Для чего служит газораспределительный механизм: Газораспределительный механизм

Содержание

Газораспределительный механизм

Механизм газораспределения ГРМ служит для своевременного открытия и закрытия впускных и выпускных клапанов двигателя, обеспечивая качественное наполнение цилиндров двигателя свежим зарядом, их очистку от отработавших газов и герметизацию цилиндров при сжатии и рабочем ходе поршня.

Различают клапанные и золотниковые механизмы газораспределения. В четырехтактных двигателях газообмен осуществляется с помощью клапанов. В двухтактном двигателе газообмен происходит под действием поршня, открывающего и закрывающего впускные и перепускные каналы, или посредством смешанной системы газораспределения.

Клапанные механизмы газораспределения (ГРМ) разделяют:

• по месту установки клапанов  — верхнее расположение клапанов в головке блока цилиндров и нижнее — в блоке цилиндров;
• по месту установки распределителыюго вала — верхнее и нижнее;
• по виду привода распределительного вала  — зубчатый (шестеренчатый), цепной и ременный.

Механизм газораспределения включает в себя привод, распределительный вал, толкатели, штанги, коромысла и клапанный механизм.

Клапанный механизм состоит из клапанов, направляющих втулок, седел, клапанов, возвратных пружин с нижней и верхней опорными тарелками, сухарей, механизмов поворота клапана.

Распределительный вал предназначен для своевременного открытия клапанов. Также он осуществляет привод (в карбюраторных двигателях) топливного насоса, масляного насоса, прерывателя тока низкого напряжения и датчика ограничителя максимальной частоты вращения коленчатого вала.

Распределительный вал имеет: коренные (опорные) шейки; кулачки, расположение которых на валу обусловлено числом клапанов на цилиндр и последовательностью их открытия в зависимости от порядка работы двигателя, схемы привода, фазы газораспределения; зубчатое колесо привода прерывателя-распределителя и масляного насоса; эксцентрик привода топливного насоса. На переднем конце вала имеется шейка со шпоночным пазом под зубчатое колесо и резьбой для ее крепления.

Для восприятия осевых усилий от косозубых зубчатых колес при нижнем расположении распределительного вала используются стальные упорные фланцы. С одной стороны во фланец упирается ступица зубчатого колеса привода, а с другой — торец передней опорной шейки распределительного вала. Необходимый осевой зазор при этом обеспечивается распорным кольцом, установленным между ступицей зубчатого колеса и шейкой вала. Ширина кольца на 0,1-0,2 мм больше толщины фланца.

 Притирка клапанов

Притирка клапанов обеспечивают

лучшую герметичность.

Как проводится притирка клапанов

Толкатели передают усилия от кулачков распределительного вала к штангам или непосредственно к клапанам и воспринимают возникающие при этом боковые усилия. Толкатели изготовляются в виде круглых стержней или стаканов, совершающих осевое возвратно-поступательное движение, а также в виде рычагов, совершающих качательные движения вокруг своей оси.
Толкатели изготовляются из стали с низким и средним содержанием углерода и из чугуна.
Цилиндрические толкатели выполняются пустотелыми с плоской или сферической поверхностью днища радиусом 700—1000 мм., а кулачок распределительного вала — коническим с углом при вершине конуса 6—12 градусов. При этом кулачок смещается относительно оси толкателя в сторону основания конуса на 2—3 мм, что обеспечивает проворачивание толкателя вокруг его оси, с целью предотвращения неравномерного износа его боковой направляющей поверхности при работе.
В двигателях марки «ЯМЗ»  применяют подвесные рычажные толкатели, свободно установленные на разрезной оси. На одном конце рычага выполнено гладкое отверстие пол ось качания на другом, в вилке на игольчатых подшипниках, установлен ролик, сверху вилки запрессована стальная пята со сферической поверхностью, на которую опирается штанга.

Штанга передает усилие от толкателя к коромыслу и должна обладать определенной продольной жесткостью. Штанги изготовляются трубчатыми или сплошными из стали или дюралюминия. На штанги из дюралюминиевых прутков напрессовывают стальные термообработанные наконечники. При использовании стальных трубок наконечники запрессовывают в трубках или получают путем высадки и завальцовывания торцов у трубки.
Коромысло представляет собой разноплечий рычаг таврового или двутаврового сечения, что повышает его жесткость. Оно передает усилия от штанги к клапану. Коромысла отливают из чугуна или стали метолом точного литья.
В коротком плече коромысла имеется резьбовое отверстие под регулировочный винт и канал для полвода масла к сферической поверхности штанги и винта. На другом плече коромысла имеется сферическая поверхность (боек коромысла), которая опирается на стержень клапана. В средней части выполнено гладкое отверстие под ось качения коромысла. От осевого смешения коромысло удерживается упорной шайбой и стопорным пружинным кольцом.

ГРМ двигателя автомобиля

Механизм газораспределения служит для осуществления своевременного впуска в цилиндр горючей смеси (например, бензина и воздуха) и выпуска отработавших газов. В головке блока цилиндров помещаются минимум два клапана – впускной и выпускной. Клапаны приводятся в движение деталями механизма газораспределения. Через впускной клапан в цилиндр поступает горючая смесь или воздух; через выпускной клапан выходят отработавшие газы в атмосферный воздух через систему выпуска.

Устройство и принцип действия механизма газораспределения

В бензиновых и дизельных двигателях применяется механизм газораспределения клапанного типа, сейчас уже, в основном, с верхним расположением клапанов. Это значит, что клапаны находятся сверху, в головке блока цилиндров, как показано на рисунке 4.8.

Так, при верхнем расположении клапаны с пружинами и деталями их крепления установлены в направляющих втулках в головке блока цилиндров, в которой также отлиты впускные и выпускные каналы.


Рисунок 4.8 Головка блока цилиндров с газораспределительным механизмом.

Усилие от кулачков распределительного вала, расположенного здесь же – в головке блока, к клапанам передается с помощью толкателей и/или коромысел. Коромысла установлены шарнирно на оси, закрепленной на головке блока. Клапаны на головке закрыты крышкой.

 О тепловом зазоре

Между стержнем клапана, толкателем или концом коромысла газораспределительного механизма должен быть зазор (так называемый тепловой зазор), который необходим для компенсации удлинения стержня клапана при его нагревании без нарушения плотности посадки клапана в гнезде. Другими словами, если бы не было зазора, грубо говоря, между кулачком распредвала и клапаном, то от нагрева до высокой температуры, клапан увеличился бы в длину и перестал бы плотно прилегать к седлу в головке блока цилиндров.

Величина зазора для двигателей разных марок устанавливается для впускных клапанов в холодном состоянии в пределах 0,15—0,30 мм, а для выпускных клапанов, подвергающихся большему нагреву, — в пределах 0,20—0,40 мм. Однако же, у некоторых производителей зазор может быть таков, что не попадет в указанные диапазоны.

Для регулировки величины этого зазора в механизме предусмотрены регулировочные устройства. Хотя слово «устройство» слишком громкое для регулировочного болта и стопорной гайки (Рисунок 4.9) или шайб различной толщины (Рисунок 4.10).


Рисунок 4.9 Регулировка теплового зазора с помощью болта.


Рисунок 4.10 Регулировка теплового зазора с помощью шайб
(А – головка блока цилиндров без распределительного вала;

Б – головка блока цилиндров с распределительным валом).

Сейчас очень распространена конструкция с гидравлическими компенсаторами, которые под давлением масла подводят коромысло или толкатель к кулачку распределительного вала, убирая тем самым негативное последствие теплового зазора, а именно — удар кулачка о толкатель во время работы. Но стоит упомянуть, что установка гидрокомпенсаторов удорожает конструкцию головки блока цилиндров и повышает свои требования к качеству используемого моторного масла и к частоте его замены, поскольку масляные каналы компенсатора могут забиваться продуктами износа.

Примечание
Более подробно о гидрокомпенсаторах приведено ниже.

 Предварительно о распределительном вале

Примечание
Почему предварительно? Потому что для целостности восприятия данного раздела о распределительном вале необходимо сказать несколько слов, а более подробное описание данной детали будет дано ниже.

Правильность чередования различных тактов в цилиндрах двигателя достигается соответствующим расположением кулачков на распределительном валу, а также правильностью установки зацепления распределительных шестерен/шкивов с приводной шестерней/шкивом коленчатого вала.

В четырехтактном двигателе рабочий цикл во всех цилиндрах завершается за два оборота коленчатого вала. За это время в каждом цилиндре должны по одному разу открыться и закрыться впускной и выпускной клапаны, что происходит за каждый оборот распределительного вала. Таким образом, распределительный вал должен вращаться в два раза медленнее коленчатого вала. Для этого шестерня распределительного вала имеет вдвое большее число зубьев, чем шестерня коленчатого вала, либо же шкив по диаметру должен быть в два раза больше шкива коленчатого вала.

Фазы газораспределения четырехтактного двигателя

Для лучшего наполнения цилиндров свежим зарядом и наиболее полной очистки их от отработавших газов моменты открытия и закрытия клапанов в четырехтактных двигателях не совпадают с положениями поршней в ВМТ и НМТ, а происходят с определенным опережением или запаздыванием. Иначе говоря, впускной клапан может закрываться после того, как поршень пройдет НМТ, а выпускной — закрываться после ВМТ.

Моменты открытия и закрытия клапанов, выраженные в градусах, соответствующих величинам углов поворотов кривошипа коленчатого вала относительно мертвых точек, называются фазами газораспределения. Фазы газораспределения могут быть нанесены на круговую диаграмму, называемую диаграммой газораспределения, как показано на рисунке 4.11.

Пожалуй, будет проще показать это на примере. Так, если говорят, что клапан открывается за 5 градусов до ВМТ, значит клапан начал открываться в то время, когда кривошип коленчатого вала, к которому присоединен шатун поршня, находился за 5 градусов до верхней мертвой точки.


Рисунок 4.11 Диаграмма газораспределения четырехтактного двигателя.

Впускной клапан начинает открываться немного раньше, чем поршень придет в ВМТ. При этом к началу хода поршня вниз при такте впуска клапан уже немного откроется. Опережение открытия впускного клапана для двигателей разных моделей колеблется в разных диапазонах. Зачастую закрытие впускного клапана происходит с определенным запаздыванием, когда поршень перейдет НМТ и начнет двигаться вверх. При этом некоторое время после перехода НМТ, несмотря на начавшееся незначительное движение поршня вверх, заполнение цилиндра зарядом будет продолжаться вследствие некоторого разрежения, еще имеющегося в цилиндре, а также вследствие инерции заряда, движущегося во впускном трубопроводе.

Примечание
Однако стоит отметить, что существует как минимум два цикла, именуемых циклами Миллера и Аткинсона, при которых впускной клапан закрывается не так, как на обычных ДВС.

Таким образом, время открытия впускного клапана больше времени, в течение которого происходит полуоборот вала; продолжительность впуска при этом увеличивается, и цилиндр более полно заполняется свежим зарядом.

Выпускной клапан открывается раньше прихода поршня в НМТ.

При этом газы, находясь в цилиндре под большим давлением, быстро начинают выходить наружу, несмотря на то, что поршень еще движется вниз. Затем поршень, пройдя НМТ и двигаясь к ВМТ, будет выталкивать оставшиеся в цилиндре газы. Выпускной клапан закрывается тогда, когда поршень перейдет ВМТ. Несмотря на то, что поршень начнет уже немного опускаться вниз, газы будут продолжать выходить из цилиндра по инерции и вследствие отсасывающего действия потока газов, движущихся в выпускном трубопроводе. Таким образом, время открытия выпускного клапана больше времени, в течение которого происходит полуоборот вала, и цилиндр лучше очищается от отработавших газов.

Примечание
Угол поворота кривошипа, соответствующий положению, при котором впускной и выпускной клапаны одновременно открыты, называется углом перекрытия клапанов. Вследствие незначительности этого угла и ничтожной величины зазора между клапанами и гнездами, возможность утечки горючей смеси исключена. Перекрытие клапанов необходимо для дополнительной продувки цилиндра с целью лучшей наполняемости свежим зарядом.

Некоторое уменьшение давления газов на поршень, происходящее при рабочем ходе вследствие раннего открытия выпускного клапана, и потеря части работы газов при этом восполняются тем, что поршень, движущийся при такте выпуска вверх, не испытывает большого сопротивления от газов, оставшихся в небольшом количестве в цилиндре.

Изменение фаз газораспределения

С развитием технологий перед конструкторами и инженерами открылись серьезные перспективы в повышении эффективности работы двигателя – увеличение мощности с одновременным снижением расхода топлива стало новым трендом в автомобильной промышленности. Для того, чтобы оптимизировать работу двигателя внутреннего сгорания, необходимо подстраивать фазы газораспределения под все режимы нагрузки – от холостого хода до полной нагрузки.

Примечание
Обороты холостого хода — это минимальные обороты, при которых двигатель может работать устойчиво без нагрузки. Вы запустили двигатель, при этом никакого движения и воздействия на педаль газа не происходит.

А как изменять фазы газораспределения? — Проворачивать распределительный вал относительно коленчатого вала, изменяя тем самым моменты открытия клапанов. Прибавим к этому управление опережением зажигания* и это даст возможность управлять началом и концом тактов двигателя и позволило настолько оптимизировать работу ДВС, что показатели мощности и расхода топлива улучшились многократно.

Примечание
* Опережение зажигания. Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи. В зависимости от частоты вращения коленчатого вала и нагрузки на двигатель угол опережения зажигания должен изменяться, что реализуется с помощью распределителя зажигания или электронного блока управления двигателя (подробнее об этом рассмотрено в главе 10 «Электрооборудование и электросистемы», раздел 10.4 «Система зажигания»).

Суть системы проста. На распределительный вал (или валы) устанавливается специальный механизм, на внешней части которого есть звездочка для приводной цепи от коленчатого вала. Механизм этот устанавливается так, что может проворачивать распределительный вал в сторону опережения или запаздывания, в зависимости от режима работы двигателя.

Если говорить более подробно, то работа механизма изменения фаз газораспределения (фазовращателя) происходит, как описано ниже.

Коленчатый вал через приводную цепь вращает фазовращатель, который установлен на распределительном валу. В момент, когда необходимо сместить время открытия клапанов в сторону запаздывания или опережения, фазовращатель проворачивает распредвал в соответствующую сторону.


Рисунок 4.12 Внешний вид фазовращателя.

Фазовращатели, в основном, устанавливают на впускной распределительный вал (вал, который открывает только впускные клапаны), но сейчас все чаще данные механизмы монтируют на оба распредвала – впускной и выпускной.

Изменяемая высота клапана

В современных бензиновых двигателях количество топливной смеси регулируется с помощью дроссельной заслонки – заслонка открывается, поступает больше воздуха, в соответствии с этим впрыскивается больше топлива. Воздух, необходимый для приготовления топливовоздушной смеси, пока доберется до цилиндра, преодолеет несколько весьма неприятных препятствий: воздушный фильтр, дроссельную заслонку, клапаны, а это все потери, которые напрямую влияют на мощность ДВС. Попробуйте сами подышать в противогазе не с угольным а с бумажным фильтром… Вот так и двигателю «тяжело дышать». Одно из препятствий на пути воздуха, от которого мечтали избавиться конструкторы, это дроссельная заслонка. Однако как регулировать количество впускаемого воздуха? Решение снова было связано с клапанами. Пришли к тому, что необходимо регулировать высоту клапана. Были системы со ступенчатым регулированием высоты клапана, а именно: клапан открывался только на три разные высоты. Затем придумали систему бесступенчатого открытия клапанов с диапазоном открытия от 1 мм до 10 мм. Это позволило избавиться от дроссельной заслонки – двигателю стало легче «дышать». Однако избавление от дроссельной заслонки изменением высоты открытия клапанов не является самоцелью. Контроль над работой клапанов позволяет еще больше отточить работу четырехтактного двигателя внутреннего сгорания.

Детали клапанной группы

К клапанной группе относятся клапан, направляющая втулка клапана, клапанная пружина с опорной шайбой и деталями крепления (они же — «сухари»). Все описанное приведено на рисунке 4.13.

Клапан служит для закрытия и открытия впускных или выпускных каналов в головке блока цилиндров. Основными элементами клапана являются тарелка и стержень.

Тарелка клапана имеет шлифованную конусную рабочую поверхность — фаску (обычно под углом 45°), которой клапан плотно притерт к седлу.

Стержень клапана отшлифован и проходит через направляющую втулку. На конце стержня клапана имеется канавка или отверстие для крепления опорной шайбы пружины. Разноименные клапаны имеют тарелки различных диаметров (зачастую, больший — у впускного клапана) или отличаются специальными метками.


Рисунок 4.13 Клапанный механизм.

Седло клапана (на рисунке 4.13) представляет собой металлическое кольцо цилиндрической формы с обработанной под углом 45 градусов рабочей поверхностью (той самой, к которой прилегает тарелка клапана). Седла клапанов запрессованы в головку блока цилиндров. Существуют конструкции с заменяемыми седлами и с седлами, запрессованными наглухо.

Направляющая втулка, в которой клапан устанавливается стержнем, обеспечивает точную посадку клапана в седло. Втулки запрессовывают в головку цилиндров.


Рисунок 4.14 Клапан.

Клапанная пружина удерживает клапан в закрытом положении, обеспечивая плотную его посадку в гнезде, а также создает постоянное прижатие толкателя к поверхности кулачка распределительного вала. Пружину надевают на выходящий из втулки конец стержня клапана и закрепляют на нем в сжатом состоянии с помощью опорной шайбы с коническими разрезными сухарями, которые входят в выточку на стержне клапана. Иногда на клапан устанавливают две пружины: пружину меньшего диаметра — внутрь пружины большего диаметра. Это делается для того, чтобы избежать резонанса пружины на определенных частотах работы двигателя, а также для подстраховки на случай поломки пружины. Часто применяются пружины с переменным шагом витков. Это исключает вероятность возникновения вибрации пружины и ее поломки при большом числе оборотов коленчатого вала двигателя. При установке двух пружин их подбирают таким образом, чтобы направление навивки их витков было выполнено в разные стороны, что также устраняет опасность возникновения резонансных колебаний пружин.

Для ограничения количества масла, поступающего в направляющую втулку, и устранения подсоса масла в цилиндр через зазоры во втулке на верхних впускных клапанах под опорной шайбой ставят маслосъемные колпачки.

Толкатель служит для передачи осевого усилия от кулачка распределительного вала на стержень клапана или на штангу. Дело в том, что передавать усилие от кулачка распредвала лучше именное через промежуточное звено – толкатель. Поскольку при длительной работе элементы клапанного механизма изнашиваются и, когда приходит время замены чрезмерно износившихся деталей, проще заменять небольшой толкатель, нежели целый распредвал или клапаны.


Рисунок 4.15 Головка блока цилиндров с элементами газораспределительного механизма.

Как было отмечено выше, сейчас получили широкое распространение так называемые гидрокомпенсаторы. «Гидро», потому что работают за счет давления моторного масла, а «компенсаторы», так как компенсируют или, проще говоря, сводят на нет зазор между кулачком распределительного вала и толкателем во время работы.

Толкатели в большинстве двигателей устанавливают без втулок непосредственно в отверстия приливов головки блока цилиндров. В некоторых двигателях для толкателей имеются направляющие втулки, отлитые секцией на несколько цилиндров.

Коромысло. Изменяет направление передаваемого движения. Устанавливают зачастую, когда распределительный вал один, а клапанов на цилиндр два или четыре, но расположены они особым образом (смотрите рисунок 4.16). Коромысла устанавливают на бронзовых втулках или без втулок на осях, которые при помощи стоек закреплены на головке блока. Одно плечо коромысла располагается над стержнем клапана, а другое — под или над кулачком распределительного вала. Для регулировки зазора между стержнем клапана и коромыслом в конец коромысла вкручен регулировочный винт с контргайкой.


Рисунок 4.16 Привод клапанов через коромысло.

Распределительный вал и его привод

Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Вал имеет впускные и выпускные кулачки (смотрите рисунок 4.17) и опорные шейки*.


Рисунок 4.17 Газораспределительный механизм в сборе.

Примечание
* На рисунке 4.17 опорные шейки не показаны, так как изображение схематическое и приведено для предварительного ознакомления. Получить представление о внешнем виде распределительных валов можно из рисунка 4.18.

Кулачки изготавливают как одно целое с валом. Однако существуют сборные конструкции, когда кулачки напрессовывают на вал.

Для каждого цилиндра у четырехтактных двигателей в зависимости от количества клапанов имеются два и более кулачков: впускных и выпускных. Форма кулачка обеспечивает плавный подъем и опускание клапана и соответствующую продолжительность его открытия. Одноименные кулачки для каждого цилиндра (например, впускные) располагают в четырехцилиндровых двигателях под углом 90°, в шестицилиндровых — под углом 60° и в восьмицилиндровых — под углом 45°. Разноименные кулачки (впускные и выпускные) устанавливают под углом, величина которого зависит от фаз газораспределения. Вершины кулачков располагаются в принятом для двигателя порядке работы с учетом направления вращения вала.


Рисунок 4.18 Головка блока цилиндров с распределительными валами.

 Как распредвал приводится во вращение?

Распределительный вал приводится во вращение от коленчатого вала разными способами. Самыми распространенными являются: цепной и ременной привод, реже используется шестеренный.

Цепной привод. На конце коленчатого и распределительного валов устанавливают звездочки (как на велосипеде) и надевают приводную цепь. Для того чтобы исключить биение цепи, дополнительно устанавливают успокоитель, который представляет собой длинную планку, по которой перемещается цепь. Обычно с другой стороны устанавливают направляющую натяжителя цепи. Цепной привод можно изучить так же на рисунках 4.19 и 4.20.


Рисунок 4.19 Схема цепного привода газораспределительного механизма.


Рисунок 4.20 Пример цепного привода газораспределительного механизма.

Ременной привод. На коленчатый и распределительный валы устанавливаются зубчатые шкивы, чем-то напоминающие звездочки, однако намного шире их. На эти зубчатые шкивы надевается зубчатый ремень. Для удобства снятия и установки приводного ремня устанавливают натяжитель ремня (часто автоматический). Пример привода распределительного вала (или валов) с помощью зубчатого ремня приведен на рисунках 4.21 и 4.22.


Рисунок 4.21 Схема ременного привода газораспределительного механизма.


Рисунок 4.22 Пример ременного привода газораспределительного механизма.

Шестеренный привод. Привод распределительного вала осуществляется от шестерни на коленчатом валу через ряд промежуточных шестерен или напрямую, как показано на рисунке 4.23.


Рисунок 4.23 Шестеренный привод газораспределительного механизма.

Отключаемые клапаны

В погоне за экономичностью конструкторы решали одну из беспокоящих их проблем: что делать, когда двигатель, работая, использует всего 15–20 % своей мощности. Такое бывает, когда мы стоим, например, в пробке или едем по трассе на крейсерской скорости.

Примечание
Крейсерская скорость – скорость, при которой достигаются оптимальные показатели топливной экономичности. Термин, конечно, более подходящий для авиационной промышленности, однако, если мы едем по магистрали на пятой, а то и шестой передаче, то он вполне применим и в этой отрасли.

А если мощность используется не вся, то зачем работать всем цилиндрам двигателя? Что, если взять и отключить, например, на стоящем в пробке автомобиле, два из четырех цилиндров.

Ведь пары цилиндров вполне хватит для того, чтобы двигатель работал на холостых оборотах. В оставшиеся два цилиндра перестают подавать топливо и, чтобы они попросту не перекачивали воздух по впускному и выпускному коллектору, закрывают впускные и выпускные клапаны. Для выполнения такой незамысловатой операции придумали относительно простое решение: на распределительном вале рядом с обычными кулачками расположили кулачки с «нулевой высотой», то есть они никак не воздействуют на толкатель клапана.

Так при нормальной работе распределительный вал вращается и все клапаны выполняют свое назначение, а когда возникает необходимость в отключении клапанов, открывается специальный клапан, через который моторное масло под давлением, воздействуя на распределительный вал, смещает его в направлении продольной оси; кулачки с обычным профилем как открывали, так и открывают клапаны, а там где кулачки имеют «нулевую высоту», они просто-напросто не достают до клапанов, и те, в свою очередь, стоят неподвижно.

Примечание
Различные фирмы в разные времена предложили несколько схем реализации описанной выше операции по отключению части клапанов. Выше приведен лишь один из способов.

Газораспределительный механизм (ГРМ) — назначение, конструкция и устройство, принцип работы, типы газораспределительных механизмов

Назначение и характеристика

Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.

Газораспределительный механизм (ГРМ) служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним расположением клапанов. Верхнее расположение клапанов позволяет увеличить степень сжатия двигателя, улучшить наполнение цилиндров горючей смесью или воздухом и упростить техническое обслуживание двигателя в эксплуатации. Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1), что зависит от компоновки двигателя и, главным образом, от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.

Рисунок 1 – Типы газораспределительных механизмов, классифицированных по различным признакам

При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны. Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или рычаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.

Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы про большой частоте вращения коленчатого вала двигателя.

Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.

При нижнем расположении распределительный вал устанавливается в блоке цилиндров рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала. При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма. Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр зависят от типа двигателя. Так, при большем числе впускных и выпускных клапанов обеспечивается лучшие наполнение цилиндров горючей смесью и их очистка от отработавших газов. В результате двигатель может развивать большие мощность и крутящий момент. При нечетном числе клапанов на цилиндр число впускных клапанов на один клапан больше, чем выпускных.

Конструкция и работа газораспределительного механизма

Газораспределительные механизмы независимо от расположения распределительных валов в двигателе включают в себя клапанную группу, передаточные детали и распределительные валы с приводом.

В клапанную группу входят впускные и выпускные клапаны, направляющие втулки клапанов и пружины клапанов с деталями крепления.

Передаточными деталями являются толкатели, направляющие втулки толкателей, штанги толкателей, коромысла, ось коромысел, рычаги привода клапанов, регулировочные шайбы и регулировочные болты. Однако при верхнем расположении распределительного вала толкатели, направляющие втулки и штанги толкателей, коромысла и ось коромысел обычно отсутствуют.

На рисунке 2 представлен газораспределительный механизм двигателя с верхним расположением клапанов, с верхним расположением распределительного вала с цепным приводом и с двумя клапанами на цилиндр. Он состоит из распределительного вала 14 с корпусом 13 подшипников, привода распределительного вала, рычагов 11 привода клапанов, опорных регулировочных болтов 18 клапанов 1 и 22, направляющих втулок 4, пружин 7 и 8 клапанов с деталями крепления.

Рисунок 2 – Газораспределительный механизм легкового автомобиля с цепным приводом

1, 22 – клапаны; 2 – головка; 3 – стержень; 4, 20 – втулки; 5 – колпачок; 6 – шайбы; 7, 8, 17 – пружины; 9 – тарелка; 10 – сухарь; 11 – рычаг; 12 – фланец; 13 – корпус; 14 – распределительный вал; 15 – шейка; 16 – кулачок; 18 – болт; 19 – гайка; 21 – пластина; 23 – кольцо; 24, 27, 28 – звездочки; 25 – цепь; 26 – успокоитель; 29 – палец; 30 – башмак; 31 – натяжное устройство

Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Распределительный вал – пятиопорный, отлит из чугуна. Он имеет опорные шейки 15 и кулачки 16 (впускные и выпускные). Внутри вала проходит канал, через который подводится масло от средней опорной шейки к другим шейкам и кулачкам. К переднему торцу вала крепится ведомая звездочка 24 цепного привода. Вал устанавливается в специальном корпусе 13 подшипников, отлитом из алюминиевого сплава, который закреплен на верхней плоскости головки блока цилиндров. От осевых перемещений распределительный вал фиксируется упорным фланцем 12, который входит в канавку передней опорной шейки вала и прикрепляется к торцу корпуса подшипников.

Привод распределительного вала осуществляется через установленную на нем ведомую звездочку 24 двухрядной роликовой цепью 25 от ведущей звездочки 28 коленчатого вала. Этой цепью также вращается звездочка 27 вала привода масляного насоса. Привод распределительного вала имеет полуавтоматический натяжной механизм, состоящий из башмака и натяжного устройства. Цепь натягивается башмаком 30, на который воздействуют пружины натяжного устройства 31. Для гашения колебаний ведущей ветви цепи служит успокоитель 26. Башмак и успокоитель имеют стальной каркас с привулканизированным слоем резины. Ограничительный палец 29 предотвращает спадание цепи при снятии на автомобиле ведомой звездочки распределительного вала.

Клапаны открывают и закрывают впускные и выпускные каналы. Клапаны установлены в головке блока цилиндров в один ряд под углом к вертикальной оси цилиндров двигателя. Впускной клапан 1 для лучшего наполнения цилиндров горючей смесью имеет головку большего диаметра, чем выпускной клапан. Он изготовлен из специальной хромистой стали, обладающей высокой износостойкостью и теплопроводностью. Выпускной клапан 22 работает в более тяжелых температурных условиях, чем впускной. Он выполнен составным. Его головку делают из жаропрочной хромистой стали, а стержень – из специальной хромистой стали.

Каждый клапан состоит из головки 2 и стержня 3. Головка имеет конусную поверхность (фаску), которой клапан при закрытии плотно прилегает к седлу из специального чугуна, установленному в головке блока цилиндров и имеющему также конусную поверхность.

Стержень клапана перемещается в чугунной направляющей втулке 4, запрессованной и фиксируемой стопорным кольцом 23 в головке блока цилиндров, обеспечивающей точную посадку клапана. На втулку надевается маслоотражательный колпачок 5 из маслостойкой резины. Клапан имеет две цилиндрические пружины: наружную 8 и внутреннюю 7. Пружины крепятся на стержне клапана с помощью шайб 6, тарелки 9 и разрезного сухаря 10. Клапан приводится в действие от кулачка распределительного вала стальным кованным рычагом 11, который опирается одним концом на регулировочный болт 18, а другим – на стержень клапана. Регулировочный болт имеет сферическую головку. Он ввертывается в резьбовую втулку 20, закрепленную в головке блока цилиндров и застопоренную пластиной 21, и фиксируется гайкой 19. Регулировочным болтом устанавливается необходимый зазор между кулачком распределительного вала и рычагом привода клапана, равный 0,15 мм на холодном двигателе и 0,2 мм на горячем двигателе (прогретом до 75…85 °C). Пружина 17 создает постоянный контакт между концом рычага привода и стержнем клапана.

Принцип работы

Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки в соответствии с порядком работы цилиндров двигателя поочередно набегают на рычаги 11. Рычаги, поворачиваясь одним концом на сферических головках регулировочных болтов 18, другим концом воздействуют на стержни клапанов, преодолевают сопротивление пружин 7, 8 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с рычагов, которые возвращаются в исходное положение под действием пружин 17, а клапаны закрываются под действием пружин 7 и 8.

При работе двигателя распределительный вал вращается в два раза медленнее, чем коленчатый вал. Это связано с тем, что за период рабочего цикла двигателя, протекающего за два оборота коленчатого вала, впускной и выпускной клапаны каждого цилиндра должны открываться по одному разу.

Нормальная работа газораспределительного механизма (ГРМ) во многом зависит от теплового зазора между кулачками распределительного вала и рычагами привода клапанов. Этот зазор обеспечивает плотное закрытие клапанов при их удлинении в результате нагрева во время работы. При недостаточном тепловом зазоре или его отсутствии происходит неполное закрытие клапанов, что приводит к утечке газов, быстрому обгоранию фасок головок клапанов и снижению мощности двигателя.

Привод распределительного вала

Особенностью привода распределительного вала (рисунок 3) является применение ременной передачи. Привод распределительного вала осуществляется через установленный на нем зубчатый шкив 4 ремнем 5 от зубчатого шкива 1 коленчатого вала. С помощью этого ремня также вращается зубчатый шкив 8 вала привода масляного насоса.

Рисунок 3 – Ременный привод распределительного вала

1, 4, 8 – шкивы; 2 – болты; 3 – ролик; 5 – ремень; 6 – кронштейн; 7 – пружина

Ремень – зубчатый, изготовлен из резины, армированной стекловолокном. Зубья ремня имеют трапециевидную форму. Ремень натягивается с помощью натяжного ролика 3, закрепленного на кронштейне 6. Натяжение ремня регулируют пружиной 7 на неработающем двигателе при ослабленных болтах 2 крепления кронштейна натяжного ролика. Привод распределительного вала работает без смазки и снаружи закрыт тремя пластмассовыми крышками.

Газораспределительный механизм двигателя, представленный на рисунке 4, состоит из распределительного вала 2 с двумя корпусами 1 подшипников, привода распределительного вала, толкателей 4, регулировочных шайб 3, направляющих втулок 6, клапанов 7, пружин 5 клапанов с деталями крепления.

Рисунок 4 – Газораспределительный механизм (а) с верхним расположением распределительного вала и его привод (б):

1 – корпус; 2 – распределительный вал; 3 – шайба; 4 – толкатель; 5 – пружина; 6 – втулка; 7 – клапан; 8, 9, 11 – шкивы; 10 – ролик; 12 – ремень; 13 – ось

Распределительный вал чугунный, литой, пятиопорный. В задней части вала 2 находится эксцентрик для привода топливного насоса. Корпуса 1 подшипников распределительного вала отлиты из алюминиевого сплава. В них находятся верхние половины опор под шейки распределительного вала: две в переднем корпусе и три в заднем. Толкатели 4 клапанов – стальные, цилиндрические, передают усилия от кулачков распределительного вала на клапаны. В верхней части толкателей имеется гнездо для установки регулировочной шайбы. Регулировочные шайбы 3 – плоские, стальные, толщиной 3,00…4,25 мм с интервалом через каждые 0,05 мм. Подбором толщины этих шайб регулируется тепловой зазор между шайбой и кулачком распределительного вала. Клапаны 7 (впускной, выпускной) отличаются по конструкции и изготовлены из разных сталей. Впускной клапан имеет головку большего диаметра, чем выпускной. Он выполнен из хромоникельмолибденовой стали. Выпускной клапан – составной, сварен из двух частей. Головка клапана изготавливается из жаропрочной хромоникельмарганцовистой стали, а стержень – из хромоникельмолибденовой стали. Направляющие втулки 6 клапанов – чугунные, запрессовываются и фиксируются стопорными кольцами в головке блока цилиндров.

Пружины 5 (наружная, внутренняя) прижимают клапан к седлу и не дают ему отрываться от толкателя. Они также исключают возникновение резонансных колебаний деталей.

Привод распределительного вала производится через установленный на нем зубчатый шкив 11 ремнем 12 от зубчатого шкива 8 коленчатого вала. Этим же ремнем вращается зубчатый шкив 9 насоса охлаждающей жидкости. Ремень – зубчатый, резиновый, армирован стекловолокном. Зубья ремня имеют полукруглую форму. Ремень натягивается роликом 10, который вращается на эксцентриковой оси 13, установленной на шпильке, закрепленной в головке блока цилиндров. При повороте эксцентриковой оси относительно шпильки изменяется натяжение ремня. Привод распределительного вала работает без смазочного материала. Он закрыт двумя крышками – передней пластмассовой и задней стальной.

При вращении распределительного вала его кулачок набегает на шайбу 3 и толкатель 4. Толкатель действует на стержень клапана 7, преодолевает сопротивление пружин 5 и открывает клапан. При дальнейшем повороте кулачок сходит с толкателя, который возвращается в исходное положение под действием пружин 5, закрывающих клапан.

Газораспределительный механизм с нижним расположением распределительного вала

На рисунке 5 показан газораспределительный механизм двигателя с нижним расположением распределительного вала. Газораспределительный механизм верхнеклапанный, с шестеренным приводом и двумя клапанами на цилиндр.

Рисунок 5 – Газораспределительный механизм с нижним расположением распределительного вала

1 – распределительный вал; 2 – клапан; 3, 20 – втулки; 4 – пружина; 5 – коромысло; 6 – ось; 7 – винт; 8 – штанга; 9 – толкатель; 10, 11, 12 – шестерни; 13 – шейка; 14 – эксцентрик; 15 – кулачок; 16 – сухарь; 17, 19 – шайбы; 18 – колпачок

Механизм включает в себя распределительный вал 1, привод распределительного вала, толкатели 9, штанги 8 толкателей, регулировочные винты 7, ось 6 коромысел, коромысла 5, клапаны 2, направляющие втулки 3 клапанов и пружины 4 с деталями крепления.

Распределительный вал – стальной, кованый, имеет пять опорных шеек 13, кулачки 15 (впускные и выпускные), шестерню 12 привода масляного насоса и распределители зажигания, а также эксцентрик 14 привода топливного насоса. Вал установлен в блоке цилиндров двигателя на запрессованных биметаллических втулках, изготовленных из стали и покрытых изнутри слоем свинцовистого баббита.

Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню 10, изготовленную из текстолита. Она находится в зацеплении с ведущей стальной шестерней 11, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и обеспечения плавной работы. Передаточное отношение шестеренного привода – отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни – равно 1:2, т.е. ведомая шестерня 10 имеет в два раза больше зубьев, чем ведущая шестерня 11. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.

Толкатели 9 служат для передачи усилия от кулачков распределительного вала к штангам 8. Они изготовлены из стали, и их торцы, соприкасающиеся с кулачками, выполнены сферическими и наплавлены отбеленным чугуном для уменьшения изнашивания. Внутри толкатели имеют сферические углубления для установки штанг. Толкатели перемещаются в направляющих отверстиях блока цилиндров.

Штанги 8 передают усилие от толкателей к коромыслам 5. Они изготовлены из алюминиевого сплава, и на их концы напрессованы стальные наконечники.

Коромысла 5 предназначены для передачи усилия от штанг к клапанам. Коромысла стальные, имеют неравные плечи для уменьшения высоты подъема толкателей и штанг, в их короткие плечи ввернуты винты 7 для регулирования теплового зазора. Коромысла установлены на втулках на полой оси 6, закрепленной в головке цилиндров.

Клапаны 2 изготовлены из легированных жаропрочных сталей. Для лучшего наполнения цилиндров двигателя горючей смесью диаметр головки у впускного клапана больше, чем у выпускного.

Пружины 4 изготовлены из рессорно-пружинной стали. Деталями их крепления являются шайбы 17 и 19, сухари 16 и втулки 20. Резиновые маслоотражательные колпачки 18, установленные на впускных клапанах, исключают проникновение масла через зазоры между направляющими втулками и стержнями впускных клапанов.

Работа механизма

Газораспределительный механизм (ГРМ) работает следующим образом. При вращении распределительного вала его кулачки поочередно набегают на толкатели 9 в соответствии с порядком работы цилиндров двигателя. Усилие от толкателей 9 через штанги 8 передается к коромыслам 5, которые, поворачиваясь на оси 6, воздействуют на стержни клапанов 2, преодолевают сопротивление пружин 4 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с толкателей, которые вместе со штангами и коромыслами возвращаются в исходное положение под действием пружин, закрывающих также клапаны.

Другие статьи по двигателю

Тема 13:»Газораспределительный механизм» — Автомеханик. Персональный сайт преподавателя Добровольского Е.И.

Подробности
Автор: Добровольский Е.И.

Опубликовано: 27 Октябрь 2013

 

Основные типы механизмов газораспределения

Газораспределительный механизм служит для своевременного впуска в цилиндр горючей смеси (у карбюраторных двигателей) или воздуха (у дизелей) и для выпуска отработавших газов. При тактах сжатия и рабочего хода газораспределительный механизм надежно изолирует камеры сгорания от окружающей среды.

Все четырехтактные карбюраторные двигатели и дизели имеют клапанные газораспределительные механизмы. У этих двигателей впуск горючей смеси или воздуха происходит через впускные клапаны, а выпуск отработавших газов — через выпускные клапаны.

У двухтактных двигателей роль клапанов выполняют три окна: выпускное, впускное и продувочное. Процесс газораспределения у двухтактных двигателей реализуется с помощью кривошипно-шатунного механизма, который при возвратно-поступательном движении поочередно открывает и закрывает окна, осуществляя впуск в цилиндр горючей смеси или выпуск отработавших газов, а также сжатие рабочей смеси и рабочий ход.

Газораспределительные механизмы могут иметь нижнее или верхнее расположение клапанов.

Газораспределительные механизмы с нижним расположением клапанов и распределительного вала (рис. 1). В настоящее время они встречаются редко (двигатели автомобилей ЗИЛ-157КД и ГАЗ-52-04). Распределительный вал  в этом случае расположен в блоке цилиндров  и на его кулачки 10 непосредственно опираются толкатели 9, в которые ввернуты регулировочные болты 7 с контргайками 8. Гнездо 1 клапана 2 запрессовано в блок цилиндров, а сам клапан помещен в направляющей втулке 3. Закрывается клапан пружиной 4, одним концом упирающейся в блок цилиндров, а другим — в тарелку пружины 6. Тарелка пружины удерживается на нижнем конце стержня клапана при помощи сухарей 5, вставленных в кольцевую проточку. Преимуществом такого механизма является простота устройства, небольшое количество деталей и низкая стоимость.

К недостаткам относят сложность регулировки тепловых зазоров между стержнем клапана и регулировочным болтом толкателя. Наполнение цилиндров при нижнем расположении клапанов недостаточное, так как горючей смеси для поступления в цилиндр нужно проделать сложный путь, проходя горизонтальные участки и подъемы.

 

Рис.1. Газораспределительный механизм с нижним расположением клапанов и распределительного вала

Современные двигатели обычно имеют газораспределительные механизмы с верхним расположением клапанов, так как в этом случае камера сгорания получается компактной, улучшается наполнение цилиндров, упрощается регулировка клапанов и значительно уменьшаются потери теплоты с охлаждающей жидкостью (двигатели автомобилей ЗИЛ-431410, КамАЗ-5320, ГАЗ-3110 «Волга». ВАЗ-2108 «Спутник»).

Газораспределительные механизмы с верхним расположением клапанов и нижним расположением распределительного вала (рис. 2). Такие механизмы имеют более сложное устройство и применяются на двигателях автомобилей ЗИЛ-433100, -5301, «ГАЗель», «Волга», ГАЗ-3307. У этих двигателей распределительный вал 10 расположен в блоке цилиндров 19. На кулачки вала опираются толкатели 9, которые при помощи штанг 18 через регулировочные винты 16 передают усилие на коромысло 15, а с него на стержень клапана 2. Седло клапана 1 запрессовано в головку блока цилиндров. Механизм более сложный и дорогой по сравнению с механизмом с нижним расположением клапанов, но процесс регулировки тепловых зазоров намного проще, так как подготовительная работа заключается в снятии крышки головки блока 14. При таком механизме улучшается наполнение цилиндров горючей смесью или воздухом, а также очистка цилиндров от отработавших газов.

 

Рис.2. Газораспределительные механизмы с верхним расположением клапанов и нижним расположением распределительного вала

При верхнем расположении распределительного вала  отсутствуют толкатели и штанги, вследствие чего уменьшаются масса и инерционные силы клапанного механизма, что дает возможность увеличить частоту вращения коленчатого вала и уменьшить уровень шума при работе двигателя.

Механизм газораспределения с верхним расположением клапанов и распределительного вала (рис. 3). Он проще по устройству, так как у него отсутствуют толкатели и штанги. Коромысла 10 устанавливаются на осях коромысел 9 и одним концом опираются на кулачки распределительного вала 11. В другой конец ввернут регулировочный винт 6, который и передает усилия на стержень клапана 2.

 

Рис.3. Механизм газораспределения с верхним расположением клапанов и распределительного вала

Недостатком этого механизма является более сложное устройство привода распределительного вала.

Верхнее расположение распределительного вала применяют в быстроходных двигателях, так как в этом случае движение передается от кулачка распределительного вала через коромысло на клапан и можно отказаться от промежуточных деталей механизма газораспределения (толкателей и штанг), имеющих возвратно-поступательное движение и большую инерцию.

В двигателях заднеприводных автомобилей ВАЗ (рис.4) распределительный вал расположен в отдельном картере на головке 1 блока цилиндров и вращается в подшипниках скольжения. Привод к клапанам 2, размещенным в один ряд, осуществляется непосредственно от кулачков 6 распределительного вала через одноплечие рычаги (рокеры) 4. Одним концом одноплечий рычаг опирается на стержень клапана, другим — на сферическую головку болта 7 и удерживается на ней при помощи шпилечной пружины.

 

Рис. 4. Газораспределительный  механизм  двигателей с верхним расположением распределительных валов автомобилей  ВАЗ-2105, -2107 «Жигули»: 1 – головка цилиндров;   2 – клапан;  3 – маслоотражательный колпачок;   4 – рычаг клапана;   5 – корпус подшипников распределительного вала;  6 – распределительный вал;   7 – регулировочный болт;   8 – контргайка болта;  А – зазор между рычагом и кулачком распределительного вала

В двигателях автомобилей «Москвич» (рис. 5) клапаны 1 расположены в два ряда и приводятся в действие коромыслами 3 от кулачков 2 распределительного вала. Для регулировки теплового зазора в клапанах служит регулировочный болт 5 с контргайкой 6, который связан со сферическим наконечником 4.

В двигателях переднеприводных автомобилей ВАЗ-2108 «Спутник», ВАЗ-2109 верхний распределительный вал установлен в отдельном корпусе 4 (рис. 6), расположенном на головке блока цилиндров 1, в которую запрессованы чугунные седла клапанов и направляющие втулки клапанов 2. Верхняя часть втулок уплотняется металлорезиновыми маслоотражательными колпачками 7.

  

Рис.5. Газораспределительный механизм двигателя с верхним расположением распределительного вала автомобиля «Москвич-21412»: 1 — клапаны; 2 — кулачки; 3— коромысла; 4 — сферический наконечник;  5 — болт; 6 — контргайка; h — тепловой зазор

Клапаны 2 приводятся в действие непосредственно кулачками 5 через цилиндрические толкатели 3 без промежуточных рычагов. В гнездах толкателей находятся шайбы 6 для регулировки зазора 8 в клапанном механизме.

    

 

Рис. 6. Газораспределительный механизм двигателей с верхним расположением распределительных валов автомобилей  ВАЗ-2108 «Спутник», ВАЗ-2109: 1 — головка цилиндров; 2 — клапан; 3 — толкатель; 4 — корпус распределительного вала; 5 — кулачок; 6 — регулировочная шайба; 7 — маслоотражательный колпачок; 8 — тепловой зазор

 

 

Рис. 7. Газораспределительный механизм двигателя с верхним расположением распределительных валов автомобиля ГАЗ-3110 «Волга»

Во время сжатия и рабочего хода клапаны неподвижны и пружинами плотно прижаты к гнездам, закрывая впускные и выпускные каналы. При вращении коленчатого вала вращение через шестерни передается на распределительный вал, который, вращаясь, кулачками набегает на толкатели и поднимает их вместе со штангами. Штанга поворачивает на оси коромысло, которое бойком нажимает на стержень клапана и опускает его, открывая впускной или выпускной трубопроводы. При дальнейшем вращении распределительного вала кулачок выходит из-под толкателя, освобождая толкатель и коромысло, и клапанный механизм под действием пружин возвращается в первоначальное положение. Затем весь процесс повторяется.

Механизм газораспределения V-образного двигателя

На V-образных восьмицилиндровых двигателях применяют верхнее расположение клапанов (рис. 8). Нижний распределительный вал таких двигателей, установленный в развале блока, является общим для клапанов правого и левого рядов цилиндров.

Открытие клапанов  впускного 6 и выпускного 2, перемещающихся в направляющих втулках, происходит под действием усилия, передаваемого от кулачков и через толкатели 8 штанги 7 и коромысла 4, установленные на осях 5 коромысел. Закрытие клапанов осуществляется под действием пружин, нижние концы которых упираются в шайбы. При наличии у выпускных клапанов механизма вращения их пружины опираются на опорные шайбы этих механизмов. Верхними концами пружины обоих клапанов упираются в тарелки. За два оборота коленчатого вала впускные и выпускные клапаны каждого цилиндра открываются один раз, а распределительный вал за этот период делает один оборот. Следовательно, распределительный вал вращается в два раза медленнее коленчатого вала. Поэтому зубчатое колесо распределительного вала имеет в два раза больше зубьев, чем ведущая шестерня коленчатого вала.

 

 

Рис. 8. Газораспределительный механизм V-образного двигателя: 1 — выпускной трубопровод;

 2 — выпускной клапан; 3 — впускной трубопровод; 4 — коромысло; 5 — ось коромысла; 6 — впускной клапан; 7 — штанга; 8 — толкатель; 9 — распределительный вал

Распределительный вал. Распределительный вал изготавливают из стали или специального чугуна и подвергают термической обработке. Профиль его кулачков, как впускных, так и выпускных, у большинства двигателей делают одинаковым.

 

Рис.9. Распределительный вал

Одноименные (впускные и выпускные) кулачки располагаются в четырехцилиндровом двигателе под углом 90°, в шестицилиндровом — под углом 60°, а в восьмицилиндровом — под углом 45°. При шлифовании кулачкам придают небольшую конусность. Взаимодействие сферической поверхности торца толкателей 19 с конической поверхностью кулачков обеспечивает их поворот в процессе работы.

Начиная с передней опорной шейки, диаметр шеек уменьшается, что облегчает установку распределительного вала в картере двигателя. Число опорных шеек обычно равно числу коренных подшипников коленчатого вала. Втулки  опорных шеек изготавливают из стали, а внутреннюю поверхность их покрывают антифрикционным сплавом.

Привод распределительного вала. Распределительный вал приводится от коленчатого вала зубчатой, цепной передачей или посредством зубчатого ремня. На двигателях ЗИЛ-508 автомобилей семейства ЗИЛ ведущая шестерня 1 (рис. 10) установлена на переднем конце коленчатого вала, а ведомое колесо 8 — на переднем конце распределительного вала и закреплено гайкой.

Зубчатые колеса привода должны входить в зацепление между собой при строго определенном положении коленчатого и распределительного валов, что обеспечивает правильность заданных фаз газораспределения и порядка работы двигателя. Поэтому при сборке двигателя зубчатые колеса вводятся в зацепление по меткам (метка «а» на рис.10) на их зубьях (на впадине между зубьями колеса и на зубе шестерни).

 

Рис. 10. Установочные метки на распределительных шестернях:

1- ведущая шестерня; 2 – ведомая шестерня; а – метки

Чтобы уменьшить уровень шума зубчатых колес, их изготавливают с косыми зубьями и из различных материалов. На коленчатом валу устанавливают стальную шестерню, а на распределительном — чугунное (двигатели автомобилей ЗИЛ-431410, МАЗ-5335) или текстолитовое колесо (двигатели автомобилей ГАЗ-3307, -3302. -2705 «ГАЗель»).

В двигателях автомобилей ВАЗ (с приводом на задние колеса) газораспределительный механизм приводится в действие от коленчатого вала двухрядной втулочно-роликовой цепью 4 (рис. 11), которая соединяет ведущую звездочку 1 коленчатого вала со звездочкой 5 распределительного вала и звездочкой 2 валика привода масляного насоса и распределителя зажигания. При резком изменении частоты вращения коленчатого вала появляются колебания ветви цепи, для гашения которых служит пластмассовая колодка 3 (успокоитель). С противоположной стороны колодки 3 размещается башмак 7 натяжного устройства. Один конец башмака закреплен на оси, а другой соединяется с регулировочным механизмом 6, прижимающим башмак к цепи. Цепь натягивают при помощи гайки  регулировочного механизма.

 

Рис.11.Цепной привод распределительного вала

В двигателях переднеприводных легковых автомобилей ВАЗ-2108 «Спутник», ВАЗ-2109 и других привод газораспределительного механизма (рис.12) состоит из двух зубчатых шкивов 1 и 4, установленных на коленчатом и распределительном валах 5, натяжного ролика 3 и зубчатого ремня 2. Этим же ремнем приводится во вращение и шкив насоса охлаждающей жидкости.

 

Рис.12.Ременной привод распределительного вала

Основной особенностью такого привода является зубчатый эластичный ремень с зубьями полукруглой формы. Его изготавливают из маслостойкой резины, армированной кордом из стекловолокна. Зубья для повышения износостойкости покрыты эластичной тканью.

Детали клапанного привода

В газораспределительном механизме с верхним расположением клапанов и нижним расположением распределительного вала клапаны имеют привод через передаточные детали (толкатели, штанги и коромысла).

Толкатели. Они предназначены для передачи усилия от распределительного вала через штанги к коромыслам. Изготавливают их из стали или чугуна. Толкатели (рис.13) бывают цилиндрические и рычажно-роликовые. В дизелях ЯМЗ-236М2 и -238М2 применяют рычажно-роликовые толкатели качающегося типа (рис. 13, а), установленные на оси 1 над распределительным валом. Ролик 2 толкателя 3 опирается на кулачок распределительного вала. Ось ролика вращается на игольчатых подшипниках, поэтому при перекатывании ролика по кулачку трение скольжения заменяется трением качения, что повышает срок службы толкателя. Сверху на толкатель опирается штанга 4.

В двигателях ЗИЛ-508, ЗМЗ-511 и КамАЗ-740, Д-245.12 применяют цилиндрические толкатели 7(рис. 13, б), установленные в специальных отверстиях — направляющих. В дизеле КамАЗ-740 применяют съемные направляющие. Внутренняя полость толкателя имеет сферическую поверхность 8 под штангу и отверстие 9 для слива масла. Для повышения работоспособности торцовую поверхность 10 стальных толкателей в месте соприкосновения с кулачком наплавляют специальным износостойким чугуном.

Штанги. Для передачи усилия от толкателей к коромыслам служат штанги, которые изготавливают из стального прутка с закаленными концами (двигатели ЗИЛ-508) или стержня из алюминиевого сплава (двигатели ЗМЗ-511 и -4022) со стальными сферическими наконечниками.

В дизелях ЯМЗ и КамАЗ, Д-245.12 штанги 4 (рис. 13, б) делают обычно из стальной трубки. На концах штанг напрессовывают стальные сферические наконечники 11, которыми они с одной стороны упираются в сферические поверхности регулировочных винтов 5 (рис. 13, а), ввернутых в коромысла 6, а с другой — в толкатели.

Коромысла. Для передачи усилия от штанги к клапану служит коромысло, представляющее собой неравноплечий рычаг, изготовленный из стали или чугуна. Плечо а коромысла примерно в 1,5 раза больше плеча b. Наличие длинного плеча коромысла не только уменьшает ход толкателя и штанги, но и снижает силы инерции, возникающие при их движении, что способствует повышению долговечности деталей привода клапанов.

Коромысла карбюраторных двигателей расположены на общей полой оси 5 (рис. 8), в конце которой запрессованы заглушки, что позволяет подводить масло к бронзовым втулкам коромысел и сферическим наконечникам регулировочных болтов 15. Оси 13 в сборе с коромыслами устанавливают на каждой головке цилиндра с помощью стоек 16. На дизелях оси коромысел выполнены как одно целое со стойками и каждое коромысло качается на своей оси.

 

Рис. 13. Детали привода клапанов дизелей: а — ЯМЗ; б — КамАЗ; 1 — ось; 2 — ролик; 3, 7 — толкатели; 4 — штанги; 5 — регулировочный винт; 6 — коромысло; 8 — сферическая поверхность под штангу; 9 — отверстие для слива масла; 10 — наплавленная поверхность толкателей; 11 — наконечник; а и b — плечи коромысла

Клапаны. Открытие и закрытие впускных и выпускных каналов, соединяющих цилиндры с газопроводами системы питания, происходят при помощи клапанов. Клапан (рис. 14, а) состоит из плоской головки 16 и стержня 1, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапана делают значительно больше, чем диаметр выпускного.

Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные — из жаростойкой, так как последние соприкасаются с горячими отработавшими газами и нагреваются до температуры 600…800°С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок 15 из жаропрочного чугуна, которые называются седлами. Применение вставных седел повышает срок службы головки цилиндров и клапанов.

Для плотного прилегания к седлам рабочие поверхности головок клапанов делают коническими, в виде тщательно обработанных фасок (под углами 45 или 30°).

Стержни 1 клапанов имеют цилиндрическую форму. Они перемешаются в чугунных или металлокерамических направляющих втулках 2, запрессованных в головку блока. На конце стержня проточены цилиндрические канавки под выступы конических сухариков 10, которые прижимаются к конической поверхности тарелки 9 под действием пружины 8.

В дизелях ЯМЗ, КамАЗ и двигателях автомобилей ГАЗ, «Москвич», ВАЗ для улучшения резонансной характеристики и повышения работоспособности газораспределительного механизма клапаны прижимаются к седлам не одной, а двумя пружинами. В этом случае направление витков пружин делается различным, чтобы при поломке одной из пружин ее витки не попали между витками другой и не нарушилась безотказная работа клапанного механизма.

На впускных клапанах под опорные шайбы или в верхней части направляющих втулок (у двигателей ЗИЛ, КамАЗ, ЗМЗ) устанавливают резиновые манжеты или колпачки, которые при открытии клапанов плотно прижимаются к его стержню и направляющей втулке, вследствие чего устраняется возможная утечка (подсос) масла в цилиндры через зазор между втулкой и стержнем клапана (при такте впуска).

 

Рис. 14. Выпускной клапан двигателя автомобиля ЗИЛ-431410 с механизмом вращения:

а — выпускной клапан, установленный на головке цилиндров; б, в — соответственно начальное и конечное рабочие положения механизма вращения клапана; 1 — стержень клапана; 2 — направляющая втулка; 3 — замочное кольцо; 4 — корпус механизма вращения; 5 — шарики; 6 — опорная шайба; 7 — замочное кольцо; 8 — пружина; 9 — тарелка; 10 — сухарики; 11 — дисковая пружина; 12 — возвратная пружина; 13 — металлический натрий; 14— головка цилиндров; 15 — седло; 16 — головка клапана

В двигателях ЗИЛ-508 и -511 для лучшего отвода теплоты от выпускных клапанов введено натриевое охлаждение. С этой целью клапан делают полым и его полость заполняют на 3/4 объема металлическим натрием 13 (рис. 14, а). Натрий имеет высокую теплопроводность и плавится при температуре 98 °С. Во время работы двигателя расплавленный натрий омывает внутреннюю полость клапана, при этом теплота от его головки передается к стержню и через направляющую втулку и головку цилиндров отводится к охлаждающей жидкости.

Выпускные клапаны V-образных карбюраторных двигателей ЗИЛ имеют механизм принудительного вращения. Он состоит из корпуса 4 (рис. 14, а), который расположен в углублении головки цилиндра 14 на направляющей втулке 2, закрепленной замочным кольцом 3; пяти шариков 5, установленных вместе с возвратными пружинами 12 в наклонных пазах корпуса; опорной шайбы 6 и конической дисковой пружины 11. Пружина 11 и шайба 6 свободно надеты на выступ корпуса и закреплены на нем замочным кольцом 7.

При закрытом клапане, когда усилие пружины 8 невелико (рис. 14, б), дисковая пружина 11 выгнута наружным краем вверх, а внутренним упирается в заплечики корпуса 4 механизма вращения. При этом шарики 5 в конических пазах корпуса отжаты возвратными пружинами 12 в крайнее положение.

Когда клапан начинает открываться, усилие пружины 8 возрастает, в результате чего дисковая пружина 11 (рис. 14, в) выпрямляется и передает усилие пружины 8 на шарики 5, которые, перекатываясь по наклонным пазам корпуса, поворачивают дисковую пружину 11, опорную шайбу 6, клапанную пружину 8 и сам клапан относительно его первоначального положения.

Во время закрытия клапана усилие клапанной пружины 8 уменьшается. При этом дисковая пружина 11 прогибается до своего исходного положения и освобождает шарики 5, которые под действием возвратных пружин 12 возвращаются в первоначальное положение, подготавливая механизм вращения к новому циклу поворота клапана.

При частоте вращения коленчатого вала около 3000 об/мин частота вращения выпускного клапана достигает 30 об/мин.

Чтобы обеспечить плотное прилегание головки клапана к седлу, необходим определенный тепловой зазор между стержнем клапана и носком (винтом) коромысла. Тепловые зазоры в клапанах изменяются вследствие их нагрева, изнашивания и нарушений регулировок. Когда зазор в клапанах увеличен, они открываются не полностью, в результате чего ухудшается наполнение цилиндров горючей смесью и очистка их от продуктов сгорания, а также повышаются ударные нагрузки на детали клапанного механизма.

При недостаточном зазоре клапаны неплотно садятся на седла, вследствие чего происходят утечки газов, образование нагара с обгоранием рабочих поверхностей седла и клапана. Из-за неплотной посадки клапанов при такте сжатия рабочая смесь может попадать в выпускной газопровод, а в процессе такта расширения газы, имеющие высокую температуру, могут прорываться в впускной газопровод, вследствие чего в этих газопроводах возможны хлопки или вспышки, что является признаком неплотной посадки клапанов.

Фазы газораспределения

Под фазами газораспределения понимают моменты открытия и закрытия клапанов относительно мертвых точек, выраженные в градусах угла поворота коленчатого вала. Фазы газораспределения изображаются круговыми диаграммами, их подбирают экспериментальным путем при доводке опытных образцов двигателей.

При рассмотрении рабочих процессов ДВС в первом приближении было принято, что открытие и закрытие клапанов происходят в мертвых точках. Однако в действительности открытие и закрытие клапанов не совпадают с положением поршней в мёртвых точках. Это связано с тем, что время, приходящееся на такты впуска и выпуска, очень мало, и при максимальной частоте вращения коленчатого вала двигателя оно составляет тысячные доли секунды. Поэтому если открытие и закрытие впускных и выпускных клапанов будут происходить точно в мертвых точках, то наполнение цилиндров горючей смесью и очистка их от продуктов сгорания будут недостаточными. В связи с этим моменты открытия и закрытия клапанов в четырехтактных двигателях происходят с определенным опережением или запаздыванием относительно положения поршней в ВМТ и НМТ.

 

Рис. 15. Диаграмма фаз газораспределения двигателя ЗИЛ-508:

1 — впускной клапан; 2 — выпускной клапан

Из диаграммы фаз газораспределения двигателя ЗИЛ-508 (рис. 15) видно, что впускной клапан открывается за 31° до прихода поршня в ВМТ, а выпускной клапан закрывается при угле 47° поворота коленчатого вала после прохождения ВМТ, следовательно, угол перекрытия клапанов составляет 78°. Открытие выпускного клапана происходит с опережением на 67° до прихода поршня в НМТ, а закрытие выпускного клапана — с запаздыванием на 83° после прохождения поршнем НМТ. Таким образом, общая продолжительность открытия каждого клапана составляет 294° по углу поворота коленчатого вала двигателя.

Моменты, когда оба клапана одновременно открыты, называют перекрытием клапанов. В это время происходит продувка цилиндров от отработавших газов свежей горючей смесью.

Рассмотренные фазы газораспределения двигателя ЗИЛ-508 получены при зазоре в обоих клапанах 0,3 мм (между носком коромысла и торцом стержня клапана). При уменьшении зазора продолжительность открытия впускного и выпускного клапанов возрастает, а при увеличении зазора — уменьшается.

Для закрепления полученных знаний просмотрите видеоролик » Газораспределительный механизм «

Просмотр доступен только для авторизованных пользователей сайта.

 

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Пузанков А.Г.   Автомобили: устройство и техническое обслуживание: учебник для студ. Учреждений сред.проф. образования/ — М.: Издательский центр «Академия», 2007. — 640 с.

2. Морозов Н.Д. и др. Устройство и ремонт автомобилей. Учебник, Изд.2-е, перераб. и доп. М.: Высшая школа, 1972.-304с.

3.Иллюстрации, находящиеся в сети Интернет в свободном доступе.

4. Материалы, размещенные на сайтах:

www.youtube.com/   

tezcar.ru

www.autoprospect.ru

autoustroistvo.ru/

ru.wikipedia.org/

 

Подробности

Просмотров: 2044

Газораспределительный механизм (ГРМ) Назначение и характеристика

Устройство газораспределительного механизма

Детали газораспределительного механизма выполняют разные функции:

  • Распределительный вал открывает и закрывает клапаны.
  • Механизм привода приводит распределительный вал в движение с определенной скоростью.
  • Клапаны закрывают и открывают впускные и выпускные каналы.

Главными частями ГРМ являются распределительный вал и клапаны. Кулачковый, или распределительный, вал представляет собой элемент, на котором располагаются кулачки. Он приводится в движение и вращается на подшипниках. В момент такта впуска или выпуска кулачки, расположенные на вале, при вращении надавливают на толкатели клапанов.

Располагается механизм ГРМ на головке блока цилиндров. В ГБЦ имеются распределительный вал и подшипники от него, коромысла, клапаны и толкатели клапанов. Верхняя часть головки закрыта клапанной крышкой, установка которой осуществляется с использованием специальной уплотнительной прокладки.

Функционирование газораспределительного механизма

Работа ГРМ полностью синхронна с зажиганием и топливным впрыском. Проще говоря, в момент нажатия педали газа открывается дроссельная заслонка, впускающая поток воздуха во впускной коллектор. В результате образуется топливно-воздушная смесь. После этого начинает работать газораспределительный механизм.

Клапаны приводятся в действие распределительным валом двигателя. Когда повышается частота вращения коленвала, начинает быстрее вращаться и распредвал, что и повышает частоту открытия и закрытия клапанов. В результате возрастают обороты двигателя и отдача от него.

Объединение коленчатого и распределительного валов дает возможность ДВС сжигать именно то количество воздушно-топливной смеси, которое необходимо для функционирования двигателя в том или ином режиме.

Характеристики ГРМ

  1. Сопротивление впускного и выпускного трактов, ограничивающее быстроходность и снижающее наполнение на более высоких оборотах. Определяется пропускными сечениями клапанов и патрубков, шероховатостью каналов, их изгибом, настройкой (инерционный наддув). При росте сопротивления пики максимума наполнения сдвигаются в область меньшего числа оборотов, что ограничивает мощность ДВС[2].
  2. Настройки фаз газораспределения (углы опережения открытия впускных и выпускных клапанов/золотников, углы запаздывания закрытия). Эти настройки позволяют частично компенсировать сопротивление впускных и выпускных трактов, сместив максимум наполнения цилиндров от нулевой частоты вращения (при нулевых углах) до частоты, заданной конструктором. Обычно, максимум наполнения соответствует максимуму крутящего момента. На рисунке представлены кривые, соответствующие VVT (1), тихоходной настройке (2), настройке примерно на 0,5 максимальной частоты вращения (3), и скоростной настройке (4)[3].
  3. Возможность получения компактной камеры сгорания (минимальных размеров) и низкой температуры в районе догорания топливной смеси (искровые ДВС). Это позволяет иметь меньше всего газов в области гашения пламени (что снижает выбросы), и получить высокую степень сжатия без детонации.
  4. Простота, дешевизна, надёжность, габариты и масса. Влияют на стоимость и надёжность всего двигателя. Этим характеристикам описанные ниже схемы отвечают в различной степени.

Классификация механизмов газораспределения производится в зависимости от того, каким образом в них осуществляется управление впуском и выпуском. Обычно выделяют четыре типа механизмов управления впуском и выпуском — поршневые, золотниковые, клапанные и гильзовые.

Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.

Газораспределительный механизм (ГРМ) служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним расположением клапанов.

Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1), что зависит от компоновки двигателя и, главным образом, от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.

Рисунок 1 – Типы газораспределительных механизмов, классифицированных по различным признакам

При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны. Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или рычаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.

Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы про большой частоте вращения коленчатого вала двигателя.

Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.

При нижнем расположении распределительный вал устанавливается в блоке цилиндров рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала.

При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма. Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр зависят от типа двигателя.

Так, при большем числе впускных и выпускных клапанов обеспечивается лучшие наполнение цилиндров горючей смесью и их очистка от отработавших газов. В результате двигатель может развивать большие мощность и крутящий момент. При нечетном числе клапанов на цилиндр число впускных клапанов на один клапан больше, чем выпускных.

Замена газораспределительного механизма

Шкив привода распределительного вала находится за пределами ГБЦ. Для того чтобы не происходили утечки масла, на шейке вала расположен сальник. Цепь ГРМ приводит весь механизм газораспределения в действие и надевается с одной стороны на ведомую звездочку или шкив, а с другой передает усилие от коленчатого вала.

От ременного привода клапанов зависит корректное и неизменное расположение коленчатого и распределительного валов относительно друг друга. Даже небольшие отклонения в положении могут стать причиной того, что ГРМ, двигатель выйдут из строя.

Наиболее надежной считается цепная передача, использующая ролик ГРМ, однако существуют некоторые проблемы с обеспечением необходимого уровня натяжения ремня. Главной проблемой, с которой сталкиваются водители и которая характерна для цепи механизма, становится ее обрыв, нередко являющийся причиной загиба клапанов.

К числу дополнительных элементов механизма можно отнести ролик ГРМ, используемый для натяжения ремня. К минусам цепного привода газораспределительного механизма, помимо риска обрыва, относят еще и высокий уровень шума во время работы и необходимость его смены каждые 50-60 тысяч километров пробега.

В зависимости от конструктивных особенностей двигателя автомобиля и газораспределительного механизма в частности количество приводов и их тип могут меняться.

  • Цепной привод. Нескольким ранее данный привод был самым распространенным, однако и сейчас используется в ГРМ дизеля. При такой конструкции распределительный вал располагается в головке блока цилиндров, а в движение приводится посредством цепи, ведущей от шестерни. Минус такого привода – сложный процесс замены ремня, поскольку находится он внутри двигателя с целью обеспечения постоянной смазки.
  • Шестеренчатый привод. Устанавливался на двигатели тракторов и некоторых автомобилей. Очень надежный, но при этом крайне сложен в обслуживании. Распределительный вал такого механизма находится ниже блока цилиндров, благодаря чему шестерня распредвала цепляется за шестерню коленчатого вала. Если привод ГРМ такого типа приходил в негодность, двигатель меняли практически полностью.
  • Ременной привод. Самый популярный тип, устанавливается на бензиновые силовые агрегаты в легковых автомобилях.

Ременной привод получил свою популярность за счет своих преимуществ по сравнению с аналогичными видами приводов.

  • Несмотря на то что производство таких конструкций сложнее, чем цепных, стоит она значительно дешевле.
  • Не требует постоянной смазки, благодаря чему привод был вынесен на внешнюю сторону силового агрегата. Замена и диагностика ГРМ в результате этого значительно облегчились.
  • Поскольку в ременном приводе металлические части не взаимодействуют друг с другом, как в цепном, то уровень шума в процессе его работы снизился в разы.

Несмотря на большое количество плюсов, есть у ременного привода и свои минусы. Срок эксплуатации ремня в несколько раз ниже, чем цепи, что становится причиной частой его замены. В случае обрыва ремня с большой вероятностью придется делать ремонт всего двигателя.

Полная замена ремня производится каждые 50-70 тысяч километров пробега автомобиля. Ее могут проводить и чаще в случае повреждения или появления следов расслоения и трещин.

В зависимости от типа ГРМ меняется и сложность процедуры замены ремня. На сегодняшний день в автомобилях используются два типа механизма газораспределения – с двумя (DOHC) или одним (SOHC) распределительными валами.

Для того чтобы провести замену ремня ГРМ типа SOHC, достаточно иметь под рукой новую деталь и набор отверток и ключей.

Сперва снимается защитный чехол с ремня. Крепится он либо на защелки, либо на болты. После снятия чехла открывается доступ к ремню.

Прежде чем ослаблять ремень, выставляются метки ГРМ на шестерне распредвала и коленвале. На коленчатом вале метки размещаются на маховике. Вал проворачивают до тех пор, пока метки ГРМ на корпусе и на маховике не совпадут друг с другом. Если все метки совпали друг с другом, приступают к ослаблению и снятию ремня.

Для того чтобы снять ремень с шестерни коленчатного вала, необходимо демонтировать шкив привода ГРМ. С этой целью автомобиль поднимается домкратом и с него снимается правое колесо что дает доступ к болту шкива. На некоторых из них находятся специальные отверстия, через которые можно зафиксировать коленвал.

Доступ к ремню ГРМ полностью открывается, и можно приступать к его снятию и замене. Новый одевается на шестерни коленвала, затем цепляется за водяной насос и одевается на шестерни распредвала. За натяжной ролик ремень заводят в самую последнюю очередь. После можно возвращать все элементы на место в обратном порядке. Останется только натянуть ремень при помощи натяжителя.

Прежде чем запускать двигатель, желательно провернуть несколько раз коленчатый вал. Делают это для проверки совпадения меток и после проворачивания вала. Только после этого запускается двигатель.

На автомобиле с системой DOHC ремень ГРМ заменяется немного по-другому. Сам принцип смены детали аналогичен вышеописанному, однако доступ к ней у таких машин сложнее, поскольку имеются закрепленные на болтах защитные чехлы.

В процессе совмещения меток стоит помнить о том, что распределительных валов в механизме два, соответственно, метки на обоих должны полностью совпасть.

У таких автомобилей, помимо направляющего ролика, имеется и опорный ролик. Однако, несмотря на наличие второго ролика, ремень заводится за направляющий ролик с натяжителем в самую последнюю очередь.

После того как новый ремень будет установлен, проверяется соответствие меток.

Одновременно с заменой ремня меняются и ролики, поскольку их срок эксплуатации совпадает. Также желательно проверить состояние подшипников жидкостного насоса, чтобы после проведения процедуры установки новых деталей ГРМ выход из строя помпы не стал неприятной неожиданностью.

С поршневым управлением газораспределения

Механизм газораспределения с поршневым управлением впуском и выпуском (он же — оконный газораспределительный механизм) применяется на двухтактных двигателях с кривошипно-камерной продувкой. В нём фазы газораспределения задаются за счёт осуществляемого непосредственно поршнем открытия и закрытия окон в стенке цилиндра.

Впускное окно обычно открывается при положении коленчатого вала, в котором поршень не доходит 40—60° до нижней мёртвой точки (по углу поворота коленвала), а закрывается спустя 40—60° после её прохождения, что даёт достаточно узкую фазу впуска — не более 130—140°.

На высокофорсированных спортивных моторах открытие впускного окна может производиться за 65—70° до НМТ, что расширяет фазу впуска, но при этом работа двигателя на малых и средних оборотах становится неустойчивой, значительно увеличивается непроизводительный расход топлива из-за обратного выброса топливной смеси в атмосферу.

Выпускное окно открывается примерно за 80-85° до достижения поршнем нижней мёртвой точки, а закрывается спустя 80-85° после её прохождения, что даёт длительность фазы выпуска около 160—165°. Фаза продувки имеет длительность около 110…125°.

Симметричность фаз газораспределения при поршневом управлении впуском и выпуском обусловлена тем, что взаимное расположение поршня и окон в стенке цилиндра одинаково как при ходе вверх, так и при ходе вниз. Это является недостатком, поскольку для оптимальной работы двигателя как минимум фаза впуска должна быть асимметрична, что при чистом поршневом управлении газораспределением недостижимо.

В двухтактных двигателях большого объёма (тепловозные, морские, авиационные, танковые) либо на один цилиндр два поршня, движущихся навстречу друг другу, один из которых открывает впускные окна, а второй — выпускные (прямоточная продувка), либо через окна в стенке цилиндра производится только впуск, а выпуск осуществляется с помощью клапана в головке цилиндров (клапанно-щелевая продувка), при этом также достигается более оптимальная продувка.

В роторно-поршневых двигателях также как правило используется управление газораспределением поршнем (ротором), играющим в данном случае роль золотника.[4]

Механизм газораспределения с поршневым управлением впуском и выпуском (он же — оконный газораспределительный механизм) применяется на двухтактных двигателях с кривошипно-камерной продувкой. В нём фазы газораспределения задаются за счёт осуществляемого непосредственно поршнем открытия и закрытия окон в стенке цилиндра.

В двухтактных двигателях большого объёма (тепловозные, морские, авиационные, танковые) либо на один цилиндр два поршня, движущихся навстречу друг другу, один из которых открывает впускные окна, а второй — выпускные (прямоточная продувка), либо через окна в стенке цилиндра производится только впуск, а выпуск осуществляется с помощью клапана в головке цилиндров (клапанно-щелевая продувка), при этом также достигается более оптимальная продувка.

В роторно-поршневых двигателях также как правило используется управление газораспределением поршнем (ротором), играющим в данном случае роль золотника.[4]

С клапанным управлением газораспределением

Управление газораспределением осуществляется при помощи тарельчатых клапанов, как правило имеющих привод от распределительного вала. Эта система наиболее распространена на современных четырёхтактных двигателях, а также мощных двухтактных (с клапанно-щелевой продувкой, имеются только выпускные клапана).

В данной конструкции ГРМ используется клапан, состоящий из тарелки (головки) и стержня (стебля), который служит для открытия и закрытия впускных и выпускных каналов. Главное преимущество тарельчатого клапана, позволившее ему достичь преимущественного распространения в данной области — простота обеспечения герметичности: под воздействием давления в камере сгорания его тарелка плотно прижимается к седлу, поэтому для исключения утечки газов вполне достаточно тщательно притереть эти детали друг к другу, причём усилие, создаваемое давлением в камере сгорания, направлено по оси стержня клапана и не мешает ему перемещаться вдоль направляющей.

При открытии клапана он смещается относительно седла на расстояние, называемое высотой подъёма клапана. При этом открывается определённое проходное сечение, определяемое величиной высоты подъёма, размерами и формой клапана. В большинстве случаев впускные клапана имеют большее проходное сечение, чем выпускные.

Ранее, примерно до 1950-х годов, клапаны обычно изготавливали из обычной углеродистой или низколегированной инструментальной стали (например, хромистой 40Х), однако по мере совершенствования двигателей и повышения их степени форсирования появилась необходимость применения как минимум для выпускных клапанов, температура которых может достигать 600—850 °С, специальных легированных жаростойких сталей, например сильхромовой (40Х10С2М / ЭИ107, 40Х9С2 / ЭСХ8), X45CrNiW189, X53CrMNi219, и т. п.

Впускные клапана обычно имеют температуру не выше 300—400 °С и выполняются из хромистой, хромованадиевой или хромоникелевой сталей. Иногда с целью удешевления из жаростойкой стали изготавливается только тарелка (головка) клапана, а стержень — из обычной инструментальной, также на тарелках выпускных клапанов иногда может производиться дополнительная наплавка слоя твёрдого жаростойкого сплава, повышающего срок службы клапана.

В двигателях с большой тепловой напряжённостью камеры сгорания могут применяться клапана с полыми стержнями, заполненными натрием — при работе двигателя натрий плавится и, испаряясь, улучшает теплоотвод от клапана. В последнее время могут использоваться клапана из титановых сплавов, сочетающие жаростойкость с лёгкостью, что позволяет уменьшить инерцию деталей ГРМ.

Тарелка (головка) клапана может иметь плоскую (Т-образную), выпуклую или тюльпанообразную (обтекаемую, с плавным переходом к стержню) форму. Клапана с выпуклой головкой иногда используются в качестве выпускных благодаря большой жёсткости и лучшей обтекаемости со стороны цилиндра, что особенно актуально в нижнеклапанном моторе.

Тюльпанообразные клапана ранее часто устанавливались на впуске при большом диаметре клапана, так как считалось, что обтекаемая форма головки снижает сопротивление потоку воздуха, но впоследствии, примерно с 1980-х годов, от их использования отказались, так как они не давали значительного эффекта, или даже при той же величине подъёма ухудшали наполнение цилиндров по сравнению с обычными, при большей сложности изготовления.

Головка клапана имеет коническую рабочую поверхность — запорную фаску, плотно притёртую к ответной фаске седла (гнезда) клапана. Фаска на головке клапана выполняется под углом 30° или 45°. Фаска в 45° даёт меньшее проходное сечение при том же подъёме, чем фаска в 30°, однако облегчает центровку клапана в седле и способствует повышению его жёсткости, поэтому 30-градусная фаска применяется ограниченно, обычно на впускных клапанах высокофорсированных и спортивных двигателей.

В некоторых случаях может применяться двойная фаска. Фаска подвергается шлифовке, а затем плотно притирается к седлу (гнезду). На нижнем (хвостовом) конце стержня клапана выполняются кольцевые проточки, предназначенные для крепления тарелок клапанных пружин, обычно осуществляемого при помощи конических сухарей (реже — поперечной шпилькой или на резьбе).

Иногда для повышения срока службы клапана тарелка клапанной пружины оснащается упорным подшипником, допускающим свободное вращение клапана вокруг своей оси при работе двигателя. Ранее на хвостовой части стержня клапана иногда также выполняли кольцевую выточку под предохранительное кольцо, не дающее клапану провалиться в цилиндр, если лопнет его пружина или произойдёт случайное выпадение сухарей при работе двигателя.[7][8]

Сёдла (гнёзда) клапанов выполняются либо непосредственно в материале блока цилиндров (у нижнеклапанных моторов) или головки цилиндров, либо в виде запрессованных в них отдельных деталей из легированного чугуна, бронзы или жаростойкой стали (только выпускных клапанов, либо и впускных, и выпускных), иногда с наплавкой износостойкого кобальтового сплава типа сормайт.

[7] Обычно седло имеет одну фаску с углом в 45°, или две фаски — верхнюю с углом в 30°, служащую переходом от основной фаски к стенке камеры сгорания, и основную в 45°. Иногда выполняется также нижняя фаска с углом порядка 60°, применение которой снижает сопротивление седла потоку воздуха.

Направляющие втулки клапанов служат для обеспечения их точной посадки в сёдла, изготавливаются из чугуна, алюминиевой бронзы или металлокерамических антифрикционных композиций (бронзографитовой и других). Для уменьшения расхода масла через зазор между направляющей клапана и его стержнем либо на сам стержень клапана одевается маслоотражательный колпачок из маслостойкой резины, либо на его направляющую устанавливается сальник с кольцевой пружинкой (маслосъёмный колпачок).[7][8]

Клапанные пружины обеспечивают закрытие клапана и его плотную посадку в седло, воспринимают усилия, возникающие при работе ГРМ. При сборке клапанного механизма пружина получает предварительную затяжку, величина которой является важным параметром, влияющим на качество работы двигателя.

Если пружина в засухаренном состоянии не развивает должного усилия, указанного в технической документации — возникают отставание («подвисание») и подскакивание клапана при его закрытии, нарушающие фазы газораспределения и ухудшающие наполнение цилиндров горючей смесью, из-за чего двигатель не будет развивать полной мощности и не обеспечит паспортных динамических характеристик автомобиля.

При полностью закрытом клапане остаточной силы пружины должно хватать для удержания контакта между кулачком распределительного вала и контактирующей с ним деталью ГРМ (толкателем, коромыслом, рокером), что позволяет сохранить заданную конструкторами продолжительность открытия клапана и устранить ударные нагрузки в приводе клапанов, быстро выводящие его из строя.

Как правило, клапанные пружины изготавливаются из легированной высокоуглеродистой стали (марганцовистой, кремнемарганцовистой, хромоникелеванадиевой) холодной навивкой с последующими термообработкой и дробеструйным наклёпом для повышения срока службы.

Иногда применяются по две пружины на клапан, расположенные одна внутри другой, причём наружная и внутренняя пружина имеют разное направление витков для предотвращения заклинивания внутренней пружины витками внешней. Применение таких сдвоенных пружин позволяет несколько уменьшить габариты узла за счёт меньшей общей высоты двух пружин по сравнению с одинарной при том же усилии, а также служит в качестве страховки на случай поломки одной из пружин, тем самым повышая надёжность и безотказность работы двигателя. Также иногда клапанная пружина может устанавливаться не на самом клапане, а в толкателе (пример — дизель ЯАЗ-204).[7]

В очень редких случаях вместо винтовых клапанных пружин могут применяться торсионные в виде работающих на скручивание стержней (некоторые моторы фирмы Panhard, также некоторые мотоциклетные двигатели Honda), плоские, спиральные или витые шпилечные пружины (некоторые мотоциклетные двигатели)[источник не указан 29 дней].

В большинстве случаев в клапанном механизме для управления клапанами используется выполненный из чугуна или легированной стали кулачковый распределительный вал, имеющий опорные шейки, служащие для установки вала в подшипниках его постели, и кулачки с различным профилем, определяющим фазы газораспределения двигателя.

Обычно на один цилиндр приходится по два кулачка распределительного вала (один впускной и один выпускной), однако встречаются и иные варианты. Кроме того, распределительных валов может быть более одного. Привод распределительного вала осуществляется от коленчатого вала двигателя, причём у четырёхтактных моторов его частота обращения равна половине частоты обращения коленчатого вала, а у двухтактных — равна ей.

С золотниковым управлением газораспределением

В двухтактных двигателях

Золотниковое газораспределение было применено ещё на двухтактном газовом двигателе Ленуара, считающемся первым в мире коммерчески успешным двигателем внутреннего сгорания (1859 год). Его газораспределительный механизм с двумя коробчатыми золотниками был полностью скопирован с парораспределительного механизма паровых машин, причём при помощи золотников осуществлялся как впуск газовоздушной рабочей смеси, так и выпуск отработанных газов.

Применение золотникового газораспределения на лёгких двухтактных двигателях современного типа (с кривошипно-камерной продувкой) прослеживается как минимум с 1920-х годов, однако по-настоящему удачная реализация этого принципа была осуществлена лишь в начале 1950-х годов восточногерманским инженером Даниэлем Циммерманом на спортивно-гоночных мотоциклах MZ, а затем в 1960-х — 70-х годах схожие решения стали появляться и на некоторых серийных мотоциклах марок Jawa, Yamaha, Suzuki, Kawasaki и других.

На двухтактных моторах с золотниковым управлением газораспределением для управления впуском используется золотник с приводом от коленчатого вала — вращающийся дискового или цилиндрического (кранового) типа либо имеющий возвратно-поступательное движение пластинчатого типа.

Золотник тем или иным образом осуществляет открывание и закрывание впускного канала двигателя, управляя тем самым длительностью впуска. Благодаря этому удаётся сделать фазу впуска асимметричной относительно НМТ (как правило, начинается за 130—140° до НМТ и заканчивается за 40—50° после) и увеличить её длительность до 180—200°, тем самым улучшив наполнение цилиндра.

Некоторые варианты реализации золотникового управления газораспределением позволяют даже изменять фазы газораспределения непосредственно во время работы двигателя. Выпуском как правило продолжает управлять поршень, открывающий выпускное окно (окна).

С аналогичной целью во впускном тракте двигателя может устанавливаться автоматически срабатывающий на перепад давления клапан лепесткового или мембранного типа (Yamaha и др.).

В начале 1950-х годов на пермском моторостроительном заводе № 19 под руководством В. В. Полякова были разработаны и выпущены небольшой серией двухтактные пятицилиндровые звездообразные авиамоторы ВП-760, ВП-1300 и ВП-2650 с газораспределением установленным в картере вращающимся золотником и продувкой двухступенчатыми поршнями в форме перевёрнутой буквы Т (узкая часть рабочая, широкая — нагнетательная), которые предназначались для применения в легкомоторной авиации.[5][6]

Опыты с газораспределением вращающимся золотником велись в начале 1990-х годов фирмой Lotus применительно к двухтактному автомобильному двигателю с продувкой от приводного компрессора, причём, в отличие от обычного двухтактного двигателя с клапанно-щелевой продувкой, свежий воздух подавался в верхнюю часть цилиндра через золотник, а отработавшие газы удалялись через окна в нижней части цилиндра (у обычного двигателя с клапанно-щелевой продувкой воздух подаётся через окна в средней части цилиндра, а газы удаляются через клапан в головке блока).

Золотник имел вид постоянно вращающегося вокруг своей оси полого цилиндра — ротора — с окнами в стенках, внутри которого располагался также имевший вид полого цилиндра статор с продольной перегородкой, поворот которого относительно ротора, осуществляемый электронной системой, управлял фазами газораспределения.

Такое устройство газораспределения позволило вместо обычно используемого на дизелях с клапанно-щелевой продувкой непосредственного впрыска использовать более дешёвый вариант системы питания, с форсункой низкого давления, распыляющей топливо внутрь золотника, откуда рабочая смесь вдувалась внутрь цилиндра через впускное окно.

В четырёхтактных двигателях

Золотниковое газораспределение с коробчатыми, поршневыми или вращающимися (крановыми) золотниками, так или иначе связанными с распределительным валом и осуществляющими открытие и закрытие впускных и выпускных окон, использовалось на некоторых четырёхтактных двигателях, но не получило широкого распространения из-за целого ряда трудностей на пути практической реализации данного принципа, в частности — проблемы с уплотнением золотников, особенно работающего на выпуск и в силу этого находящегося под большим давлением горячих отработанных газов.

Газораспределение коробчатым золотником, аналогичным золотникам паровых машин, было применено ещё на первом в мире четырёхтактном двигателе внутреннего сгорания, сконструированном Н. Отто (1861 год), и достаточно широко использовалось на тихоходных стационарных двигателях XIX — самого начала XX века.

Управление газораспределением имеющими возвратно-поступательное движение поршневыми золотниками является фактически стандартным на паровых машинах и мощных поршневых насосах, некоторые конструкторы пытались приспособить его и к двигателю внутреннего сгорания, однако без большого успеха — перемещение золотника оказывалось весьма затруднено из-за большого давления газов, создававшего огромную силу трения между золотником и стенками золотниковой коробки, не говоря уже о проблемах с прорывом газов через уплотнения.

Несколько больший успех выпал на долю газораспределительных механизмов с вращающимся (крановым) золотником. Этот вариант газораспределения привлекал конструкторов благодаря бесшумности работы по сравнению с обычными тарельчатыми клапанами (стук которых при работе ГРМ был большой проблемой для двигателей начала XX века), возможности получить потенциально более высокую пропускную способность по сравнению с клапанным газораспределением и упростить ГРМ за счёт использования одного золотника на цилиндр, работающего и на впуск, и на выпуск, или даже одного на каждую пару цилиндров, а также устранить из камеры сгорания один из наиболее опасных очагов детонации — выпускной клапан (что, опять же, было весьма актуально в начале XX века, когда доступное топливо имело очень низкое октановое число).

Первый патент на газораспределение вращающимся золотником был получен британской фирмой Crossley в середине 1880-х годов. Основанные на нём тихоходные газовые двигатели пользовались популярностью в качестве стационарных и выпускались этой фирмой с 1886 по 1902 год.

Пик популярности данной конструкции в автомобильных двигателях пришёлся на начало 1910-х годов, когда, следуя последней моде, свои варианты золотникового газораспределения представил целый ряд фирм, выпускавших дорогостоящие автомобили, таких, как Itala (Италия, 1911), Darraq (Франция, 1912), впоследствии Minerva (Бельгия, 1925).

Сравнительно удачные конструкции двигателей с газораспределением коническим вращающимся золотником создавались британцами Р. Кроссом и Ф. Аспином в 1930-х — 1950-х годах, находили применение на гоночных автомобилях, однако в массовое производство так и не попали, в том числе — из-за нерешённых проблем с уплотнением и смазкой золотника.

В те же годы экспериментировал с золотниковым газораспределением германский инженер Ф. Ванкель в сотрудничестве с фирмами BMW, DVL, Daimler-Benz, Lilienthal и Junkers, однако, не добившись решительного успеха, он переключился на работу над проектом роторно-поршневого двигателя, в чём весьма преуспел.

В 1950-х годах в СССР были построены опытные двигатели с золотниковым газораспределением на базе серийных моторов «Москвич-400» (4-цил.) и ЗИС-120 (6-цил.), имевшие крановые золотники, установленные в головке блока и вращающиеся вокруг оси, параллельной оси коленчатого вала.

По сравнению с нижнеклапанными, двигатели с золотниковым газораспределением имели лучшую наполняемость цилиндров и, соответственно, более высокую удельную мощность — например, на двигателе «Москвича» прибавка в мощности по сравнению с серийным составила 8 %.

Однако при этом ощутимо увеличивался расход масла из-за проблем с уплотнением золотника, двигатель работал с заметным дымлением. Кроме того, в конце такта сжатия и во время рабочего хода поршня золотник испытывал большое трение из-за давления на него уплотняющего башмака, находящегося под давлением выхлопных газов, что значительно повышало потери на трение, а на шестицилиндровом двигателе даже привело к обрыву трёхрядной цепи привода ГРМ в ходе испытаний. Обеспечить требуемый моторесурс двигателям с золотниковым газораспределением так и не удалось.[4]

Примерно тогда же британская фирма Norton выпустила некоторое количество гоночных мотоциклов с золотниковым газораспределением, но в 1954 году полностью прекратила работы в этом направлении.

Необычный автомобильный двигатель с Х-образным расположением цилиндров и газораспределением вращающимися золотниками разработала в середине 1970-х годов компания Esso, которая привлекла к работам Р. Кросса, однако двигатель не показал значительных преимуществ перед традиционными[источник не указан 29 дней].

Разновидностью золотникового иногда считают гильзовое газораспределение, рассмотренное отдельно ниже по тексту.

Золотниковое газораспределение было применено ещё на двухтактном газовом двигателе Ленуара, считающемся первым в мире коммерчески успешным двигателем внутреннего сгорания (1859 год). Его газораспределительный механизм с двумя коробчатыми золотниками был полностью скопирован с парораспределительного механизма паровых машин, причём при помощи золотников осуществлялся как впуск газовоздушной рабочей смеси, так и выпуск отработанных газов.

Управление этапами газораспределения

Современные модели двигателей претерпели значительные изменения, получив новые управляющие системы, в основе которых лежат микропроцессоры – так называемые ЭБУ. В сфере моторостроения основной задачей стало не только увеличение мощности, но и экономичность выпускаемых силовых агрегатов.

Повысить эксплуатационные показатели двигателей, снизив при этом расход топлива, удалось только с использованием систем контроля ГРМ. Двигатель с такими системами не только потребляет меньше топлива, но и не теряет в мощности, благодаря чему их стали использовать повсеместно при производстве автомобилей.

Принцип работы таких систем заключается в том, что они контролируют скорость вращения распределительного вала ГРМ. По сути, клапаны открываются немного раньше за счет того, что распредвал проворачивается в направлении вращения. Собственно, в современных двигателях распределительный вал больше не вращается относительно коленчатого вала с неизменной скоростью.

Основной задачей остается максимально эффективное наполнение цилиндров двигателя в зависимости от выбранного режима его работы. Такие системы отслеживают состояние двигателя и корректируют подачу топливной смеси: к примеру, при холостом ходе ее объемы сводятся практически к минимуму, поскольку топливо в больших количествах не требуется.

Последствия обрыва или ослабления ремня ГРМ

В случае если цепь ГРМ рвется, повышается уровень шума во время работы двигателя. В целом такая неприятность не становится причиной чего-то невыполнимого в плане ремонта, в отличие от ремня газораспределительного механизма. При ослаблении ремня и его перескакивании через один зуб шестерни происходит небольшое нарушение нормального функционирования всех систем и механизмов.

Самый безобидный вариант – это столкновение поршня и клапана. Силы удара будет достаточно для изгиба клапана. Иногда ее хватает для изгиба шатуна или полного разрушения поршня.

Одной из самых серьезных поломок автомобиля является обрыв ремня ГРМ. Двигатель в таком случае придется либо подвергать капитальному ремонту, либо полностью менять.

Обслуживание ремня ГРМ

Уровень натяжения ремня и его общее состояние – один из самых часто проверяемых при техническом обслуживании автомобиля факторов. Периодичность проверки зависит от конкретной марки и модели машины. Процедура контроля натяжения ремня ГРМ: двигатель осматривается, снимается защитный чехол с ремня, после чего последний проверяется на скручивание.

При техобслуживании автомобиля визуальный осмотр ремня доступен даже неопытным автолюбителям. Труднее определить растяжение цепного привода. Если на ремне видны трещины, значительные потертости, нитки корда, замена детали обязательна. Проверить натяжение ремня можно поворотом плоскости пальцами на 90 градусов.

Опытные владельцы машин, обладающие опытом ремонта, проводят замену ремня самостоятельно. Тонкими моментами операции становится совмещение меток шестерней валов (коленчатого, распределительного) с прорезями кожуха привода, определение пригодности натяжных роликов к дальнейшей эксплуатации, правильная регулировка натяжения.

При выборе зубчатого ремня для замены, кроме соответствия размеров, нужно обращать внимание на материал привода. Лучшими считаются ремни из композитных материалов (тяговый слой из арамида, полиэстера, полиамида, наружное покрытие бутадиен-нитрильным каучуком). Такие производители зубчатых ремней как ContiTech, «Бош», Dayco, Habasit гарантируют для своей продукции:

  • износостойкость;
  • малую шумность;
  • высокие показатели эластичности, прочности на разрыв;
  • способность работать при повреждениях (незначительных трещинах, потертостях).

Операции измерения теплового зазора, диагностику направляющих втулок (определение зазора между клапанами и втулками) нужно доверить специалистам. Для этого требуется разборка ГРМ, использование специальных измерителей. Обращения в автосервис не избежать при сбоях фаз газораспределения (требующих регулировки), текущих ремонтах седел клапанов, заменах распределительных шестерен, направляющих втулок.

Основные работы:

  • проверка стабильности состояния и подтягивание креплений (крепежные работы) опоры двигателя к раме, головки цилиндров и поддона картера к блоку, фланцев впускного и выпускного трубопроводов и других соединений;
  • проверка технического состояния или работоспособности (контрольные работы) кривошипно-шатунного и распределительного механизмов;
  • регулировочные работы и смазка.

Крепежные работы

Для предотвращения пропуска газов и охлаждающей жидкости через прокладку головки цилиндров необходимо периодически проверять крепление головки ключом с динамометрической рукояткой с определенным усилием и последовательностью. Момент затяжки и последовательность подтягивания гаек устанавливают автомобильные заводы.

Чугунную головку цилиндров крепят, когда двигатель находится в нагретом состоянии, а головку из алюминиевого сплава – в холодном.

Необходимость подтягивания крепления головок из алюминиевого сплава в холодном состоянии объясняется неодинаковым коэффициентом линейного расширения материала болтов и шпилек (сталь) и материала головки (алюминиевый сплав). Поэтому подтягивание гаек на горячем двигателе не обеспечивает после его остывания необходимой плотности прилегания головки цилиндров к блоку.

Затяжку болтов крепления поддона картера во избежание деформации картера, нарушения герметичности проверяют также с соблюдением последовательности, т.е. поочередным подтягиванием диаметрально противоположных болтов.

Контроль состояния КШМ и ГРМ

Техническое состояние этих механизмов можно определять:

  • по расходу (угару) масла в эксплуатации и падению давления в системе смазки;
  • по изменению давления (компрессии) в цилиндрах двигателя в конце хода сжатия;
  • по разрежению во впускном трубопроводе;
  • по количеству газов, прорывающихся в картер двигателя;
  • по утечке газов (воздуха) из цилиндров;
  • наличию стуков в двигателе.

Угар масла в малоизношенном двигателе незначителен и может составлять 0,1-0,25 л/100 км пробега. При значительном общем износе двигателя угар может достигать 1л/100 км и более, что обычно сопровождается сильным дымлением.

Давление в масляной системе двигателя должно быть в пределах, установленных для данного типа двигателя и применяемого сорта масла. Снижение давления масла на малых оборотах коленчатого вала прогретого двигателя указывает на наличие недопустимых износов подшипников двигателя или неисправности в системе смазки.

Падение давления масла по манометру до 0 указывает на неисправность манометра или редукционного клапана.

Повышенное давление в системе смазки может возникнуть в результате большой вязкости или засорения масляной магистрали.

Компрессия служит показателем герметичности цилиндров двигателя и характеризует состояние цилиндров, поршней и клапанов. Герметичность цилиндров может быть определена компрессометром.

Компрессию проверяют после предварительного прогрева двигателя до 70-80 ºС при вывернутых свечах. Установив резиновый наконечник компрессометра в отверстие свечи, провертывают стартером коленчатый вал двигателя на 10-12 оборотов и записывают показания компрессометра. Проверку повторяют 2-3 раза для каждого цилиндра.

Если величина компрессии на 30-40 % ниже нормы, это указывает на наличие неисправностей (поломку или пригорание поршневых колец, негерметичность клапанов или повреждение прокладки головки цилиндров).

Разрежение во впускном трубопроводе двигателя замеряют вакуумметром. Величина разрежения у работающего на установившемся режиме двигателей может изменяться не только от изношенности цилиндро-поршневой группы, но и от состояния деталей газораспределения, установки зажигания и регулировки карбюратора.

Таким образом, данный метод контроля является общим и не позволяет выделить ту или иную неисправность по одному показателю.

Количество газов, прорывающихся в картер двигателя, изменяется в результате неплотности сопряжений цилиндр-поршень-поршневое кольцо, увеличивающейся по мере изнашивания указанных деталей. Количество прорывающихся газов замеряют при полной нагрузке двигателя.

Источник информации Сайт:      http://autonotes.info/grm-gazoraspredelitelnyj-mexanizm/

Газораспределительный механизм

Газораспределительный механизм

Газораспределительный механизм (ГРМ) обеспечивает своевременный впуск в цилиндры свежего заряда горючей смеси и выпуск отработавших газов. Он включает в себя элементы привода, распределительную шестерню, распределительный вал, детали привода клапанов, клапана с пружинами и направляющие втулки.

? Устройство ГРМ

Распределительный вал служит для открытия клапанов в определенной последовательности в соответствии с порядком работы двигателя. Распредвалы отливают из специального чугуна или отковывают из стали. Трущиеся поверхности распределительных валов для уменьшения износа подвергнуты закалке при помощи нагрева токами высокой частоты.

Распредвал может располагаться в картере двигателя либо в головке блока цилиндров. Существуют двигатели с двумя распредвалами в головке цилиндров (в многоклапанных ДВС). Один используется для управления впускными клапанами, второй – выпускными. Такая конструкция называется DOHC (Double Overhead Camshaft). Если распредвал один, то такой ГРМ именуется SOHC (Single OverHead Camshaft). Распредвал вращается на цилиндрических шлифованных опорных шейках.

Привод клапанов осуществляется расположенными на распределительном валу кулачками. Количество кулачков зависит от числа клапанов. В разных конструкциях двигателей может быть от двух до пяти клапанов на цилиндр (3 клапана – два впускных, один выпускной; 4 клапана – два впускных, два выпускных; 5 клапанов – три впускных, два выпускных). Форма кулачков определяет моменты открытия и закрытия клапанов, а также высоту их подъема.

Привод распределительного вала от коленчатого вала может осуществляться одним из трех способов: ременной передачей, цепной передачей, а при нижнем расположении распредвала — зубчатыми шестернями. Цепной привод отличается надежностью, но его устройство сложнее и цена выше. Ременной привод существенно проще, но ресурс зубчатого ремня ограничен, а в случае его разрыва могут наступить тяжелые последствия.

При обрыве ремня распредвал останавливается, а коленвал продолжает вращаться. Чем это грозит? В простых двухклапанных моторах, где, как правило, поршень конструктивно не достает до головки открытого клапана, ремонт ограничивается заменой ремня. В современных многоклапанных двигателях при обрыве ремня поршни ударяются о клапана, «зависшие» в открытом состоянии. В результате сгибаются стержни клапанов, а также могут разрушиться направляющие втулки клапанов. В редких случаях разрушается поршень.

Еще тяжелее при обрыве ремня приходится дизелям. Так как камера сгорания у них находится в поршнях, то в ВМТ у клапанов остается очень мало места. Поэтому при зависании открытого клапана разрушаются толкатели, распредвал и его подшипники, велика вероятность деформирования шатунов. А если обрыв ремня произойдет на высоких оборотах, возможно даже повреждение блока цилиндров.

Рабочий цикл четырехтактного двигателя происходит за два оборота коленвала. За это время должны последовательно открыться впускные и выпускные клапаны каждого цилиндра. Поэтому распредвал должен вращаться в два раза медленнее коленвала, а, следовательно, шестерня распредвала всегда в два раза больше шестерни коленвала. Клапаны в цилиндрах должны открываться и закрываться в зависимости от направления движения и положения поршней в цилиндре. При такте впуска, когда поршень движется от в.м.т. к н.м.т., впускной клапан должен быть открыт, а при тактах сжатия, рабочего хода и выпуска – закрыт. Чтобы обеспечить такую зависимость, для правильной установки на шестернях ГРМ делают метки.

Привод клапанов может осуществляться разными способами. При нижнем расположении распредвала, в картере двигателя, усилие от кулачков передается через толкатели, штанги и коромысла. При верхнем расположении возможны три варианта: привод коромыслами, привод рычагами и привод толкателями.

Коромысла (другие названия – роликовый рычаг или рокер) изготавливают из стали. Коромысло устанавливают на полую ось, закрепленную в стойках на головке цилиндров. Одной стороной коромысла упираются в кулачки распредвала, а другой воздействуют на торцевую часть стержня клапана. В отверстие коромысла для уменьшения трения запрессовывают бронзовую втулку. От продольного перемещения коромысло удерживается при помощи цилиндрической пружины. Во время работы двигателя в связи с нагревом клапанов их стержни удлиняются, что может привести к неплотной посадке клапана в седло. Поэтому между стержнем клапана и носком коромысла должен быть определенный тепловой зазор.

Во втором варианте распредвал располагается над клапанами, и приводит их в действие посредством рычагов. Кулачки распределительного вала действуют на рычаги, которые, поворачиваясь на сферической головке регулировочного болта, другим концом нажимают на стержень клапана и открывают его. Регулировочный болт ввернут во втулку головки цилиндров и стопорится контргайкой. Существуют ГРМ, в которых между рычагом и клапаном устанавливается гидрокомпенсатор. Такие механизмы не требуют регулировки зазора.

И, наконец, при третьем варианте привода распределительный вал при вращении воздействует непосредственно на толкатель клапана. Существует три варианта исполнения толкателей – механические (жесткие), гидротолкатели (гидрокомпенсаторы) и роликовые толкатели. Первый тип в современных моторах практически не используется, в связи с большой шумностью работы и необходимостью частой регулировки зазора клапанов. Второй тип наиболее широко применяется, так как не требует настройки и регулировки теплового зазора, а работа отличается мягкостью и гораздо меньшим шумом. Гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла. Работа гидрокомпенсатора основана на свойстве несжимаемости моторного масла, которое постоянно заполняет его внутреннюю полость и перемещает поршень при появлении зазора в приводе клапана.

Роликовые толкатели чаще всего применяются в спортивных и форсированных двигателях, так как позволяют улучшить динамические характеристики автомобиля за счет снижения трения. В месте контакта с кулачком распредвала у них находится ролик. Поэтому кулачок не трется, а катится по толкателю. Вследствие этого роликовые толкатели выдерживают более высокие нагрузки и обороты, а также позволяют обеспечить более высокий подъем клапанов. Недостатки – большая стоимость и вес, а, значит, и большие нагрузки на детали ГРМ.

Клапаны служат для периодического открытия и закрытия отверстий впускных и выпускных каналов. Клапан состоит из головки и стержня. Головка клапана имеет узкую, скошенную под определенным углом, фаску. Фаска клапана должна плотно прилегать к фаске седла. Для этой цели их взаимно притирают. Головки впускных и выпускных клапанов имеют неодинаковый диаметр. Для лучшего наполнения цилиндров свежей горючей смесью диаметр головки впускного клапана делают больше. Клапаны во время работы двигателя нагреваются неодинаково. Выпускные клапаны, контактирующие с отработанными газами, нагреваются больше. Поэтому их изготавливают из жароупорной стали.

Стержень клапана цилиндрической формы в верхней части имеет выточку для деталей крепления клапанной пружины. Стержень выпускного клапана — полый, с натриевым наполнением для лучшего охлаждения. Стержни клапанов помещают в направляющих втулках, изготовленных из чугуна или металлокерамики. Втулки запрессовывают в головку цилиндров.

Клапан прижимается к седлу при помощи цилиндрической стальной пружины. Кроме того, пружина не дает возможности клапану отрываться от коромысла. Пружина имеет переменный шаг витков, что необходимо для устранения ее вибрации. Другой вариант борьбы с вибрацией — установка двух пружин меньшей жесткости, имеющих противоположную навивку. Пружина одной стороной упирается в шайбу, расположенную на головке цилиндров, а другой – в упорную тарелку. Упорная тарелка удерживается на стержне клапана при помощи двух конических сухарей, внутренний буртик которых входит в выточку стержня клапана. Для уменьшения проникновения масла по стержням клапанов в камеру сгорания двигателя на стержни клапанов надеты маслоотражательные колпачки.

? Фазы газораспределения

В теории открытие и закрытие клапанов должно происходить в моменты прихода поршня в мертвые точки. Однако в связи инерционностью процесса, особенно при больших оборотах коленвала, этого периода времени недостаточно для впуска свежей смеси и выпуска отработанных газов. Поэтому впускной клапан открывается до прихода поршня в в.м.т. в конце такта выпуска, т.е. с опережением в пределах 9-24 градусов поворота коленчатого вала, а закрывается в начале такта сжатия, когда коленвал пройдет положение н.м.т на 51-64 градусов. Таким образом, продолжительность открытия впускного клапана составит 240-270 градусов поворота коленчатого вала, что значительно увеличивает количество поступаемой в цилиндры горючей смеси.

Выпускной клапан открывается за 44-57 градусов до прихода поршня в н.м.т. в конце рабочего хода и закрывается после прихода поршня в в.м.т. такта выпуска на 13-27 градусов. Продолжительность открытия выпускного клапана составляет 240-260 градусов поворота коленчатого вала.

В двигателе бывают моменты (в конце такта выпуска и начале такта впуска) когда оба клапаны открыты. В это время происходит продувка цилиндров свежим зарядом горючей смеси для лучшей их очистки от продуктов сгорания. Этот период носит название перекрытие клапанов.

Моменты открытия и закрытия клапанов относительно мертвых точек, выраженных в градусах поворота коленчатого вала, называются фазами газораспределения.

? Основные неисправности газораспределительного механизма

Внешними признаками неисправности ГРМ являются: уменьшение компрессии, хлопки во впускном и выпускном трубопроводах, падение мощности двигателя и металлические стуки.

Уменьшение компрессии, хлопки во впускном и выпускном трубопроводах, а также падение мощности двигателя возможно вследствие плохого прилегания клапанов к седлам. Плохое прилегание клапана к седлу происходит вследствие отложения нагара на клапанах и седлах, образования раковин на рабочих поверхностях, коробления головок клапанов, поломки клапанных пружин, заедания стержня клапана в направляющей втулке, а также отсутствия зазора между стержнем клапана и коромыслом (рычагом).

Падение мощности двигателя и резкие металлические стуки могут происходить вследствие неполного открытия клапанов. Эта неисправность возникает из-за большого теплового зазора между стержнем клапана и коромыслом (рычагом) или отказа гидрокомпенсаторов.

К неисправностям ГРМ также относят износ шестерен распредвала и коленвала, направляющих втулок клапанов, втулок и осей коромысел, а также увеличенное осевое смещение распредвала.

Спасибо,что прочитали статью до конца ?
Удачи на дорогах ?

Поделиться новостью с друзьями:

Похожее

Лекция 7. Газораспределительный механизм назначение и характеристика

Лекция 7. Газораспределительный механизм назначение и

характеристика

План

  1. Назначение и характеристика.

  1. Назначение и характеристика.

Газораспределительным называется механизм, осуществляющий открытие и закрытие впускных и выпускных клапанов двигателя.

Газораспределительный механизм служит для своевременного впуска горючей смеси или воздуха в цилиндры двигателя и выпуска из цилиндров отработавших газов. В двигателях автомобилей применяются газораспределительные механизмы с верхним рас­положением клапанов. Верхнее расположение клапанов позволяет увеличить степень сжатия двигателя, улучшить наполнение цилиндров горючей смесью или воздухом и упростить техническое обслуживание двигателя в эксплуатации.

Двигатели автомобилей могут иметь газораспределительные механизмы различных типов (рисунок 1.13), что зависит от типа двигателя и главным образом от взаимного расположения коленчатого вала, распределительного вала и впускных и выпускных клапанов. Число распределительных валов зависит от типа двигателя.

При верхнем расположении распределительный вал устанавливается в головке цилиндров, где размещены клапаны (см. рисунок 1.2, 1.5 — 1.7). Открытие и закрытие клапанов производится непосредственно от распределительного вала через толкатели или ры­чаги привода клапанов. Привод распределительного вала осуществляется от коленчатого вала с помощью роликовой цепи или зубчатого ремня.

Верхнее расположение распределительного вала упрощает конструкцию двигателя, уменьшает массу и инерционные силы возвратно-поступательно движущихся деталей механизма и обеспечивает высокую надежность и бесшумность его работы при боль­шой частоте вращения коленчатого вала.

Цепной и ременный приводы распределительного вала также обеспечивают бесшумную работу газораспределительного механизма.

При нижнем расположении распределительный вал устанавливается в блоке цилиндров (см. рисунок 1.3, 1.4, 1.8) рядом с коленчатым валом. Открытие и закрытие клапанов производится от распределительного вала через толкатели, штанги и коромысла. Привод распределительного вала осуществляется с помощью шестерен от коленчатого вала. При нижнем расположении распределительного вала усложняется конструкция газораспределительного механизма и двигателя. При этом возрастают инерционные силы возвратно-поступательно движущихся деталей газораспределительного механизма.

Число распределительных валов в газораспределительном механизме и число клапанов на один цилиндр (см. рис. 2.7 — 2.15) зависят от типа двигателя. Так, при большем числе впускных и выпускных клапанов обеспечивается лучшее наполнение цилиндров горючей смесью и лучшая их очистка от отработавших газов. В результате двигатель может развивать большие мощность и крутящий момент. При нечетном числе клапанов на цилиндр число впускных клапанов на один клапан больше, чем выпускных.

Газораспределительный механизм

По числу распределительных валов

С одним

валом

С двумя

валами

По расположению распределительного вала

С верхним

расположением вала

С нижним расположением вала

По приводу распределительного вала

С шестеренным приводом

С цепным приводом

С зубчато-ременным приводом

По числу клапанов на цилиндр

С двумя

клапанами

С тремя

клапанами

С четырьмя клапанами

С пятью

клапанами

Рисунок – 1.13 Типы газораспределительных механизмов, классифицирован­ные по различным признакам

Лекция 8. Конструкция и работа газораспределительного механизма

Газораспределительные механизмы независимо от расположения рас­пределительных валов в двигателе включают в себя клапанную группу, передаточные детали и распределительные валы с приводом.

В клапанную группу входят впускные и выпускные клапаны, направляющие втулки клапанов и пружины клапанов с деталями крепления.

Передаточными деталями являются толкатели, направляющие втулки толкателей, штанги толкателей, коромысла, ось коромысел; рычаги привода клапанов, регулировочные шайбы и регулировочные болты. Однако при верхнем расположении распределительного вала толкатели, направляющие втулки и штанги толкателей, коромысла и ось коромысел обычно отсутствуют.

На рисунке 1.14 представлен газораспределительный механизм двигателя (см. рисунок 2.7) легкового автомобиля ВАЗ с верхним расположением клапанов, с верхним расположением распределительного вата с цепным приводом и двумя клапанами на цилиндр.

Газораспределительный механизм состоит из распределительного вала 14 с корпусом подшипников 13, привода распределительного вала, рычагов 11 привода клапанов, опорных регулировочных болтов 18 клапанов 1 и 22, направляющих втулок 4, пружин 7 и 8 клапанов с деталями крепления.

Распределительный вал обеспечивает своевременное открытие и закрытие клапанов. Распределительный вал — пятиопорный, отлит из чугуна. Он имеет опорные шейки 15 и кулачки 16 (впускные и выпускные). Внутри вала проходит канал, через который подводится масло от средней опорной шейки к другим шейкам и кулачкам. К переднему торцу вала крепится ведомая звездочка 24 цепного привода. Вал устанавливается в корпусе 13 подшипников, отлитом из алюминиевого сплава, который закреплен на верхней плоскости головки блока цилиндров. От осевых перемещений распределительный вал фиксируется упорным фланцем 12, который входит в канавку передней опорной шейки вала и прикрепляется к торцу корпуса подшипников.

Привод распределительного вала осуществляется через установленную на нем ведомую звездочку 24 двухрядной роликовой цепью 25 от ведущей звездочки 28 коленчатого вала. Этой цепью также вращается звездочка 27 вала привода масляного насоса. Привод распределительного вала имеет полуавтоматический натяжной механизм, состоящий из башмака и натяжного устройства. Цепь натягивается башмаком 30, на который воздействуют пру­жины натяжного устройства 31. Для гашения колебаний ведущей ветви цепи служит успокоитель 26. Башмак и успокоитель имеют стальной каркас с привулканизированным слоем резины. Ограничительный палец 29 предотвращает спадание цепи при снятии на автомобиле ведомой звездочки распределительного вала.

Клапаны открывают и закрывают впускные и выпускные кана­лы. Клапаны установлены в головке блока цилиндров в один ряд под углом к вертикальной оси цилиндров двигателя. Впускной клапан 7 для лучшего наполнения цилиндров горючей смесью имеет головку большего диаметра, чем выпускной клапан. Он изготовлен из специальной хромистой стали, обладающей высокой износостойкостью и теплопроводностью. Выпускной клапан 22 работает в более тяжелых температурных условиях, чем впускной. Он выполнен составным. Его головку делают из жаропрочной хромистой стали, а стержень — из специальной хромистой стали.

Каждый клапан состоит из головки 2 и стержня 3. Головка имеет конусную поверхность (фаску), которой клапан при закрытии плотно прилегает к седлу из специального чугуна, установленному в головке блока цилиндров и имеющему также конусную по­верхность. Стержень клапана перемещается в чугунной направляющей втулке 4, запрессованной и фиксируемой стопорным кольцом 23 в головке блока цилиндров, обеспечивающей точную по­садку клапана. На втулку надевается маслоотражательный колпачок 5 из маслостойкой резины. Клапан имеет две цилиндрические пружины: наружную 8 и внутреннюю 7. Пружины крепятся на стержне клапана с помощью шайб 6, тарелки 9 и разрезного суха­ря 10. Клапан приводится в действие от кулачка распределитель­ного вала стальным кованым рычагом 11, который опирается одним концом на регулировочный болт 18, а другим — на стержень клапана. Регулировочный болт имеет сферическую головку. Он ввертывается в резьбовую втулку 20, закрепленную в головке блока цилиндров и застопоренную пластиной 21, и фиксируется гайкой 19. Регулировочным болтом устанавливается необходимый зазор между кулачком распределительного вала и рычагом привода клапана, равный 0,15 мм на холодном двигателе и 0,2 мм на горячем двигателе (прогретом до 75…85°С). Пружина 17создает постоянный контакт между концом рычага привода и стержнем клапана.

Газораспределительный механизм работает следующим образом.

При вращении распределительного вала его кулачки в соответствии с порядком работы цилиндров двигателя поочередно набегают на рычаги 11. Рычаги, поворачиваясь одним концом на сферических головках регулировочных болтов 18, другим концом воздействуют на стержни клапанов, преодолевают сопротивление пружин 7, 8 и открывают клапаны. При дальнейшем повороте распределительного вала кулачки сходят с рычагов, которые возвра­щаются в исходное положение под действием пружин 17, а клапаны закрываются под действием пружин 7 и 8.

При работе двигателя распределительный вал вращается в два раза медленнее, чем коленчатый вал. Это связано с тем, что за период рабочего цикла двигателя, протекающего за два оборота коленчатого вала, впускной и выпускной клапаны каждого цилиндра должны открываться по одному разу.

Нормальная работа газораспределительного механизма во многом зависит от теплового зазора между кулачками распределительного вала и рычагами привода клапанов. Этот зазор обеспечивает плотное закрывание клапанов при их удлинении в результате нагрева во время работы. При недостаточном тепловом зазоре или его отсутствии происходит неполное закрытие клапанов, что приводит к утечке газов, быстрому обгоранию фасок головок клапанов и снижению мощности двигателя /4/.

1, 22 — клапаны; 2 — головка; 3 — стержень; 4, 20 — втулки; 5 — колпачок; 6 — шайбы; 7, 8, 17—пружины; 9~ тарелка; 10— сухарь; 11 — рычаг; 12 — фланец; 13 — корпус подшипников; 14 — распределительный вал; 15 — шейка; 16 — кулачок; 18 — болт; 19 — гайка; 21 — пластина; 23 — кольцо; 24, 27, 28 — звездоч­ки; 25 — роликовая цепь; 26 — успокоитель; 29 — палец; 30 — башмак; 31 —натяжное устройство

Рисунок – 1.14 Газораспределительный механизм двигателей легковых авто­мобилей ВАЗ

На рисунок 2.21 показан газораспределительный механизм двигателя с нижним расположением распределительного вала и двумя клапанами на цилиндр.

Механизм включает в себя распределительный вал 1, привод распределительного вала, толкатели 9, штанги 8 толкателей, регулировочные винты 7, ось 6 коромысел, коромысла 5, клапаны 2, направляющие втулки 3 клапанов и пружины 4 с деталями крепления.

Распределительный вал стальной, кованый, имеет пять опорных шеек 13, кулачки 15 (впускные и выпускные), шестерню 12 привода масляного насоса и распределители зажигания, а также эксцентрик 14 привода топливного насоса. Вал установлен в блоке цилиндров двигателя на запрессованных биметаллических втулках, изготовленных из стали и покрытых изнутри слоем свинцовистого баббита.

Привод распределительного вала осуществляется через прикрепленную к его переднему концу ведомую шестерню 10, изготов­ленную из текстолита.

Она находится в зацеплении с ведущей стальной шестерней 11, установленной на коленчатом валу. Обе шестерни выполнены косозубыми для уменьшения шума и плавной работы. Передаточное отношение шестеренного привода — отношение числа зубьев ведущей шестерни к числу зубьев ведомой шестерни — равно 1:2, т.е. ведомая шестерня 10 имеет в два раза больше зубьев, чем ведущая шестерня 11. Это необходимо для того, чтобы за два оборота коленчатого вала распределительный вал совершал один оборот, обеспечивая за полный цикл двигателя открытие впускного и выпускного клапанов каждого цилиндра по одному разу.

1 — распределительный вал; 2 — клапан; 3, 20 — втулки; 4 — пружина; 5 — коромысло; б — ось; 7 – винт; 8 — штанга; 9 — толкатель; 10— 12 — шестерни; 13 — шейка; 14 — эксцентрик; 15 — кулачок; 16 — сухари; 17, 19 — шайбы; 18 — колпачок

Рисунок – 1.15 Газораспределительный механизм с нижним расположением распределительного вала

Толкатели 9 служат для передачи усилия от кулачков распределительного вала к штангам 8. Они изготовлены из стали, и их торцы, соприкасающиеся с кулачками, выполнены сферически­ми и наплавлены отбеленным чугуном для уменьшения изнаши­вания. Внутри толкатели имеют сферические углубления для установки штанг. Толкатели перемещаются в направляющих отверстиях блока цилиндров.

Штанги 8 передают усилие от толкателей к коромыслам 5. Они изготовлены из алюминиевого сплава и на их концы напрессованы стальные наконечники.

Коромысла 5 предназначены для передачи усилия от штанг к клапанам. Коромысла стальные, имеют неравные плечи для уменьшения высоты подъема толкателей и штанг, в их короткие плечи ввернуты винты 7 для регулировки теплового зазора. Коромысла установлены на втулках на полой оси 6, закрепленной в головке цилиндров.

Клапаны 2 изготовлены из легированных жаропрочных сталей. Для лучшего наполнения цилиндров двигателя горючей смесью диаметр головки у впускного клапана больше, чем у выпускного.

Пружины 4 изготовлены из рессорно-пружинной стали. Деталями их крепления являются шайбы 77 и 19, сухари 16 и втулки 20. Резиновые маслоотражательные колпачки 18, установленные на впускных клапанах, исключают проникновение масла через зазоры между направляющими втулками и стержнями клапанов.

Газораспределительный механизм работает следующим образом. При вращении распределительного вала его кулачки поочередно набегают на толкатели 9 в соответствии с порядком работы цилиндров двигателя. Усилие от толкателей 9 через штанги 8 передается к коромыслам 5, которые, поворачиваясь на оси 6, воздействуют на стержни клапанов 2, преодолевают сопротивление пружин 4 и открывают клапаны. При дальнейшем повороте рас­пределительного вала кулачки сходят с толкателей, которые вместе со штангами и коромыслами возвращаются в исходное положение под действием пружин, закрывающих также клапаны.

В настоящее время в газораспределительных механизмах двигателей (см. рисунок 1.5) легковых автомобилей для привода впускных и выпускных клапанов находят широкое применение гидравлические толкатели.

Гидравлические толкатели автоматически обеспечивают постоянный (беззазорный) контакт кулачков распределительного вала с клапанами, компенсируют износ сопрягаемых деталей (распределительного вала и клапанной группы) и исключают необходимость регулировки теплового зазора клапанов в эксплуатации.

Гидравлический толкатель (рисунок 1.16) состоит из корпуса, компенсатора и шарикового клапана. В корпусе 2толкателя приварена направляющая втулка 1 в которой стопорным кольцом 3 закреплен компенсатор. Компенсатор состоит из корпуса 4 и поршня 5, между которыми установлена разжимная пружина 7, а в поршне размещен шариковый клапан 6. Внутренняя полость компенсатора заполнена маслом, которое поступает в компенсатор при откры­том клапане 6 из корпуса гидротолкателя. В корпус гидротолкателя масло подастся из масляной магистрали головки цилиндров через наружную канавку и отверстие, выполненные в корпусе.

Гидротолкатель каждого клапана установлен между торцом стержня клапана и кулачком распределительного вала в отверстии, расточенном в головке цилиндров.

Гидравлический толкатель работает следующим образом.

При набегании кулачка распределительного вала на толкатель усилие от кулачка передается на торец его корпуса 2, который перемещает поршень 5 компенсатора, преодолевая сопротивление пружины 7. При этом шариковый клапан 6 закрывается и запирает находящееся внутри компенсатора масло, через которое и передается усилие от рас-

пределительного вала к впускному или выпускному клапану, и клапан открывается. При перемещении поршня 5 часть масла из компенсатора через зазор между поршнем и корпусом 4 вытекает в корпус 2 толкателя, и поршень немного вдвигается в корпус 4 компенсатора.

При сбегании кулачка распределительного вала с толкателя пружина 7 прижимает поршень 5 к корпусу 2 толкателя, обеспечивая его беззазорный контакт с кулачком распределительного вала. При этом шариковый клапан б открывается, впускает масло в компенсатор, а впускной или выпускной клапан закрывается.

Фазы газораспределения. Продолжительность открытия впускных и выпускных клапанов, выраженная в градусах угла поворота коленчатого вала относительно мертвых точек, называется фазами газораспределения.

Наивысшие мощностные показатели работы двигателя могуч’ быть достигнуты при наилучшем наполнении цилиндров горючей смесью и наиболее полной их очистке от отработавших газов. Поэтому продолжительность фаз впуска и выпуска установлена больше 180° из-за того, что моменты открытия и закрытия клапанов не совпадают с положениями поршня в верхней и нижней мертвых точках. Так, впускной клапан открывается в конце такта выпуска до прихода поршня в ВМТ с опережением на 12° (рисунок 1.17, а) у двигателей заднеприводных автомобилей ВАЗ и 33° (рисунок 1.17, б) у двигателей переднеприводных автомобилей ВАЗ, а закрывается в начале такта сжатия после прихода поршня в НМТ с запаздыванием соответственно на 40 и 79°. Продолжительность впуска горючей смеси в цилиндры двигателей составляет соответственно 232 и 292°, что обеспечивает наилучшее их наполнение.

Выпускной клапан открывается в конце такта рабочего хода до прихода поршня в НМТ с опережением на 42 и 47°, а закрывается в начале такта впуска после прихода поршня в ВМТ с запаздыванием соответственно на 10 и 17°. Продолжительность выпуска отработавших газов из цилиндров двигателей составляет соответственно 232 и 244°, что обеспечивает наиболее полную их очистку от газов.

В конце такта выпуска и в начале такта впуска происходит перекрытие клапанов, когда оба клапана (впускной и выпускной) открыты одновременно. Продолжительность перекрытия клапанов составляет для рассматриваемых двигателей соответственно 22 и 50°. Перекрытие клапанов длится небольшой промежуток времени и не оказывает влияния на работу двигателей.

В процессе эксплуатации необходимо следить за правильной установкой фаз газораспределения. Она обеспечивается совмеще­нием специальных меток на шкивах распределительного и коленчатого валов и соответствующих меток на двигателе или совмещением меток на шестернях привода. Постоянство фаз газораспределения сохраняется только при соблюдении регулируемых тепловых зазоров в газораспределительном механизме. При увеличении зазоров продолжительность открытия клапанов уменьшается, а при уменьшении — увеличивается.

1 — втулка; 2, 4 — корпуса; 3 — коль­цо; 5 — поршень; 6 — клапан; 7 — пружина

Рисунок – 1.16 Гидравлический толка­тель

Рисунок – 1.17 Фазы газораспределения двигателей

Контрольные вопросы

  1. Каково назначение газораспределительного механизма?

  2. Назовите основные части и детали газораспределительного механизма.

  3. Что называется фазами газораспределения? Зачем нужно перекры­тие клапанов?

  4. Для чего выполняется регулировка газораспределительного механизма?

10

Газораспределительный механизм — группа клапанов

Назначение и виды привода ГРМ:

1.1. Назначение газораспределительного механизма:

Назначение газораспределительного механизма — пропускать свежую топливную смесь в цилиндры двигателя и выпускать выхлопные газы. Газообмен осуществляется через впускные и выпускные отверстия, которые герметично закрываются элементами ремня ГРМ в соответствии с принятым режимом работы двигателя.

1.2. Назначение группы клапанов:

Назначение группы клапанов — герметично закрыть впускные и выпускные отверстия и открыть их в указанное время на указанное время.

1.3. Типы ГРМ:

в зависимости от органов, которыми цилиндры двигателя связаны с окружающей средой, синхронизация клапанная, золотниковая и комбинированная.

1.4. Сравнение типов ГРМ:

ГРМ является наиболее распространенным из-за относительно простой конструкции и надежной работы. Идеальная и надежная герметизация рабочего пространства, достигаемая за счет того, что клапаны остаются неподвижными при высоком давлении в цилиндрах, дает серьезное преимущество перед клапанным или комбинированным ремнем ГРМ.Поэтому все чаще используются фазы газораспределения.

Устройство клапанной группы:

2.1. Устройство клапана:

Клапаны двигателя состоят из штока и головки. Головы чаще всего делают плоскими, выпуклыми или колоколообразными. Головка имеет небольшой цилиндрический ремень (около 2 мм) и уплотнительный скос 45˚ или 30˚. Цилиндрическая лента позволяет, с одной стороны, сохранить основной диаметр клапана при шлифовании уплотнительной фаски, а с другой стороны, увеличить жесткость клапана и тем самым предотвратить деформацию.Наиболее распространены клапаны с плоской головкой и уплотнительной фаской 45˚ (чаще всего это впускные клапаны), а для улучшения наполнения и очистки цилиндров впускной клапан имеет больший диаметр, чем выпускной. Выхлопные клапаны часто изготавливают с куполообразной шаровой головкой.

Это улучшает отвод выхлопных газов из цилиндров, а также увеличивает прочность и жесткость клапана. Для улучшения условий отвода тепла от головки клапана и повышения общей недеформируемости клапана переход между головкой и штоком выполнен под углом 10˚ — 30˚ и с большим радиусом кривизны.На верхнем конце штока клапана выполнены канавки конической, цилиндрической или специальной формы, в зависимости от принятого способа крепления пружины к клапану. Натриевое охлаждение используется в ряде двигателей для снижения термической нагрузки на разрывные клапаны. Для этого клапан делают полым, а образовавшуюся полость наполовину заполняют натрием, температура плавления которого составляет 100 ° С. При работающем двигателе натрий плавится и, перемещаясь в полости клапана, отводит тепло от горячая головка к охладителю, а оттуда к приводу клапана.

2.2. Присоединение клапана к его пружине:

Конструкции этого устройства чрезвычайно разнообразны, но наиболее распространена конструкция с полуконусами. С помощью двух полуконусов, которые входят в каналы, выполненные в штоке клапана, прижимается пластина, удерживающая пружину и не позволяющая разобрать агрегат. Это создает соединение между пружиной и клапаном.

2.3. Расположение седла клапана:

Во всех современных двигателях седла выпускных клапанов изготавливаются отдельно от головки блока цилиндров.Они также используются для присосок, когда головка блока цилиндров изготовлена ​​из алюминиевого сплава. Когда это чугун, в нем делают седла. Конструктивно седло представляет собой кольцо, которое крепится к головке блока цилиндров в специально обработанном посадочном месте. При этом на внешней поверхности седла иногда делают канавки, которые при надавливании на седло заполняются материалом головки блока цилиндров, обеспечивая тем самым их надежное крепление. Помимо зажима, крепление также может производиться поворотом седла.Для обеспечения герметичности рабочего пространства при закрытом клапане рабочая поверхность седла должна быть обработана под таким же углом, что и уплотнительная фаска головки клапана. Для этого седла обрабатываются специальными инструментами с углами заточки не 15 °, 45 ° и 75 °, чтобы получить уплотнительную ленту под углом 45 ° и шириной около 2 мм. Остальные углы сделаны для улучшения обтекания седла.

2.4. Направляющие клапана Расположение:

конструкция направляющих очень разнообразна.Чаще всего используются направляющие с гладкой внешней поверхностью, которые изготавливаются на бесцентровом сантехническом станке. Направляющие с внешним фиксирующим ремнем удобнее застегивать, но сложнее сделать. Для этого целесообразнее вместо ремня сделать в направляющей канал для стопорного кольца. Направляющие выпускных клапанов часто используются для защиты их от окислительного воздействия горячего потока отработавших газов. В этом случае делают более длинные направляющие, остальная часть которых располагается в выпускном канале ГБЦ.По мере уменьшения расстояния между направляющей и головкой клапана отверстие в направляющей на стороне головки клапана сужается или расширяется в области головки клапана.

2,5. Устройство пружин:

В современных двигателях

наиболее распространены цилиндрические пружины с постоянным шагом. Для образования опорных поверхностей концы витков пружины сводятся друг к другу и накладываются друг на друга лбом, в результате чего общее количество витков в два-три раза превышает количество рабочих пружин.Концевые катушки поддерживаются с одной стороны пластины и с другой стороны головки цилиндра или блока. Если есть риск возникновения резонанса, пружины клапанов изготавливаются с переменным шагом. Ступенчатый редуктор изгибается либо от одного конца пружины к другому, либо от середины к обоим концам. При открытии клапана ближайшие друг к другу обмотки соприкасаются, в результате чего количество рабочих обмоток уменьшается, а частота свободных колебаний пружины увеличивается. Это снимает условия для резонанса.С этой же целью иногда используются конические пружины, собственная частота которых варьируется по длине и возникновение резонанса исключено.

2.6. Материалы для изготовления элементов клапанной группы:

• Клапаны — Всасывающие клапаны доступны из хрома (40x), хромоникелевых сталей (40XN) и других легированных сталей. Выпускные клапаны изготавливаются из жаропрочных сталей с повышенным содержанием хрома, никеля и других легирующих металлов: 4Х9С2, 4Х10С2М, Х12Н7С, 40СХ10МА.
• Седла клапана — используйте жаропрочные стали, легированный чугун, алюминиевую бронзу или металлокерамику.
• Направляющие клапана сложны в изготовлении и требуют материалов с высокой термической и износостойкостью и хорошей теплопроводностью, таких как серый перлитный чугун и алюминиевая бронза.
• Пружины — изготавливаются путем наматывания проволоки из стомы пружины, например 65G, 60C2A, 50HFA.

Работа группы клапанов:

3.1. Механизм синхронизации:

Механизм синхронизации кинематически связан с коленчатым валом, перемещаясь синхронно с ним. Ремень ГРМ открывает и закрывает впускные и выпускные отверстия отдельных цилиндров в соответствии с принятым порядком работы.Это процесс газообмена в баллонах.

3.2 Действие привода ГРМ:

Привод ГРМ зависит от расположения распределительного вала.
• С нижним валом — сквозные цилиндрические шестерни для более плавной работы выполнены с наклонными зубьями, а для бесшумной работы зубчатое кольцо изготовлено из печатной платы. Паразитная передача или цепь используется для обеспечения движения на большее расстояние.
• С верхним валом — роликовая цепь. Относительно низкий уровень шума, простая конструкция, небольшой вес, но схема будет изнашиваться и растягиваться.С помощью зубчатого ремня на основе неопрена, армированного стальной проволокой и покрытого износостойким нейлоновым слоем. Простой дизайн, бесшумная работа.

3.3. Схема газораспределения:

Общая проточная площадь, предусмотренная для прохождения газов через клапан, зависит от продолжительности его открытия. Как известно, в четырехтактных двигателях для реализации тактов впуска и выпуска предусмотрен один ход поршня, соответствующий повороту коленчатого вала на 180˚. Однако опыт показал, что для лучшего наполнения и очистки цилиндра необходимо, чтобы продолжительность процессов наполнения и опорожнения была больше, чем соответствующие ходы поршня, т.е.е. открытие и закрытие клапанов должно производиться не в мертвых точках хода поршня, а с некоторым обгоном или задержкой.

Время открытия и закрытия клапана выражается в углах поворота коленчатого вала и называется синхронизацией клапана. Для большей надежности эти фазы выполнены в виде круговых диаграмм (рис. 1).
Всасывающий клапан обычно открывается с углом обгона φ1 = 5˚ — 30˚ до того, как поршень достигнет верхней мертвой точки. Это обеспечивает заданное поперечное сечение клапана в самом начале такта наполнения и, таким образом, улучшает наполнение цилиндра.Закрытие всасывающего клапана происходит с углом задержки φ2 = 30˚ — 90˚ после прохождения поршнем нижней мертвой точки. Задержка закрытия впускного клапана позволяет использовать количество свежего всасываемого топлива для улучшения дозаправки и, следовательно, увеличения мощности двигателя.
Выпускной клапан открывается с углом обгона φ3 = 40˚ — 80˚, т.е. в конце хода, когда давление в газах цилиндра относительно высокое (0,4 — 0,5 МПа). Интенсивный выброс газового баллона, начатый при этом давлении, приводит к быстрому падению давлений и их температуры, что значительно снижает работу вытеснения рабочих газов.Выпускной клапан закрывается с углом задержки φ4 = 5˚ — 45˚. Эта задержка обеспечивает хорошую очистку камеры сгорания от выхлопных газов.

Диагностика, обслуживание, ремонт:

4.1. Диагностика

Диагностические признаки:


  • Пониженная мощность ДВС:
  • Уменьшенный клиренс;
  • Неполная посадка клапана;
  • Заклинившие клапаны.
    • Повышенный расход топлива:
  • Уменьшенный зазор между клапанами и подъемниками;
  • Неполная посадка клапана;
  • Заклинившие клапаны.

    Износ двигателей внутреннего сгорания:
  • Износ распределительного вала;
  • открытие кулачков распределительных валов;
  • Увеличенный зазор между стержнями клапанов и втулками клапанов;
  • Большой зазор между клапанами и подъемниками;
  • перелом, нарушение упругости пружин клапана.
    • Индикатор низкого давления:
  • Седла клапана мягкие;
  • Мягкая или сломанная пружина клапана;
  • Перегорел клапан;
  • сгоревшая или порванная прокладка ГБЦ;
  • Нерегулируемый тепловой зазор.
    • Индикатор высокого давления.
  • Уменьшена высота головы;

Методы временной диагностики:

• Измерение давления в цилиндре в конце такта сжатия. Во время измерения должны быть соблюдены следующие условия: двигатель внутреннего сгорания должен быть нагрет до рабочей температуры; Свечи зажигания необходимо снять; Центральный кабель индукционной катушки должен быть смазан маслом, а дроссельная заслонка и воздушный клапан должны быть открыты. Измерение производится с помощью компрессоров.Разница давлений между отдельными баллонами не должна превышать 5%.

4.2. Регулировка теплового зазора в ремне ГРМ:

Проверка и регулировка теплового зазора осуществляется с помощью пластин манометра в последовательности, соответствующей порядку работы двигателя, начиная с первого цилиндра. Зазор правильно отрегулирован, если толщиномер, соответствующий нормальному зазору, проходит свободно. При регулировке зазора удерживайте регулировочный винт отверткой, ослабьте контргайку, поместите пластину зазора между штоком клапана и муфтой и поверните регулировочный винт, чтобы установить требуемый зазор.Затем стопорная гайка затягивается.

Замена клапанов двигателя автомобиля

4.3. Ремонт клапанной группы:

• Ремонт клапана — основные неисправности — износ конической рабочей поверхности, износ штока и растрескивание. Если головки горят или треснуты, клапаны утилизируются. Изогнутые штоки клапанов выпрямляются на ручном прессе с помощью инструмента. Изношенные штоки клапанов ремонтируются путем хронирования или глажки, а затем шлифуются до их номинального или увеличенного размера. Изношенная рабочая поверхность клапанной головки отшлифована до ремонтного размера.Клапаны притираются к седлам с помощью абразивных паст. Точность притирки проверяют заливкой керосина на откидные вентили, если он не протекает, то шлифование хорошее в течение 4-5 минут. Пружины клапанов не восстанавливают, а заменяют на новые.

АНАЛОГИЧНЫЕ ИЗДЕЛИЯ

Газораспределительный механизм — группа клапанов

Назначение и виды синхронизации:

1.1. Назначение газораспределительного механизма:

Назначение газораспределительного механизма — пропускать свежую топливную смесь в цилиндры двигателя и выпускать выхлопные газы.Газообмен осуществляется через впускные и выпускные отверстия, которые герметично закрываются элементами ремня ГРМ в соответствии с принятым режимом работы двигателя.

1.2. Назначение группы клапанов:

Назначение группы клапанов — герметично закрыть впускные и выпускные отверстия и открыть их в указанное время на указанное время.

1.3. Типы ГРМ:

в зависимости от органов, которыми цилиндры двигателя связаны с окружающей средой, синхронизация клапанная, золотниковая и комбинированная.

1.4. Сравнение типов ГРМ:

ГРМ является наиболее распространенным из-за относительно простой конструкции и надежной работы. Идеальная и надежная герметизация рабочего пространства, достигаемая за счет того, что клапаны остаются неподвижными при высоком давлении в цилиндрах, дает серьезное преимущество перед клапанным или комбинированным ремнем ГРМ. Поэтому все чаще используются фазы газораспределения.

Устройство клапанной группы:

2.1. Устройство клапана:

Клапаны двигателя состоят из штока и головки.Головы чаще всего делают плоскими, выпуклыми или колоколообразными. Головка имеет небольшой цилиндрический ремень (около 2 мм) и уплотнительный скос 45˚ или 30˚. Цилиндрическая лента позволяет, с одной стороны, сохранить основной диаметр клапана при шлифовании уплотнительной фаски, а с другой стороны, увеличить жесткость клапана и тем самым предотвратить деформацию. Наиболее распространены клапаны с плоской головкой и уплотнительной фаской 45˚ (чаще всего это впускные клапаны), а для улучшения наполнения и очистки цилиндров впускной клапан имеет больший диаметр, чем выпускной.Выхлопные клапаны часто изготавливают с куполообразной шаровой головкой.

Это улучшает отвод выхлопных газов из цилиндров, а также увеличивает прочность и жесткость клапана. Для улучшения условий отвода тепла от головки клапана и повышения общей недеформируемости клапана переход между головкой и штоком выполнен под углом 10˚ — 30˚ и с большим радиусом кривизны. На верхнем конце штока клапана выполнены канавки конической, цилиндрической или специальной формы, в зависимости от принятого способа крепления пружины к клапану.Натриевое охлаждение используется в ряде двигателей для снижения термической нагрузки на разрывные клапаны. Для этого клапан делают полым, а образовавшуюся полость наполовину заполняют натрием, температура плавления которого составляет 100 ° С. При работающем двигателе натрий плавится и, перемещаясь в полости клапана, отводит тепло от горячая головка к охладителю, а оттуда к приводу клапана.

2.2. Присоединение клапана к его пружине:

Конструкции этого устройства чрезвычайно разнообразны, но наиболее распространена конструкция с полуконусами.С помощью двух полуконусов, которые входят в каналы, выполненные в штоке клапана, прижимается пластина, удерживающая пружину и не позволяющая разобрать агрегат. Это создает соединение между пружиной и клапаном.

2.3. Расположение седла клапана:

Во всех современных двигателях седла выпускных клапанов изготавливаются отдельно от головки блока цилиндров. Они также используются для присосок, когда головка блока цилиндров изготовлена ​​из алюминиевого сплава. Когда это чугун, в нем делают седла.Конструктивно седло представляет собой кольцо, которое крепится к головке блока цилиндров в специально обработанном посадочном месте. При этом на внешней поверхности седла иногда делают канавки, которые при надавливании на седло заполняются материалом головки блока цилиндров, обеспечивая тем самым их надежное крепление. Помимо зажима, крепление также может производиться поворотом седла. Для обеспечения герметичности рабочего пространства при закрытом клапане рабочая поверхность седла должна быть обработана под таким же углом, что и уплотнительная фаска головки клапана.Для этого седла обрабатываются специальными инструментами с углами заточки не 15 °, 45 ° и 75 °, чтобы получить уплотнительную ленту под углом 45 ° и шириной около 2 мм. Остальные углы сделаны для улучшения обтекания седла.

2.4. Направляющие клапана Расположение:

конструкция направляющих очень разнообразна. Чаще всего используются направляющие с гладкой внешней поверхностью, которые изготавливаются на бесцентровом сантехническом станке. Направляющие с внешним фиксирующим ремнем удобнее застегивать, но сложнее сделать.Для этого целесообразнее вместо ремня сделать в направляющей канал для стопорного кольца. Направляющие выпускных клапанов часто используются для защиты их от окислительного воздействия горячего потока отработавших газов. В этом случае делают более длинные направляющие, остальная часть которых располагается в выпускном канале ГБЦ. По мере уменьшения расстояния между направляющей и головкой клапана отверстие в направляющей на стороне головки клапана сужается или расширяется в области головки клапана.

2,5.Устройство пружин:

В современных двигателях

наиболее распространены цилиндрические пружины с постоянным шагом. Для образования опорных поверхностей концы витков пружины сводятся друг к другу и накладываются друг на друга лбом, в результате чего общее количество витков в два-три раза превышает количество рабочих пружин. Концевые катушки поддерживаются с одной стороны пластины и с другой стороны головки цилиндра или блока. Если есть риск возникновения резонанса, пружины клапанов изготавливаются с переменным шагом.Ступенчатый редуктор изгибается либо от одного конца пружины к другому, либо от середины к обоим концам. При открытии клапана ближайшие друг к другу обмотки соприкасаются, в результате чего количество рабочих обмоток уменьшается, а частота свободных колебаний пружины увеличивается. Это снимает условия для резонанса. С этой же целью иногда используются конические пружины, собственная частота которых варьируется по длине и возникновение резонанса исключено.

2.6. Материалы для изготовления элементов клапанной группы:

• Клапаны — Всасывающие клапаны доступны из хрома (40x), хромоникелевых сталей (40XN) и других легированных сталей. Выпускные клапаны изготавливаются из жаропрочных сталей с повышенным содержанием хрома, никеля и других легирующих металлов: 4Х9С2, 4Х10С2М, Х12Н7С, 40СХ10МА.
• Седла клапана — используйте жаропрочные стали, легированный чугун, алюминиевую бронзу или металлокерамику.
• Направляющие клапана сложны в изготовлении и требуют материалов с высокой термической и износостойкостью и хорошей теплопроводностью, таких как серый перлитный чугун и алюминиевая бронза.
• Пружины — изготавливаются путем наматывания проволоки из стомы пружины, например 65G, 60C2A, 50HFA.

Работа группы клапанов:

3.1. Механизм синхронизации:

Механизм синхронизации кинематически связан с коленчатым валом, перемещаясь синхронно с ним. Ремень ГРМ открывает и закрывает впускные и выпускные отверстия отдельных цилиндров в соответствии с принятым порядком работы. Это процесс газообмена в баллонах.

3.2 Действие привода ГРМ:

Привод ГРМ зависит от расположения распределительного вала.
• С нижним валом — сквозные цилиндрические шестерни для более плавной работы выполнены с наклонными зубьями, а для бесшумной работы зубчатое кольцо изготовлено из печатной платы. Паразитная передача или цепь используется для обеспечения движения на большее расстояние.
• С верхним валом — роликовая цепь. Относительно низкий уровень шума, простая конструкция, небольшой вес, но схема будет изнашиваться и растягиваться. С помощью зубчатого ремня на основе неопрена, армированного стальной проволокой и покрытого износостойким нейлоновым слоем. Простой дизайн, бесшумная работа.

3.3. Схема газораспределения:

Общая проточная площадь, предусмотренная для прохождения газов через клапан, зависит от продолжительности его открытия. Как известно, в четырехтактных двигателях для реализации тактов впуска и выпуска предусмотрен один ход поршня, соответствующий повороту коленчатого вала на 180˚. Однако опыт показал, что для лучшего наполнения и очистки цилиндра необходимо, чтобы продолжительность процессов наполнения и опорожнения была больше, чем соответствующие ходы поршня, т.е.е. открытие и закрытие клапанов должно производиться не в мертвых точках хода поршня, а с некоторым обгоном или задержкой.

Время открытия и закрытия клапана выражается в углах поворота коленчатого вала и называется синхронизацией клапана. Для большей надежности эти фазы выполнены в виде круговых диаграмм (рис. 1).
Всасывающий клапан обычно открывается с углом обгона φ1 = 5˚ — 30˚ до того, как поршень достигнет верхней мертвой точки. Это обеспечивает заданное поперечное сечение клапана в самом начале такта наполнения и, таким образом, улучшает наполнение цилиндра.Закрытие всасывающего клапана происходит с углом задержки φ2 = 30˚ — 90˚ после прохождения поршнем нижней мертвой точки. Задержка закрытия впускного клапана позволяет использовать количество свежего всасываемого топлива для улучшения дозаправки и, следовательно, увеличения мощности двигателя.
Выпускной клапан открывается с углом обгона φ3 = 40˚ — 80˚, т.е. в конце хода, когда давление в газах цилиндра относительно высокое (0,4 — 0,5 МПа). Интенсивный выброс газового баллона, начатый при этом давлении, приводит к быстрому падению давлений и их температуры, что значительно снижает работу вытеснения рабочих газов.Выпускной клапан закрывается с углом задержки φ4 = 5˚ — 45˚. Эта задержка обеспечивает хорошую очистку камеры сгорания от выхлопных газов.

Диагностика, обслуживание, ремонт:

4.1. Диагностика

Диагностические признаки:


  • Пониженная мощность ДВС:
  • Уменьшенный клиренс;
  • Неполная посадка клапана;
  • Заклинившие клапаны.
    • Повышенный расход топлива:
  • Уменьшенный зазор между клапанами и подъемниками;
  • Неполная посадка клапана;
  • Заклинившие клапаны.

    Износ двигателей внутреннего сгорания:
  • Износ распределительного вала;
  • открытие кулачков распределительных валов;
  • Увеличенный зазор между стержнями клапанов и втулками клапанов;
  • Большой зазор между клапанами и подъемниками;
  • перелом, нарушение упругости пружин клапана.
    • Индикатор низкого давления:
  • Седла клапана мягкие;
  • Мягкая или сломанная пружина клапана;
  • Перегорел клапан;
  • сгоревшая или порванная прокладка ГБЦ;
  • Нерегулируемый тепловой зазор.
    • Индикатор высокого давления.
  • Уменьшена высота головы;

Методы временной диагностики:

• Измерение давления в цилиндре в конце такта сжатия. Во время измерения должны быть соблюдены следующие условия: двигатель внутреннего сгорания должен быть нагрет до рабочей температуры; Свечи зажигания необходимо снять; Центральный кабель индукционной катушки должен быть смазан маслом, а дроссельная заслонка и воздушный клапан должны быть открыты. Измерение производится с помощью компрессоров.Разница давлений между отдельными баллонами не должна превышать 5%.

4.2. Регулировка теплового зазора в ремне ГРМ:

Проверка и регулировка теплового зазора осуществляется с помощью пластин манометра в последовательности, соответствующей порядку работы двигателя, начиная с первого цилиндра. Зазор правильно отрегулирован, если толщиномер, соответствующий нормальному зазору, проходит свободно. При регулировке зазора удерживайте регулировочный винт отверткой, ослабьте контргайку, поместите пластину зазора между штоком клапана и муфтой и поверните регулировочный винт, чтобы установить требуемый зазор.Затем стопорная гайка затягивается.

Замена клапанов двигателя автомобиля

4.3. Ремонт клапанной группы:

• Ремонт клапана — основные неисправности — износ конической рабочей поверхности, износ штока и растрескивание. Если головки горят или треснуты, клапаны утилизируются. Изогнутые штоки клапанов выпрямляются на ручном прессе с помощью инструмента. Изношенные штоки клапанов ремонтируются путем хронирования или глажки, а затем шлифуются до их номинального или увеличенного размера. Изношенная рабочая поверхность клапанной головки отшлифована до ремонтного размера.Клапаны притираются к седлам с помощью абразивных паст. Точность притирки проверяют заливкой керосина на откидные вентили, если он не протекает, то шлифование хорошее в течение 4-5 минут. Пружины клапанов не восстанавливают, а заменяют на новые.

АНАЛОГИЧНЫЕ ИЗДЕЛИЯ

Газораспределительный механизм — группа клапанов

Назначение и виды синхронизации:

1.1. Назначение газораспределительного механизма:

Назначение газораспределительного механизма — пропускать свежую топливную смесь в цилиндры двигателя и выпускать выхлопные газы.Газообмен осуществляется через впускные и выпускные отверстия, которые герметично закрываются элементами ремня ГРМ в соответствии с принятым режимом работы двигателя.

1.2. Назначение группы клапанов:

Назначение группы клапанов — герметично закрыть впускные и выпускные отверстия и открыть их в указанное время на указанное время.

1.3. Типы ГРМ:

в зависимости от органов, которыми цилиндры двигателя связаны с окружающей средой, синхронизация клапанная, золотниковая и комбинированная.

1.4. Сравнение типов ГРМ:

ГРМ является наиболее распространенным из-за относительно простой конструкции и надежной работы. Идеальная и надежная герметизация рабочего пространства, достигаемая за счет того, что клапаны остаются неподвижными при высоком давлении в цилиндрах, дает серьезное преимущество перед клапанным или комбинированным ремнем ГРМ. Поэтому все чаще используются фазы газораспределения.

Устройство клапанной группы:

2.1. Устройство клапана:

Клапаны двигателя состоят из штока и головки.Головы чаще всего делают плоскими, выпуклыми или колоколообразными. Головка имеет небольшой цилиндрический ремень (около 2 мм) и уплотнительный скос 45˚ или 30˚. Цилиндрическая лента позволяет, с одной стороны, сохранить основной диаметр клапана при шлифовании уплотнительной фаски, а с другой стороны, увеличить жесткость клапана и тем самым предотвратить деформацию. Наиболее распространены клапаны с плоской головкой и уплотнительной фаской 45˚ (чаще всего это впускные клапаны), а для улучшения наполнения и очистки цилиндров впускной клапан имеет больший диаметр, чем выпускной.Выхлопные клапаны часто изготавливают с куполообразной шаровой головкой.

Это улучшает отвод выхлопных газов из цилиндров, а также увеличивает прочность и жесткость клапана. Для улучшения условий отвода тепла от головки клапана и повышения общей недеформируемости клапана переход между головкой и штоком выполнен под углом 10˚ — 30˚ и с большим радиусом кривизны. На верхнем конце штока клапана выполнены канавки конической, цилиндрической или специальной формы, в зависимости от принятого способа крепления пружины к клапану.Натриевое охлаждение используется в ряде двигателей для снижения термической нагрузки на разрывные клапаны. Для этого клапан делают полым, а образовавшуюся полость наполовину заполняют натрием, температура плавления которого составляет 100 ° С. При работающем двигателе натрий плавится и, перемещаясь в полости клапана, отводит тепло от горячая головка к охладителю, а оттуда к приводу клапана.

2.2. Присоединение клапана к его пружине:

Конструкции этого устройства чрезвычайно разнообразны, но наиболее распространена конструкция с полуконусами.С помощью двух полуконусов, которые входят в каналы, выполненные в штоке клапана, прижимается пластина, удерживающая пружину и не позволяющая разобрать агрегат. Это создает соединение между пружиной и клапаном.

2.3. Расположение седла клапана:

Во всех современных двигателях седла выпускных клапанов изготавливаются отдельно от головки блока цилиндров. Они также используются для присосок, когда головка блока цилиндров изготовлена ​​из алюминиевого сплава. Когда это чугун, в нем делают седла.Конструктивно седло представляет собой кольцо, которое крепится к головке блока цилиндров в специально обработанном посадочном месте. При этом на внешней поверхности седла иногда делают канавки, которые при надавливании на седло заполняются материалом головки блока цилиндров, обеспечивая тем самым их надежное крепление. Помимо зажима, крепление также может производиться поворотом седла. Для обеспечения герметичности рабочего пространства при закрытом клапане рабочая поверхность седла должна быть обработана под таким же углом, что и уплотнительная фаска головки клапана.Для этого седла обрабатываются специальными инструментами с углами заточки не 15 °, 45 ° и 75 °, чтобы получить уплотнительную ленту под углом 45 ° и шириной около 2 мм. Остальные углы сделаны для улучшения обтекания седла.

2.4. Направляющие клапана Расположение:

конструкция направляющих очень разнообразна. Чаще всего используются направляющие с гладкой внешней поверхностью, которые изготавливаются на бесцентровом сантехническом станке. Направляющие с внешним фиксирующим ремнем удобнее застегивать, но сложнее сделать.Для этого целесообразнее вместо ремня сделать в направляющей канал для стопорного кольца. Направляющие выпускных клапанов часто используются для защиты их от окислительного воздействия горячего потока отработавших газов. В этом случае делают более длинные направляющие, остальная часть которых располагается в выпускном канале ГБЦ. По мере уменьшения расстояния между направляющей и головкой клапана отверстие в направляющей на стороне головки клапана сужается или расширяется в области головки клапана.

2,5.Устройство пружин:

В современных двигателях

наиболее распространены цилиндрические пружины с постоянным шагом. Для образования опорных поверхностей концы витков пружины сводятся друг к другу и накладываются друг на друга лбом, в результате чего общее количество витков в два-три раза превышает количество рабочих пружин. Концевые катушки поддерживаются с одной стороны пластины и с другой стороны головки цилиндра или блока. Если есть риск возникновения резонанса, пружины клапанов изготавливаются с переменным шагом.Ступенчатый редуктор изгибается либо от одного конца пружины к другому, либо от середины к обоим концам. При открытии клапана ближайшие друг к другу обмотки соприкасаются, в результате чего количество рабочих обмоток уменьшается, а частота свободных колебаний пружины увеличивается. Это снимает условия для резонанса. С этой же целью иногда используются конические пружины, собственная частота которых варьируется по длине и возникновение резонанса исключено.

2.6. Материалы для изготовления элементов клапанной группы:

• Клапаны — Всасывающие клапаны доступны из хрома (40x), хромоникелевых сталей (40XN) и других легированных сталей. Выпускные клапаны изготавливаются из жаропрочных сталей с повышенным содержанием хрома, никеля и других легирующих металлов: 4Х9С2, 4Х10С2М, Х12Н7С, 40СХ10МА.
• Седла клапана — используйте жаропрочные стали, легированный чугун, алюминиевую бронзу или металлокерамику.
• Направляющие клапана сложны в изготовлении и требуют материалов с высокой термической и износостойкостью и хорошей теплопроводностью, таких как серый перлитный чугун и алюминиевая бронза.
• Пружины — изготавливаются путем наматывания проволоки из стомы пружины, например 65G, 60C2A, 50HFA.

Работа группы клапанов:

3.1. Механизм синхронизации:

Механизм синхронизации кинематически связан с коленчатым валом, перемещаясь синхронно с ним. Ремень ГРМ открывает и закрывает впускные и выпускные отверстия отдельных цилиндров в соответствии с принятым порядком работы. Это процесс газообмена в баллонах.

3.2 Действие привода ГРМ:

Привод ГРМ зависит от расположения распределительного вала.
• С нижним валом — сквозные цилиндрические шестерни для более плавной работы выполнены с наклонными зубьями, а для бесшумной работы зубчатое кольцо изготовлено из печатной платы. Паразитная передача или цепь используется для обеспечения движения на большее расстояние.
• С верхним валом — роликовая цепь. Относительно низкий уровень шума, простая конструкция, небольшой вес, но схема будет изнашиваться и растягиваться. С помощью зубчатого ремня на основе неопрена, армированного стальной проволокой и покрытого износостойким нейлоновым слоем. Простой дизайн, бесшумная работа.

3.3. Схема газораспределения:

Общая проточная площадь, предусмотренная для прохождения газов через клапан, зависит от продолжительности его открытия. Как известно, в четырехтактных двигателях для реализации тактов впуска и выпуска предусмотрен один ход поршня, соответствующий повороту коленчатого вала на 180˚. Однако опыт показал, что для лучшего наполнения и очистки цилиндра необходимо, чтобы продолжительность процессов наполнения и опорожнения была больше, чем соответствующие ходы поршня, т.е.е. открытие и закрытие клапанов должно производиться не в мертвых точках хода поршня, а с некоторым обгоном или задержкой.

Время открытия и закрытия клапана выражается в углах поворота коленчатого вала и называется синхронизацией клапана. Для большей надежности эти фазы выполнены в виде круговых диаграмм (рис. 1).
Всасывающий клапан обычно открывается с углом обгона φ1 = 5˚ — 30˚ до того, как поршень достигнет верхней мертвой точки. Это обеспечивает заданное поперечное сечение клапана в самом начале такта наполнения и, таким образом, улучшает наполнение цилиндра.Закрытие всасывающего клапана происходит с углом задержки φ2 = 30˚ — 90˚ после прохождения поршнем нижней мертвой точки. Задержка закрытия впускного клапана позволяет использовать количество свежего всасываемого топлива для улучшения дозаправки и, следовательно, увеличения мощности двигателя.
Выпускной клапан открывается с углом обгона φ3 = 40˚ — 80˚, т.е. в конце хода, когда давление в газах цилиндра относительно высокое (0,4 — 0,5 МПа). Интенсивный выброс газового баллона, начатый при этом давлении, приводит к быстрому падению давлений и их температуры, что значительно снижает работу вытеснения рабочих газов.Выпускной клапан закрывается с углом задержки φ4 = 5˚ — 45˚. Эта задержка обеспечивает хорошую очистку камеры сгорания от выхлопных газов.

Диагностика, обслуживание, ремонт:

4.1. Диагностика

Диагностические признаки:


  • Пониженная мощность ДВС:
  • Уменьшенный клиренс;
  • Неполная посадка клапана;
  • Заклинившие клапаны.
    • Повышенный расход топлива:
  • Уменьшенный зазор между клапанами и подъемниками;
  • Неполная посадка клапана;
  • Заклинившие клапаны.

    Износ двигателей внутреннего сгорания:
  • Износ распределительного вала;
  • открытие кулачков распределительных валов;
  • Увеличенный зазор между стержнями клапанов и втулками клапанов;
  • Большой зазор между клапанами и подъемниками;
  • перелом, нарушение упругости пружин клапана.
    • Индикатор низкого давления:
  • Седла клапана мягкие;
  • Мягкая или сломанная пружина клапана;
  • Перегорел клапан;
  • сгоревшая или порванная прокладка ГБЦ;
  • Нерегулируемый тепловой зазор.
    • Индикатор высокого давления.
  • Уменьшена высота головы;

Методы временной диагностики:

• Измерение давления в цилиндре в конце такта сжатия. Во время измерения должны быть соблюдены следующие условия: двигатель внутреннего сгорания должен быть нагрет до рабочей температуры; Свечи зажигания необходимо снять; Центральный кабель индукционной катушки должен быть смазан маслом, а дроссельная заслонка и воздушный клапан должны быть открыты. Измерение производится с помощью компрессоров.Разница давлений между отдельными баллонами не должна превышать 5%.

4.2. Регулировка теплового зазора в ремне ГРМ:

Проверка и регулировка теплового зазора осуществляется с помощью пластин манометра в последовательности, соответствующей порядку работы двигателя, начиная с первого цилиндра. Зазор правильно отрегулирован, если толщиномер, соответствующий нормальному зазору, проходит свободно. При регулировке зазора удерживайте регулировочный винт отверткой, ослабьте контргайку, поместите пластину зазора между штоком клапана и муфтой и поверните регулировочный винт, чтобы установить требуемый зазор.Затем стопорная гайка затягивается.

Замена клапанов двигателя автомобиля

4.3. Ремонт клапанной группы:

• Ремонт клапана — основные неисправности — износ конической рабочей поверхности, износ штока и растрескивание. Если головки горят или треснуты, клапаны утилизируются. Изогнутые штоки клапанов выпрямляются на ручном прессе с помощью инструмента. Изношенные штоки клапанов ремонтируются путем хронирования или глажки, а затем шлифуются до их номинального или увеличенного размера. Изношенная рабочая поверхность клапанной головки отшлифована до ремонтного размера.Клапаны притираются к седлам с помощью абразивных паст. Точность притирки проверяют заливкой керосина на откидные вентили, если он не протекает, то шлифование хорошее в течение 4-5 минут. Пружины клапанов не восстанавливают, а заменяют на новые.

ПОДОБНЫЕ СТАТЬИ

Обзор модели газораспределения

Система газораспределения состоит из подключенных устройств, которые транспортируют природный газ от источника, такого как регулятор или городская пограничная станция, к потребителю.Основными компонентами газовой системы являются трубы (магистральные и вспомогательные), устройства, которые контролируют и регулируют поток в этих трубах, фитинги, соединяющие трубы, и измерительное оборудование, которое измеряет поток газа в трубах.

Магистрали — это трубы, по которым газ подается от источника, такого как регулятор или городская пограничная станция, к точке, прилегающей к помещению потребителя. По трубопроводам газ транспортируется от магистралей к точкам учета. На городской пограничной станции (также называемой городскими воротами) передача газа преобразуется в систему распределения.Эти функции могут иметь связанные регуляторы, регулирующие счетчики, устройства избыточного давления и одоранты. Станции регулирования определяют расположение одного или нескольких регуляторов давления.

Несколько типов устройств регулируют поток газа через набор труб, а также давление, при котором газ подается. Регулятор — это механическое устройство, используемое для контролируемого снижения давления в газораспределительной системе. В этот тип функции включены контрольные и резервные регуляторы. Клапан работает в трубе, чтобы позволить потоку только в одном направлении или регулировать поток с помощью плоского, крышки, заглушки или другого механизма, чтобы открыть или заблокировать трубу.Клапаны, обозначенные как ключевые, имеют решающее значение для моделирования и анализа. Устройства управления потоком включают любой фитинг, который не является регулятором или клапаном, который может управлять потоком газа и приводится в действие машиной.

Стальные трубы, находящиеся в коррозионных почвах, подвержены коррозии. Покрытия из эпоксидной смолы, полиэтилена или других материалов являются обычными методами предотвращения коррозии. Катодная защита — это еще один метод защиты подземных металлических конструкций, таких как стальные трубы, фитинги и клапаны, от коррозии.

Металлические конструкции изнашиваются, поскольку паразитный электрический ток, обычно присутствующий в земле, течет из относительно анодной конструкции в относительно катодную почву. Путем наведения небольшого электрического тока на металлические конструкции, чтобы сделать их катодными, блуждающий ток течет от почвы к конструкции и, как следствие, конструкция защищается.

Защищенные части распределительной системы должны быть электрически отделены от незащищенных частей. Это часто достигается с помощью изолированной арматуры, такой как изолированные фланцы или изолированные компрессионные муфты.

Компоненты газораспределительной системы сгруппированы в три общие логические категории:

Эти категории содержат классы объектов, которые имеют общие свойства и / или поведение. Например, устройства можно сгруппировать вместе, поскольку они обнаруживают и / или контролируют поток газа по трубам. Некоторые устройства измеряют расход (например, счетчики), а некоторые регулируют поток газа (например, регуляторы). После создания базовой группировки объектов вы можете определить более конкретные сходства между объектами.Во время этого процесса группирования вы можете определять новые классы (называемые подклассами) и объединять некоторые классы (подтипы). Конечным результатом является набор корневых абстрактных классов, промежуточных абстрактных классов, конечных классов и отношений.

Когда вы начинаете определять свойства каждого конечного класса, появляются общие свойства. Например, у счетчиков и регуляторов есть производители и номера моделей. Вместо того, чтобы дублировать каждое свойство в обоих объектах, вы создаете класс более высокого порядка (Gas Device), который является абстрактным классом, чтобы содержать эти свойства.Этот класс содержит свойства, общие для всех объектов, являющихся его подклассами, и никогда не будет отдельным объектом. Этот процесс обобщения свойств приводит к набору промежуточных классов, которые представляют или моделируют систему газоснабжения.

Модели данных, включая физические и логические модели газораспределения, можно загрузить с веб-сайта Schneider Electric-GIS. Они предоставляются в формате Visio.

Gas Supply — обзор

ME-GI газовые двигатели и двигатели на альтернативном топливе

Хотя двухтопливные четырехтактные среднеоборотные двигатели для судостроения дебютировали примерно в 2001 году, считалось, что применение этой технологии в двухтактных крейцкопфных двигателях было более целесообразным. сложно. Когда компания Wärtsilä впервые установила двухтопливные двигатели на танкерах для перевозки СПГ, она должна была использовать отходящий газ из груза более эффективно, чем обычные паровые турбины.В то время компания MAN считала, что ценность груза лучше всего сохранить за счет повторного сжижения BOG и его возврата в груз, когда судно приводится в движение обычными тихоходными дизельными двигателями. По этой концепции было построено несколько танкеров-газовозов.

По мере того, как все больше внимания уделялось соблюдению требований уровней NOx Tier II и Tier III и сокращению SOx в зонах контроля выбросов, компания MAN начала изучать возможность создания двухтопливных двигателей для морского использования, уже использовав эту идею в производстве энергии на берегу.Первым плодом этого исследования, представленного в 2011 году, стал двигатель ME-GI. Это стало кульминацией многолетней работы, которая началась в 1990-х годах с прототипа двухтопливного двигателя MC-GI компании, который был введен в эксплуатацию на электростанции в Тиба, недалеко от Токио, Япония в 1994 году. Этот двигатель был одобрен по некоторым классификациям. общества, использующие морскую среду, но со стороны судовладельцев это не вызвало особого интереса.

После 20 000 часов работы в этой стационарной установке для снятия пиков с двигателем 12K80MC-GI мощностью 40 МВт производства Mitsui в Японии компания Hyundai стала первым обладателем лицензии на двухтактный двигатель MAN Energy Solution, продемонстрировавшим в Корее новейшую концепцию ME-GI. в конце 2012 г., а в апреле 2013 г. — Mitsui.В то время MAN Energy Solution предсказывала широкий потенциальный рынок для своего двигателя ME-GI.

ME-GI значительно отличался от двухтопливных четырехтактных двигателей тем, что он представляет собой дизель высокого давления и не использует цикл Отто, как другие двигатели. Технически разница между топливным и газовым двигателями незначительна, но двигатель GI обеспечивает оптимальную топливную гибкость.

Относительно небольшое количество компонентов требует модификации или добавления в сам двигатель, например, систему впрыска масла и газа.ME-GI может работать только на мазуте или на 95% СПГ (в качестве пилотного топлива требуется 5% мазута) или на любой их комбинации (рис. 14.36).

Рис. 14.36. Система впрыска топлива для двигателей ME-GI.

Газопровод выполнен с вентилируемым двустенным трубопроводом с датчиками УВ для безопасного отключения. Для управления газовым двигателем к проверенной системе управления ME добавлена ​​система управления и безопасности GI. Помимо этих систем на двигателе, сам двигатель и его вспомогательное оборудование будут содержать несколько новых узлов.Наиболее важными, помимо системы газоснабжения, являются:

Система вентиляции для вентиляции пространства между внутренней и внешней стенкой двустенного трубопровода

Система уплотнительного масла , подача уплотнительного масла к газовым клапанам, разделяющим регулирующую нефть и газ. Эта система полностью интегрирована в двигатель, и верфи больше не нужно рассматривать эту установку.

Система инертного газа, обеспечивающая продувку газовой системы двигателя инертным газом.

Система управления и безопасности, включающая анализатор углеводородов для проверки содержания углеводородов в воздухе в двустенных газовых трубах.

Система управления и безопасности GI рассчитана на отказ до безопасного состояния. Все отказы, обнаруженные при работе на газовом топливе, включая отказы самой системы управления, приведут к остановке газового топлива и переключению на работу на топливе HFO. Затем следует продувка и дегазация газопроводов высокого давления и всей системы газоснабжения.Переход в режим жидкого топлива происходит без потери мощности двигателя.

Подача газа высокого давления проходит по главной «цепной» трубе, которая соединяет блок газовых клапанов каждого баллона и аккумулятор. Такая конструкция «цепной» трубы выполняет две важные задачи: отделение каждого блока цилиндров от остальных с точки зрения газовой динамики, использование хорошо зарекомендовавшей себя философии конструкции топливной системы двигателя ME и действие гибких соединений между жесткой системой магистральных трубопроводов и конструкция двигателя, защищающая от дополнительных напряжений в трубопроводах цепи, вызванных неизбежными различиями в тепловом расширении системы газопроводов и конструкции двигателя.

Буферный резервуар, содержащий примерно в 20 раз больше объема впрыска за один ход при максимальной продолжительной мощности (MCR), также выполняет две важные задачи: он подает количество газа для впрыска при небольшом, но заранее определенном падении давления, и он формирует важная часть системы безопасности.

Поскольку трубопровод подачи газа имеет конструкцию с общей топливораспределительной рампой, клапан впрыска газа должен управляться вспомогательной масляной системой управления. В принципе, он состоит из гидравлической системы управления маслом ME и системы клапанов ELGI и ELWI (электронный впрыск газа), подающих регулирующее масло высокого давления к клапану впрыска газа, тем самым управляя синхронизацией и открытием газового клапана.

Двухтопливная система впрыска ME-GI требует впрыска пилотного и газового топлива в камеру сгорания. Для этого используются разные типы клапанов. Два из них предназначены для впрыска газа и два — для пилотного топлива. Вспомогательная среда, необходимая как для работы на топливе, так и на газе, следующая: подача газа высокого давления, подача жидкого топлива (пилотное масло) и подача управляющего масла для срабатывания клапанов впрыска газа.

Клапан впрыска газа соответствует традиционным принципам компактной конструкции.Газ попадает в клапан впрыска газа через отверстия в крышке цилиндра. Для предотвращения утечки газа между крышкой баллона / клапаном впрыска газа и корпусом клапана / направляющей шпинделя установлены уплотнительные кольца из термостойкого и газостойкого материала. Любая утечка газа через газовые уплотнительные кольца будет направляться через отверстия в клапане впрыска газа в пространство между внутренней и внешней защитной трубой двустенной системы газовых трубопроводов, где утечка будет обнаружена датчиками углеводородов.

Газ непрерывно воздействует на шпиндель клапана при максимальном давлении около 300 бар. Чтобы предотвратить попадание газа в систему управления маслом через зазор вокруг шпинделя, шпиндель уплотняется уплотнительным маслом под давлением, превышающим давление газа (на 25–50 бар выше).

Пилотный масляный клапан — это стандартный масляный клапан ME без каких-либо изменений, кроме форсунки. В качестве пилотного масла можно использовать HFO, MGO или MDO. Конструкция масляного клапана позволяет работать только на мазуте до MCR.Газовый двигатель может работать на мазуте при 100% нагрузке в любое время, не останавливая двигатель. Для продолжительной работы на жидком топливе рекомендуется заменить форсунки и добиться увеличения КПД примерно на 1% при работе с полной нагрузкой двигателя.

Газовое топливо соответствует топливу с низким содержанием серы, и для этого типа топлива MAN рекомендует использовать смазочное масло для цилиндров с TBN40. Для тяжелого дизельного топлива с высоким содержанием серы требуется смазочное масло для цилиндров с TBN 70. По сравнению с работой на HFO, газ дает более чистый выхлоп.При очень низком содержании серы или ее отсутствии SOx в выхлопных газах пренебрежимо малы. Твердые частицы значительно уменьшаются, поскольку они являются выбросами NOx и CO 2 .

При работе на нефтяном топливе при необходимости могут использоваться все стандартные методы снижения выбросов NOx, за исключением эмульгирования в воде. В конечном итоге катализатор SCR может сократить выбросы NOx до 98%, но система EGR также является вариантом.

Если система рециркуляции отработавших газов совмещена с работой на газе, двигатель может легко соответствовать требованиям Tier III.Уровень NOx при работе на газе на 20–30% ниже, чем при работе на HFO, и только около 30% выхлопных газов необходимо пропускать через систему рециркуляции отработавших газов, это приведет к более высокой эффективности на газе по сравнению с работой на HFO в Уровне III. зоны. Очистка воды скруббера EGR — еще одна проблема, которая становится намного проще при работе двигателя на газе, потому что выхлопные газы содержат ограниченное количество твердых частиц и не содержат SOx.

Стандартный двигатель ME-GI разработан для работы на СПГ, который в основном состоит из метана.Вариант ME-GIE был разработан позже для работы на этане, который в качестве топлива может быть получен из грузов судов, перевозящих этан или этилен.

Через год после анонса двигателей ME-GI компания MAN начала разработку новой модели, предназначенной для работы на других видах топлива с низкой температурой вспышки, кроме СПГ. Предполагаемое топливо будет жидким, а не газообразным. Результатом стал двигатель MAN B&W ME-LGI, который может работать на метаноле, сжиженном нефтяном газе и других жидких топливах, а также на мазуте. Хотя принцип работы двигателя ME-LGI аналогичен концепциям ME-GI, различия в свойствах топлива означают, что компоненты и вспомогательные системы ME-LGI будут отличаться от ME-GI.

Двигатель ME-LGI может поставляться в различных версиях, в зависимости от используемого типа жидкого топлива с низкой температурой воспламенения. Первым разработанным типом был ME-LGIM, предназначенный для работы на метаноле, за которым последовал ME-LGIP, работающий на сжиженном нефтяном газе. Топливо для двигателей ME-LGI классифицируется по давлению паров при 60 ° C, где метанол и этанол ниже одного бара, а LPG и DME (диметиловый эфир) выше одного бара.

Впрыск топлива осуществляется с помощью бустерного клапана впрыска топлива (BFIV), использующего гидравлическую мощность 300 бар для повышения давления топлива до давления впрыска.BFIV представляет собой интеграцию конструкции бустера мазута MAN и его старой конструкции золотникового инжектора, которая использовалась с начала 2000-х годов. Обе конструкции хорошо зарекомендовали себя, а преимущество комбинированного решения состоит в том, что он сводит к минимуму общий вес и удаляет промежуточные трубы высокого давления. Благодаря этой конструкции общая инерция увеличивает время срабатывания клапана, а эксплуатационные испытания продемонстрировали более контролируемые профили впрыска.

SOLAS в настоящее время требует, чтобы все виды топлива, кроме СПГ (на который распространяется Кодекс IGF), имели температуру вспышки не менее 60 ° C.Этот вопрос находится на рассмотрении, но до тех пор, пока не будут приняты международные правила, использование топлива с низкой температурой воспламенения должно быть одобрено государством флага судна.

Метанол имеет температуру воспламенения 11 ° C, поэтому MAN использует конструкцию с двойными стенками для всех компонентов метанола, и все утечки отслеживаются и собираются в двойном барьере, поэтому нет никаких проблем, связанных с его использованием. Принято считать, что с метанолом работать намного проще, чем с СПГ. Чтобы можно было использовать метанол в качестве топлива на ME-LGI, крышки цилиндров оснащены клапанами форсунок усилителя топлива, разработанными специально для работы на метаноле.Для 50-цилиндрового двигателя это означает, что каждая крышка цилиндра оборудована двумя дополнительными форсунками для повышения давления метанола. Блок впрыска сжиженного газа (LGI) установлен на крышке цилиндра.

Крышка цилиндра с форсунками подкачки топлива и блоком управления LGI.

Этот блок содержит регулирующий клапан для впрыска метанольного топлива, запорный клапан активации усилителя, клапан активации принудительного всасывания, продувочный клапан LGI и впускные / выпускные клапаны метанола. Все трубы для гидравлического масла и топлива имеют двойные стенки.Кроме того, из труб с двойными стенками для метанольного топлива выводится вентиляционный воздух.

Клапан форсунки усилителя метанола должен быть охлажден, а рабочие поверхности должны быть смазаны. С этой целью в двигатель интегрирована комбинированная система уплотнения и охлаждающего масла, обеспечивающая давление масла в системе 50 бар, и эта система одновременно смазывает все рабочие поверхности и контролирует, чтобы температура в бустерном клапане была ниже максимальной 60 ° C.

Давление уплотнительного масла создается внутри бустерного клапана, чтобы избежать загрязнения гидравлического масла, приводящего в действие клапан.У уплотнительного масла есть и другие преимущества. Это предотвращает попадание метанола в зонтичную систему и далее в сливную масляную систему. Системы охлаждающего масла и уплотнительного масла полностью интегрированы в конструкцию двигателя, включая оборудование для непрерывного мониторинга загрязнения масляной системы метанолом. Если в системе обнаружен метанол, двигатель перейдет в режим жидкого топлива, и метанол будет удален из двигателя.

В то же время сторона подачи охлаждающего масляного насоса будет переключена на чистое системное масло, а масляный контур будет промыт чистым маслом.Затем чистое масло будет собираться вместе с загрязненным маслом в резервуаре для охлаждающего масла, и система сможет продолжить работу только в том случае, если в резервуаре не обнаружено метанола.

Для обеспечения правильной температуры BFIV масло охлаждается в теплообменнике, который подключен к низкотемпературной системе охлаждения. Когда топливо впрыскивается, состояние сгорания контролируется датчиками индикатора среднего давления (PMI), расположенными в каждой из крышек цилиндров. Давление впрыска составляет примерно 500 бар.

Отслеживаются три условия горения, такие как давление сжатия, давление горения и давление расширения. Метанол под давлением 8 бар подается в двигатель по трубам с двойными стенками, вентилируемым сухим воздухом, отбираемым из системы пускового воздуха. Для засасывания воздуха на выходе устанавливается система вентиляции. Все метанольное топливное оборудование выполнено в двустенной конструкции, и любая утечка метанола перерастет в пары метанола.

Это контролируется датчиками УВ, расположенными рядом с выпускным отверстием системы труб с двойными стенками.В случае слишком высокого содержания паров метанола в вентиляции система безопасности отключит работу на метаноле и вернется к работе только на жидком топливе. Это переключение выполняется плавно и без потери мощности.

К концу 2019 года MAN реализовал все типы двигателей, предназначенные для работы на газе и альтернативных топливах. Хотя многие из них еще не завершены, количество задействованных судов превышает 130. Это немалое достижение, поскольку бункеровочная инфраструктура все еще находится на ранней стадии, и только суда, подходящие для конкретных рабочих районов, где есть топливо, были указанные с этими двигателями.

Новый конкурент MAN — WinGD — также демонстрирует данные о продажах своих двухтактных двухтопливных двигателей низкого давления с циклом Отто, и, похоже, MAN хотел бы конкурировать и здесь. В октябре 2019 года MAN объявил, что в сотрудничестве со своим лицензиатом Hyundai Heavy Industries разрабатывает новый двигатель, известный как ME-GA. Это двигатель низкого давления с пяти- и шестицилиндровыми моделями с диаметром цилиндра 700 мм, предназначенный в качестве первых предложений.

MAN назвала интерес со стороны сектора газовозов СПГ в качестве основного мотивационного фактора.Его двигатели ME-GI в основном поставлялись для использования на двухмоторных танкерах для перевозки СПГ, поэтому новая модель должна выйти на этот рынок, поскольку не потребует дорогостоящих устройств подачи топливного газа, таких как компрессор высокого давления для повышения давления кипения. -отходящий газ до давления впрыска 300 бар, необходимого для двигателя ME-GI.

Первый G70ME-C10.5-GA будет производить до 2830 кВт на цилиндр и соответствовать стандарту NOx Tier III в газовом режиме без дополнительной обработки выхлопных газов. Мощность при номинальной мощности L1 составит 14 150 и 16 980 кВт соответственно при частоте вращения коленчатого вала 78 об / мин в пяти- и шестицилиндровых конфигурациях.Тем не менее, компоновочная схема в каждом случае обеспечивает высокую степень гибкости и выбора в отношении указанных в контракте комбинаций максимальной продолжительной мощности и скорости. Например, у L4 SMCR мощность на цилиндр составляет 1920 кВт при 66 об / мин. Конструкция будет иметь те же очертания и площадь основания, что и двигатель G70ME-C10.5, который может выдавать до 3100 кВт на цилиндр при 78 об / мин (таблица 14.6).

Таблица 14.6. Двигатели MAN B&W ME-GA.

Диапазон мощности (SMCR) 5-цилиндровая модель
Тип Двухтопливный двухтактный
Диаметр цилиндра 700 мм
Ход поршня 3256 мм
Отношение ходов поршня

Мощность на цилиндр, номинал L1 2830 [защита по электронной почте] об / мин
Номинальная мощность / цилиндр L2 2260 [защита по электронной почте] об / мин
Мощность / мощность цилиндра L3 2400 [электронная почта защищена ] Об / мин
Мощность на цилиндр L4 1920 кВт при 66 об / мин
Среднее эффективное давление L1 номинальное 17,4 бар
Варианты двигателей Номера цилиндров 5 и 6
9600–14,150 кВт
Диапазон мощности (SMCR) 6-цилиндровая модель 11,520–16,980 кВт

Системы центрального газоснабжения, CGS, газораспределение

Системы централизованного газоснабжения (ЦГС) основаны на доставке большого объема газа и хранении газа на месте в баллонах, многоцилиндровых пакетах (связках), криогенных емкостях с испарителями или в специальных емкостях.

Распределение газа осуществляется по трубопроводу от центральной точки до места конечной подачи. Газ идет от источника через коллектор высокого давления с регулятором давления, где входное давление из основной части снижается до уровня, приемлемого для труб и других компонентов газораспределительной системы. В конце трубопровода могут быть установлены точки выхода для установки параметров газа, например, давление и расход по запросу. Когда системы CGS будут установлены на промышленных предприятиях, эффективность работы, экономия средств, а также аспекты безопасности вырастут на по сравнению с увеличением потребления газа.

Основные преимущества:

  • Надежная система подачи газа с непрерывной подачей газа (без перебоев в подаче газа)
  • Более точная настройка параметров газа
  • Более высокий уровень безопасности благодаря хранению и установке газа под высоким давлением в указанном безопасном месте
  • Больше места на рабочем месте
  • Обычно более низкие затраты на газ из-за больших объемов поставки

Основные области использования промышленных СКУ:

  • Автомобилестроение и транспорт
  • Производство и изготовление металла, стекла, пластика и бумаги
  • Процессы газовой, дуговой, плазменной и лазерной сварки и резки
  • Химическая и нефтехимическая промышленность
  • Металлургия
  • Нефтегазовый НПЗ
  • Оффшор и верфи
  • Энергия и мощность
  • Экология и окружающая среда
  • Производство и упаковка продуктов питания и напитков
  • Ремесленники и мастерские
  • Строительные работы на объекте

Программа управления целостностью распределения газа (DIMP)

Этот объект находится в ведении Управления безопасности трубопроводов и опасных материалов (PHMSA).PHMSA опубликовала окончательное правило, устанавливающее требования к управлению целостностью (IM) для систем газораспределения 4 декабря 2009 г. (74 FR 63906). Датой вступления в силу правила было 12 февраля 2010 г., в результате чего были приняты правила IM для газораспределительных трубопроводов (49 CFR, часть 192, подраздел P). Операторам было дано до 2 августа 2011 года написать и внедрить свои программы управления целостностью распределения (DIMP).

PHMSA ранее внедрила правила управления целостностью трубопроводов для транспортировки опасных жидкостей и газа.Эти правила направлены на обеспечение целостности трубопроводов и дальнейшее повышение безопасности трубопроводной транспортировки энергоносителей. Конгресс и другие заинтересованные стороны выразили заинтересованность в понимании природы аналогичных требований к газораспределительным трубопроводам. Значительные различия в конструкции системы и местных условиях, влияющих на безопасность распределительных трубопроводов, не позволили применить те же инструменты и методы управления, которые использовались для передачи и других трубопроводных систем, пересекающих страну.Поэтому PHMSA применила несколько иной подход к управлению целостностью распределения после совместных усилий с участием PHMSA, газораспределительной отрасли, представителей общественности и Национальной ассоциации представителей по безопасности трубопроводов для изучения возможных подходов. Результатом этих усилий стали правила управления инвестициями в газораспределение PHMSA.

Правила IM в распределении газа требуют, чтобы операторы, такие как компании по распределению природного газа, разработали, написали и внедрили программу управления целостностью со следующими элементами:

  • Изучите конструкцию системы и характеристики материалов, условия эксплуатации и окружающую среду, а также историю обслуживания и эксплуатации

  • Определите существующие и потенциальные угрозы

  • Оценка и ранжирование рисков

  • Определить и реализовать меры по устранению рисков

  • Измерение эффективности программы обмена мгновенными сообщениями, мониторинг результатов и оценка эффективности

  • Периодически оценивайте и улучшайте программу обмена мгновенными сообщениями

  • Сообщить о результатах работы в PHMSA и, где это применимо, также в государства

Формы проверки DIMP, а также другие ресурсы для поддержки операторов в реализации их программ IM доступны на страницах ресурсов DIMP и на веб-сайте PHMSA Pipeline Safety.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *