СМД-60 после установки первого цилиндра в ВМТ описанным выше способом открывают люк на картере маховика и поворачивают коленчатый вал по часовой стрелке еще на 45° так, чтобы метка на маховике с цилиндрами «1» и «4» стала против стрелки. В этом положении регулируют клапаны первого и четвертого цилиндров.

    Затем поворачивают коленчатый вал в том же направлении на 240°, до совпадения меток «2» и «5», регулируют клапаны второго и пятого цилиндров и, провернув коленчатый вал еще на 240° до совмещения со стрелкой меток «3» и «6», регулируют зазоры клапанов в третьем и шестом цилиндрах.

    Аналогичные метки имеются на двс ЯМЗ-240Б (на шестерне привода топливного насоса), причем одновременно регулируются клапаны в трех цилиндрах в соответствии с порядком работы двигателя.

    Система газораспределения

    — EPCM Holdings

    1 Введение в систему газораспределения

    Газ — это вещество (элементы или состав), находящееся в свободном расширяющемся состоянии для заполнения всего контейнера. Это означает, что газ будет свободно расширяться, чтобы заполнить форму любого контейнера, в котором он хранится. Различные элементы и соединения, включая кислород, азот, водород, окись углерода, двуокись углерода, углеводородный газ (метан, этан, пропан…), существуют в газообразном состоянии.

    Углеводороды — это органические соединения, полностью состоящие из углерода и водорода.В этой статье EPCM делает упор на углеводородный газ (природный газ).

    1.1 Газораспределительная система: природный газ

    Природный газ — это природный углеводородный газ, состоящий в основном из метана и может содержать различное количество других высших алканов, небольшой процент сероводорода, диоксида углерода и гелия. Природный газ образуется, когда органические материалы (растения и животные), закопанные глубоко в земной коре, подвергаются интенсивному воздействию тепла и давления в течение длительного периода лет.

    Природный газ — это источник энергии, используемый для производства электроэнергии, приготовления пищи, отопления и т. Д.

    Природный газ в обработанном состоянии существует в газообразном состоянии, однако он может быть преобразован в жидкое состояние (это называется сжиженным природным газом. или СПГ)

    1.1.1 Газообразное состояние

    Природный газ в природе существует в газообразном состоянии, если он не обработан и не кондиционирован для существования в жидком состоянии. Природный газ не имеет цвета и запаха, транспортируется в газообразном состоянии по трубопроводам, специально построенным трубам / резервуарам для хранения, установленным на грузовиках и судах.

    1.1.2 Жидкое состояние

    Природный газ можно перерабатывать и доводить до жидкого состояния, называемого СПГ (сжиженный природный газ). Его можно сжижить, охладив газ до температуры –260 ° F (–162 ° C). При этой температуре газ превращается в жидкость. Природный газ в больших количествах транспортируется в сжиженном состоянии (1/600 его первоначального объема газа) на большие расстояния с использованием специально построенных судов для перевозки СПГ. Природный газ нельзя использовать в сжиженном состоянии, поэтому в пункте назначения сжиженный газ переводится в газообразное состояние путем нагревания газа посредством процесса, называемого регазификацией.

    1.2 Газораспределительная система: способы транспортировки природного газа

    Природный газ в газообразном или жидком состоянии может транспортироваться между объектами или потребителям судами / судами, специальными грузовиками и трубопроводами.

    1.2.1 Судно / морские суда

    Суда могут использоваться как для транспортировки природного газа в сжатом состоянии (сжатый природный газ CNG), так и в его сжиженном состоянии (сжиженный природный газ (LNG).

    Однако транспортировка CNG Использование Ship не так популярно, как использование Ship для транспортировки СПГ из-за финансовых последствий.

    Суда в основном используются для перевозки больших объемов сжиженного газа (СПГ) на большие расстояния, особенно при отсутствии трубопроводов. Природный газ нельзя использовать в жидком состоянии, поэтому сжиженный газ переводится обратно в газообразное состояние в месте назначения. Сжиженный газ поступает в регазификационную установку, установленную на корабле или установке поблизости. В процессе регазификации сжиженный газ преобразуется в газообразное состояние перед транспортировкой газа по трубопроводам или грузовикам к конечным пользователям.

    1.2.2 Грузовые автомобили

    Сюда входит транспортировка природного газа в жидком или газообразном состоянии по дорогам с использованием специальных грузовиков. Этот метод транспортировки подходит для транспортировки небольшого объема газа на короткие расстояния по сравнению с транспортировкой газа с использованием судов / кораблей и трубопроводов. Сосуды под давлением специального назначения (изо-контейнеры / специальные трубы), установленные на грузовиках, используются для транспортировки газа на объекты конечного пользователя.

    Когда газ транспортируется в сжиженном состоянии, резервуар для хранения должен иметь возможность поддерживать температуру СПГ ниже температуры фазового перехода природного газа.

    Когда газ транспортируется по трубам для хранения, установленным на грузовиках, он транспортируется в сжатом состоянии (при высоком давлении и низкой температуре), называемом сжатым природным газом CNG. CNG может транспортироваться под давлением более 200 бар, поэтому трубы для хранения сделаны из высокопрочных стальных материалов и толщиной, способной безопасно удерживать газ.

    Компримирование газа осуществляется на установке, принимающей природный газ из трубопроводов, газ подается в сушильную установку, где удаляется водяной пар.

    Из осушителя газ подается в компрессор или в ряд компрессоров, где газ сжимается, увеличивая, таким образом, давление газа.

    Газ выходит из компрессора в накопительные баллоны, которые соединены с раздаточным устройством. Раздаточное устройство сбрасывает газ из баллонов в резервуары для хранения для дальнейшей транспортировки на объект заказчика.

    Газоохладитель встраивается в систему после компрессора, в первую очередь для обеспечения хранения и распределения большего объема газа.

    На объекте потребителя сжатый природный газ подается в установку, которая сбрасывает давление газа и повышает температуру до значения, которое может поддерживаться потребителями газа. СПГ подается в теплообменник, где температура газа постепенно повышается. Газ выходит из теплообменника и поступает в узел понижения и измерения давления, где давление газа снижается перед поступлением в потребительский объект.

    GNSL, дочерняя компания Axxela Group, в настоящее время управляет 5.2MMSCFD Базовая станция сжатого природного газа (КПГ) в Лагосе, Нигерия. На материнской станции природный газ сжимается в мобильные трубы, которые транспортируются грузовиками для дальнейшей доставки к клиентам (https://axxelagroup. com/operations/gas-network-services-limited/)

    Рисунок 1: Сжатый природный газ Трубы на грузовых автомобилях

    1.2.3 Трубопроводы

    Это наиболее эффективный и безопасный способ транспортировки природного газа.

    Некоторые из преимуществ использования трубопровода для транспортировки газа:

    • Непрерывная доставка газа потребителям без сбоев.На доставку не влияет большинство факторов окружающей среды.
    • Трубопроводы можно проложить так, чтобы сократить путь к месту назначения, что сокращает время транспортировки по сравнению с другими видами транспорта.
    • Транспортируется большой объем газа
    • Трубопроводный транспорт — самый безопасный и надежный способ транспортировки газа

    По нескольким транспортным и распределительным трубопроводам природный газ транспортируется в пределах городов, стран, в другие страны или внутри городов.

    Западноафриканский газопровод (WAGP), которым управляет West Africa Gas Pipeline Company (WAPCo), транспортирует газ из Нигерии в три страны Западной Африки (Республика Бенин, Того и Гана. Трубопровод получает газ из трубопровода Эскравос — Лагос на участке Экспортный терминал природного газа Итоки в Нигерии, принадлежащий Нигерийской газовой компании. Газопровод в Западную Африку спроектирован таким образом, чтобы первоначально доставить объем 170 млн. Куб. Футов в сутки, а на более поздних этапах — мощность 460 млн. Куб. / wapco-pipeline)

    Gaslink (GNL), дочерняя компания Axxela Group.Совместно с Nigerian Gas Marketing Company (NGMC) управляет сетью газораспределительных трубопроводов протяженностью более 100 км в Лагосе, Нигерия, с пропускной способностью 140 миллионов кубических футов в сутки и максимальной загрузкой около 70 миллионов кубических футов в сутки (https://axxelagroup.com/operations/gaslink-nigeria-limited /).

    Есть несколько трубопроводов, по которым газ транспортируется через разные страны Европы и Америки.

    2 Газопроводная система

    Газопроводная система — это соединение различных объектов, оборудования, арматуры, предназначенное для эффективной доставки газа конечным потребителям.

    2.1 Газораспределительная система: Типы Трубопроводы

    Трубопроводы могут быть отнесены к любой из следующих категорий

    2.1.1 Отводные трубопроводы

    Отводные трубопроводы используются для транспортировки текучей среды (газа или жидкости) из скважин в хранилища или перерабатывающие предприятия. Технологическая установка может быть предназначена для предварительной обработки жидкости. Жидкость, транспортируемая по отводной линии, не является чистой, поэтому отводная линия должна быть спроектирована так, чтобы обрабатывать жидкость в ее естественном состоянии. Напорные трубопроводы обычно имеют небольшой диаметр (от 2 до 4 дюймов), однако, в зависимости от производительности скважины, размер может быть больше.

    Рисунок 2: Устье скважины с подключенными двойными выкидными линиями

    2.1.2 Сборные трубопроводы

    Эти трубопроводы транспортируют текучие среды из различных объектов обработки и хранения в общий магистральный трубопровод. Магистрали могут быть больше отводных.

    2.1.3 Трубопроводы передачи

    Как определено в ASME B31.8, раздел 803.2, линия передачи — это сегмент трубопровода, установленный в системе передачи или между полями хранения. Хотя система передачи представляет собой один или несколько сегментов трубопровода, обычно соединенных между собой, чтобы сформировать сеть, по которой газ транспортируется из системы сбора, выхода газоперерабатывающего завода или месторождения хранения в систему распределения высокого или низкого давления, крупный заказчик или другое хранилище.

    2.1.4 Система газораспределения

    В соответствии с ASME B31.8 раздел 803.3 магистраль или магистраль распределения — это сегмент трубопровода в системе распределения, установленный для транспортировки газа к отдельным линиям обслуживания или другим магистралям. Распределительные трубопроводы транспортируют газ к генерирующим объектам, фабрикам, промышленным предприятиям, жилым квартирам, газораспределительным станциям и т. Д.

    Система распределения газопровода может иметь различные распределительные линии, исходящие от городских ворот, со всеми линиями, подключенными к распределительному коллектору. Трубопровод может быть выполнен из стальных труб, труб из чугуна с шаровидным графитом, пластиковых труб или из комбинации различных материалов в зависимости от философии разработки проекта.

    3 Система газораспределения

    Система газораспределения — это совокупность установленных объектов, оборудования и арматуры, предназначенная для эффективной транспортировки / распределения газа конечным потребителям.

    3.1 Компоненты газораспределительной трубопроводной системы

    Газораспределительная система может содержать любые из перечисленных ниже компонентов.

    3.1.1 Городские ворота

    Городские ворота — это интерфейс между линией электропередачи и газораспределительной системой. Перечисленное ниже оборудование может быть установлено в городских воротах.

    • Газораспределительный коллектор
    • Система понижения и измерения давления
    • Индикаторы и датчики давления
    • Указатели и датчики температуры
    • Газоочиститель
    • Блок одуризирования газа
    • Блок отбора проб газа (газовый хроматограф)
    • Система обнаружения пожара и газа
    • Изолирующая арматура трубопровода (изолирующее соединение, комплект изоляции фланца)
    • Клапаны аварийного отключения
    • Обратные клапаны
    • Запорные клапаны линии
    • Система катодной защиты
    3.
    1.2 Газораспределительный коллектор

    Распределительный коллектор, установленный в основном над землей, разделяет поток газа на разные распределительные линии. Городские ворота — это центральное место, откуда берут начало разные распределительные линии, эти линии могут быть разного размера в зависимости от спроса на газ на каждой оси распределительной сети. Все распределительные линии связаны в коллектор, расположенный у городских ворот. На каждой линии, подключенной к коллектору, установлены запорные клапаны, функция клапана заключается в том, чтобы обеспечить отключение любой линии независимо от других линий.Коллектор должен иметь соответствующий размер, чтобы доставлять количество газа, необходимое текущим конечным пользователям и предполагаемым будущим потребителям.

    3.1.3 Система понижения и измерения давления

    Блоки понижения давления устанавливаются на газораспределительной сети для регулирования давления газа до уровня, который может поддерживаться нижним распределительным трубопроводом, встроенными компонентами и потребителями газа. Внутри блока PRMS установлен газовый счетчик для измерения количества газа, протекающего через оборудование.

    PRMS разработаны с учетом требований заказчика к газу и в соответствии с философией проекта, т.е. разработаны с учетом диапазона давления, с которым он будет работать. Обычно на городских воротах устанавливается блок понижения давления, чтобы снизить давление в линии передачи до заданного значения, пониженное давление может быть не давлением, требуемым потребителями, а давлением, необходимым для транспортировки газа по сети. Внутри сети могут быть установлены другие узлы понижения давления, называемые «узлы понижения и измерения давления в районе» (DPRMS).DPRMS дополнительно снижает давление в трубопроводе до уровня, с которым можно справиться с помощью «узла снижения давления и дозирования потребителя (CPRMS)». CPRMS устанавливается на линии обслуживания клиентов, предпочтительно на объекте заказчика, перед газовой турбиной / генератором и т. Д. CPRMS снижает давление газа, подаваемого из главной распределительной линии, до требуемого диапазона давления, требуемого заказчиком. Давление на входе большинства газогенераторов меньше 2 бар, в некоторых случаях оно составляет всего 0,2 бар изб., Поэтому CPRMS, установленный на трубопроводе, транспортирующем газ к генераторам, должен быть спроектирован так, чтобы регулировать давление в соответствии с требованиями к давлению газа генератора.

    Следует отметить, что необходимо снизить давление на городских воротах, поскольку высокое давление подразумевает более высокую толщину стенки трубопровода, более высокий класс давления встроенных компонентов, следовательно, более высокие затраты на материалы и установку. Следует также отметить, что пониженное давление должно удовлетворять гидравлическим требованиям для удобной транспортировки газа всем потребителям, поэтому проводится тщательный гидравлический анализ для определения давления, требуемого вдоль трубопровода и в месте нахождения потребителя.

    Рисунок 3: Установленный узел понижения давления и измерения давления

    3.1.4 Индикаторы и датчики давления

    Указатели давления должны быть установлены до и после узла понижения давления и дозатора на городских воротах и ​​на территории заказчика, все линии исходят из городские ворота (распределительный коллектор). Если система является автоматизированной, датчики давления могут использоваться для передачи измеренного полевого давления в диспетчерскую.

    3.1.5 Индикаторы и датчики температуры

    Индикаторы температуры должны быть установлены в линию на распределительном коллекторе у городских ворот.Данные о температуре могут быть считаны на дисплее полевого прибора или переданы в диспетчерскую в автоматизированной системе.

    3.1.6 Газоочистители

    Газоочистители удаляют капли жидкости или следы жидких капель из газовых потоков для защиты оборудования, установленного после скруббера, от повреждений и отказов. В системе скруббера природного газа используются фильтры, коалесцеры, сетчатые прокладки и другие устройства для удаления загрязняющих веществ из потока газа.

    Газоочистители устанавливаются на входе каждого генератора / турбины для удаления капель жидкости и, в зависимости от характеристик газа, могут устанавливаться на городских воротах в трубопроводной сети.

    Рисунок 4: Газоочиститель, установленный на входе в генератор


    Рисунок 5: Газоочиститель, установленный на трубопроводе

    3.1.7 Устройство одуризации газа

    Природный газ не имеет запаха и очень взрывоопасен, поэтому его важно использовать разместить средства обнаружения утечки газа. Одуризация газа является обязательной для системы распределения природного газа, как указано в разделе 856.1 ASME B31.8. Метод обнаружения утечек в газопроводе состоит в том, чтобы ввести в газ должным образом отмеренное сильно пахнущее вещество.Соединения меркаптана широко используются для одорирования природного газа.

    3.1.8 Блок отбора проб и анализа газа (газовый хроматограф)

    Газовый хроматограф установлен у городских ворот для анализа компонентов природного газа. Это используется для подтверждения состава газа, указанного в Соглашении о купле-продаже газа (GSPA). Газовый хроматограф подключается к газопроводу через трубы небольшого диаметра из нержавеющей стали или других материалов. Хроматограф забирает газ из трубопровода, анализирует газ, разделяет газ на различные компоненты, отправляя газ через хроматографический канал.Устройства рассчитывают состав каждого компонента и отправляют отчет в систему отображения.

    Рисунок 6: Установленный газовый хроматограф Rosemount

    3.1.9 Система обнаружения пожара и газа

    Система обнаружения пожара и газа должна быть установлена ​​у городских ворот, полевые приборы обнаруживают утечки газа путем измерения концентрации газа в атмосфере. Установленные датчики температуры должны обнаруживать возможные возгорания. Когда объекты автоматизированы, система обнаружения пожара должна вызвать отключение газовой сети и активировать систему пожаротушения.

    3.1.10 Газопроводы или ответвления

    Ответвления — это ответвления от главной распределительной линии, по которой газ транспортируется к каждому потребителю. Эти трубопроводы могут быть изготовлены из углеродистой стали, пластмассовых материалов, высокопрочного чугуна и т. Д. Ответвительные трубопроводы представляют собой трубопроводы низкого давления, поскольку давление, требуемое потребителями газа, значительно ниже давления в распределительной магистрали. Если давление, подаваемое по ответвлению на расход газа, превышает требуемое, на входе в объект-потребитель устанавливается регулятор давления.

    3.1.11 Газокомпрессорная станция.

    Газоперекачивающая установка должна быть установлена ​​вдоль трубопровода, если давление в трубопроводе не может транспортировать газ к месту нахождения потребителя, удовлетворяя давление, необходимое потребителю. Фактическое расположение компрессорной станции необходимо указать на основании гидравлического анализа. Также на городских воротах может быть установлена ​​установка компримирования газа для повышения давления газа в трубопроводе.

    Типичная компрессорная станция содержит:

    • Газоочистители и фильтры, которые удаляют капли жидкости или следы капель жидкости из газа и других примесей
    • Узел клапана перед и после блока сжатия газа для изоляции и технического обслуживания
    • Компрессор Агрегат, который может содержать один или несколько компрессоров в зависимости от требований конструкции.
    • Система аварийного отключения

    Компрессоры делятся на две группы: компрессоры прямого вытеснения и динамические компрессоры.

    В компрессорах прямого вытеснения входной объем природного газа ограничен определенным пространством (цилиндром) и сжимается за счет уменьшения этого замкнутого пространства или объема газа. Сжатый газ выпускается в трубопровод под более высоким давлением. Наиболее распространенными примерами компрессоров прямого вытеснения являются поршневые или поршневые компрессоры и винтовые компрессоры.

    Работа динамических компрессоров основана на увеличении количества движения газа при его прохождении через компрессоры и преобразовании энергии в давление.Центробежные и осевые компрессоры являются основными типами динамических компрессоров.

    3.1.12 Клапаны

    Для надлежащей изоляции, технического обслуживания или ремонта, продувки / вентиляции и продувки клапаны предусмотрены при эксплуатации системы газораспределения. Клапаны могут быть приварными, фланцевыми или резьбовыми в зависимости от класса давления, однако приварные клапаны обеспечивают лучшую герметичность системы. Все клапаны, устанавливаемые в газораспределительной системе, должны соответствовать любым нормам, указанным в разделе 831.1 ASME B31.8 или в соответствии с другими применимыми нормами и стандартами. Все клапаны должны быть установлены в легкодоступном месте и в соответствии с правилами и стандартами, такими как ASME B31.8. На газораспределительных сетях может быть установлена ​​любая из следующих арматуры.

    3.1.12.1 Клапаны аварийного отключения

    Клапан аварийного отключения (ESDV) / Запорные клапаны должны быть установлены на линии передачи газа к городским воротам или на входных распределительных линиях в зависимости от философии проекта.Клапан может быть установлен над или под землей, в зависимости от расположения клапана и требований конструкции. Электрозащита обеспечивают надежную изоляцию городских ворот от непредвиденных условий эксплуатации.

    Использование клапана автоматического отключения не является обязательным, как указано в разделе 846.2 ASME B31.8, однако, когда используются клапаны автоматического отключения, клапаны должны быть оснащены соответствующими контрольно-измерительными приборами и системой управления, чтобы клапан закрылся, когда

    • Скачок давления сверх установленного значения.
    • Повышение температуры сверх установленного значения.
    • Пожар обнаружен противопожарно-газовой системой, установленной на объекте.

    Рисунок 7: Клапан аварийного отключения

    3.1.12.2 Секционные / отсечные клапаны

    Секционные или отсечные клапаны должны быть установлены вдоль участка трубопровода в районе, где были выявлены основные проблемы (населенные пункты и т. Д.), На ответвлениях ответвляется от распределительной магистрали перед оборудованием для снижения давления и измерения.Секционные клапаны должны устанавливаться в соответствии с требованиями раздела 846 ASME B31. 8 или других применимых норм и стандартов. Такое расположение полезно для ограничения потерь газа при утечке или разрыве трубопровода, а также при обслуживании любого участка трубопровода. Расположение должно быть таким, чтобы минимальное количество потребителей было отключено от подачи газа во время технического обслуживания.

    Секционные клапаны можно приваривать непосредственно к трубопроводу, чтобы свести к минимуму возможность утечки газа через фланцевые соединения или резьбовые соединения.Они могут приводиться в действие вручную или может быть предусмотрено автоматическое срабатывание.

    Клапаны секционирования могут быть установлены под землей, над землей или в хранилище. В любом из вышеупомянутых положений установки все приводы клапанов должны быть легко доступны для работы и защищены от повреждений. Когда клапанные устройства устанавливаются в подземных хранилищах, хранилища должны быть спроектированы в соответствии с разделом 847 ASME B31.8

    Расположение точек секционирования может состоять из следующих

    • Разделительный клапан магистрали

    Эти клапаны должны иметь такой же размер, как и В главном распределительном трубопроводе клапаны могут быть непосредственно приварены к трубопроводу, чтобы свести к минимуму возможность утечки в трубопроводной системе, или быть фланцевыми. Для автоматизированной системы клапан должен быть оборудован соответствующими приборами для облегчения дистанционного управления.

    Обводное устройство может включать два шаровых клапана (для перекрытия) и два шаровых клапана (для дросселирования). Их следует использовать, когда есть необходимость в обслуживании или ремонте любого участка трубопровода. Они расположены для разгерметизации сегментов трубопровода, а также для перевода сегментов трубопровода в оперативный режим во время процесса запуска после технического обслуживания или ремонта участка трубопровода.

    Вентиляционные линии в основном используются для вентиляции и продувки при эксплуатации трубопровода. Эта линия используется для сброса давления на любом участке линии, где требуется техническое обслуживание. Вентиляционные линии должны располагаться вдали от общественных мест. В конце линии следует установить шаровой кран, чтобы обеспечить плотное перекрытие. Может быть установлена ​​постоянная вентиляционная система или предусмотрено место для временной мобильной вентиляционной системы.

    3.1.12.3 Обратные клапаны

    Обратные клапаны должны устанавливаться после редуктора давления и измерительной системы, как указано в ASME B31.8 стандартный раздел 848.3. Обратные клапаны защищают PRMS от обратного давления, если существует более низкое давление перед PRMS из-за отказа трубопровода или любого другого события.

    3.1.13 Система газораспределения: система катодной защиты

    Необходимо, чтобы все стальные трубы, проложенные под землей, имели внешнее покрытие для предотвращения внешней коррозии. Трубопроводы подземного газораспределения могут иметь внешнее покрытие трехслойным полиэтиленовым покрытием (3LPE), любым другим материалом, соответствующим ISO 21809-1 или другим нормам и стандартам.Однако во многих случаях повреждение внешнего покрытия приводит к сильной коррозии трубопровода. В сочетании с защитой 3LPE все подземные стальные трубопроводы должны иметь катодную защиту. Суть защиты — исключить коррозию. Направленный ток является предпочтительным средством защиты подземных подземных трубопроводов.

    Направленный ток влечет за собой подачу тока, генерируемого трансформаторным выпрямительным блоком (TRU), подключенным к заземляющему основанию анода, в подземный трубопровод, ток используется против процесса коррозии, тем самым защищая трубопровод.Типичные компоненты системы катодной защиты включают трансформаторный выпрямительный блок, заземляющий слой анода, кабели катодной защиты и контрольные точки катодной защиты, установленные вместе со всей сетью стальных трубопроводов.

    Рисунок 8: Установленный трансформаторный выпрямительный блок

    3.1.14 Изолирующие фитинги трубопровода (изолирующее соединение или комплект для изоляции фланца)

    Основная функция изолирующего соединения или комплекта для изоляции фланца — электрическая изоляция различных секций газораспределительной системы .Требования к гальванической развязке подробно изложены в разделе 861.1.3 стандарта ASME B31.8

    . городские ворота, разъемы клиентов снаружи окрашены, поэтому снаружи защищены от коррозии. Обязательно изолировать подземную секцию, защищенную катодной защитой (CP) и внешним покрытием, от надземной секции. Это достигается путем установки изоляционных соединений или комплекта для изоляции фланца в точке перехода от поверхности земли к земле.

    Изолирующие соединения / фланцы трубопровода также должны быть установлены в указанном месте, чтобы минимизировать или исключить утечки тока на сторонние объекты, которые могут быть прямо или косвенно связаны с распределительной сетью. Изолирующие муфты могут устанавливаться в местах прокладки трубопровода параллельно воздушной линии электропередачи.

    Следует отметить, что утечки тока происходят только на участке трубопровода из металла, неметаллические участки газораспределительной системы не требуют установки изолирующего стыка.

    Рис. 9: Установленные изоляционные соединения трубопровода

    3.1.15 Станция управления.

    В зависимости от желаемого уровня автоматизации газораспределительная система может быть полностью автоматизированной или полуавтоматической.

    Функция станции управления — контролировать всю трубопроводную сеть и все подключенное оборудование. Станция управления принимает сигналы от полевых приборов, таких как индикаторы и датчики давления, индикаторы и датчики температуры, приборы для измерения расхода и т. Д.Станция управления также может иметь возможность закрыть любой вентиль на газораспределительном трубопроводе.

    4 Рекомендации по проектированию и эксплуатации газораспределительной системы

    На различных стадиях проектирования газораспределительного проекта (от концептуализации до рабочего проекта) должны быть проанализированы различные аспекты, включая потребителей газа, объем газа, выбор материалов, маршруты трубопроводов, размер линии.

    4.1.1 Потребители газа

    Потребители газа являются ключевым определяющим фактором при планировании системы газораспределения

    Перед концептуальной концепцией газопровода должны быть доступны потребители для использования газа, который будет транспортироваться. Количество потребителей, местонахождение потребителей, количество газа, которое будет закуплено всеми потребителями, предполагаемые будущие потребители должны быть проанализированы, чтобы определить осуществимость проекта.

    4.1.2 Объем газа

    Это важный фактор, который следует учитывать при планировании газораспределительной сети. Объем газа необходимо проверять как со стороны спроса, так и со стороны предложения. После определения всех потребителей суммируется объем газа, необходимый всем потребителям. Общий доступный газ сравнивается с общим потреблением газа.Следует отметить, что лучше иметь одного потребителя большого объема газа (например, электростанции), чем иметь множество потребителей с низким объемом потребления.

    4.1.3 Требования к поставке газа

    Это ключевой фактор, который следует анализировать при планировании газораспределительной сети. Требования клиентов к газу, такие как давление подачи и температура, варьируются, поскольку газ будет использоваться для различных целей. Давление, необходимое для газовых двигателей, варьируется, поэтому блок понижения давления, устанавливаемый на каждой линии обслуживания, может быть разным.Это означает, что стоимость PRMS в торговой сети будет варьироваться для разных клиентов.

    4.1.4 Моделирование процесса

    Это влечет за собой определение параметров процесса вместе с распределительной сетью. В предварительном анализе используются предполагаемые данные, включая отметку трассы, фитинги и т. Д., Однако по мере продвижения проекта от концептуальных исследований к детальному проектированию для гидравлического анализа должны использоваться фактические данные изысканий. Гидравлическое моделирование технологического процесса имеет решающее значение, поскольку результаты моделирования показывают характеристики газа (давление и температуру) в каждом месте расположения заказчика и вместе с сетью.Смоделированное давление в месте нахождения заказчика будет использоваться для определения PRMS, которая будет установлена ​​в случае необходимости.

    4.1.5 Принципы изоляции трубопроводов

    Это очень важно при планировании газораспределительной сети. Обычно сеть должна быть спроектирована таким образом, чтобы минимальное количество клиентов было затронуто во время технического обслуживания. Обычно это достигается путем правильного размещения запорных клапанов в стратегических местах.

    4.1.6 Размер линии

    Размер линии выполняется инженером-технологом.Выбор размера линии влечет за собой определение оптимального размера трубы, по которой можно транспортировать желаемый объем газа потребителям. Размер линии должен учитывать будущее расширение газораспределительной сети. Очень важно правильно выбрать размер линии, особенно когда предусмотрены будущие клиенты. Это сделано для того, чтобы линия могла транспортировать количество газа, необходимое всем потребителям.

    4.1.7 Расположение городских ворот

    Расположение городских ворот очень важно для любой газораспределительной сети.Городские ворота должны быть расположены таким образом, чтобы значительно сократить длину линии электропередачи и распределительной сети. При размещении городских ворот следует должным образом проанализировать расположение источников газа, таких как перерабатывающий завод или экспортный трубопровод. Подробный гидравлический анализ необходим для проверки свойств газа (давления, температуры) до и после городских ворот.

    4.1.8 Материалы труб

    Трубопровод состоит из соединенных труб и других встроенных компонентов.Как указано в разделе 812 стандарта ASME B31.8, трубопровод может быть изготовлен из стали, высокопрочного чугуна, пластмассы или комбинации материалов. Однако большая часть газораспределительных трубопроводов изготовлена ​​из стальных труб.

    Выбор материала очень важен при планировании газораспределительной сети. Стальные трубы более подвержены коррозии по сравнению с трубами из высокопрочного чугуна и пластиковыми трубами. Пластиковые трубы не подвержены коррозии, однако они обладают самой низкой прочностью по сравнению со стальными трубами и трубами из высокопрочного чугуна.Ковкий чугун имеет низкую свариваемость по сравнению со стальными трубами, что требует применения других методов соединения. Поэтому при выборе материалов для газораспределительной сети следует тщательно изучить преимущества и недостатки любого выбранного материала.

    Стальные трубы, изготовленные в соответствии со следующими стандартами API 5L, ASTM A53 / A53M, ASTM A106 / A106M, ASTM A134 и другими стандартами, указанными в разделе 814.1.1, могут использоваться для трубопроводов.

    Как указано в разделе 14.1.2 ASME B31.8 труб из высокопрочного чугуна, изготовленных в соответствии с ANSI A21.52, под названием «Трубы из высокопрочного чугуна, центробежно-литые для газа», могут быть использованы в газопроводах.

    Раздел 814.3 раздела 814.3 стандарта ASME B31.8 разрешает использование пластиковых труб. Могут использоваться пластиковые трубы и компоненты, изготовленные в соответствии с любым из нижеперечисленных стандартов.

    Можно использовать

    Производство полиэтиленовых труб в соответствии со стандартом D2513 (полиэтиленовые (ПЭ) газонапорные трубы, трубки и фитинги).

    Трубы из полиамида-11 (PA-11), изготовленные в соответствии с ASTM D2517 (Полиэтиленовые (PE) газовые напорные трубы, трубки и фитинги), ASTM D2517, армированные эпоксидной смолой, напорные трубы и фитинги, могут использоваться в газораспределительной сети

    Можно использовать термопластичные трубы, трубки, фитинги и цемент, соответствующие ASTM D2513, однако они должны изготавливаться в соответствии с программой внутризаводского контроля качества, рекомендованной в Приложении A3 спецификации

    4.
    1.9 Маршрут газопровода

    Распределительная сеть должна быть проложена таким образом, чтобы газ можно было экономично и эффективно транспортировать потребителям газа. Трубопровод должен быть проложен таким образом, чтобы трубопровод был близок к потребителям. Кроме того, маршрутизация должна учитывать будущих клиентов.

    4.1.10 Разрешительные и нормативные акты

    Разрешение является важным фактором при планировании газораспределительного трубопровода. Процедуры выдачи разрешений различаются в зависимости от страны. Разрешение — это удостоверяющий документ, подтверждающий, что трубопровод может быть проложен по спроектированной трассе в соответствии с указанным стандартом.Например, в Нигерии разрешения на трубопроводы выдаются Министерством нефтяных ресурсов (DPR). Разрешительная процедура осуществляется в соответствии с Законом о нефтепроводах.

    Перед началом строительных работ должны быть получены все разрешения от государственных органов, в том числе от Министерства транспорта (для пересечения трубопроводных дорог и железнодорожных переходов), водных путей (для пересечения трубопроводов через реки) и т. д.

    4.1.11 Трубопроводная арматура

    При планировании газораспределительной сети должен быть выполнен критический анализ арматуры, которая будет использоваться.Некоторые требования к фитингам поясняются ниже:

    Отводы

    Указанные отводы трубопровода должны соответствовать требованиям к давлению, температуре, толщине и изгибу

    Главная распределительная линия может быть снабжена скребками в зависимости от требований клиента и норм. При очистке трубопроводов скребками все изгибы должны соответствовать требованиям предлагаемых инструментов для очистки. Некоторым инструментам для чистки скребков требуются изгибы 5D для легкого прохождения инструмента, поэтому изгибы должны соответствовать радиусу изгиба 5D

    Тройник с зазубриной

    Тройники с зазубринами используются на магистральных линиях, прокладываемых через скребок.Указанный тройник с решеткой должен соответствовать требованиям к температуре, давлению и очистке скребков. Тройник с решеткой должен быть установлен на всех ответвлениях от магистрали, чтобы гарантировать, что инструмент для очистки не будет на складе на соединениях ответвлений.

    Фланцы

    Фланцы — это ключевые соединительные элементы, используемые в газораспределительной сети. Когда фланцы используются в газораспределительной системе, они являются самым слабым звеном, где могут возникнуть утечки газа. Указанный класс фланца должен соответствовать требованиям линии по давлению и температуре.

    4.1.12 Глубина заглубления трубопровода

    Трубопровод, по которому транспортируется газ, должен быть заглублен на соответствующей глубине в соответствии с проектными нормами и стандартами, такими как раздел 841.1.11 ASME B31.8. Кроме того, местные директивы являются обязательными и заменяют любые требования международных стандартов. Фактическая глубина заглубления трубопровода должна быть определена после критического исследования трассы трубопровода с учетом безопасности трубопровода и других соображений.

    4.1.13 Оценка целостности трубопровода

    Оценка целостности трубопровода обеспечивает безопасную эксплуатацию трубопровода. На концептуальной стадии проекта должен быть проанализирован предполагаемый метод оценки. Существует несколько методов оценки целостности, таких как ультразвуковой контроль, очистка скребками с помощью интеллектуальных инструментов и т. Д.

    Трубопроводы, планируемые для очистки скребками, должны иметь все фитинги и клапаны, удовлетворяющие требованиям очистки скребками

    4.1.14 Стоимость строительства газораспределительной сети

    Надлежащая стоимость оценка будет выполнена при проектировании газораспределительной системы для определения осуществимости проекта.Капитальные затраты (CAPEX) и операционные расходы (OPEX) должны быть проанализированы, чтобы определить, осуществим ли проект. CAPEX — это категория расходов, которая возникает от стадии проектирования проекта до стадии ввода в эксплуатацию, в то время как эксплуатационные расходы покрывают затраты, которые будут понесены при эксплуатации газораспределительной системы.

    5 Заключение

    Природный газ может транспортироваться в газообразном состоянии (NG или CNG) или в жидком состоянии (LNG). Природный газ может транспортироваться морскими судами / кораблями, специальными трубами / сосудами под давлением, установленными на грузовиках и трубопроводах.

    Выбор способа транспортировки газа и состояния транспортировки газа требует критической оценки доступной транспортной инфраструктуры, количества газа, необходимого конечным пользователям, общих капитальных и операционных затрат проекта.

    6 Ссылки

    ASME B31.8 — 2016: Системы трубопроводов для передачи и распределения газа

    ISO 21809-1: Нефтяная и газовая промышленность. Наружные покрытия для подземных или затопленных трубопроводов, используемых в системах трубопроводного транспорта. Часть 1: Полиолефиновые покрытия ( 3-х слойный PE и 3-х слойный PP).

    Западноафриканский газопровод: https://www.wagpco.com/the-project/wapco-pipeline

    Axxela Group: https://axxelagroup.com/operations/gaslink-nigeria-limited/

    Axxela Group: https://axxelagroup.com/operations/gas-network-services-limited/

    Газораспределительные системы | Swagelok

    Полностью собранные и протестированные газораспределительные панели для промышленного применения

    Газораспределительные системы должны безопасно и эффективно доставлять газы от источника высокого давления до конечного процесса при давлении и скорости потока, необходимых для каждого применения. Однако, когда работа системы не является интуитивно понятной, когда присутствуют утечки или когда газовые панели трудно обслуживать, могут возникнуть проблемы.

    • Незаметные утечки дорогостоящих газов могут снизить вашу рентабельность
    • Утечки бытовых газов могут поставить под угрозу эффективность процесса и увеличить эксплуатационные расходы
    • Многие типы утечек также могут создать угрозу безопасности для членов вашей команды
    • Проблемы с системой подачи газа могут привести к прерыванию процесса и незапланированным простоям

    Часто промышленные предприятия не имеют опыта или ресурсов в области снижения давления, чтобы эффективно решать эти проблемы в своих газораспределительных системах.

    Обратитесь за помощью в Swagelok

    Узнайте, как наши консультанты помогают небольшим командам оптимизировать и лучше управлять обширными системами распределения газа с помощью нашей программы распределения газа.

    Swagelok

    ® Газораспределительные системы

    Если вам нужно стандартное решение или индивидуальная компоновка, мы можем спроектировать и собрать систему подачи газа, которая подходит именно вам. Наши стандартные газовые панели полностью собраны и протестированы. Их легко заказать из нашего руководства по применению в виде отдельных номеров деталей, что сводит к минимуму время, которое ваши инженеры тратят на спецификацию и закупку новых систем.Они также имеют широкие возможности настройки — мы можем добавлять функции или вносить изменения по мере необходимости в соответствии с вашими требованиями.

    Мы проектируем газораспределительные системы Swagelok на основе передового опыта. Наши модульные панели имеют минимальное количество резьбовых соединений для уменьшения потенциальных точек утечки, и они интуитивно промаркированы для обеспечения безопасного и простого использования и обслуживания. На все наши газораспределительные системы распространяется Ограниченная пожизненная гарантия Swagelok.

    Послушайте, как наши инженеры рассказывают о различных разработанных Swagelok подсистемах распределения газа, которые мы предлагаем, и о преимуществах, которые они могут предоставить вам.

    Выбор из модульных подсистем газораспределения

    Газораспределительные системы Swagelok построены на одной или нескольких ступенях регулирования давления и могут включать четыре подсистемы:

    • Swagelok ® Вход источника (SSI)
    • Swagelok ® газовая панель (SGP)
    • Swagelok ® преобразователь (SCO)
    • Swagelok ® точка использования (SPU)

    Загрузите наше руководство по применению

    Swagelok

    ® Вход источника (SSI)

    Вход источника устанавливает соединение между источником газа высокого давления и распределительной системой.Важно, чтобы впускное отверстие было снабжено соответствующими соединениями цилиндра; шланги; НКТ; фильтры; а также функции вентиляции, продувки и сброса, чтобы обеспечить безопасную подачу газа в первичный регулятор давления газа или автоматическое переключение.

    Для одного газового баллона сборка может быть такой же простой, как шланг и соединитель, тогда как для нескольких баллонов может потребоваться коллектор, включающий множество шлангов и клапанов.

    Предлагаем:

    • Широкие возможности настройки для продувки или выпуска газов при замене баллонов, всегда гарантируя безопасность оператора
    • Доступна опция вентиляции отдельных линий для максимального увеличения времени безотказной работы
    Как консультанты Swagelok могут помочь

    Легко предположить, что входной патрубок источника будет стандартно поставляться с новой газовой панелью и будет использовать правильный разъем баллона, но это не всегда так.Наши консультанты позаботятся о том, чтобы все компоненты были включены и правильно указаны с минимальным количеством точек подключения, шлангами, которые не падают на землю, и надлежащим образом поддерживаемыми компонентами. Кроме того, мы можем посоветовать, когда для некоторых газов может потребоваться использование специальных шлангов.

    Swagelok

    ® Газовая панель (SGP)

    В качестве основного регулятора давления газа SGP завершает первое снижение давления исходного газа и обеспечивает его подачу с правильным расходом на следующую ступень системы.Снижение давления осуществляется либо в одну ступень с помощью одного регулятора давления, либо в две ступени с помощью сдвоенного регулятора давления.

    Предлагаем:

    • Модульные панели, которые просты в обслуживании, поскольку любая часть может быть отсоединена с помощью соединения Swagelok, поэтому панель не нужно снимать
    • Дополнительные опции для регулятора и клапанов для цветовой кодировки, если это необходимо для вашего объекта
    Как консультанты Swagelok могут помочь

    Точное определение правильного давления на входе и выходе может быть трудным — наши консультанты четко объяснят, что нужно учитывать для различных сред.Мы также можем помочь вам понять, где требуется двухступенчатый регулятор — многие клиенты удивляются, узнав, что для большинства бутылок не требуется двухступенчатое решение.

    Swagelok

    ® Преобразователь (SCO)

    Автоматическая система переключения плавно переключается с одного источника газа на другой, чтобы обеспечить бесперебойное снабжение. Это достигается за счет смещения уставок двух регуляторов давления, что позволяет системе продолжать работу при смене основного источника газа.Наша переключающая станция позволяет устанавливать заданные пользователем точки переключения, чтобы сократить потери газа, остающегося в баллонах.

    Предлагаем:

    • Больше уверенности, что точка переключения остается постоянной
    • Дополнительное регулирование линии, если ваша система включает в себя регулятор точки использования на выходе — это может устранить дополнительные затраты на регулятор на SCO
    • Гибкость настройки давления переключения в соответствии с вашими требованиями
    Как консультанты Swagelok могут помочь

    Системы автоматического переключения широко используются, но часто недостаточно изучены. Кроме того, универсальное решение, как правило, применяется ко многим различным системам, параметры и потребности которых могут различаться. Мы можем помочь вашей команде лучше понять функциональность системы, чтобы исключить неопределенность в работе, устранении неполадок и обслуживании.

    Swagelok

    ® Место использования (SPU)

    Пункт использования обеспечивает последнюю критическую стадию регулирования давления перед использованием газа. Часто это наименее сложные из четырех основных подсистем, обычно имеющие регулятор давления, манометр и запорный клапан.Системы на месте использования предлагают удобный и точный метод регулировки давления в соответствии с потребностями испытательного стенда или оборудования.

    Предлагаем:

    • Стандартизация и согласованная работа на месте использования
    • Поток сверху вниз или снизу вверх в соответствии с вашими требованиями
    • Варианты крепления на плоской пластине, снизу, сверху и на стене
    • Компактная конструкция
    Как консультанты Swagelok могут помочь

    Мы можем показать вам скрытую экономию, например, как можно использовать одноступенчатый SGP для минимизации затрат там, где допустимо варьирование линейного давления между SGP и SPU. Все подсистемы Swagelok® легко настраиваются в соответствии с вашими требованиями, и наши консультанты помогут вам выбрать лучшие компоненты для работы и подберут подходящий вариант монтажа, который сводит к минимуму вероятность возникновения повреждений.

    Запросить информацию о газораспределительных системах

    Газопроводные системы и эксплуатация

    Читатели требовали редакционных материалов, демонстрирующих основные знания, общие концепции и процессы, а также непрерывное образование в газоперерабатывающей промышленности, и компания Gas Processing & LNG откликнулась.Во второй части этой обучающей серии статей автор исследует основы газопроводных систем и эксплуатации. Следите за новыми статьями «Назад к основам» в следующих выпусках журнала Gas Processing & LNG.

    В 4 веке до нашей эры китайский историк Чан Цюй описал странный «воздух огня», который использовался для освещения комнат и производства соли путем кипячения рассола. Чанг также сообщил об изобретательной бамбуковой системе, запечатанной битумом, которая использовалась для транспортировки природного газа из трещины в сельской местности в деревни; якобы он описал первый известный трубопровод.

    В 1859 году американский бизнесмен Эдвин «полковник» Дрейк пробурил скважину с нефтью и попутным газом недалеко от Титусвилля в Пенсильвании. Газ доставлялся в Титусвилл по трубопроводу длиной 2 дюйма и 9 км, в основном для освещения. Дрейк доказал, что природный газ можно безопасно и легко транспортировать от источника к рынку, проложив путь для развития газовой промышленности.

    Сегодня общая протяженность трубопроводов составляет 2,76 млн. Км в более чем 120 странах мира.Только в 2019 году было завершено строительство трубопроводов общей протяженностью 7830 км, что составляет примерно одну пятую окружности Земли. Эти цифры убедительно говорят о важности трубопроводных систем в газовой отрасли.

    Эта статья дает представление о составных элементах трубопроводных систем. В нем также излагаются технические вопросы, связанные с сектором транспортировки и распределения природного газа, и способы обработки сезонных колебаний спроса.

    Магистральные и распределительные сети. Трубопроводные системы — это сложные инфраструктуры, соединяющие источники энергии с конечными пользователями, которые обычно расположены далеко от точек доставки. Точки доставки обычно соответствуют узлам учета на производственных объектах, где природный газ передается от производителя к отправителю, или узлам учета на границах стран-импортеров.

    Транспортная система включает в себя передающие сети или магистральные линии вместе с распределительной сетью. Магистральный трубопровод представляет собой трубопровод высокого давления (40–80 бар изб. Для береговых сооружений, до 200 бар изб. Для некоторых морских применений) большого диаметра (20 дюймов).–48 дюймов) труба проходит на большие расстояния, часто по трансграничным маршрутам. Он предназначен для обработки больших объемов газа, поступающего из нескольких точек входа (системы сбора, центральные технологические объекты и другие точки приема). Как правило, точки выхода из сети передачи ограничены боковыми линиями для подключения к региональным (внутригосударственным) сетям, инфраструктурам хранения и ключевым зонам потребителей.

    Распределительные сети предназначены для обслуживания рынков. В целом, эту часть системы можно отнести к категории региональной распределительной системы, работающей при пониженном давлении (20–40 бар изб.) Для подачи газа промышленным потребителям, электростанциям и местным распределительным компаниям.Он получает газ от магистральных трубопроводов или от местных производителей.

    Местные распределительные сети получают природный газ из региональных сетей, работающих под давлением 5–15 бар изб. Это давление дополнительно снижается местными распределительными компаниями для удовлетворения требований конечных пользователей. Например, газ поставляется бытовым потребителям под давлением 20–40 мбар изб.

    Природный газ — товар без цвета и запаха. Чтобы сделать утечки легко обнаруживаемыми и снизить риск токсичности и взрыва, в природный газ в местной системе распределения добавляется ароматизирующий состав. Трет-бутилмеркаптан является наиболее часто используемым одорирующим веществом; 10 мг / см 3 будет достаточно.

    Компрессорные станции. Природный газ, протекающий по линиям электропередачи, подвержен потерям давления из-за трения. В результате расширение газа снижает пропускную способность трубопровода в ущерб транспортной экономике. Вдоль магистрального трубопровода необходимо установить компрессорные станции, чтобы ограничить скачок плотности газа. Как показывает практика, максимально допустимый перепад давления между двумя последовательными компрессорными станциями составляет примерно 25–30% от давления нагнетания на вышестоящих станциях.

    Большая компрессорная станция может включать до 12 компрессоров (центробежных или поршневых). Эти компрессоры обычно приводятся в действие газовой турбиной с потребляемой мощностью до 60 МВт. Счет за электроэнергию для транспортировки природного газа является важным элементом финансовой отчетности транспортной компании.

    Общая конфигурация системы трубопроводов показана на Рис. 1 . Некоторые крупные пользователи получают питание напрямую от магистральной линии, чтобы они могли справляться с переходными процессами нагрузки.В самом деле, низкое давление в распределительной сети не обеспечило бы большой емкости хранилища, на которую можно было бы положиться в переходных условиях.

    Рис. 1. Общее устройство трубопроводной системы.

    Трубопроводные системы для транспортировки природного газа изготовлены из углеродистой стали, обладающей высоким пределом текучести и прочностью на разрыв. API 5L класса X65 и выше является наиболее популярным материалом из углеродистой стали, используемой для трубопроводов высокого давления.Для морских применений в основном используется класс L450 по API 5L. Распределительные системы были построены из множества различных материалов, включая чугун, сталь, медь и пластмассовые трубы. Пластиковые трубы сегодня широко используются в газораспределительных системах.

    Диспетчерские центры. Пункты входа, доставки и выхода (включая входящие / исходящие потоки систем хранения), компрессорные станции и работы по техническому обслуживанию должны тщательно координироваться, контролироваться и контролироваться, чтобы обеспечить безопасную и эффективную работу и сбалансировать фактический спрос.Значительные колебания спроса наблюдаются в течение дня и недель, а также по сезонам.

    Эта деятельность осуществляется через диспетчерские центры, в основе которых лежат телеметрические сети, системы удаленной передачи данных и централизованные системы мониторинга, наблюдения и контроля сбора данных. Сердце диспетчерского центра — сложная программная система — диспетчерский контроль и сбор данных, или SCADA. Система SCADA способна обрабатывать сотни тысяч данных, поступающих из множества измерений в режиме реального времени.

    Основы проектирования трубопроводов. Новый рынок природного газа формируется из-за ограниченной клиентской базы. Трубопровод должен быть спроектирован с учетом динамики обслуживаемых рынков. Это потребует оптимального сочетания диаметров трубопроводов, станций сжатия и расстояний до них с учетом желаемой гибкости и расширяемости.

    Для данного диаметра и длины трубопровода транспортные расходы снижаются с увеличением пропускной способности, поскольку соотношение капитальных затрат к пропускной способности уменьшается быстрее, чем возрастают затраты на сжатие, как показано на рис.2. По мере увеличения емкости наклон кривой уменьшается из-за более чем пропорционального увеличения стоимости сжатия, которое становится преобладающим справа от оптимальной точки.

    Трубы разного диаметра имеют разные профили стоимости; поэтому транспортные операторы должны выбрать оптимальную конфигурацию трубопроводов в соответствии с прогнозируемым развитием рынка.

    Рис. 2 также показывает, что трубопроводы могут принести значительную экономию на масштабе: оптимальная точка уменьшается с увеличением диаметра трубы. По этой причине общепринято строить трубопроводную систему с большим диаметром трубы, чем требовалось изначально, но с мощностью компрессора, ограниченной текущими потребностями. Новые компрессоры могут быть добавлены позже, когда возрастет потребность в транспортных мощностях.

    Рис. 2. Инвестиционные затраты в зависимости от пропускной способности трубопровода.

    Когда рынок выходит за пределы оптимальной мощности, транспортные операторы сначала пытаются удовлетворить дополнительный спрос, увеличивая давление нагнетания существующего компрессора, прежде чем вкладывать средства в расширение.Однако этот подход допускает ограниченное «пространство для маневра», поскольку поток увеличивается только пропорционально квадратному корню из перепада давления вдоль линии, в то время как потребление энергии компрессорами увеличивается более чем пропорционально. После извлечения максимальной дополнительной мощности из существующей конфигурации трубопроводов, новый рыночный спрос может быть удовлетворен путем чередования кольцевания существующей линии с добавлением новых компрессорных станций.

    Замкнутое кольцо — это когда один трубопровод проложен параллельно между двумя компрессорными станциями, образуя две линии из одной, как показано на Рис.3 . Для заданной производительности перепад давления между двумя последовательными станциями замкнутой системы составляет одну четвертую относительно одиночной линии. Компрессионная станция справа от петлевой секции может повышать давление до значения, соответствующего увеличенной производительности, при сохранении желаемого давления в точке выхода. Петлевой подход позволяет увеличить пропускную способность трубопроводной системы.

    Рис.3.Обводка трубопровода.

    Расстояние между двумя компрессорными станциями составляет 100–200 км. Петлевые трубы могут увеличивать расстояние между компрессорными станциями. Иногда замкнутый контур используется для создания емкости для хранения, где природный газ может быть упакован в трубопровод, чтобы увеличить поставки местным потребителям в периоды пиковой нагрузки. Помимо регулирования давления нагнетания и создания петель, еще одним вариантом увеличения пропускной способности трубопровода является установка нового компрессорного оборудования.

    Подводные трубопроводы. При морской разведке и добыче газа подводные трубопроводы используются для соединения платформ с материком. Эти трубопроводы обычно изготавливаются из композитных материалов. Сердечник представляет собой трубу из углеродистой стали, рассчитанную на высокое давление. В зависимости от конфигурации системы трубопроводов внутренняя поверхность этих труб может быть покрыта покрытием, обычно материалом на основе эпоксидной смолы, для уменьшения трения. Снаружи металлическая часть трубы окутана многослойным полиэтиленовым покрытием для защиты от коррозии.В конечном итоге навес из бетонного материала обеспечит фундаментальную устойчивость и защиту от внешних воздействий.

    Коммерческие трубы соединяются горизонтально на палубе судна и скользят по морскому дну в традиционной S-образной форме. Затем их переставляют горизонтально на морском дне. Наклонный участок трубы между морским дном и трубоукладочным судном должен быть достаточно длинным, чтобы избежать напряжения изгиба сборки.

    Альтернативой S-образной формации является J-образная прокладка.Он состоит в соединении двух последовательных отрезков трубы вертикально на судне-укладчике. Затем трубу вертикально опускают на морское дно. Техника «J» позволяет достигать больших глубин.

    Примечание: На небольших расстояниях компрессорной станции на производственной платформе достаточно для доставки газа на береговую компрессорную станцию. На большие расстояния компрессорное оборудование необходимо устанавливать на стояках, что требует значительного увеличения затрат.

    В качестве альтернативы, транспортировка природного газа на большие расстояния без промежуточных компрессорных станций может быть достигнута за счет повышения давления в трубопроводе.Трубопровод Nord Stream пересекает Балтийское море от Выборга, Россия, до Грайфсвальда, Германия, протяженностью 1224 км без промежуточных стояков. В условиях эксплуатации трубопровода температура газа падает внутри оболочки образования гидратов и пробок «сырого газа».

    Образование пробок / гидрата может нанести ущерб целостности трубопроводной системы; поэтому перед подачей природного газа в трубопровод его необходимо обработать так, чтобы в трубопроводе не могли образоваться куски жидкости или гидраты. На рис. 4 показаны специальные газоперерабатывающие установки, предназначенные для подводной транспортировки газа без промежуточной рекомпрессии.

    Рис. 4. Газоперерабатывающий завод для международной транспортировки газа. Фото любезно предоставлено Siirtec Nigi SpA.

    Хабы для природного газа. Хабы — важные инструменты для развития товарного рынка. Это места, физические или виртуальные, где можно свободно торговать природным газом и поставлять его через рыночный механизм, требующий разнообразных источников поставок газа (включая внутреннее производство, импорт трубопроводов и отгрузку СПГ за границу), хранилищ и сильной потребительской базы с конкурирующими покупательский интерес.

    В идеале, лучшие физические места для размещения концентратора — это точки схождения различных систем трубопроводов. Объединив эти системы, можно перемещать природный газ из районов поставки и экспортировать на основные рынки потребления. На открытых рынках регулирование играет ключевую роль в разрешении отечественным и иностранным участникам торговли и свободного доступа к трубопроводам и хранилищам.

    Henry Hub — один из самых известных центров. Расположенный в Эрате, штат Луизиана, Henry Hub соединяет девять межгосударственных и четыре внутриштатных трубопроводных системы, а также имеет возможность подключения к газовым хранилищам.

    Управление сезонностью. Среди ископаемых видов топлива природный газ отличается заметными сезонными колебаниями спроса. Почасовые, еженедельные, месячные и сезонные колебания потребления являются результатом сочетания отраслевых видов использования. Промышленность, производство электроэнергии, сельское хозяйство, транспорт и жилищный сектор используют природный газ для своей работы. Тем не менее, каждый сектор имеет разнообразный профиль потребления.

    Рис. 5 показывает профили спроса для различных секторов в Италии, стране с умеренным климатом на юге Европы.Как можно видеть, промышленный сектор имеет почти плоский профиль, который имеет тенденцию сглаживать общий цикл наряду с производством электроэнергии. Однако суточные колебания выработки электроэнергии увеличиваются вследствие роста использования возобновляемых источников энергии. Предложение возобновляемой энергии подвержено резким и непредсказуемым колебаниям, в результате чего газовые турбины для выработки электроэнергии должны питаться природным газом, чтобы заполнить разрыв между спросом и предложением.

    Рис.5. Структура спроса на газ по секторам в Италии.

    В жилищном секторе месячные пики спроса в три раза превышают минимальные. Рис. 5 показывает, что спрос значительно увеличивается с ноября по апрель и падает с конца апреля по октябрь. В целом тенденция спроса на природный газ представляет собой последовательность пиков и спадов со значительной амплитудой колебаний.

    Предложение же, напротив, почти ровное.Это по техническим и экономическим причинам. В резервуарах газ должен диффундировать через пористость субстрата; поэтому значительные колебания добычи газа могут нарушить производство. Не имеет экономического смысла проектировать трубопровод для максимальной мощности, рассчитанный всего на несколько месяцев в году; следовательно, для профиля подачи можно сделать только ограниченный допуск, как показано синей линией на рис. 5 .

    Несбалансированность спроса и предложения может быть устранена с помощью складских помещений в подземных геологических формациях.Эти буферы можно разделить на три типа:

    • Объекты подземного хранения газа (ПХГ), включая истощенные резервуары, водоносные горизонты и соляные полости
    • Емкости для хранения СПГ
    • Линейные пакеты.

    Более 80% ПХГ — это истощенные резервуары, которые относительно легко преобразовать в хранилища. Водоносный горизонт подходит для хранения природного газа, если водоносная осадочная порода перекрыта непроницаемой покрывающей породой.Это требование ограничивает использование водоносных горизонтов в качестве хранилищ газа.

    Право собственности на буферы принадлежит транспортным компаниям, поскольку нормативные акты обычно не предусматривают выделение хранилищ из других активов в цепочке поставок природного газа. Как правило, эти объекты расположены вблизи потребительских зон.

    Природный газ, хранящийся под давлением около 150 бар изб. В ПХГ, включает рабочий газ и буферный газ, как показано в Рис. 6 . Первый — это газ, который можно добывать из хранилищ для удовлетворения спроса.Рабочий газ составляет около 50% от общего количества (или 70% в случае соляных каверн). Амортизирующий газ обеспечивает тягу, необходимую в фазе подачи. Этот газ невозможно извлечь из хранилища без нарушения работы объекта.

    Рис. 6. Иллюстрация подземного хранилища газа.

    Зимой, когда спрос на природный газ резко возрастает, объем, необходимый для компенсации дополнительного потребления, обеспечивается рабочим газом.С весны до осени поступающий из магистральных трубопроводов газ сжимается и закачивается в хранилище. Таким образом обеспечивается баланс спроса и предложения.

    Соляные пещеры вырезаны из геологических формаций в результате процесса выщелачивания, который может длиться до 4 лет. Среди ПХГ соляные пещеры — самые дорогие сооружения; тем не менее, их способность к быстрой смене циклов (оборачиваемость запасов) в сочетании с реагированием на ежедневные (и даже ежечасные) изменения потребностей клиентов снижает годовые затраты на 1 000 м 3 запасов газа, закачиваемых и забираемых.Возможность оборачиваемости запасов делает соляные каверны подходящим инструментом для снятия пиков, что оправдывает их высокие инвестиционные затраты.

    Это описание относится к обычному использованию UGS. Однако площадки ПХГ могут также использоваться в качестве стратегических резервов для решения непредсказуемых событий, таких как не по сезону холодные зимы или перебои в потоках из-за непредвиденных инцидентов, саботажа или геополитических споров. Эта функция ПХГ имеет первостепенное значение для тех стран / государств, где импорт природного газа составляет постоянную долю потребления газа.Как правило, этот рабочий газ нельзя добывать без разрешения правительства.

    ПХГ также используются в спекулятивных целях. Если инвесторы ожидают повышения цены в будущем, они могут купить желаемый объем природного газа на рынке, хранить его в ПХГ и перепродать, когда цена вырастет до или выше ожидаемой стоимости. Разница между продажной ценой и суммой покупной цены и стоимости хранения должна составлять безубыточность или прибыль.

    В конце концов, ПХГ из истощенных резервуаров предоставляет поставщикам ограниченное пространство для маневра, чтобы справиться с временными потрясениями спроса. Тем не менее, система распределения должна быть способна удовлетворять краткосрочный пиковый спрос и колебательный спрос, который может происходить ежедневно или даже ежечасно. В этих случаях другие источники, используемые для пополнения запасов, — это линейная насадка и хранилище СПГ.

    Метод линейной упаковки использует физический объем газа, содержащийся в трубопроводах. При давлении 80–100 бар в магистральном трубопроводе диаметром 40 дюймов и длиной 1000 км находится примерно 60 млн. М 3 –100 млн. М 3 . Вариации рабочего давления в трубопроводе на несколько бар обеспечивают модуляцию — ограниченную несколькими десятками ммм 3 — и гибкость подачи.Эту гибкость можно использовать для удовлетворения мгновенных колебаний спроса.

    В отличие от систем распределения других сырьевых товаров, роль, которую играет сектор переработки и сбыта природного газа, выходит далеко за рамки взаимосвязи спроса и предложения. Системы газопроводов позволяют повсеместно использовать природный газ в основных секторах современной экономики и могут быстро реагировать на неблагоприятные события, тем самым обеспечивая бесперебойность поставок.

    Капиллярное распространение магистральных трубопроводов и распределительных сетей, их взаимосвязь через узлы, своевременная координация точек входа, большое количество точек доставки и безопасность, предлагаемая ПХГ, делают поставки природного газа на конечные рынки безопасными и надежными. GP

    Лоренцо Микуччи — старший директор Siirtec Nigi SpA. Он имеет более чем 30-летний опыт работы в машиностроительной и подрядной отраслях, большая часть из которых была потрачена в секторе природного газа. В 2001 году он присоединился к Siirtec Nigi в Милане, где руководил отделом проектирования и эксплуатации, а также отделом исследований и разработок. За время работы в качестве руководителя отдела исследований и разработок Siirtec Nigi получил три патента, два из которых были реализованы в промышленных масштабах.В настоящее время он является старшим директором департаментов технологий и маркетинга. Г-н Микуччи также работал в компании Saipem (Снампроджетти) в качестве проектировщика заводов с комбинированным циклом комплексной газификации и GTL. Он имеет степень магистра в области химического машиностроения Болонского университета в Италии и внесен в Реестр инженеров Миланского ордена в качестве квалифицированного инженера.

    »Распределение природного газа NaturalGas.org

    Распределение природного газа

    Распределение — это последний шаг в доставке природного газа потребителям.В то время как некоторые крупные промышленные, коммерческие и электроэнергетические потребители получают природный газ напрямую из межгосударственных и внутригосударственных трубопроводов большой мощности (обычно заключаемые через маркетинговые компании природного газа), большинство других пользователей получают природный газ от местной газовой компании, также называемой местной распределительной компанией (LDC). НРС — это регулируемые коммунальные предприятия, участвующие в поставке природного газа потребителям в определенной географической зоне. Есть два основных типа коммунальных предприятий природного газа: принадлежащие инвесторам и государственные газовые системы, принадлежащие местным органам власти.

    Установка распределительной трубы малого диаметра
    Источник: Duke Energy Gas Transmission Canada

    Местные распределительные компании обычно транспортируют природный газ из точек доставки, расположенных на межгосударственных и внутригосударственных газопроводах, в домохозяйства и предприятия через тысячи миль распределительных труб малого диаметра. Пункт доставки, где природный газ перекачивается из магистрального трубопровода в местное газовое предприятие, часто называют «городскими воротами», и он является важным рыночным центром для ценообразования на природный газ в крупных городских районах.Как правило, коммунальные предприятия берут в собственность природный газ у городских ворот и поставляют его на счетчик каждого отдельного потребителя. Для этого требуется разветвленная сеть распределительных труб малого диаметра. Управление по безопасности трубопроводов и опасных материалов Министерства транспорта США сообщает, что в США протяженность распределительных трубопроводов составляет чуть более 2 миллионов миль, включая городские магистрали и служебные трубопроводы, которые соединяют каждый метр с магистралью.

    Из-за наличия транспортной инфраструктуры, необходимой для транспортировки природного газа множеству разнообразных потребителей на достаточно обширной географической территории, затраты на распределение обычно составляют около половины затрат на природный газ для домашних хозяйств и потребителей небольшого объема.В то время как крупные трубопроводы могут снизить удельные затраты за счет транспортировки больших объемов природного газа, распределительные компании должны доставлять относительно небольшие объемы во многие другие места. По данным Управления энергетической информации (EIA), затраты на передачу и распределение составляли примерно половину ежемесячных счетов за газ коммунальных услуг типичного бытового потребителя природного газа в 2009 году, а затраты на сам природный газ составляли вторую половину.

    Доставка природного газа

    Компоненты цен на природный газ для жилых домов
    Источник: Управление энергетической информации-2008

    Доставка природного газа до точки конечного потребления распределительным предприятием во многом схожа с транспортировкой природного газа, описанной в разделе о транспортировке.Однако распределение включает перемещение меньших объемов газа при гораздо более низком давлении на более короткие расстояния большому количеству индивидуальных пользователей. Труба меньшего диаметра также используется для транспортировки природного газа от городских ворот к отдельным потребителям.

    Природный газ периодически сжимается для обеспечения потока в трубопроводе, хотя местные компрессорные станции обычно меньше, чем те, которые используются для межгосударственной транспортировки. Из-за меньших объемов перемещаемого природного газа, а также из-за того, что используется труба малого диаметра, давление, необходимое для перемещения природного газа по распределительной сети, намного ниже, чем давление в магистральных трубопроводах.В то время как природный газ, проходящий через межгосударственные трубопроводы, может быть сжат до 1500 фунтов на квадратный дюйм (фунт / кв. Дюйм), для природного газа, проходящего через распределительную сеть, требуется всего 3 фунта на квадратный дюйм, а давление составляет всего фунта на квадратный дюйм на счетчике потребителя. Раздаваемый природный газ обычно сбрасывается у городских ворот или рядом с ним, а также очищается и фильтруется (даже если он уже был обработан перед распределением по межгосударственным трубопроводам) для обеспечения низкого содержания влаги и твердых частиц.Кроме того, меркаптан — источник знакомого запаха тухлых яиц в природном газе — добавляется коммунальным предприятием перед распределением. Это добавлено, потому что природный газ не имеет запаха и цвета, а знакомый запах меркаптана значительно упрощает обнаружение утечек.

    Распределительная компрессорная станция
    Источник: Duke Energy Gas Transmission Canada

    Традиционно для строительства распределительных сетей использовались жесткие стальные трубы.Однако новая технология позволяет использовать гибкие пластиковые трубы и трубы из гофрированной нержавеющей стали вместо жестких стальных труб. Эти новые типы труб обеспечивают снижение затрат, гибкость установки и упрощают ремонт как для местных распределительных компаний, так и для потребителей природного газа.

    Еще одно нововведение в распределении природного газа — использование электронных систем считывания показаний счетчиков. Природный газ, потребляемый одним потребителем, измеряется местными счетчиками, которые, по сути, отслеживают объем природного газа, потребляемого в этом месте.Традиционно, чтобы правильно выставлять счета клиентам, необходимо было направить персонал для снятия показаний счетчиков для учета этих объемов. Однако новые электронные системы считывания показаний счетчиков способны передавать эту информацию непосредственно коммунальному предприятию. Это приводит к экономии затрат для коммунального предприятия, которые, в свою очередь, передаются потребителям.

    Установка жилой системы распределения
    Источник: Duke Energy Gas Transmission Canada

    Установка газораспределительной трубы требует того же процесса, что и для больших трубопроводов: рытье траншей, в которые укладывается труба.Однако новые методы рытья траншей позволяют устанавливать распределительную трубу с меньшим воздействием на надземное окружение. Системы управляемого бурения используются для выкапывания подземной скважины, в которую может быть вставлена ​​труба, и могут привести к значительной экономии при выемке грунта и восстановлении. Это особенно важно в многолюдных городских условиях и в живописных сельских районах, где установка газораспределительной трубы может стать серьезным неудобством для жителей и владельцев бизнеса.

    Системы диспетчерского контроля и сбора данных (SCADA), подобные тем, которые используются крупными трубопроводными компаниями, также используются местными распределительными компаниями. Эти системы могут интегрировать контроль и измерение расхода газа с другими системами бухгалтерского учета, выставления счетов и контрактов, чтобы обеспечить комплексную систему измерения и контроля для местного газового предприятия. Это позволяет коммунальному предприятию использовать точную и своевременную информацию о состоянии распределительной сети, чтобы обеспечить эффективное и действенное обслуживание в любое время.

    Регулирование распределения природного газа

    Традиционно местным газовым компаниям были предоставлены исключительные права на распределение природного газа в определенной географической области, а также на выполнение таких услуг, как выставление счетов, проверка безопасности и обеспечение подключения природного газа для новых клиентов. Как и межгосударственные трубопроводы, коммунальные предприятия исторически рассматривались как естественные монополии. Из-за высокой стоимости строительства распределительной инфраструктуры нерентабельно прокладывать несколько избыточных распределительных сетей в любой области, в результате чего только одно коммунальное предприятие предлагает распределительные услуги.Из-за своего положения естественных монополий в данной географической зоне распределительные компании исторически регулировались таким образом, чтобы исключить злоупотребление монопольной властью и чтобы потребители природного газа не становились жертвами чрезмерно высоких затрат на распределение или неэффективных систем доставки.

    Государственные комиссии по коммунальному хозяйству отвечают за надзор и регулирование местных газовых компаний, находящихся в собственности инвесторов. Коммунальные предприятия, принадлежащие местным органам власти, обычно управляются органами местного самоуправления, чтобы обеспечить рентабельное удовлетворение потребностей и предпочтений клиентов. Государственное регулирование местных распределительных компаний преследует различные цели, включая обеспечение адекватного снабжения, надежного обслуживания и разумных цен для потребителей, а также обеспечение адекватной нормы прибыли для коммунальных предприятий, принадлежащих инвестору. Государственные регулирующие органы также несут ответственность за надзор за строительством новых распределительных сетей, в том числе за утверждение мест установки и предлагаемых дополнений к сети. Нормативные приказы и методы надзора варьируются от штата к штату. Чтобы узнать больше о регулировании распределения природного газа в вашем штате, щелкните здесь, чтобы посетить Национальную ассоциацию уполномоченных по регулированию коммунальных предприятий (NARUC).

    Исторически местные распределительные компании предлагали только «пакетные» услуги; то есть они объединили стоимость транспортировки, распределения и самого природного газа в одну цену для потребителей. Однако, начиная с 1990-х годов, программы по «выбору клиента» стали предлагаться в рамках движения к розничному «разделению» продаж природного газа. Многие штаты в настоящее время предлагают программы, в которых клиенты могут выбрать поставщика, у которого будет приобретать природный газ отдельно, и использовать газовое предприятие просто для обслуживания и доставки этого газа.Программы выбора клиентов действуют более чем в 20 штатах и ​​в округе Колумбия. Чтобы узнать больше о статусе государственных программ выбора потребителей, посетите EIA.

    Хотя большинство частных потребителей и мелких коммерческих потребителей по-прежнему склонны покупать «пакетный» природный газ у коммунальных предприятий, все более важная роль маркетологов природного газа, а также инновации, подпитываемые растущей конкуренцией на рынке, приводят к инновационным способам поставка природного газа мелким потребителям, а также новых опций комплексных услуг, таких как системы домашней безопасности.Посетите наш раздел, чтобы узнать больше о маркетинге природного газа на жилищном рынке.

    Распределение и безопасность

    Местные распределительные компании, такие как крупные межгосударственные и внутригосударственные трубопроводы, поддерживают высочайшие стандарты безопасности, чтобы избежать предотвратимых аварий и своевременно устранить проблемы с распределительной сетью. Многие программы безопасности, поддерживаемые коммунальными предприятиями, очень похожи на программы межгосударственных трубопроводных компаний.Меры безопасности на местном уровне включают:

    • Оборудование для обнаружения утечек — Коммунальные предприятия имеют сложное оборудование для обнаружения утечек, предназначенное для обнаружения утечек природного газа из распределительной сети. Коммунальные предприятия также добавляют одоранты в природный газ, чтобы облегчить обнаружение утечки.
    • Образовательные программы по безопасности — Коммунальные предприятия обычно проводят семинары по безопасности природного газа в школах, общественных центрах и через другие организации, чтобы убедиться, что клиенты хорошо разбираются в процедурах безопасности природного газа и знают, что делать в случае утечки или чрезвычайной ситуации.
    • Дежурные технические специалисты по телефону — Коммунальные предприятия обслуживают целые группы технических специалистов по вызову 24 часа в сутки, семь дней в неделю, чтобы реагировать на проблемы и опасения клиентов.
    • Готовность к чрезвычайным ситуациям — Коммунальные предприятия участвуют в общественных и местных программах готовности к чрезвычайным ситуациям, обучая и готовясь к чрезвычайным ситуациям, таким как стихийные бедствия.
    • Системы единого вызова — Предоставляет клиентам, подрядчикам и экскаваторам единый номер телефона, по которому можно позвонить перед началом земляных работ или строительства, чтобы гарантировать, что трубопроводы и другие подземные сооружения не повреждены.В 2008 году при поддержке коммунальных предприятий, сообществ, аварийно-спасательных служб и правительственных чиновников был принят национальный телефонный номер «811», «позвони, прежде чем копать».
    Группа реагирования на чрезвычайные ситуации в сообществе — проверка счетчиков газа
    Источник: Федеральное агентство по чрезвычайным ситуациям

    Это лишь некоторые из мер безопасности, применяемых местными распределительными компаниями. Особенно важным для безопасного распределения природного газа, особенно в густонаселенных районах, является обучение потребителей. Обучая пользователей природного газа безопасному использованию природного газа, действиям в чрезвычайных ситуациях и способам обнаружения утечек, распределительные компании гарантируют, что распределение природного газа останется одним из самых безопасных способов передачи энергии. Для получения дополнительной информации о безопасности использования природного газа в вашем регионе обратитесь в свою газовую компанию. Для получения информации о трубопроводах природного газа, в том числе, посетите Управление безопасности трубопроводов Министерства транспорта.

    Обзор модели распределения газа

    Система газораспределения состоит из подключенных устройств, которые транспортируют природный газ от источника, такого как регулятор или городская пограничная станция, к потребителю. Основными компонентами газовой системы являются трубы (магистральные и вспомогательные), устройства, которые контролируют и регулируют поток в этих трубах, фитинги, соединяющие трубы, и измерительное оборудование, которое измеряет поток газа в трубах.

    Магистрали — это трубы, по которым газ подается от источника, такого как регулятор или городская пограничная станция, к точке, примыкающей к помещению потребителя.По трубопроводам газ транспортируется от магистралей к точкам учета. На городской пограничной станции (также называемой городскими воротами) передача газа переводится в систему распределения. Эти элементы могут иметь связанные регуляторы, регулирующие счетчики, устройства избыточного давления и одоранты. Станции регулирования определяют расположение одного или нескольких регуляторов давления.

    Несколько типов устройств регулируют поток газа через набор труб, а также давление, при котором газ подается. Регулятор — это механическое устройство, используемое для контролируемого снижения давления в газораспределительной системе.В этот тип функции включены контрольные и резервные регуляторы. Клапан работает в трубе, чтобы позволить потоку только в одном направлении или регулировать поток с помощью плоского, крышки, заглушки или другого механизма, чтобы открыть или заблокировать трубу. Клапаны, обозначенные как ключевые, имеют решающее значение для моделирования и анализа. Устройства управления потоком включают любой фитинг, который не является регулятором или клапаном, который может управлять потоком газа и приводится в действие машиной.

    Стальные трубы, находящиеся в коррозионных почвах, подвержены коррозии. Покрытия из эпоксидной смолы, полиэтилена или других материалов являются обычными методами предотвращения коррозии.Катодная защита — еще один метод защиты подземных металлических конструкций, таких как стальные трубы, фитинги и клапаны, от коррозии.

    Металлические конструкции изнашиваются, поскольку паразитный электрический ток, обычно присутствующий в земле, течет от относительно анодной конструкции в относительно катодную почву. При наведении небольшого электрического тока на металлические конструкции, чтобы сделать их катодными, паразитный ток течет от почвы к конструкции и, как следствие, конструкция защищается.

    Защищенные части распределительной системы должны быть электрически отделены от незащищенных частей.Это часто достигается с помощью изолированной арматуры, такой как изолированные фланцы или изолированные компрессионные муфты.

    Компоненты газораспределительной системы сгруппированы в три общие логические категории:

    Эти категории содержат классы объектов, которые имеют общие свойства и / или поведение. Например, устройства можно сгруппировать вместе, поскольку они обнаруживают и / или контролируют поток газа по трубам. Некоторые устройства измеряют расход (например, счетчики), а некоторые регулируют расход газа (например,г., регуляторы). После создания базовой группировки объектов вы можете определить более конкретные сходства между объектами. Во время этого процесса группирования вы можете определять новые классы (называемые подклассами) и объединять некоторые классы (подтипы). Конечным результатом является набор корневых абстрактных классов, промежуточных абстрактных классов, конечных классов и отношений.

    Когда вы начинаете определять свойства каждого конечного класса, появляются общие свойства. Например, у счетчиков и регуляторов есть производители и номера моделей.Вместо того, чтобы дублировать каждое свойство в обоих объектах, вы создаете класс более высокого порядка (Gas Device), который является абстрактным классом, чтобы содержать эти свойства. Этот класс содержит свойства, общие для всех объектов, являющихся его подклассами, и никогда не будет отдельным объектом. Этот процесс обобщения свойств приводит к набору промежуточных классов, которые представляют или моделируют систему газоснабжения.

    Модели данных, включая физические и логические модели газораспределения, можно загрузить с веб-сайта Schneider Electric-GIS.Они предоставляются в формате Visio.

    Трубопроводы природного газа — Управление энергетической информации США (EIA)

    Сеть газопроводов США представляет собой высокоинтегрированную сеть, по которой природный газ транспортируется по всей континентальной части США. Сеть трубопроводов насчитывает около 3 миллионов миль магистральных и других трубопроводов, которые соединяют районы добычи и хранилища природного газа с потребителями.В 2019 году по этой газотранспортной сети было доставлено около 28,3 триллиона кубических футов (трлн фут3) природного газа примерно 76,9 миллионам потребителей.

    Что составляет эту транспортную сеть?

    • Системы сбора, в основном состоящие из трубопроводов малого диаметра и низкого давления, перемещают неочищенный природный газ от устья скважины на завод по переработке природного газа или к соединению с большим магистральным трубопроводом.
    • Установки по переработке природного газа отделяют жидкие углеводородные газы, неуглеводородные газы и воду от природного газа перед подачей природного газа в магистральную транспортную систему.
    • Межгосударственные газопроводы большого диаметра с высоким давлением, пересекающие государственные границы, и внутригосударственные газопроводы, работающие в пределах государственных границ, транспортируют природный газ от мест добычи и переработки к хранилищам и распределительным центрам. Компрессорные станции (или насосные станции) в трубопроводной сети поддерживают поток природного газа по трубопроводной системе.
    • Местные распределительные компании поставляют природный газ потребителям по трубопроводам малого диаметра с низким давлением.

    Нажмите для увеличения

    Газопроводы природного газа

    Источник: стоковая фотография (защищена авторским правом)

    Как эта передающая и распределительная сеть стала такой большой?

    Около половины существующей магистральной сети передачи природного газа и значительная часть местной распределительной сети были проложены в 1950-х и 1960-х годах, поскольку потребительский спрос на природный газ после Второй мировой войны увеличился более чем вдвое.Распределительная сеть продолжает расширяться, обеспечивая газоснабжение новых коммерческих объектов и жилых домов.

    В период с 2003 по 2008 год цены на природный газ существенно выросли. Повышение цен дало производителям природного газа стимул к расширению разработки существующих месторождений и началу разведки ранее неосвоенных месторождений природного газа. Развитие технологий бурения и добычи привело к увеличению добычи из сланцев и других плотных геологических формаций.Это увеличение производства способствовало общему снижению цен на природный газ с 2009 года, что, в свою очередь, способствовало увеличению спроса на природный газ для производства электроэнергии и в промышленности. Следовательно, были построены новые магистральные трубопроводы и строятся другие, чтобы связать расширенные и новые источники производства с большим количеством потребителей по всей стране, в первую очередь на северо-востоке.

    Последнее обновление: 3 декабря 2020 г.

    Системы центрального газоснабжения, СУГ, газораспределение

    Системы централизованного газоснабжения (ЦГС) основаны на доставке большого объема газа и хранении газа на месте в баллонах, многоцилиндровых пакетах (связках), криогенных емкостях с испарителями или в специальных контейнерах.

    Распределение газа осуществляется по трубопроводу от центральной точки до места конечной подачи. Газ идет от источника через коллектор высокого давления с регулятором давления, в котором давление на входе из основной массы снижается до уровня, приемлемого для труб и других компонентов газораспределительной системы. В конце трубопровода могут быть установлены точки выхода для настройки параметров газа, например давление и расход по запросу. Когда системы CGS будут установлены на промышленных предприятиях, эффективность работы, экономическая экономия, а также аспекты безопасности вырастут на по сравнению с увеличением потребления газа.

    Основные преимущества:

    • Надежная система подачи газа с непрерывной подачей газа (без перебоев в подаче газа)
    • Более точная настройка параметров газа
    • Более высокий уровень безопасности благодаря хранению и установке газа под высоким давлением в указанном и безопасном месте
    • Больше места на рабочем месте
    • Обычно более низкие затраты на газ из-за больших объемов поставки

    Основные области использования промышленных СКУ:

    • Автомобилестроение и транспорт
    • Производство и обработка металла и стекла, пластмасс и бумаги
    • Процессы газовой, дуговой, плазменной и лазерной сварки и резки
    • Химическая и нефтехимическая промышленность
    • Металлургия
    • Нефтегазовый НПЗ
    • Оффшор и верфи
    • Энергия и мощность
    • Экология и окружающая среда
    • Производство и упаковка продуктов питания и напитков
    • Ремесленники и мастерские
    • Строительные работы на объекте

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *