Электромотор для машины: Электромобиль своими руками: как, зачем и сколько это стоит

Содержание

Электродвигатель в электрических, гибридных и плагин-гибридных автомобилях — статья ⚡ HEvCars

Экологичные автомобили, будь-то «чистые» электромобили или плагин-гибриды объединяет наличие электродвигателя, в качестве основной движущей силы. Работа современного электрического двигателя основана на принципе электромагнитной индукции, в базе которого лежит выработка электродвижущей силы в замкнутом контуре с изменением магнитного потока. Технология не нова, однако современные достижения науки и техники позволили развить ее до невероятных высот. Немалую роль в этом сыграла и возросшая в десятки раз мощность и емкость аккумуляторных батарей, которые выполняют роль топливного бака в современных электрических и гибридных автомобилях.

Электромобиль Nissan Leaf в «разрезе»: батарея с электродвигателем

Тем не менее, нельзя со 100% уверенностью утверждать, что все электродвигатели одинаковы. Многие ошибочно считают электродвигатель довольно простой установкой, однако стоит, к примеру, учитывать тот факт, что в отличии от ДВС, у электрического двигателя практически 90% КПД выделяемой энергии идет на создание крутящего момента.

Согласитесь, что подобную мощность необходимо обуздать и уметь с ней обращаться, а для этого нужно знать некоторые нюансы о работе и разновидностях электрических двигателей.

Электродвигатели – особенности эксплуатации и принцип работы

К главным особенностям электрического двигателя относится несколько важных характеристик:

  1. Крутящий момент мотора достигает своего максимума сразу при включении, таким образом, электромобили не требуют наличия характерных для ДВС стартеров и сцеплений.
  2. Работа агрегата на обширном числе оборотов, позволяет электромобилю обходиться без коробки переключения передач. Для изменения стороны вращения двигателя (включение заднего хода) достаточно поменять полярности.

Электродвигатель Nissan Leaf

Однако все понимают, что стартовать на электромобиле со всего потенциала крутящего момента, который гораздо мощнее многих автомобилей с ДВС, никто не будет. По меньшей мере, это небезопасно, и что немаловажно это влечет неэффективный расход заряда батарей.

Поэтому традиционно электродвигатели должны отвечать следующим требованиям:

  • иметь безопасное и удобное для эксплуатации строение;
  • обладать гарантией длительной эксплуатации;
  • иметь компактные габариты.

Как уже упоминалось, работа современного электродвигателя основана на давно известном принципе электромагнитной индукции. Традиционно агрегат состоит из недвижимого элемента – статора, и крутящегося – ротора. Статор имеет ряд обмоток на которые поступает электрический ток, что приводит к появлению магнитного поля, при котором ротор начинает свое движение. Скоростные показатели ротора определяются частотой, с которой происходит переключение тока с одной обмотки статора на другую.

Двигатели для электромобилей – разновидности и классификация

В современных автомобилях с электрической тягой серийного производства наиболее часто используют три типа электрических двигателей.

Асинхронные двигатели. Моторы непостоянного тока, в которых скорость вращения ротора различается с потенциалом напряжения магнитного поля, созданным источником питания. Различают одно, двух и трехфазные агрегаты асинхронного типа.

Асинхронный трехфазный электродвигатель переменного тока Tesla Model S

Синхронные двигатели. Электромотор, работающий на переменном токе, с движением ротора полностью симметричным электромагнитному полю. Подобные электродвигатели используют при повышенных мощностях. Различают шаговые и вентильные синхронные электродвигатели. Для первых характерно точное расположение ротора с подачей питания на конкретную обмотку, а чтобы изменить положение ротора, напряжение между обмотками необходимо перенаправить. Для второго типа агрегатов характерно питание от полупроводниковых составляющих.

Синхронный электродвигатель с постоянным магнитом Mitsubishi i-MiEV

Двигатель-колесо. Тип электромотора сила напряжения и крутящий момент которого рассчитан на конкретное колесо. Данный тип электропривода часто используется в плагин-гибридных автомобилях в рабочем тандеме с двигателем внутреннего сгорания. Агрегат может устанавливаться непосредственно в колесо, однако современные электромобили все больше отходят от такого расположения мотора, поскольку это увеличивает удельный вес шасси и снижает управляемость. Более рационально стало использовать двигатель в качестве полноценного привода для вращения колеса.

Двигатель-колесо

Что касается регулировок управления электродвигателя, то за преобразование постоянного тока от аккумуляторных батарей в трехфазный переменный – отвечает инвертор.Трансмиссия – выполняющая роль сцепления и коробки передач, зачастую представлена одноступенчатым зубчатым редуктором.Остальные параметры работы электродвигателя регулируют электронная система управления, которая индивидуальна для каждой марки электрокара или гибрида.

Видео как работает электродвигатель и другие механизмы электромобиля на примере Tesla Model S

Хотелось бы подчеркнуть, что представленная классификация и система работы электродвигателей далеко не финальная. Стремительное развитие отрасли эко автомобилей только входит в начальную стадию, поэтому кардинального изменения принципа работы, мощности, строения электромоторов можно ожидать уже в ближайшее время.

Какие электродвигатели используются в гибридных и плагин-гибридных автомобилях

Гибридные автомобили имеют собственную специфику использования электромоторов. Во многом электродвигатель гибрида выполняет роль вспомогательного элемента, повышающего мощность основного двигателя внутреннего сгорания и снижающего уровень потребления топлива.

Электродвигатели используемые в гибридах можно разделить на несколько разновидностей:

  • Встроенная помощь мотору. Электродвигатель который берет на себя часть усилий по созданию крутящего момента при движении.
  • Встроенный генератор стартера. Электродвигатель, который только приводит автомобиль в движение.
  • Старт/стоп двигатель. Электродвигательная система, которая отключает основной ДВС при остановке и мгновенно запускает его при начале движения.

Кроме указанных подвидов классифицируют три типа использования электродвигателя:

  • Параллельной работы. В данном типе электродвигатель питается от батарей, а ДВС от топливного бака. Обе категории двигателей создают крутящий момент для движения автомобиля.
  • Последовательной работы. Заведенный двигатель внутреннего сгорания включает генератор, который или заводит электродвигатель или подзаряжает аккумуляторный блок.
  • Параллельно-последовательной работы. Данный тип гибридного двигателя соединяет электромотор, генератор, ДВС и колеса редуктором.

По большей части в гибридах используется принцип параллельной работы электродвигателя и ДВС. Его применяют также в подключаемых гибридах (плагин-гибридах), в которых по мере истечения заряда аккумуляторных батарей подключается ДВС малой мощности, работа которого в направлена на восполнение заряда АКБ.

Видео работы новой гибридной системы плагин-гибрида Toyota Prius

Преимущества и недостатки использования электродвигателей

Как и любой двигатель, электромотор в электромобиле имеет собственные плюсы и минусы использования. Для понимания данных особенностей электромоторов приведем таблицу:

ПреимуществаНедостатки
  • Небольшие габариты и малый вес.
  • Максимальный крутящий момент доступен с момента включения (при нулевых оборотах) двигателя.
  • Высокая, фактически ничем не ограниченная производительность.
  • Возможность использования рекуперативной энергии.
  • Экологически чистая работа.
  • Минимум движущихся деталей требующих замены или ремонта.
  • Отсутствие необходимости в КПП.
  • Зависим от настроек программного обеспечения, питания и производительности аккумуляторных батарей.

Будущие перспективы электродвигателя в автомобилях

Говорить о перспективах, при активном использовании электродвигателей в автомобилях, уже не разумно.

Сейчас можно говорить только о происходящих и грядущих улучшениях электромоторов.

Сам электродвигатель, это достаточно совершенное устройство, апгрейд которого происходит исключительно в зависимости от потенциала использования. Ближайшие тенденции по улучшению электродвигателя направлены в сторону уменьшения размеров и массы, с сохранением и увеличением производительности.

Гораздо больше работы проводится по улучшению источников энергии для электродвигателя, а точнее аккумуляторных батарей. Их также стараются сделать меньше и легче, увеличивая объем, отдачу энергии, но при этом снижая время на подзарядку. Работа над АКБ устанавливаемых на электромобили, сейчас наиболее приоритетная в отрасли производства электромобилей, гибридных и плагин-гибридных авто.

Автор: hevcars.com.ua

Двигатели для электромобилей, Принцип работы электродвигателя, Принцип работы электромобилей, Ресурс электродвигателя Tesla, Ресурс электродвигателя автомобиля, Электродвигатели, Электродвигатели Tesla, Электродвигатель автомобиля

  • ← 7 практичных советов тому, кто собирается в путешествие на электромобиле
  • Особенности эксплуатации электромобиля зимой или как избежать потерю заряда АКБ →

HEVCARS 🔌 Автор

Читайте самые интересные новости и статьи о электрокарах в Telegram и Google Новости!

что быстрее, безопаснее и выгоднее

Устойчивость и управляемость ⚡ > ⛽

Низкий центр тяжести превращает даже высокий электрический кроссовер в своего рода неваляшку, которая достигает опасных кренов заметно позже, чем аналог с ДВС. Равно как и оптимальная развесовка существенно снижает риск развития заноса или сноса.

Также важно, что электропривод и трансмиссию значительно проще подружить с электронными системами безопасности.

Особенности компоновки нагляднее проявляются на заснеженных дорогах, когда электромобиль увереннее и быстрее, чем соседи по потоку, меняет полосу и входит в повороты. Фактически, если привычно соблюдать ПДД, скоростной режим и держать дистанцию, порог рискованных реакций заметно отодвигается, создавая дополнительный запас безопасности.

Источник изображения: news.auto24.pro

Динамика ⚡ > ⛽

У электродвигателя есть замечательное качество — у него относительно прямой график крутящего момента. Другими словами, он способен выдать максимальную тягу буквально сразу после нажатия педали газа (или в нашем случае — «тока»). А вот ДВС — только когда раскрутится до определенного количества оборотов в минуту.

На дороге это придает даже «семейным» электромобилям динамику, сравнимую со спорткаровской, — разгон до сотни за пять секунд сегодня уже не редкость. А претендующие на спортивность электрокары «разменяли» трехсекундную отметку, что раньше было доступно лишь ультрадорогим гиперкарам.

Конечно, это нам нужно не для светофорных гонок, которые остались где-то на рубеже столетий, а исключительно ради безопасности. Незаурядная динамика позволяет электрокару вовремя сменить полосу, сманеврировать, быстро обогнать «длинномер» на узкой загородной дороге — словом, получить в запас те драгоценные мгновения, которые отделяют риск от уверенной езды.

Тормозная динамика, то есть эффективное и безопасное замедление, у электромобилей тоже обычно лучше, чем у обычных авто. Тормозным механизмам здесь помогает режим рекуперации, когда электродвигатель работает как генератор и преобразует вращение колес обратно в электроэнергию. Впрочем, если кому-то не по душе резкое замедление в ответ на сброс газа, многие модели позволяют регулировать степень рекуперации, а порой и отключить ее вовсе.

Максимальная скорость ⚡ < ⛽

Пусть электродвигатели способны выдать большой крутящий момент на низких оборотах, сильно раскручиваться и удержать в таких условиях высокую мощность — это не для них. Поэтому даже у дорогих люксовых электрических моделей максимальная скорость чаще ограничена на отметке около 200 км/ч.

Если сегодня взять спортивные варианты электрокара и традиционного автомобиля с примерно одинаковыми мощностью и крутящим моментом, то на первых секундах электрический экипаж уйдет в отрыв, но затем машина с ДВС догонит его и оставит далеко за кормой.

В теории, можно снабдить электромобили особой трансмиссией с повышающим рядом передач (и такие эксперименты ведутся), применить и другие технические решения, но возникает поистине философский вопрос — зачем? На дорогах общего пользования, не считая безлимитных автобанов, превышать технологически ограниченный порог скорости, по сути-то, и негде. Динамика здесь важнее, а с ней у электрокаров все в полном порядке. А дополнительные детали трансмиссии сделают электрокары сложнее, тяжелее и дороже.

Автономность и запас хода ⚡ < ⛽

Скажем прямо — сегодня преимущество в способности пополнить запасы источника энергии у автомобилей с двигателями внутреннего сгорания просто разгромное. АЗС с бензином и соляркой в достаточном количестве есть и в крупных городах, и в глубинке, и на всех мало-мальски «цивилизованных» трассах, чего, увы, не скажешь о специализированных зарядных станциях для электромобилей. Их число неуклонно растет, но пока не в той мере, чтобы существенно повлиять на ситуацию.

Время заправки-зарядки тоже не в пользу электромобилей. Залить полный бак бензина можно буквально за несколько минут, а на полный заряд батареи в среднем потребуется около трех часов. Если же вам попадется так называемая медленная (невысокой мощности) зарядная станция, умножайте время минимум на два.

Запас хода на одном баке у автомобилей с ДВС в среднем в полтора-два раза выше, чем у электромобилей с полным зарядом батареи. И последний весомый аргумент — никто не мешает закинуть в багажник автомобиля пару канистр с горючим, но вот дополнительный запас электричества с собой не увезешь…

Расходы ⚡ < ⛽

На этапе покупки электромобиль обойдется вам раза в полтора-два дороже сопоставимого по характеристикам авто с ДВС. Даже если вести речь о «семейных» моделях, а не люксовом сегменте, все равно переплата в рублях будет выражаться числами с шестью нулями.

Конечно, расходы на горючее существенно выше, чем плата за электроэнергию, но расчеты показывают, что в зависимости от класса автомобиля разницу в начальной цене электромобиль за счет топлива окупит за 10–25 лет. Но даже если вы собираетесь эксплуатировать электрокар так долго, вам все равно рано или поздно понадобится заменить батарею, а ее стоимость составляет больше половины от цены всего экипажа.

Обслуживать электромобиль, в принципе, проще: у электродвигателя меньше деталей, чем в ДВС, да и трансмиссии в привычном понимании здесь нет. Вопрос только в стоимости и доступности самих запчастей, в наличии специальных сервисов и цене нормо-часов.

Экологичность ⚡ = ⛽

Формально электромобиль с его «нулевым» выхлопом несопоставимо чище автомобиля с самым «зеленым» ДВС — даже придушенным в мощности и снабженным многочисленными фильтрами и катализаторами.

Но электричество тоже надо где-то получить, особенно в глобальном масштабе — с перспективой замены всего автопарка моделями с электротягой. Тут одними ветряками и солнечными батареями не обойдешься. И что делать? Жечь уголь в теплоэлектростанциях? Массово строить ГЭС, которые, в свою очередь, разрушают целые экосистемы, или повсеместно внедрять атомные станции, которые на бумаге эффективны и безопасны, но, как мы уже убедились, способны устроить локальный армагеддон?

Над этой дилеммой бьются ученые, спорят инженеры и экологи — поэтому мы не станем в этой статье искать готовый ответ, а просто отметим, что такая проблема, увы, существует.

Но все же электромобили — действительно удобный, безопасный и перспективный вид транспорта. И хочется надеяться, что его основные проблемы получится решить в ближайшем будущем.

плюсы и минусы электроавтомобилей в России

В последние годы электромобили получают все более широкое распространение. Совершенствуется их конструкция, расширяется предложение — мировые гранды автомобилестроения всерьез взялись за эту тему и предлагают новые, совершенные модели. Некоторые страны уже объявили сроки полного перехода на электрическую тягу. Но это вовсе не первое пришествие машин с электрическим мотором. На заре автомобилизации электродвигатель успешно конкурировал с ДВС.

История появления электромобилей

Первые электрические транспортные средства появились еще в девятнадцатом веке. Они уверенно конкурировали с несовершенными двигателями внутреннего сгорания и громоздкими паровыми машинами. Скорость в 100 км/ч впервые покорилась именно электромобилю. И только в двадцатые годы прошлого столетия ДВС, который совершенствовался быстрыми темпами, стал основным типом двигателя для автомобилей. Электромобили требовали длительной зарядки и имели ограниченный запас хода.
Очередная волна увлечения электрическими машинами началась в шестидесятые — семидесятые годы. Причина — энергетический кризис и развернувшаяся борьба за сохранение окружающей среды. И снова ДВС победил: стал совершеннее, экономичнее, чище. Электрокарам достались узкие ниши коротких городских перевозок, специального экологически чистого и бесшумного транспорта. Но массовыми они так и не стали. Причина та же — несовершенные аккумуляторы и ограниченный запас хода.
Сейчас мы переживаем третье пришествие электромоторов. И теперь у них есть реальные шансы потеснить ДВС. Ведь принципиально новые аккумуляторные батареи обеспечивают электромобилям солидный запас хода. Неужели главная проблема решена? Давайте разберемся.

Устройство современного электромобиля

Внешне электрический автомобиль мало отличается от собрата с двигателем внутреннего сгорания. Да и конструктивно они схожи: Кузов, подвеска, двигатель, трансмиссия. Но есть ряд серьезных отличий. Первое — аккумуляторы. Современные батареи относительно компактны, но все же занимают большой объем и имеют значительный вес. Их стараются размещать как можно ниже: в днище электрического авто, на полу багажника. У электрических авто нет коробки передач. Оптимальная характеристика крутящего моментам электромотора позволяет от нее отказаться. Да и полный привод можно реализовать с применением отдельных электромоторов для передней и задней осей, без сложной трансмиссии. На некоторых электромобилях сохранились… радиаторы. Электрический двигатель и батарея при работе сильно нагреваются и требуют эффективного жидкостного охлаждения.

Плюсы электромобилей

Электромобили имеют ряд важных преимуществ перед авто с бензиновыми двигателями. Рассмотрим некоторые из них:

Дешевизна электроэнергии

При сегодняшнем уровне цен стоимость электроэнергии, затраченной на километр пробега, заметно ниже затрат на бензин или дизельное топливо на тот же километр.

Экологичность

В электродвигателе не сгорает углеводородное топливо, а значит нет вредных выбросов. Но как вырабатывалась потребляемая машиной электроэнергия, насколько она «зеленая»? Тепловые, атомные, гидроэлектростанции с природой не очень дружат. Добыча и производство цветных металлов, которые используются в электродвигателе и аккумуляторной батарее, тоже не самый экологически чистый процесс…

Оптимальная характеристика двигателя

Именно она всегда привлекала инженеров. Чем ниже обороты, тем выше крутящий момент. Коробка передач не нужна. Кроме того, современные электромоторы имеют высокий КПД — более 90%. Тепловым машинам такое и не снилось! А система рекуперации при торможении позволяет получить КПД выше 100%.

Другие преимущества электромобилей

Можно отметить и другие плюсы электрокаров. Проще механическая часть, меньше движущихся и трущихся частей, не требуется специальное моторное масло. Их проще (и дешевле!) обслуживать, они не знают проблем зимнего пуска, не теряют мощность в горах. А еще не шумят и не создают вибраций при работе.

Минусы электромобилей

Недостатков у электромобилей, которые сдерживают их широкое распространение пока достаточно. Рассмотрим основные:

Ограниченный пробег

По-прежнему — основная проблема. Современные машины с электромотором проходят на одной зарядке 200…400 километров. Но это в идеальных условиях. В морозы емкость батарей падает, и пробег сокращается. А еще и салон обогревать нужно — на это тоже электроэнергия расходуется.

Долгая зарядка

Заправить машину бензином — дело нескольких минут. Зарядка электрокара займет несколько часов. Существуют системы быстрой зарядки: час — другой и — готово. Но такой процесс не слишком полезен для батареи.

Отсутствие инфраструктуры

Необходима широкая сеть зарядных станций, что для России, с ее пространствами — серьезная проблема, решение которой потребует больших вложений. Без этого электромобили так и останутся экзотикой. Не от квартирной же розетки на десятом этаже заряжать машину?!

Другие недостатки электромобилей

Аккумуляторные батареи имеют свойство деградировать. Со временем их емкость падает, они плохо «держат» заряд. Замена батареи в электромобиле — дорогое удовольствие. Кроме морозов, аккумуляторы не любят и сильной жары — работают нестабильно. Электромобили дороже аналогичных бензиновых или дизельных машин. Их масса выше, за счет тяжелых батарей. Хотя статистика и говорит, что электрокары реже горят, но уж если загорелось… Тушение литиевых аккумуляторов — головная боль пожарных всего мира.

Пути совершенствования электромобилей

Электрическая часть, управляющая электроника, шасси современных электромобилей достаточно совершенны. По ходовым качествам они порой даже превосходят машины с ДВС.
Прежде всего необходимо увеличивать пробег на одной зарядке и уменьшать время зарядки батареи. Нужны компактные и относительно легкие аккумуляторы большой емкости. Батареи будущего должны быстро заряжаться, держать емкость на морозе и не бояться перегрева. Медленная деградация — еще одно важное требование. Именно прорыв на аккумуляторном фронте сможет уравнять возможности электрических авто и традиционных машин.
Сегодня применяются литий — ионные батареи со всеми их преимуществами и недостатками. Эксперименты с альтернативными типами аккумуляторов: литий — серными, алюминий — ионными, металл — воздушными и другими пока не дали нужного результата. Их достоинства полностью нивелируются недостатками. Одни боятся морозов, другие полностью деградируют за полсотни циклов заряд — разряд. Так что ждем прорыва на аккумуляторном фронте!

Перспективы применения в России

Норвежский путь — полный переход на электромобили к 2024 году — не для России. Электромобили у нас продаются давно. Сегодня у официального дилера можно купить электрокар люксовой марки: Порше, BMW, Мерседес, Ягуар. Особняком стоит китайский JAK. Это говорит о том, что электромобиль сегодня — удел состоятельных россиян. Попытка того же Рено продавать машины с электромотором давно и бесславно завершилась. Неофициальные продавцы предложат практически любую модель, как новую, так и подержанную. Новые электромобили дороги и приобретают их в основном люди состоятельные, которые и зарядку себе в частном доме организуют и…на обычный автомобиль пересядут, когда нужно.
Получается — электромобили в России не имеют перспектив? Вовсе нет. Если государство даст преференции потенциальным владельцам: налоговые льготы, субсидии, выгодные кредиты, бесплатные парковки, низкие расценки на электроэнергию, простимулирует создание широкой сети зарядных станций, то в больших городах, особенно южных, электрические авто вполне могут прижиться. Для совершения не очень далеких поездок по городу и окрестностям, без удаления от зарядных станций современный электромобиль вполне подходит.
А вот поездка на машине с электромотором из Москвы в Якутск пока выглядит фантастикой. Слишком страна у нас большая. А местами и очень холодная.

главное для хорошего электромобиля – облегчённый мотор / Хабр

Дизайн автора представляет новое слово в разработке электромоторов

В первое десятилетие XX века 38% всех машин в США работали на электричестве – и этот процент упал почти до нуля с ростом доминирования ДВС в 1920-х. Сегодняшнее стремление к сохранению энергии и уменьшению вредных выбросов вдохнуло в электромобили новую жизнь, но их высокая стоимость и ограниченный пробег сдерживают продажи.

Большая часть попыток решения этих проблем связана с улучшением батареек. Конечно же, улучшение систем хранения электроэнергии, будь то батарейки или топливные ячейки, должно оставаться частью любой стратегии улучшения электромобилей, но потенциал для улучшения есть и в другом фундаментальном компоненте машин: в моторе. Последние четыре года мы работали над новой концепцией тягового электродвигателя, используемого в электромобилях и грузовиках. Наша последняя разработка сильно улучшает эффективность по сравнению с обычными моделями – достаточно для того, чтобы сделать электромобили более практичными и доступными.

В прошлом году мы доказали работоспособность нашего мотора во всесторонних лабораторных тестах, и хотя до размещения его в автомобиле ещё далеко, у нас есть все основания полагать, что там он покажет себя так же хорошо. Наш мотор сможет увеличить пробег современных электромобилей, даже если мы не достигнем никакого прогресса в технологии батарей.

Чтобы понять сложность нашей задачи, необходимо вспомнить основы схемы электромотора (ЭМ). По сравнению с ДВС ЭМ проще, у них всего несколько критичных компонентов. Механика требует наличия корпуса. Он называется статором, поскольку не двигается. Необходим ротор, вращающий вал и создающий вращающий момент. Чтобы мотор работал, статор и ротор должны взаимодействовать при помощи магнетизма, превращая электрическую энергию в механическую.

Концепции моторов отличаются именно в области магнитных интерфейсов. В коллекторных моторах постоянного тока ток течёт через щётки, скользящие по коллекторному узлу. Ток идёт через коллектор и передаёт энергию намотке на роторе. Намотка отталкивается постоянными магнитами или электромагнитами статора. Щётки, скользя по коллектору, периодически меняют направление тока, и магниты ротора и статора отталкивают друг друга снова и снова, в результате чего ротор вращается. Иначе говоря, вращательное движение обеспечивается изменяющимся магнитным полем, производимым коллектором, соединяющим катушки с источником тока и циклически меняющим направление тока при поворотах ротора. Однако эта технология ограничивает вращающий момент и страдает от изнашивания; она уже не используется в тяговых ЭМ.

В современных электромобилях используется переменный ток от инвертера. Здесь динамическое вращающееся магнитное поле создаётся в статоре, а не в роторе. Это позволяет упростить схему ротора, который обычно более сложен, чем статор, что облегчает все задачи, связанные с разработкой ЭМ.

Моторов на переменном токе бывает два вида: асинхронные и синхронные. Мы сфокусируемся на синхронных, поскольку обычно они лучше и эффективнее работают.


Передовая система охлаждения проводит жидкость непосредственно через катушку (слева), а не через кожух мотора (справа)

Синхронные моторы тоже бывают двух видов. Более популярный – синхронная машина с постоянными магнитами [permanent-magnet synchronous machine, PMSM], использующая постоянные магниты, встроенные в ротор. Чтобы заставить его вращаться, в статоре организуется вращающееся магнитное поле. Это поле получается благодаря обмотке статора, соединённой с источником переменного тока. Во время работы полюса постоянных магнитов ротора захватываются вращающимся магнитным полем статора, что и заставляет ротор вращаться.

Такая схема, использующаяся в Chevrolet Volt и Bolt, в BMW i3, в Nissan Leaf и множестве других машин, может в пике достигать эффективности в 97%. Постоянные магниты обычно делают из редкоземельных элементов; яркие примеры – очень мощные неодимовые магниты, разработанные в 1982 году General Motors и Sumitomo.

Явнополюсные синхронные электродвигатели [Salient-pole synchronous machines, SPSM)] используют внутри ротора не постоянные, а электромагниты. Полюсы – это катушки в виде труб, направленные наружу, как спицы колеса. Эти электромагниты в роторе питаются источником постоянного тока, соединённым с ними через контактные кольца. Контактные кольца, в отличие от коллектора, не меняют направление тока. Северный и южный полюса ротора статичны, и щётки не изнашиваются так быстро. Как и в случае с PMSM, вращение ротора происходит из-за вращения магнитного поля статора.

Из-за необходимости питать электромагниты ротора через контактные кольца, у этих моторов обычно чуть ниже пиковая эффективность – в диапазоне от 94 до 96%. Преимущество над PMSM заключается в настраиваемости поля ротора, позволяющая ротору более эффективно вырабатывать крутящий момент на больших скоростях. Итоговая эффективность при использовании для разгона машины возрастает. Единственный производитель таких моторов в серийных авто – это Renault с его моделями Zoe, Fluence и Kangoo.

Электромобили необходимо строить с не только эффективными, но и лёгкими компонентами. Самый очевидный способ улучшить соотношение мощности к весу – уменьшить размер мотора. Однако такая машина выдаст меньший крутящий момент для одной и той же скорости вращения. Следовательно, чтобы получить больше энергии необходимо вращать мотор на более высоких скоростях. Сегодняшние электромобили работают на 12000 об/мин; в следующем поколении появятся моторы, работающие при 20000 об/мин; уже идут работы над моторами, работающие на скорости 30000 об/мин. Проблема в том, что чем выше скорость, тем сложнее получается редуктор – скорость вращения мотора слишком сильно превышает скорость вращения колёс. Из сложности редуктора следуют большие энергопотери.


Идеальный шторм: в авторском варианте (вверху) сила Лоренца и смещённая индуктивность (серый) суммируются в максимальное общее усилие (синее) равное 2. В обычном моторе (внизу) сумма двух сил – силы Лоренца и магнитное сопротивление (серый) дают общее усилие (синий), достигающее пика лишь в 1,76, при угле выбега ротора в 0,94 рад. Разница в этом примере составляет 14%

Второй подход к улучшению соотношения мощности к весу – увеличение силы магнитного поля, что увеличивает крутящий момент. В этом состоит смысл добавления железного сердечника к катушке – хотя это увеличивает вес, но одновременно усиливает плотность магнитного потока на два порядка. Следовательно, практически все современные ЭМ используют железные сердечники в статоре и роторе.

Однако, есть и минус. Когда сила поля увеличивается до определённого предела, железо теряет возможность усиления плотности потока. На это насыщение можно немного повлиять, добавляя присадки и изменяя процесс изготовления железа, но и самые эффективные материалы ограничены 1,5 В*с/м2 (вольт в секунду на квадратный метр, или тесла, Тл). Только очень дорогие и редкие вакуумные железно-кобальтовые материалы могут достигать плотностей магнитного потока 2 Тл или более.

И, наконец, третий стандартный путь увеличения крутящего момента – усиление поля через усиление тока, проходящего через катушки. Опять-таки, тут есть свои ограничения. Увеличьте ток, и увеличатся потери на сопротивление, уменьшится эффективность и появится тепло, способное повредить мотор. Для проводов можно использовать металл, лучше проводящий ток, чем медь. Серебряные провода также бывают, но их применение в таком устройстве было бы абсурдно затратным.

Единственный практический способ увеличить ток – контролировать тепло. Передовые охлаждающие решения проводят жидкость прямо рядом с катушками, а не дальше от них, снаружи статора.

Все эти шаги помогают улучшать соотношение веса к мощности. В гоночных электромобилях, где стоимость не имеет значения, моторы могут достигать 0,15 кг на киловатт, что сравнимо с лучшими ДВС из Формулы 1.

Мы со студентами разрабатывали и создавали такие высокопроизводительные электромоторы для автомобиля, участвовавшего в студенческой Формуле три года назад. Мы создавали моторы в нашей лаборатории в Электротехническом институте Технологического института Карлсруэ. Каждый год команда создавала новую машину с улучшенным мотором, редуктором и силовой электроникой. В машине четыре мотора, по одному на колесо. Каждый имеет всего 8 см в диаметре, 12 см в длину и 4,1 кг веса, и производит 30 кВт на постоянной основе и 50 кВт в пике. В 2016 году наша команда выиграла чемпионат мира.

Так что это и правда можно сделать, если стоимость вас не волнует. Главный вопрос – можно ли использовать такие улучшающие эффективность технологии в массовом производстве, в машине, которую могли бы купить вы? Мы создали такой мотор, так что ответ на вопрос – положительный.

Мы начали с простой идеи. Электромоторы хорошо работают как в роли моторов, так и в роли генераторов, хотя для электромобилей такая симметрия не особенно нужна. Для автомобиля нужен мотор, работающий лучше в роли мотора, чем в роли генератора – последняя используется только для заряда батарей при рекуперативном торможении.

Чтобы понять эту идею, рассмотрим работу мотора PMSM. В таком моторе движение создают две силы. Во-первых, сила, возникающая благодаря постоянным магнитам в роторе. Когда ток идёт через медные катушки статора, они создают магнитное поле. Со временем ток переходит из одной катушки в другую и заставляет магнитное поле вращаться. Вращающееся поле статора притягивает постоянные магниты ротора, и тот начинает двигаться. Этот принцип основан на силе Лоренца, влияющей на движение заряженной частицы в магнитном поле.

Но современные ЭМ получают часть энергии от магнитного сопротивления – силы, притягивающей блок железа к магниту. Вращающееся поле статора притягивает как постоянные магниты, так и железо ротора. Сила Лоренца и магнитное сопротивление работают бок о бок, и – в зависимости от схемы мотора – примерно равны друг другу. Обе силы примерно равны нулю, когда магнитные поля ротора и статора выравниваются. С увеличением угла между ними мотор вырабатывает механическую энергию.

В синхронном моторе поля статора и ротора работают совместно, без задержек, существующих в асинхронных машинах. Поле статора находится под определённым углом к полю ротора, который можно регулировать во время работы для достижения наибольшей эффективности. Оптимальный угол для создания вращательного момента при заданном токе можно вычислять заранее. Затем он подстраивается, по мере изменения тока, к силовой электронной системе, дающей переменный ток на намотку статора.

Но вот, в чём проблема: при движении поля статора по отношению к положению ротора сила Лоренца и магнитное сопротивление то увеличиваются, то уменьшаются. Сила Лоренца увеличивается по синусоиде, достигающей пика на 90 градусов от точки отсчёта (от точки, в которой поля статора и ротора выровнены). Сила манитного сопротивления циклично меняется в два раза быстрее, поэтому достигает пика на 45 градусах.

Поскольку силы достигают максимума в разных точках, максимальная сила мотора меньше, чем сумма его частей. Допустим, у какого-то определённого мотора в определённый момент работы оказывается, что оптимальным углом для максимума суммарной силы будет 54 градуса. В этом случае этот пик будет на 14% меньше, чем суммарные пики двух сил. Это наилучший из возможных компромиссов данной схемы.

Если бы мы могли переделать этот мотор так, чтобы две силы достигали максимума в одной точке цикла, мощность мотора возросла бы на 14% совершенно бесплатно. Вы бы потеряли только эффективность работы в роли генератора. Но мы, как будет показано далее, нашли способ восстановить и эту способность, чтобы мотор лучше восстанавливал энергию при торможении.

Разработка идеально выравнивающего поля мотора – дело непростое. Проблема состоит в комбинации PMSM и SPSM в новую гибридную схему. В результате получается гибридный синхронный мотор со смещённой осью магнитного сопротивления. По сути, этот мотор использует как провода, так и постоянные магниты, для создания магнитного поля в роторе.

Другие пытались работать в этом направлении, а затем отбросили эту идею – но они хотели использовать постоянные магниты только для усиления электромагнитного поля. Наша инновация состоит в использовании магнитов только для придания точной формы полю, чтобы оптимально выровнять две силы – силу Лоренца и силу магнитного сопротивления.

Основная проблема в разработке состояла в поиске такой конструкции ротора, которая могла бы менять форму поля, оставаясь при этом достаточно прочной для того, чтобы вращаться на высоких скоростях, не ломаясь при этом. В центре нашей схемы – многослойная структура ротора, несущего медную намотку на железном сердечнике. Мы приклеили постоянные магниты к полюсам сердечника; дополнительные шипы препятствуют их вылету. Чтобы всё удерживалось на месте, мы применили крепкие и лёгкие титановые штифты, пропущенные через электромагнитные полюса ротора, притянутые гайками к кольцам из нержавеющей стали.

Мы также нашли способ обойти недостаток первоначального мотора, уменьшение крутящего момента во время работы генератором. Теперь мы можем менять направление поля в роторе так, что генерация во время рекуперативного торможения работает так же эффективно, как режим мотора.

Этого мы добились, меняя направление тока в намотке ротора во время работы в режиме генератора. Работает это следующим образом. Представьте себе первоначальный вид ротора. Если идти по его периметру, вы обнаружите определённую последовательность северных и южных полюсов электромагнитных (Е) и постоянных магнитных (P) источников: NE, NP, SE, SP. Эта последовательность повторяется столько раз, сколько в моторе пар полюсов. Меняя направление тока в обмотке, мы меняем ориентацию электромагнитных полюсов, и только их, в результате последовательность превращается в SE, NP, NE, SP.

Изучив две этих последовательности, вы увидите, что вторая похожа на первую, идущую задом наперёд. Это значит, что ротор можно использовать в режиме мотора (первая последовательность) или в режиме генератора (вторая), когда ток в роторе меняет направление на противоположное. Таким образом наша машина работает более эффективно, чем обычные моторы, как в роли мотора, так и в роли генератора. На нашем прототипе изменение направления тока занимает не более 70 мс, что достаточно быстро для автомобилей.

В прошлом году мы построили прототип мотора на верстаке и подвергли его тщательным проверкам. Результаты ясны: при той же самой силовой электронике, параметрах статора и других ограничениях обычного мотора, машина способна выдавать почти на 6% больше крутящего момента и на 2% больше эффективности в пике. В цикле езды результаты ещё лучше: ей требуется на 4,4% меньше энергии. Это значит, что машина, проезжающая на одной зарядке 100 км, проехала бы с этим мотором 104,4 км. Дополнительные километры достаются нам почти задаром, поскольку в нашей схеме есть всего несколько дополнительных частей, заметно менее дорогих, чем дополнительные батарейки.

Мы связались с несколькими производителями оборудования, и они нашли нашу концепцию интересной, хотя пройдёт ещё много времени до того, как вы увидите один из таких асимметричных моторов в серийном автомобиле. Но появившись, в результате он станет новым стандартом, поскольку извлечение всей возможной пользы из имеющейся у вас энергии стоит в приоритете как для автопроизводителей, так и для всего нашего общества.

ремонт электромобилей или машин с ДВС? – DW – 03.

10.2021

Фото: picture-alliance/dpa/M. Scholz

Автомобили и транспортГермания

Андрей Гурков

3 октября 2021 г.

Немецкий страховой концерн Allianz сравнил расходы на починку автомобилей с двигателями внутреннего сгорания и с электромоторами, а также выяснил, какие авто чаще возгораются.

https://www.dw.com/ru/chto-dorozhe-remont-jelektromobilej-ili-mashin-s-dvs/a-59378444

Реклама

В Германии стремительно растут продажи автомобилей с альтернативными двигателями, главным образом плагин-гибридов и электромобилей. Пока они стоят существенно дороже традиционных легковых машин с двигателями внутреннего сгорания (ДВС), но в ФРГ покупатели получают субсидии от государства и производителей на покупку авто с электромоторами. К тому же считается, что они выгоднее в эксплуатации, особенно при высоких ценах на горючее и смазочные материалы.

А что с ремонтом таких авто? Что выгоднее чинить: электромобили или машины с ДВС? И какие из них чаще возгораются? Такими вопросами задался немецкий концерн Allianz. Интерес страхового гиганта к этой теме очевиден: ему необходимо правильно рассчитывать риски и, соответственно, стоимость своих услуг для автовладельцев.

Электромобили: особые нормы техники безопасности и требования производителей

В конце сентября инженерно-технический центр концерна в Исманинге под Мюнхеном (Allianz Zentrum für Technik, AZT) представил на конференции специалистов исследование расходов на ремонт подзаряжаемых гибридных и полностью электрических автомобилей. В нем использовалась статистика 2018-2020 годов.

Для электромобилей особенно опасно повреждение днища, ведь замена батареи стоит очень дорогоФото: picture-alliance/dpa/Wiesbaden112.de/S. Stenzel

Главный вывод: в Германии ремонт электромобилей обходится дороже — примерно на 30% в случае столкновения машин, причем наиболее накладной оказывается починка плагин-гибридов. Поэтому и полисы «каско» стоят несколько больше, чем при страховании автомобилей с ДВС.  

Более высокая стоимость ремонта обусловлена не только особенностями конструкции электромобилей (так, аккумуляторной батарее, ключевому элементу таких машин, требуется усиленная защита на случай аварии), но и специфическими нормами техники безопасности и требованиями производителей. Некоторые из них, к примеру, настаивают на замене батареи в случае, если сработала подушка безопасности. Это дорогостоящая операция может сделать экономически бессмысленным ремонт поврежденной машины.

Аккумуляторные батареи и кабели порождают основные проблемы

Другой пример: если электромобиль после аварии больше не на ходу, а в аккумуляторной батарее по-прежнему остается много энергии, его эвакуация требует принятия особых противопожарных мер, что делает ее более дорогостоящей. 

Даже в больших городах куньи нередко повреждают машины, но для электромобилей они особо опасны Фото: Fotolia/Horst Schmidt

Вообще ремонт электромобилей, напоминают эксперты AZT, разрешен только в автомастерских, в которых персонал обучен работать с высоковольтными проводами. Однако если в результате серьезной аварии машина перестает быть искробезопасной (что случается весьма редко, отмечается в исследовании), квалификация таких автомехаников может оказаться недостаточной. Привлечение специалистов затягивает ремонт и ведет к дополнительным расходам.

Весьма дорого владельцам электромобилей (или их страховщикам) могут обойтись куньи или грызуны. Если они повредят высоковольтный кабель, замена соответствующего комплекта может стоить до 7000 евро, поскольку починить такой кабель пока невозможно, констатируют эксперты AZT. Но отмечают, что некоторые автостроители используют сменные защитные оболочки для кабеля. В таком случае стоимость ремонта снижается на 97%.

Повышенной пожароопасности электромобилей нет

А насколько пожароопасными являются электромобили? Ведь из-за целого ряда публикаций в СМИ могло возникнуть впечатление, что они особенно часто воспламеняются. В исследовании приводится статистика: в Германии за год регистрируются порядка 15 тысяч возгораний легковых машин, при этом на автомобили с электрическим приводом приходится существенно меньше 1% случаев. 

Пожарные в Кройцау тушат электромобиль, воспламенившийся во время подзарядкиФото: picture-alliance/dpa/Polizei Düren

«В ходе нашего исследования мы не обнаружили более высокой вероятности возгорания электромобилей по сравнению с обычными бензиновыми или дизельными автомобилями», — заявил Карстен Райнкемайер (Carsten Reinkemeyer), возглавляющий в AZT отдел изучения проблем технической безопасности.

К аналогичному выводу пришло и Объединение немецкой автомобильной промышленности (VDA). Электромобили горят не чаще, чем машины с ДВС, однако их тушение длится дольше, что, как правило, ведет к более высокому расходу средств пожаротушения. 

Смотрите также:

Как немцы наладили ресайклинг автобатарей

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

 

Реклама

Пропустить раздел Топ-тема

1 стр. из 3

Пропустить раздел Другие публикации DW

На главную страницу

Двигатели среднего и высокого напряжения

  • more products
  • Обзор

В результате приобретения компании Ansaldo Sistemi Industriali SpA в 2013 году, Nidec стала одной из немногих компаний в мире, которые могут располагаться более чем 150-летним опытом в проектировании и производстве электродвигателей среднего и высокого напряжения для промышленных объектов. Благодаря их надежности, данные двигатели широко используются для привода больших насосов, компрессоров и вентиляторов, а также технологических линий нефтегазовой и других отраслей тяжелой промышленности – металлообрабатывающей, морской, добывающей, цементной и бумажной. Компанией накоплен большой опыт в проектировании электродвигателей 60 МВт по заказу. Если вы являетесь OEM-производителем в поиске новых решений или конечным пользователем, которому нужно заменить существующий двигатель, наша проектная группа может оказать вам поддержку в разработке нового продукта, модернизации старого оборудования, включая обратное проектирование в случае марок, больше не существующих на рынке.

Индивидуальный проект по техническим условиям

Вот что выделяет нас среди прочих поставщиков по заказному проектированию: индивидуальные решения, надежность и гибкость, являющиеся ключевыми принципами наших производственных процессов. Наши решения по двигателям и генераторам разрабатываются с использованием конечно-элементного моделирования и продвинутых аналитических средств на всех этапах процесса и позволяют определить наилучший вариант для конструкции изделия, отвечающий конкретным нуждам заказчика, учитывая при этом оптимальное соотношение цены и качества.

Устойчивый и надежный процесс производства

Мы производим индукционные, синхронные двигатели, взрывозащищенные, а также работающие на постоянном токе. Наши прочные и устойчивые к внешним воздействиям машины идеальны для применения в суровых условиях различных отраслей, таких как нефтегазовый сектор, морские суда, энергетика и металлургия. Вы можете положиться на наши стандарты высочайшего качества: наш испытательный полигон, оборудованный по последнему слову техники, оснащенный продвинутой системой получения данных в реальном времени и автоматических отчетов, позволяет отвечать наиболее строгим требованиям.

Производство и сервисная поддержка

Наша фабрика в Монфальконе (Италия), занимающая площадь более 80 000 квадратных метров, является центром передовых технологий для двигателей и генераторов среднего и высокого напряжения. Оснащенная по последнему слову техники испытательная площадка позволяет нашим заказчикам проводить комплексные испытания двигателей и ЧРП, испытывать их мощностью до 60 мВт в сдвоенной конфигурации. Располагая 29 сервисными центрами и сетью сервисных партнеров на территории четырех континентов, мы можем обеспечить непосредственную поддержку наших заказчиков по всему миру.

Модельные ряды двигателей

  • ИНДУКЦИОННЫЕ МАШИНЫ
    • ПОКАЗАТЕЛИ МОЩНОСТИ: 150 – 25 000 кВт; 200 – 33 000 л.с.
    • НАПРЯЖЕНИЕ: до 15 кВ
    • КОЛИЧЕСТВО ПОЛЮСОВ: 2–36
  • СИНХРОННЫЕ МАШИНЫ
    • ПОКАЗАТЕЛИ МОЩНОСТИ: 1 000 – 45 000 кВт; 1 340 – 60 000 л.с.
    • НАПРЯЖЕНИЕ:  до 15 кВ
    • КОЛИЧЕСТВО ПОЛЮСОВ: 2–36
  • ВЗРЫВОЗАЩИЩЕННЫЕ ДВИГАТЕЛИ
    • ПОКАЗАТЕЛИ МОЩНОСТИ:  150 – 4 500 кВт;  200 – 6 000 л.с.
    • НАПРЯЖЕНИЕ:  до 15 кВ
    • КОЛИЧЕСТВО ПОЛЮСОВ: 2–20
  • МАШИНЫ ПОСТОЯННОГО ТОКА
    • ПОКАЗАТЕЛИ МОЩНОСТИ:  30 – 6 000 кВт (со скоростью 150 об/мин при последовательном подключении)
    • НАПРЯЖЕНИЕ:  до 1 000 В
    • КОЛИЧЕСТВО ПОЛЮСОВ:  2–24

Запрос дополнительной информации

Страна

AndorraUnited Arab EmiratesAfghanistanAntigua and BarbudaAnguillaAlbaniaArmeniaAngolaAntarcticaArgentinaAustriaAustraliaArubaAland IslandsAzerbaijanBosnia and HerzegovinaBarbadosBangladeshBelgiumBurkina FasoBulgariaBahrainBurundiBeninSaint BarthélemyBermudaBrunei DarussalamBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBrazilBahamasBhutanBouvet IslandBotswanaBelarusBelizeCanadaCocos (Keeling) IslandsCongo, the Democratic Republic of theCentral African RepublicCongoSwitzerlandCote d’IvoireCook IslandsChileCameroonChinaColombiaCosta RicaCubaCape VerdeCuraçaoChristmas IslandCyprusCzech RepublicGermanyDjiboutiDenmarkDominicaDominican RepublicAlgeriaEcuadorEstoniaEgyptWestern SaharaEritreaSpainEthiopiaFinlandFijiFalkland Islands (Malvinas)Faroe IslandsFranceGabonUnited KingdomGrenadaGeorgiaFrench GuianaGuernseyGhanaGibraltarGreenlandGambiaGuineaGuadeloupeEquatorial GuineaGreeceSouth Georgia and the South Sandwich IslandsGuatemalaGuinea-BissauGuyanaHeard Island and McDonald IslandsHondurasCroatiaHaitiHungaryIndonesiaIrelandIsraelIsle of ManIndiaBritish Indian Ocean TerritoryIraqIran, Islamic Republic ofIcelandItalyJerseyJamaicaJordanJapanKenyaKyrgyzstanCambodiaKiribatiComorosSaint Kitts and NevisKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitCayman IslandsKazakhstanLao People’s Democratic RepublicLebanonSaint LuciaLiechtensteinSri LankaLiberiaLesothoLithuaniaLuxembourgLatviaLibyan Arab JamahiriyaMoroccoMonacoMoldova, Republic ofMontenegroSaint Martin (French part)MadagascarMacedonia, the former Yugoslav Republic ofMaliMyanmarMongoliaMacaoMartiniqueMauritaniaMontserratMaltaMauritiusMaldivesMalawiMexicoMalaysiaMozambiqueNamibiaNew CaledoniaNigerNorfolk IslandNigeriaNicaraguaNetherlandsNorwayNepalNauruNiueNew ZealandOmanPanamaPeruFrench PolynesiaPapua New GuineaPhilippinesPakistanPolandSaint Pierre and MiquelonPitcairnPalestinePortugalParaguayQatarReunionRomaniaSerbiaRussian FederationRwandaSaudi ArabiaSolomon IslandsSeychellesSudanSwedenSingaporeSaint Helena, Ascension and Tristan da CunhaSloveniaSvalbard and Jan MayenSlovakiaSierra LeoneSan MarinoSenegalSomaliaSurinameSouth SudanSao Tome and PrincipeEl SalvadorSint Maarten (Dutch part)Syrian Arab RepublicSwazilandTurks and Caicos IslandsChadFrench Southern TerritoriesTogoThailandTajikistanTokelauTimor-LesteTurkmenistanTunisiaTongaTurkeyTrinidad and TobagoTuvaluTaiwanTanzania, United Republic ofUkraineUgandaUnited StatesUruguayUzbekistanHoly See (Vatican City State)Saint Vincent and the GrenadinesVenezuela, Bolivarian Republic ofVirgin Islands, BritishVietnamVanuatuWallis and FutunaSamoaYemenMayotteSouth AfricaZambiaZimbabwe

рынок Продукт

Фамилия имя компания Телефон Email Ваш вопрос

Я прочитал(а) и принимаю политику конфиденциальности Privacy Policy

EV Motors: объяснение

Из апрельского выпуска журнала Car and Driver за 2022 год.

Любители автомобилей так долго знали язык двигателей внутреннего сгорания, что неумолимый переход на электрификацию требует настройки нашей базы знаний. Многие из нас знакомы с ритмом всасывания-сжимания-выдоха четырехтактного двигателя, который приводит в действие большинство сегодняшних водителей, в то время как среди нас есть любители снегоходов и подвесных моторов, которые, вероятно, могут объяснить внутреннюю работу двухтактного двигателя. Некоторые ботаники могут даже иметь представление о эпитрохоидальных махинациях роторного двигателя Ванкеля, но опыт обычного редуктора с электродвигателями может начаться и закончиться с последним отказом стартера.

Все типы двигателей электромобилей состоят из двух основных частей. Статор — это стационарная внешняя оболочка двигателя, корпус которой крепится к шасси наподобие блока цилиндров. Ротор представляет собой единственный вращающийся элемент и аналогичен коленчатому валу в том, что он передает крутящий момент через трансмиссию на дифференциал.

В большинстве электромобилей используется блок с прямым приводом (с одним передаточным числом), который снижает скорость вращения между двигателем и колесами. Как и двигатели внутреннего сгорания, электродвигатели наиболее эффективны при низких оборотах и ​​более высоких нагрузках. В то время как электромобиль может иметь приемлемый запас хода на одной передаче, более тяжелые пикапы и внедорожники, предназначенные для буксировки прицепов, увеличат запас хода благодаря многоступенчатой ​​трансмиссии на скорости шоссе. Сегодня только Audi e-tron GT и Porsche Taycan используют двухступенчатую коробку передач. Многоступенчатые потери и затраты на разработку являются причинами редкости электромобилей с более чем одной передачей, но мы прогнозируем, что это изменится.

Унификация электродвигателей EV

Все три основных типа электродвигателей используют трехфазный переменный ток для создания вращающегося магнитного поля (RMF), частота и мощность которого контролируются силовой электроникой, реагирующей на нажатие педали акселератора. Статоры содержат многочисленные параллельные пазы, заполненные соединенными между собой петлями медных обмоток. Это могут быть громоздкие пучки круглой медной проволоки или аккуратные шпилькообразные медные вставки квадратного сечения, увеличивающие как плотность заполнения, так и прямой контакт между проводами внутри канавок. Более плотные витки улучшают способность к крутящему моменту, а более аккуратное переплетение на концах приводит к меньшему объему и меньшему общему корпусу.

Аккумуляторы — это устройства постоянного тока, поэтому силовая электроника электромобиля включает инвертор постоянного тока в переменный, который обеспечивает статор переменным током, необходимым для создания важнейшей переменной RMF. Но стоит отметить, что эти электродвигатели также являются генераторами, а это означает, что колеса будут вращать ротор в статоре в обратном направлении, чтобы индуцировать RMF в другом направлении, которое возвращает мощность обратно через преобразователь переменного тока в постоянный, чтобы отправить мощность в батарея. Этот процесс, известный как рекуперативное торможение, создает сопротивление, замедляющее автомобиль. Регенерация не только играет центральную роль в расширении запаса хода электромобиля, это в значительной степени целый шарик воска, когда речь идет о высокоэффективных гибридах, потому что большое количество регенерации улучшает показатели экономии топлива EPA. Но в реальном мире рекуперация менее эффективна, чем выбег, что позволяет избежать потерь каждый раз, когда энергия проходит через двигатель и преобразователь при сборе кинетической энергии.

Три типа электродвигателей

Типы двигателей можно разделить по фундаментальным различиям роторов, которые представляют собой совершенно разные способы преобразования RMF статора в фактическое вращательное движение. Эти различия на самом деле достаточно разительны, чтобы отдать должное нашей первоначальной аналогии с четырьмя циклами, двумя циклами и Ванкеля. В асинхронной категории у нас есть асинхронные двигатели, в то время как синхронная группа включает двигатели с постоянными магнитами и двигатели с токовым возбуждением.

Асинхронные двигатели существуют с 19 века. Здесь ротор содержит продольные пластины или стержни из проводящего материала, чаще всего из меди, но иногда из алюминия. RMF статора индуцирует ток в этих пластинах, который, в свою очередь, создает электромагнитное поле (ЭДС), которое начинает вращаться внутри RMF статора. Асинхронные двигатели известны как асинхронные двигатели, потому что ЭДС индукции и связанный с ней вращающий момент могут существовать только тогда, когда скорость ротора отстает от RMF. Такие двигатели распространены, потому что им не нужны редкоземельные магниты и они относительно дешевы в производстве, но их сложнее охлаждать при длительных высоких нагрузках и они по своей природе менее эффективны на низких скоростях.

Как следует из названия, роторы двигателей с постоянными магнитами обладают собственным магнетизмом. Для создания магнитного поля ротора не требуется энергии, что делает их гораздо более эффективными на низкой скорости. Такие роторы также вращаются синхронно с RMF статора, что делает их синхронными. А вот с простой обмоткой ротора магнитами поверхностного монтажа возникают проблемы. Например, для этого требуются более крупные магниты, а удерживать ротор на высокой скорости становится все труднее по мере того, как все становится тяжелее. Но более серьезной проблемой является так называемая «обратная ЭДС» на высоких скоростях, при которой обратное электромагнитное магнитное поле добавляет сопротивление, которое ограничивает максимальную мощность и создает избыточное тепло, которое может повредить магниты.

Чтобы избежать этого, большинство электродвигателей с постоянными магнитами оснащены внутренними постоянными магнитами (IPM), которые попарно вставляются в продольные V-образные пазы, расположенные в виде нескольких лепестков прямо под поверхностью железного сердечника ротора. Прорези обеспечивают безопасность IPM на высокой скорости, но преднамеренно сформированные области между магнитами создают противодействующий крутящий момент. Магниты либо притягиваются, либо отталкиваются от других магнитов, но обычное сопротивление, сила, которая прикрепляет магнит к ящику с инструментами, притягивает лепестки железного ротора к RMF. IPM выполняют работу на более низких скоростях, а реактивный крутящий момент берет верх на высоких скоростях. Чтобы вы не думали, что это новинка, Prius использует их.

Окончательный тип двигателя не существовал в электромобилях до недавнего времени, потому что общепринятое мнение гласило, что бесколлекторные двигатели, которые описаны выше, были единственным жизнеспособным вариантом для электромобиля. BMW недавно изменила эту тенденцию, установив щеточные синхронные двигатели переменного тока с токовым возбуждением на новые модели i4 и iX. Ротор этого типа взаимодействует с RMF статора точно так же, как ротор с постоянными магнитами, но в роторе отсутствуют постоянные магниты. Вместо этого он имеет шесть широких медных лепестков, питающихся от батареи постоянного тока для создания необходимой ЭДС. Для этого требуются контактные кольца и подпружиненные щетки на валу ротора, что заставило других отказаться от этого подхода из-за опасений по поводу износа щеток и связанной с ним пыли. Не будет ли здесь проблемой износ щеток? Это еще предстоит выяснить, но мы в этом сомневаемся. Массив щеток изолирован в изолированном отсеке со съемной крышкой, обеспечивающей легкий доступ. Отсутствие постоянных магнитов позволяет избежать проблем, связанных с ростом стоимости редкоземельных металлов и воздействием добычи полезных ископаемых на окружающую среду. Эта схема также позволяет варьировать силу магнитного поля ротора, что обеспечивает дальнейшую оптимизацию. Тем не менее, для питания этого ротора требуется мощность, что делает эти двигатели менее эффективными, особенно на низких скоростях, когда энергия, необходимая для создания поля, составляет больший процент от общего потребления.

Появление синхронного двигателя переменного тока с возбуждением током произошло настолько недавно в короткой истории электромобилей, что это показывает, насколько рано мы находимся на кривой развития. Есть много места для свежих идей, и уже были сделаны важные повороты, не в последнюю очередь включая отход Теслы от концепции асинхронного двигателя, которая является основой для ее собственного бренда и логотипа, к синхронным двигателям с постоянными магнитами. И нам едва исполнилось десятилетие в современной эре электромобилей — мы только начинаем.

Автомобиль и водитель

Этот контент импортирован из OpenWeb. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Выбор двигателя — Electrogenic

Выбор двигателя является сердцем переоборудования электромобиля и имеет далеко идущие последствия, но первое, что нужно сказать, это то, что вы не можете выбрать двигатель в отрыве от остальных дизайн системы. Количество энергии, выдаваемой двигателем, зависит не только от двигателя, но и от аккумулятора и его способности выдавать мощность. Это в сочетании с весом автомобиля повлияет на производительность и диапазон между зарядками. Измените одно, и оно повлияет на другое. Все они будут влиять на стоимость конвертации. Существует также вопрос, где все может быть установлено, поскольку ретро-электромобили, можно с уверенностью сказать, никогда не были рассчитаны на массу аккумуляторов.

Начните думать о крутящем моменте

Так как же выбрать двигатель для переоборудования? Первое, что нужно решить, это какой уровень производительности вы хотите от него. Заманчиво просто сравнить мощность двигателя в кВт или л.с. с мощностью оригинального двигателя внутреннего сгорания (ДВС), но это не лучшая отправная точка. Чтобы отскочить от огней, вам нужен крутящий момент. Электродвигатели развивают максимальный крутящий момент при 0 об/мин и поддерживают его до тех пор, пока двигатель не достигнет максимальной мощности. Нетгейн Hyper9кривая мощности дает хорошую иллюстрацию.

Это невозможно с двигателем с ДВС, и для увеличения крутящего момента, доступного на низких оборотах, большинство производителей автомобилей с ДВС просто увеличивают мощность. Ретро-электромобили очень забавны, потому что крутящий момент, доступный на более низких оборотах, очень велик. Поэтому, если вы не зациклены на максимальной скорости (где вам нужна мощность), хорошей отправной точкой будет выбор двигателя с таким же крутящим моментом, как у оригинального двигателя (или немного больше!).

Вольты определяют амперы

Следующим пунктом является напряжение двигателя. Это определит размер аккумуляторной батареи и ток, который он должен обеспечить, чтобы двигатель мог передавать крутящий момент. Коммерческие электромобили обычно работают при напряжении около 350-400 В, но некоторые автомобили работают при напряжении до 800 В. Поскольку мощность двигателя представляет собой напряжение x ток, чем выше напряжение, тем меньший ток необходим для обеспечения определенной мощности.

Все это имеет смысл, поэтому вам нужен двигатель с более высоким напряжением, верно? Да, но установки высоковольтных систем обходятся дороже, и, хотя может показаться заманчивым установить двигатель Tesla Ludricus в Morris Minor, остальная часть автомобиля может не справиться или не иметь места для батарей. И для обеспечения мощности двигатели с более высоким напряжением часто имеют более высокие обороты, поэтому вам нужно учитывать влияние на трансмиссию — больше передач или использовать двигатель только в части его диапазона? В результате многие переоборудованные электромобили работают на более низком напряжении, например, от 100 до 150 В, и есть несколько интересных двигателей, доступных на этих уровнях напряжения.

Например,

Хорошим примером является Hyper9 от Netgain — потрясающий автомобильный двигатель с герметичным корпусом, который выпускается в двух версиях: 110 В или 144 В. Два разных варианта напряжения дают больше гибкости при выборе комбинаций аккумуляторов. Это наш первый выбор для переоборудования автомобилей среднего класса, и он очень легко адаптируется. Hyper9 развивает пиковый крутящий момент 235 Нм (при нулевых оборотах — это электродвигатель!) и мощность 80 кВт в диапазоне от 5000 до 8000 об/мин. К счастью для больших автомобилей, Hyper9также могут работать как сдвоенные двигатели, поэтому, если вы сделаете это, вы сможете удвоить показатели производительности.

Tesla Model S 85D (имеет аккумуляторную батарею емкостью 85 кВт·ч, буква D означает «двойной двигатель») . Главный двигатель может вращаться со скоростью до 18 000 об/мин и работает при напряжении 350 В. Официально он развивает 660 Нм при 0 об/мин (хотя краткосрочные показания Dyno намного выше) и 375 кВт при 6150 об/мин. Однако ему также требуется аккумуляторная батарея, которая обеспечивает ток более 1000 А при напряжении 350 В. Вот почему Теслы с меньшим аккумуляторным блоком не такие быстрые: двигатель ограничен батареей. В качестве альтернативы, Yasa 750 R производит 790 Нм пикового крутящего момента, 200 кВт пиковой мощности и диапазон скоростей 0–3250 об/мин при осевой длине всего 98 мм. Однако для этого ему нужен аккумулятор на 750 В.

Вообще говоря, более низкое напряжение дешевле: все детали, такие как разъемы, контакторы, системы зарядки и т. д., стоят дешевле при более низком напряжении и т. д. Не забывайте, что некоторым более крупным двигателям также потребуется система охлаждения.

Итак, какой двигатель лучше всего подходит для вашего проекта по переоборудованию?

Это сложный вопрос, и на него лучше всего отвечать на основе опыта, а не расчетов. Выбор двигателя для переоборудования вашего электромобиля — это повторяющийся процесс. Начните с желаемого крутящего момента, сравните параметры напряжения с доступным объемом аккумуляторной батареи, сравните скорость двигателя с вариантами трансмиссии, оцените последствия для цены всего автомобиля, а не только двигателя, а затем снова вернитесь в цикл. Мы часто прорабатываем несколько комбинаций вместе с нашими клиентами, прежде чем найти правильный баланс.

Конечно, если бюджет и место в автомобиле не являются проблемой, то весь мир в ваших руках.

Вкратце

В конечном счете, самое важное в ретро-электромобиле — это ощущения от вождения, в широком смысле:

  • Свойства автомобиля, такие как размер, вес и аэродинамика, являются ключевыми характеристиками, которые определяют скорость , требования к крутящему моменту и мощности электродвигателя.
  • Обычно мы стремимся по крайней мере соответствовать пиковому крутящему моменту исходного двигателя. И затем помните, что ваш новый Retro-EV будет иметь весь этот крутящий момент, доступный на низких (нулевых) оборотах, поэтому он вызовет у вас еще большую улыбку
  • Принимая во внимание непрерывные уровни мощности, вы сможете определить, сможете ли вы оставаться на определенной высокой скорости. Если вы хотите ехать по автобану со скоростью 140 миль в час, необходимая постоянная мощность может составлять 160 кВт. Круиз со скоростью 70 миль в час и мощностью 60 кВт может быть в порядке.
  • Каков ваш бюджет? Двигатели с более высокой производительностью и более высоким напряжением могут стать очень дорогими в установке.
  • А остальное зависит от физического пространства. И ограничения по оборотам, и аккумулятор, и подача тока, и редуктор…

Есть над чем подумать!

Этот 17-летний парень разработал двигатель, который потенциально может изменить индустрию электромобилей | Инновация

Роберт Сансоне со своим новым синхронным реактивным двигателем. Общество науки

Роберт Сансоне — прирожденный инженер. От аниматронных рук до скоростных беговых ботинок и картинга, который может развивать скорость более 70 миль в час, изобретатель из Форт-Пирса, Флорида, считает, что в свободное время он выполнил не менее 60 инженерных проектов. А ему всего 17 лет.

Пару лет назад Sansone наткнулся на видео о преимуществах и недостатках электромобилей. В видео объясняется, что для большинства двигателей электромобилей требуются магниты, изготовленные из редкоземельных элементов, извлечение которых может быть дорогостоящим как с финансовой, так и с экологической точки зрения. Необходимые редкоземельные материалы могут стоить сотни долларов за килограмм. Для сравнения, медь стоит 7,83 доллара за килограмм.

«У меня есть естественный интерес к электродвигателям, — говорит Сансоне, который использовал их в различных проектах по робототехнике. «С этой проблемой устойчивости я хотел решить ее и попытаться разработать другой двигатель».

Старшеклассник слышал о типе электродвигателя — синхронном реактивном двигателе, — в котором не используются эти редкоземельные материалы. Этот тип двигателя в настоящее время используется для насосов и вентиляторов, но сам по себе он недостаточно мощный, чтобы его можно было использовать в электромобиле. Итак, Сансоне начал мозговой штурм, чтобы улучшить его производительность.

В течение года компания Sansone создала прототип нового синхронного реактивного двигателя, который обладал большей силой вращения (или крутящим моментом) и эффективностью, чем существующие. Прототип был изготовлен из напечатанного на 3D-принтере пластика, медных проводов и стального ротора и протестирован с использованием различных измерителей для измерения мощности и лазерного тахометра для определения скорости вращения двигателя. Его работа принесла ему первый приз и выигрыш в размере 75 000 долларов на Международной научно-технической ярмарке Regeneron (ISEF) в этом году, крупнейшем международном конкурсе STEM для старших классов.

В менее экологичных двигателях с постоянными магнитами используются такие материалы, как неодим, самарий и диспрозий, которые пользуются большим спросом, поскольку используются во многих различных продуктах, включая наушники и наушники-вкладыши, объясняет Хит Хофманн, профессор электротехники и компьютерной инженерии в Университет Мичигана. Хофманн много работал над электромобилями, в том числе консультировал Tesla по разработке алгоритмов управления их силовым приводом.

«Кажется, что число приложений, использующих магниты, становится все больше и больше, — говорит он. «Многие материалы добываются в Китае, поэтому цена часто может зависеть от нашего торгового статуса с Китаем». Хофманн добавляет, что Tesla недавно начала использовать постоянные магниты в своих двигателях.

Электродвигатели используют вращающиеся электромагнитные поля для вращения ротора. Катушки проволоки в неподвижной внешней части двигателя, называемой статором, создают эти электромагнитные поля. В двигателях с постоянными магнитами магниты, прикрепленные к краю вращающегося ротора, создают магнитное поле, которое притягивается к противоположным полюсам вращающегося поля. Это притяжение раскручивает ротор.

Синхронные реактивные двигатели не используют магниты. Вместо этого стальной ротор с прорезанными в нем воздушными зазорами выравнивается с вращающимся магнитным полем. Нежелание, или магнетизм материала, является ключом к этому процессу. Когда ротор вращается вместе с вращающимся магнитным полем, создается крутящий момент. Больший крутящий момент создается, когда коэффициент заметности или разница в магнетизме между материалами (в данном случае стальным и немагнитным воздушным зазором) больше.

Вместо того, чтобы использовать воздушные зазоры, Сансоне подумал, что может включить в двигатель другое магнитное поле. Это увеличило бы этот коэффициент заметности и, в свою очередь, произвело бы больший крутящий момент. В его конструкции есть и другие компоненты, но он не может раскрыть больше деталей, так как надеется запатентовать технологию в будущем.

Новый двигатель Sansone превзошел традиционный синхронный реактивный двигатель аналогичной конструкции в тестах на крутящий момент и эффективность. Роберт Сансоне

«После того, как у меня появилась эта первоначальная идея, мне пришлось сделать несколько прототипов, чтобы проверить, будет ли эта конструкция действительно работать», — говорит Сансоне. «У меня нет тонны ресурсов для создания очень продвинутых двигателей, поэтому мне пришлось сделать уменьшенную версию — масштабную модель — с помощью 3D-принтера».

Потребовалось несколько прототипов, прежде чем он смог протестировать свой дизайн.

«На самом деле у меня не было наставника, который мог бы мне помочь, поэтому каждый раз, когда двигатель выходил из строя, мне приходилось проводить массу исследований и пытаться устранять неполадки, — говорит он. «Но в итоге на 15-м моторе я смог получить работающий прототип».

Сансон проверил свой двигатель на крутящий момент и КПД, а затем для сравнения перенастроил его для работы в качестве более традиционного синхронного реактивного двигателя. Он обнаружил, что его новая конструкция обеспечивает на 39 процентов больший крутящий момент и на 31 процент большую эффективность при 300 оборотах в минуту (об/мин). При 750 об/мин эффективность увеличилась на 37 процентов. Он не мог испытать свой прототип при более высоких оборотах в минуту, потому что пластиковые детали перегревались — урок, который он усвоил на собственном горьком опыте, когда один из прототипов расплавился на его столе, — рассказывает он 9.0003 Top of the Class , подкаст, созданный Crimson Education.

Для сравнения, двигатель Tesla Model S может развивать скорость до 18 000 об/мин, объяснил главный конструктор двигателей компании Константинос Ласкарис в интервью 2016 года Кристиану Руоффу для журнала об электромобилях Charged.

Сансоне подтвердил свои результаты во втором эксперименте, в котором он «изолировал теоретический принцип, согласно которому новый дизайн создает магнитную заметность», согласно презентации своего проекта. По сути, этот эксперимент исключил все другие переменные и подтвердил, что улучшения крутящего момента и эффективности коррелируют с большим коэффициентом значимости его конструкции.

«Он определенно правильно смотрит на вещи, — говорит Хофманн о Сансоне. «Есть потенциал, что это может стать следующей большой вещью». Однако он добавляет, что многие профессора работают над исследованиями всю свою жизнь, и «довольно редко они в конечном итоге захватывают мир».

Хофманн говорит, что материалы для синхронных реактивных двигателей дешевы, но машины сложны и, как известно, трудны в производстве. Таким образом, высокие производственные затраты являются препятствием для их широкого использования и основным ограничивающим фактором для изобретения Sansone.

Сансоне соглашается, но говорит, что «с новыми технологиями, такими как аддитивное производство [например, 3D-печать], построить его в будущем будет проще».

Сейчас Сансоне работает над расчетами и трехмерным моделированием 16-й версии своего мотора, которую он планирует построить из более прочных материалов, чтобы протестировать ее на более высоких оборотах в минуту. Если его двигатель продолжит работать с высокой скоростью и эффективностью, он говорит, что продолжит процесс патентования.

Вся экспериментальная установка Sansone. Роберт Сансоне

Будучи старшеклассником Центральной средней школы Форт-Пирса, Сансоне мечтает поступить в Массачусетский технологический институт. Его выигрыш от ISEF пойдет на оплату обучения в колледже.

Сансон говорит, что изначально не планировал участвовать в конкурсе. Но когда он узнал, что один из его занятий позволил ему завершить годовой исследовательский проект и написать статью по выбранной им теме, он решил воспользоваться возможностью и продолжить работу над своим двигателем.

«Я подумал, что если я смогу вложить в это столько энергии, то смогу сделать это проектом научной выставки и конкурировать с ним», — объясняет он. После хороших результатов на районных и государственных соревнованиях он перешел в ISEF.

Сансоне ждет следующего этапа испытаний, прежде чем обратиться к какой-либо автомобильной компании, но он надеется, что однажды его двигатель станет предпочтительным для электромобилей.

«Редкоземельные материалы в существующих электродвигателях являются основным фактором, подрывающим устойчивость электромобилей», — говорит он. «Увидеть день, когда электромобили станут полностью устойчивыми благодаря помощи моей новой конструкции двигателя, было бы мечтой».

Рекомендуемые видео

статей Маргарет Осборн | Смитсоновский журнал

Маргарет Осборн — независимый журналист, проживающий на юго-западе США. Ее работы были опубликованы в Sag Harbour Express и транслировались по WSHU Public Radio.

Новый робот-гуманоид Илона Маска может однажды купить ваши продукты

А пока он просто ходит, танцует и машет руками

Биткойн может соперничать с говядиной или сырой нефтью по воздействию на окружающую среду

Крупнейшему в мире вымиранию мангровых зарослей, вероятно, способствовала Луна

Лунное «колебание» влияет на приливы, создавая цикл роста и отмирания этих поглощающих углерод деревьев

Похитители требуют шестизначную сумму за возвращение животных в приют в Демократической Республике Конго.

Около 200 выброшенных на берег китов погибли на австралийском пляже

Спасатели спасли около 30 животных

Украинский подросток изобрел дрон, который может обнаруживать мины

Семнадцатилетний Игорь Клименко работал над своим изобретением, укрываясь в подвале от Русские атаки

Загадочная «инопланетная золотая рыбка» могла быть моллюском

Анатомия странного существа десятилетиями ставила ученых в тупик

Ученые раскрывают историю приручения ослов

Согласно новому исследованию, люди приручили лошадей около 7000 лет назад в Восточной Африке

Страна обязалась выделить 13 миллионов долларов США, которые будут направлены в регион Сахеля на северо-западе Африки и в другие пострадавшие районы

Приблизительно 20 квадриллионов муравьев живут на Земле

Вес муравьев в мире превышает вес всех диких птиц и млекопитающих вместе взятых

0162

Президент говорит, что хочет, чтобы эти устройства было «так же легко найти, как сейчас заправочные станции». Новозеландский мальчик назвал существо «Мертвый Фред»

Лобстеры занесены в «Красный список», что возмутило рыболовное сообщество штата Мэн

Компания Seafood Watch объявила, что потребители должны избегать омаров, потому что их ловушки угрожают исчезновению Североатлантический кит

В чем разница между мозгом человека и неандертальца?

Одна небольшая вариация в ДНК, возможно, помогла Homo sapiens превзойти наших древних родственников

Шимпанзе играют в свой фирменный барабанный бой, чтобы оставаться на связи

Новые исследования показывают, что животные транслируют свою личность и местонахождение, чтобы найти друг друга во время путешествия

Быстрое обезлесение сделало тропические леса более уязвимыми для огня, говорят эксперты

0162

Ни в одном из предыдущих исследований не проводилось непрерывное наблюдение за дикими ночными мигрирующими насекомыми

Таинственный человек из Сомертона из Австралии, идентифицированный как Карл Уэбб | Умные новости

Эксперты не смогли точно определить причину смерти, но трое медицинских свидетелей, давших показания во время расследования дела Сомертонского человека, согласились, что его смерть «не была естественной». Иллюстрация Мейлана Солли / Фотографии из Викисклада, находящиеся в общественном достоянии.

На протяжении десятилетий власти, ученые и общественность обменивались теориями о личности таинственного человека из Сомертона, чье тело было найдено на пляже недалеко от Аделаиды, Австралия, 1 декабря 1948 года. Он был русским шпионом. Брошенный любовник, отравленный любовницей. Контрабандист. Бывшая артистка балета.

Правда, однако, кажется более приземленной. Как сообщает Хилари Уайтман для CNN, новый анализ ДНК предполагает, что человек из Сомертона — это Карл «Чарльз» Уэбб, инженер-электрик из Мельбурна, исчезнувший из публичных источников 19 апреля.47.

Дерек Эбботт, физик и инженер-электронщик из Университета Аделаиды, и Коллин Фитцпатрик, судебно-медицинский генеалог, специализирующаяся на использовании ДНК для раскрытия нераскрытых дел, опознали Сомертонского человека по волосам, застрявшим в его посмертной маске. Хотя коронер штата еще не подтвердил выводы пары, Эбботт сказал Наташе Мэй из Guardian , что «как ученый» он уверен в точности анализа.

Несмотря на усилия властей предать гласности дело, никто не смог точно опознать человека из Сомертона. Общественное достояние через Wikimedia Commons

«Мы просто говорим, что это то, что говорит нам ДНК», — говорит Эбботт в интервью New York Times Алан Юхас. «Полицейские должны установить юридическое определение того, кем был этот парень».

Чтобы сузить круг потенциальных кандидатов, Эбботт и Фитцпатрик ввели ДНК мужчины из Сомертона в базу данных генеалогических исследований GEDmatch. Найдя совпадение с дальним родственником, исследователи построили генеалогическое древо примерно 4000 человек. Затем они использовали архивные записи для поиска людей, биографии которых отражали то, что было известно о человеке из Сомертона. Уэбб, родившийся в австралийском штате Виктория в 1905, отвечает всем требованиям.

«Во всем этом бульоне и океане кузенов ДНК мы смогли связать одного из них с отцом Карла, а другого с матерью Карла», — рассказывает Фитцпатрик Times . «Вы действительно сузили круг до такой степени, что это может быть любой из братьев и сестер Карла, но у Карла нет документально подтвержденной смерти».

Обнаружение человека из Сомертона

Ночью 30 ноября 1948 года две отдельные пары заметили «элегантно одетого мужчину, лежащего на песке, его голова прислонилась к морской стене», согласно Майк Дэш из журнала Smithsonian . Отмахнувшись от загадочной фигуры как от пьяного или крепко спящего отдыхающего на пляже, пары не предприняли никаких усилий, чтобы приблизиться к нему.

Полиция прибыла на место происшествия на следующее утро после получения сообщения о трупе на Сомертон-Бич. Согласно отчету о дознании 1949 года, врач, осматривавший останки мужчины из Сомертона, определил время его смерти около 2 часов ночи. Мужчина в возрасте от 40 до 50 лет ростом 5 футов 11 дюймов не имел ни денег, ни документов, удостоверяющих личность. На самом деле все бирки с его одежды были намеренно удалены. В его карманах были спрятаны сигареты, спички, пачка жевательной резинки Juicy Fruit, использованный билет на автобус, неиспользованный билет на поезд и два гребня для волос.

Вид на часть Сомертон-Бич, где было найдено тело Сомертонского человека (место, отмеченное знаком «Х») Общественное достояние через Wikimedia Commons

Эксперты не смогли установить причину смерти, но трое медицинских свидетелей, давших показания в ходе дознания, согласились, что смерть «не была естественной».

«Не было никаких признаков насилия, и я вынужден признать, что смерть наступила в результате отравления», — заключил городской коронер Томас Эрскин Клеланд. «[B] но я не могу сказать, управлял ли им сам умерший или какое-то другое лицо».

Несмотря на публичные призывы властей и растущее освещение тайны в СМИ, никто не смог точно идентифицировать Человека из Сомертона. Через месяц после его смерти полиция нашла на вокзале Аделаиды чемодан, предположительно принадлежавший ему. (Катушка ниток в чемодане совпадала с оранжевыми стежками, использованными для починки одежды мужчины.) Также внутри были кисточка для бритья, крем для обуви, нож, ножницы, отвертка и различная одежда, некоторые из которых были помечены вариантами название «Т. Кин. Портной, приглашенный для оценки одежды, пришел к выводу, что она была сделана в Соединенных Штатах, что придает вес теории о том, что человек из Сомертона был не из этого района.

Следующая зацепка в деле всплыла в мае 1949 года, когда патологоанатом Джон Клеланд повторно осмотрел труп и обнаружил свернутый лист бумаги, спрятанный в кармане брюк мужчины. На нем была фраза « Тамам Шуд » — по-персидски «все кончено» или «все кончено» — и вскоре ее проследили до «Рубайат Омара Хайяма » , книги персидской поэзии XII века, популяризированной английским переводом 1859 года. .

Эбботт считает, что этот «код» на самом деле представляет собой список лошадей, на которых Уэбб делал ставку. Общественное достояние через Wikimedia Commons

«Трудно рассматривать это как нечто иное, чем преднамеренное», — говорит Фиона-Эллис Джонс, ведущая подкаста «Тайна Сомертонского человека», Бриджит Джадд из Австралийской радиовещательной компании (ABC). — Может быть, предсмертная записка? Или, может быть, последнее прощание с любовником».

В июле 1949 года местный житель принес экземпляр The Rubáiyát , который он нашел брошенным в багажник своей машины примерно во время смерти Сомертонского человека. Вырванный фрагмент, найденный в кармане Сомертонского человека, идеально совпал с пробелом на последней странице выброшенной копии. Интересно, что в книге было несколько рукописных аннотаций, в том числе предполагаемый код и номер телефона медсестры Джесси «Джо» Томсон, которая жила рядом с местом, где было обнаружено тело.

По словам сержанта-детектива Лайонела Лина, когда Томсон представили посмертную маску человека из Сомертона, она выглядела «полностью ошеломленной до такой степени, что казалось, что она вот-вот потеряет сознание». Тем не менее, она отрицала, что знала этого человека, и власти не давили на нее по этому поводу. Оттуда тропа остыла.

Непреходящая тайна Сомертонского Человека

В течение следующих 70 или около того лет в дискуссиях о Сомертонском Человеке доминировали предположения и все более диковинные теории. Некоторые наблюдатели ссылались на «код», найденный на его копии Rubáiyát , а также явные попытки скрыть его личность как свидетельство того, что он был русским шпионом. (Эксперты по криптографии утверждают, что строка букв на самом деле не представляет собой код; Эбботт, со своей стороны, сказал ABC, что они, вероятно, представляют собой имена лошадей, на которых Уэбб делал ставку. )

Другие утверждали, что человек из Сомертона был бывшим профессионалом. танцор балета, опираясь на комментарий коронера о том, что его икроножные мышцы были «высокими и хорошо развитыми, как у женщин», и на предположение, что «он имел привычку носить остроносые туфли на высоких каблуках».

Похороны Сомертонского человека 14 июня 1949 г. Общественное достояние через Wikimedia Commons

Возможно, самая убедительная теория была связана с сыном Томсона Робином, чьи отличительные уши и зубы очень напоминали человека из Сомертона. Родившийся в 1946 году, Робин сделал карьеру танцора в Австралийской балетной труппе. В беседе с Беном Чеширом и Сьюзен Ченери из ABC в 2019 году Эбботт предположил, что Робин был сыном человека из Сомертона; Он предположил, что Томсон не смогла опознать его, потому что она «была в отношениях с другим мужчиной, который впоследствии стал ее мужем, и она просто не хотела, чтобы этот призрак из прошлого вернулся и испортил ее нынешнее существование.

Эбботт, который исследовал Сомертонского человека более двух десятилетий, познакомился со своей нынешней женой Рэйчел Иган благодаря этому делу. Узнав, что Томсон умер в 2007 году, а Робин в 2009 году, он отправился на поиски живых потомков Робина. Иган была внучкой Робин. В детстве ее усыновили, и она выросла в Новой Зеландии, не подозревая о своей потенциальной связи с нераскрытым делом. Через день после знакомства Эббот и Иган решили пожениться.

«Люди говорили, что, возможно, Дерек женился на мне из-за моей ДНК», — пошутил Иган в интервью ABC в 2019 году.. — И я думаю, что в этом есть доля правды.

Власти Аделаиды эксгумировали тело человека из Сомертона в мае прошлого года и в настоящее время проводят генетическое тестирование останков. (ДНК, изученная Эбботтом и Фитцпатриком, была получена из посмертной маски Сомертонского человека, а не из его тела, и была проанализирована в рамках отдельного параллельного расследования.) Официальные лица отказались комментировать новые результаты, вместо этого сообщив CNN, что ответят, «когда получены результаты тестирования».

Решено! Однако до сих пор нет изображения, чтобы сравнить мою реконструкцию.

Блестящая работа @derek_abbott60 и @Identifinders https://t.co/KrCkrZdYPg pic.twitter.com/vOllqL73g1

— Дэн Вошарт (@dvoshart) 26 июля 2022 г.

Вопреки первоначальным подозрениям Эбботта, новая ДНК исследование не показало никакой генетической связи между Иганом и Уэббом, окончательно доказав, что Робин не был сыном Уэбба.

«То, была ли какая-то социальная связь с матерью Робин, все еще находится на столе для расследования, — говорит Эбботт ABC, — но, возможно, это одна из тех вещей, о которых мы никогда не узнаем сейчас».

Помимо результатов ДНК, связывающих человека из Сомертона с Уэббом, Эбботт и Фитцпатрик нашли множество архивных доказательств, подтверждающих идентификацию. Родившийся в Футскрэе, пригороде Мельбурна, 16 ноября 1905 года, Уэбб был шестым ребенком в семье мужчины немецкого происхождения и австралийки, пишет Ребекка Опи из ABC. В октябре 1941 года он женился на Дороти Джин Робертсон, которая указана в свидетельстве о браке пары как 21-летний специалист по ногам. Уэбб был тогда 35-летним производителем инструментов.

Последнее упоминание Уэбба в исторических записях относится к апрелю 1947 года, когда он ушел от жены. В октябре 1951 года, через три года после смерти Сомертонского человека, Дороти разместила в газете Age объявление о том, что она начала бракоразводный процесс против Уэбба на основании дезертирства. К тому времени Дороти переехала из Мельбурна в Бьют, город в 89 милях к северо-востоку от Аделаиды.

«Возможно, что [Уэбб] пришел в такое состояние, чтобы попытаться найти ее», — сказал Эббот CNN. «Мы просто рисуем точки. Мы не можем с уверенностью сказать, что именно по этой причине он пришел, но это кажется логичным».

Записи показали, что Уэбб любил читать и писать стихи, а также делать ставки на скачках. У него была сестра, которая жила в Мельбурне и была замужем за человеком по имени Томас Кин — вероятно, Т. Кин, чье имя написано на одежде в чемодане Somerton Man. (Что касается американского происхождения одежды, Эбботт предполагает, что Кин купил одежду из секонд-хенда у солдата, дислоцированного в Австралии.) //t.co/c7KcGhtiuI

— ABC Adelaide (@abcadelaide) 2 августа 2022 г.

Эбботт и Фитцпатрик не смогли найти фотографию Уэбба, но Опи из ABC сообщает, что изображение брата Уэбба Роя, погибшего в качестве военнопленного в Малайе во время Вторая мировая война имеет «поразительное сходство» с человеком из Сомертона.

Остается много вопросов, связанных с этим делом: Почему Уэбб приехал в Сомертон-Бич? Что стало причиной его смерти? Он умер от самоубийства? Его убили? Какова была его связь с Томсоном? Исследователи надеются раскрыть эти и другие загадки с помощью архивных и генетических исследований.

«Некоторые ответы могут прийти скоро, на некоторые могут уйти годы, а на некоторые можно никогда не ответить», — говорит Эббот ABC.

Размышляя об опознании, Кэролин Билсбороу, режиссер, снявшая в 2018 году документальный фильм о Сомертонском человеке, рассказывает Guardian :

У нас были все эти грандиозные представления о том, что он русский, американец и европеец. Я был убежден, что он из Европы — может быть, переселенец после Второй мировой войны [который] был здесь один. Но узнать, что он австралиец, из Виктории, и что он умер, и никто явно не заметил, что он пропал, или никто не обратился в полицию за его исчезновением — я нахожу это особенно трагичным.

Рекомендуемые видео

Каковы лучшие двигатели для электромобилей в 2022 году – Rx Mechanic

Электромобили уникальны тем, что в них не используются те же двигатели, что и в бензиновых и дизельных автомобилях. Производители электромобилей включают компонент, известный как «электродвигатель», в полностью электрические автомобили, и этот компонент работает так же, как обычный двигатель в бензиновых автомобилях.

Однако двигатели электромобилей не проходят через процесс внутреннего сгорания, потому что они не используют топливо. Электромобили также не имеют компонентов, поддерживающих процесс внутреннего сгорания в автомобилях с бензиновым двигателем, например, топливных баков, топливных насосов и т. д.

Знание лучших двигателей для электромобилей поможет вам выбрать лучший электромобиль, когда вам нужно его купить. В следующем разделе представлены лучшие электродвигатели для электромобилей в автомобильной промышленности.

Лучшие двигатели для электромобилей

Электродвигатели играют жизненно важную роль в полностью электрических транспортных средствах. Точно так же, как двигатель внутреннего сгорания для бензинового автомобиля, электродвигатель для всех электромобилей. Определение лучших электродвигателей поможет вам сделать осознанный выбор, когда вам нужно заменить старый или неисправный электродвигатель. Некоторые из лучших электродвигателей включают в себя;

Серия двигателей постоянного тока (DC)

Двигатель постоянного тока (DC) представляет собой вращающийся электродвигатель, который помогает преобразовывать постоянный электрический ток в механическую энергию, полагаясь на силы, создаваемые магнитными полями. Следовательно, вы можете иногда называть их двигателями постоянного тока с постоянными магнитами.

Двигатели постоянного тока имеют высокий пусковой крутящий момент, что идеально подходит для автомобилей, которым требуется быстрое ускорение. Однако магниты в двигателях постоянного тока могут быть очень дорогими, а щетки требуют регулярной замены, что отпугивает владельцев электромобилей от их использования.

Бесщеточные двигатели постоянного тока (BLDC)

Бесщеточные двигатели постоянного тока (BLDC) не требуют регулярной замены щеток, поскольку они бесщеточные. Двигатель имеет обмотки на статоре, что позволяет легко рассеивать тепло.

Двигатели BLDC имеют меньшие размеры и малый вес. Несмотря на свои размеры, они очень эффективны с большим диапазоном скоростей.

Трехфазные асинхронные двигатели переменного тока (AC)

Трехфазные асинхронные двигатели переменного тока (AC) не требуют технического обслуживания и относительно дешевле, чем двигатели постоянного тока и бесконтактные двигатели постоянного тока.

Асинхронный двигатель переменного тока имеет высокий пусковой момент, что помогает гарантировать быстрое ускорение, и они отлично справляются с самыми сложными экологическими проблемами. Однако им нужен сложный инвертор и схема для управления скоростью.

Среди трех рассмотренных выше электродвигателей трехфазный асинхронный двигатель переменного тока кажется наиболее экономичным без ущерба для высокой производительности и эффективности.

Между тем, двигатели BLDC также не требуют регулярного обслуживания и замены щеток, как двигатель постоянного тока. Следовательно, он также относительно более экономичен, чем двигатели постоянного тока (DC).

Часто задаваемые вопросы

В: Какой двигатель лучше всего подходит для электромобилей?

Асинхронный двигатель переменного тока является лучшим двигателем для электромобилей. Асинхронный двигатель может выдерживать различные сложные условия окружающей среды и масштабироваться.

Помимо способности выдерживать тяжелые дорожные условия, асинхронные двигатели переменного тока относительно дешевы по сравнению с другими двигателями для электромобилей, независимо от их производительности и эффективности.

Большинство владельцев транспортных средств с двигателями постоянного тока заменяют свои двигатели асинхронными двигателями переменного тока из-за их производительности в самых сложных условиях окружающей среды и низкой стоимости. Если вам нужно заменить двигатель вашего электромобиля, подумайте о покупке асинхронного двигателя.

В: Какой самый мощный двигатель электромобиля?

Rimac Nivera — самый быстрый электромобиль с самым мощным двигателем, работающим от аккумуляторной батареи на 120 кВтч. Он использует 4 электродвигателя, по одному на каждое из четырех колес.

Каждый двигатель Nivera обеспечивает невероятную мощность 1,4 МВт, а мощность двигателя для быстрого ускорения и скорости достигает 1914 л.с.

Одна невероятная особенность двигателя Nivera заключается в том, что он может разогнаться до 60 миль в час из резервной точки за 1,85 секунды. Автомобиль, несомненно, оснащен одним из самых мощных электродвигателей и контроллеров.

Такой скорости никогда не было на рынке электромобилей. Если вы ищете одни из лучших электромобилей 2022 года, Nivera, безусловно, входит в список.

В: Кто производит лучшие электродвигатели?

В отрасли производства двигателей для электромобилей есть несколько ключевых игроков, и каждый из них предлагает продукты, которые поддерживают рыночную конкуренцию на высшем уровне.

В условиях жесткой конкуренции среди производителей электродвигателей одной из ведущих компаний, производящих лучшие электродвигатели, является Siemens.

Siemens была основана в 1847 году, уже более 150 лет. С тех пор компания производит одно из лучших средств автоматизации, диагностических систем и электродвигателей для производителей автомобилей.

Другими ключевыми производителями двигателей для электромобилей являются Toshiba, ABB, Nidec Motor, Rockwell Automation, Ametek, Regal Beloit, Johnson Electric и т. д.

В: Какие двигатели используются в электромобилях?

Двигатели, используемые в электромобилях; Асинхронный двигатель переменного тока, щеточный двигатель постоянного тока и BLDC (бесщеточный двигатель постоянного тока).

Электромобили, также известные как аккумуляторные электромобили, не работают с двигателями внутреннего сгорания, такими как бензиновые или дизельные автомобили. Они разработаны с электродвигателями, которые играют роль двигателя в автомобилях с бензиновым и дизельным топливом.

Электродвигатели автомобилей не выпускают выхлопные газы через выхлопные трубы, так как они не работают на топливе или дизельном топливе. У них также нет компонентов транспортных средств, работающих на топливе, таких как топливные баки, топливные насосы и т. д.

В: Какие электродвигатели использует Tesla?

Tesla использует двигатели переменного тока — асинхронные двигатели переменного тока в модели S. В то время как они разрабатывают модель 3 с двигателями постоянного тока с постоянными магнитами, известными как двигатели постоянного тока.

Tesla производит одни из лучших электромобилей на рынке электромобилей. Там вы можете быть уверены, что все компоненты, которые Tesla использует при создании своих электромобилей, являются мощными и надежными.

Асинхронные двигатели переменного тока и двигатели постоянного тока являются одними из самых мощных двигателей, используемых в большинстве электромобилей, включая электромобили Tesla.

В: В электромобилях используются двигатели постоянного или переменного тока?

Конечно, в электромобилях используются двигатели постоянного тока (DC) или переменного тока (AC). Электромобили с двигателем постоянного тока обычно работают от 96 до 192 вольт. Двигатели постоянного тока (DC) используются в производстве электрических вилочных погрузчиков.

Двигатели переменного тока (AC) и двигатели постоянного тока (DC) являются одними из лучших двигателей для электромобилей. Оба они говорят о высокой производительности, надежности, долговечности и эффективности.

Тем не менее, асинхронные двигатели переменного тока могут выдерживать самые сложные условия окружающей среды, и они относительно дешевле, чем двигатели постоянного тока.

В: Какой электромобиль имеет самый большой запас хода?

Запас хода, в котором может проехать электромобиль, прежде чем потребуется подзарядка аккумулятора, является решающим фактором, который большинство людей учитывает перед его покупкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *