Гидромеханический автомат: Робот? Вариатор? Гидромеханика? — какая АКП подойдет вам — журнал За рулем

Содержание

«Автомат» против «Вариатора» | X-Oil

По итогам 2018 года, каждый третий проданный автомобиль в РФ был оборудован автоматической коробкой передач. Удобства и преимущества такого типа трансмиссии невозможно отрицать, но необходимо различать виды автоматических КПП, которых несколько: традиционный гидромеханический автомат, вариатор и роботизированная трансмиссия. Последняя представляет из себя автоматизированную механическую коробку и, ввиду наличия собственных разновидностей и особенностей, заслуживает отдельного рассмотрения. Именно поэтому, сегодня мы остановимся на первых двух.

Классическая автоматическая трансмиссия

Традиционная автоматическая коробка передач (AT) серийно устанавливается на автомобили без малого 80 лет – первопроходцем стала трансмиссия «Hydramatic» от компании GeneralMotors, впервые установленная на Oldsmobileв 1940 году. Самые ранние «автоматы» были трехскоростными, с 1970-х получили распространение четырехступенчатые, а на данный момент большинство гидромеханических трансмиссий обладают шестью и более передачами.  

Название «гидромеханика» продиктовано самой конструкцией таких трансмиссий, две ее основных части представляют из себя гидротрансформатор и планетарную коробку передач. Гидротрансформатор состоит из трех основных компонентов: рабочего колеса (насоса), которое приводится в движение коленчатым валом двигателя, турбины, напрямую соединенной с трансмиссией, и реактора, который служит для увеличения крутящего момента в определенных режимах движения (например, при старте или подъеме в гору). Насос жёстко соединен с корпусом гидротрансформатора и при вращении коленвала он создаёт внутри гидроблока поток масла, который вращает реактор и турбину. Стоит отметить, что реактор вращается не всегда – когда он неподвижен, увеличивается скорость потока масла и момент на валу турбины существенно увеличивается. 

Несмотря на то, что гидротрансформатор способен увеличивать крутящий момент, делать это он может в довольно узком диапазоне. Поэтому, к гидротрансформатору подключают многоступенчатую коробку передач. Планетарная КПП устроена по образу и подобию механической трансмиссии, но с небольшими отличиями: 

— каждая передача имеет несколько степеней свободы, которые зависимы друг от друга примерно так же, как планеты в солнечной системе;

— если в «механике» за переключение передач отвечают синхронизаторы и блокирующие муфты, то в «автомате» это делают пакеты фрикционов – аналоги сцепления в МКПП. Под давлением масла, гидротолкатель воздействует на фрикцион. Давление создает масляный насос, а электроника распределяет его в соответствии с алгоритмом работы коробки между соответствующими пакетами фрикционов. 

Вопреки сравнительно сложной конструкции, автоматические коробки достаточно надежны и обеспечивают хороший баланс между комфортом и скоростью переключений. Гидтротрансформатор хорошо сглаживает момент переключения – небольшие рывки можно почувствовать только в «спортивном» режиме коробки, который есть у большинства современных автомобилей. Ресурс также на высоте – при должном уходе и регулярной замене жидкости, автоматические КПП спокойно «ходят» по 250-300 тысяч километров. Все эти факторы сделали традиционные АКПП самыми популярными автоматическими трансмиссиями в мире. Недостатков «автоматы» тоже, увы, не лишены: часть мощности силовой установки «съедает» гидротрансформатор, как следствие — повышенный расход топлива, дорогой ремонт, необходимость регулярной замены специальных масел (и их цена).

Вариаторная трансмиссия

Впрочем, в последние десятилетия огромное распространение получил сравнительной молодой конкурент традиционной гидромеханики – вариатор (CVT– continuouslyvariabletransmission, дословно – бесконечноступенчатая трансмиссия). Что же заставило такие компании какNissan, Subaru, Renault, Honda, Toyota перевести от 30% до 70% своего модельного ряда на такой тип трансмиссии?

Несмотря на то, что легковые автомобили с вариаторами появились сравнительно недавно, первое упоминание о похожей конструкции относится аж к записям Леонардо Да Винчи 1490 года. Без малого 500 лет идея о бесступенчатой трансмиссии оставалась на бумаге (если не считать не совсем удачные попытки применить ее на мотоциклах в самом начале 20 века), пока один из основателей компании DAF, Губерт Иосиф Ван Дорн не впервые применил вариатор для серийной малолитражки DAF600 и нескольких других моделей DAFна рубеже 50-х и 60-х годов. После того, как легковое отделение DAFбыло выкуплено компанией Volvo, вариаторы появились и в модельном ряду шведского производителя – например, модель Volvo340. Господин Ван Дорн же, тем временем, создает компанию VDT, основной задачей которой стала разработка и производство вариаторных трансмиссий. По настоящему массовым такой тип коробки передач стал только к концу 1980-х, когда VDTи FujiInd. объединились с целью совместного производства вариаторов для автомобилей SubaruJusty. Практически сразу коробки производства этого альянса начал активно использовать Nissan, еще позднее свою собственную разработку представила Honda.

Так что же отличает вариатор от традиционной автоматической коробки передач? Отсутствие этих самых передач! На первый взгляд, для водителя выглядит все точно так же: вариатор имеет те же режимы работы, что и любой современный «автомат», включая ручное переключение и спортрежим. Фундаментальное отличие состоит в техническом устройстве, которое мы рассмотрим на примере клиноременного агрегата как наиболее распространенного в современных автомобилях. Конструкция клиноременного вариатора довольно проста: два шкива, каждый из которых представляет из себя два конуса, направленных острыми концами навстречу друг другу, между шкивами зажат ремень. Ведущий шкив приводится от двигателя, ведомый же соединен с колесами. Принцип работы заключается в изменении радиуса огибания ремнем ведущего и ведомого шкива – таким меняется передаточное число. При старте с места, ремень на ведущем шкиве коробки работает по минимальному радиусу, а на ведомом – по максимальному. С ростом оборотов, радиус работы на ведущем начинает увеличиваться. Таким образом, вариатор всегда обеспечивает оптимальное передаточное число для текущего режима движения, что сулит лучшую топливную экономичность на фоне отменной динамики, а также великолепную плавность работы – переключений ведь нет! Казалось бы, перед нами идеальная трансмиссия, но не все так однозначно. 

Отсутствие переключений передач создает «троллейбусный» эффект от разгона – мотор «повисает» на оборотах крутящего момента, неприятно завывая на одной «ноте». Большинству автовладельцев такая особенность не нравилась и в последних поколениях вариаторы научили имитировать переключения, притом, плавность работы не пострадала. Бесступенчатые коробки не рассчитаны для использования с мощными моторами – сложно вспомнить автомобили мощнее 250 сил, оборудованные такой трансмиссией. Также, вариаторы «не любят»: буксовать, буксировать, агрессивную езду, бездорожье. Самый же значительный недостаток вариатора – сравнительно низкий ресурс. Редкая модель вариатора выдерживает 150 000 км без существенного ремонта, а специалистов по ремонту не так много ввиду новизны такого типа коробок в принципе (на территории РФ они получили распространение после успеха ряда моделей Nissan, таких как Quashqai, X-Trailи Teana). Впрочем, ремонт вариатора зачастую оказывается дешевле такового у автоматических коробок. Для обеспечения максимального срока службы агрегата не стоит пренебрегать регулярным обслуживанием и применением специальных жидкостей, предназначенных специально для конкретной модели автомобиля.  

Подводя итоги, можно уверенно заявить о том, что у каждого вида трансмиссий есть свои сильные и слабые стороны. Вариатор можно однозначно рекомендовать спокойному водителю для городской, асфальтовой эксплуатации. Во всех остальных случаях предпочтительнее классический «автомат». 

Гидромеханическая коробка автомат. Гидромеханическая трансмиссия

Неотъемлемыми элементами конструкции классического устройства автомобиля служат сцепление с КПП. Но меняющийся образ жизни диктует создание оптимального комфорта для водителей. Это ведет к изменению стандартных узлов автомашины. Их все чаще заменяет комбинированная гидромеханическая трансмиссия, в состав которой входит как механическая, так и гидравлическая трансмиссии. В устройствах этого типа передаточное число, крутящий момент меняются постепенно и плавно.

Роль трансмиссии в машине

Для транспортного средства трансмиссией является все, что создает подачу крутящего момента от двигателя к колесам, например, КПП со сцеплением, как это в классических автомобилях. Сегодня в машинах их сменяют на АККП, когда управление облегчается, сцепление не предусмотрено, а переключения производятся автоматически.

Выполнение этих процессов обеспечивает гидромеханическая коробка передач. Для понимания процесса надо знать о двух главных моментах, возникающих при управлении автомобилем:

  • При переключении скоростей трансмиссия отключается от двигателя;
  • После смены дорожных условий выполняется изменение величины крутящего момента.

Это происходит после того, как выжато сцепление и переключена скорость коробкой передач (в обычных машинах). В транспортных средствах с АКПП эти процессы в большинстве случаев производит гидромеханическая коробка передач.

Механизм гидромеханической коробки

В устройство АКПП, применяемом в легковых автомобилях, входят:

  1. Управляющие составляющие;
  2. Механическая коробка скоростей.


В современный автомат входит гидротрансформатор, выполняющий в автомобиле с КПП (подает вращающий момент) функции сцепления. Благодаря гидротрансформатору транспортное средство плавно трогается. Снижение динамических нагрузок в трансмиссии приводит к повышению долговечности двигателя, а также остальных механизмов трансмиссии. Уменьшение количества переключений передач уменьшает утомляемость водителя.

Применение гидротрансформатора значительно увеличивает проходимость автомобиля по песку и снегу. Он создает устойчивую силу тяги с очень маленькой скоростью вращения на ведущих колесах, чем увеличивается их сцепление с поверхностью дорожного покрытия. Получается, что использование автоматических трансмиссий рекомендуется на внедорожниках. Гидротрансформатор имеет достаточно несложное устройство и объединяет три колеса:

  • Двигатель с гидротрансформатором связывает насосное;
  • Обеспечивает связь с первичным валом турбинное;
  • Усиливает крутящий момент реакторное.

Турбины на 3/4 помещены в масло и защищены специальным корпусом. Рабочий процесс гидромеханического привода основывается на том, что вращающий момент направляется от двигателя к насосному колесу, к турбинному колесу подается поток масла. Оно раскручивает колесо, и усилие предается на вал коробки скоростей. Весь процесс циркуляции масла проходит по особой траектории: с внешней стороны насосного кольца направляется на турбинное, а далее назад через центр механизма идет к насосному.


Гидротрансформатор автоматически меняет крутящий момент по мере нагрузки, далее он передается к механической коробке, и передачи переключаются фрикционными устройствами. Гидравлический привод определяет достаточное передаточное число, изменяя напор жидкости для ее циркулирования между напорным диском и турбинным. Свою работу гидротрансформатор выполняет непосредственно с планетарной коробкой.

Планетарная коробка

В гидромеханической АКПП чаще применяется планетарный механизм. При его простейшем устройстве крутящий момент подается к солнечной шестерне. С нею постоянно сцеплены свободно вращающиеся шестерни-сателлиты. На них предусмотрено водило, связанное с валом.

Если коронная шестерня находится в заторможенном положении, то крутящий момент через водило направляется на ведомый вал. Если шестерня расторможена, тогда сателлиты подают на нее крутящий момент. Ведомый вал при этом неподвижен.

Достоинства и недостатки автоматической коробки

Плюсы АКПП:

  1. Отсутствие переключения передач вручную;
  2. Осуществление равномерной подачи мощности.

Автомобили автоматическим переключением скоростей отличаются особой плавностью хода. Когда водителю нет необходимости переключаться вручную, то облегчается процесс вождения транспортного средства.
Недостатками считается более сложная конструкция трансмиссий и их большая масса. К недостаткам относится более низкий КПД, снижающий топливную экономичность автомашины.
Это простейший вариант гидромеханической трансмиссии, а сегодня на легковые автомобили устанавливаются более совершенные модели.

Несмотря на растущую популярность автомобилей с автоматической коробкой передач, классическая механика по-прежнему в почете у многих водителей. Она надежнее, чем АКПП. Но при эксплуатации водитель постоянно вынужден работать с педалью сцепления. Это доставляет некие неудобства, особенно в пробке. Так появилась гидромеханическая коробка передач. Принцип работы ее и устройство рассмотрим в нашей сегодняшней статье.

Характеристика

Те водители, которые не хотят работать со сцеплением, отдают предпочтение именно этой трансмиссии. Гидромеханическая коробка передач выполняет сразу несколько функций. Она совмещает в себе сцепление и классическую коробку. Переключение передач здесь производится автоматически либо полуавтоматически. Таким же образом устроена и гидромеханическая коробка передач погрузчика. Во время движения водитель не задействует педаль-сцепление. Все, что нужно — это акселератор и тормоз.

О конструкции

Устройство гидромеханической коробки передач предполагает наличие гидравлического трансформатора. Данный элемент, в зависимости от конструктивных особенностей, может быть двух-, трех- и многовальным. Сейчас производителями применяется планетарная автоматическая гидромеханическая коробка передач.

Как работает вальная КПП

На грузовых автомобилях и крупных автобусах чаще всего используется многовальная трансмиссия. Для того чтобы переключить передачу, здесь используются многодисковые муфты. Для их работы необходима смазка. Масло гидромеханической коробки передач значительно отличается по консистенции от «механики». В последнем случае оно более густое. Для того чтобы включить первую и заднюю скорость на гидромеханике, используются Такая конструкция позволяет максимально плавно передавать крутящий момент от маховика на колеса.

Планетарные

Сейчас это более распространенная гидромеханическая коробка передач.

Ее стали использовать благодаря ее компактным размерам и легкому весу. Еще одно преимущество планетарной трансмиссии — это большой срок службы и отсутствие шумов при работе. Но есть у такой коробки и недостатки. Из-за конструктивных особенностей такая трансмиссия более дорогая в производстве. Также она имеет низкий коэффициент полезного действия.

Как работает планетарная КПП

Ее алгоритм работы предельно прост. Переключение скоростей на планетарной гидромеханической трансмиссии производится при помощи Также для сглаживания ударов при переключении на пониженную, применяют специальную тормозную ленту. Именно при работе «тормоза» снижается сила передачи крутящего момента. Но при этом переключение скоростей более плавное, нежели у вальных аналогов.

В основе планетарной трансмиссии лежит гидравлический трансформатор. Данный элемент расположен между двигателем и КПП. ГДФ состоит из нескольких составляющих:

  • Колесо редуктора.
  • Насос.
  • Турбина.

В народе данный элемент называют «бубликом» из-за его характерной формы.

Когда двигатель работает, крыльчатка насоса вращается вместе с маховиком. Смазка проникает внутрь насоса и дальше под воздействием центробежной силы начинает вращать турбину. Масло из последнего элемента проникает в реактор, который выполняет функцию сглаживания ударов и толчков, а также передает крутящий момент. Циркуляция масла осуществляется по замкнутому кругу. Мощность автомобиля возрастает при вращении турбинного колеса. Максимальный крутящий момент передается при движении машины с места. При этом реактор находится в неподвижном состоянии — его держит муфта. Когда автомобиль набирает скорость, обороты турбины и насоса увеличиваются. Муфта расклинивается и реактор вращается с нарастающей скоростью. Когда обороты последнего элемента будут максимальными, гидротрансформатор перейдет в состояние работы муфты. Так он будет вращаться с такой же скоростью, что и маховик.

Особенности конструкции планетарной КПП

Планетарная гидромеханическая коробка передач состоит из ведущего вала, на котором находится сочлененная шестерня. Также здесь имеются сателлиты, вращающиеся на отдельных осях. Данные элементы вводятся в зацепление с внутренними зубьями коробки и коронной шестерней. Передача крутящего момента осуществляется благодаря действию Она затормаживает коронную шестерню. По мере разгона автомобиля, их обороты растут. Задействуется ведомый вал, который воспринимает передачу крутящего момента от ведущего.

Как ГТФ устанавливает нужное передаточное число? Это действие производится автоматически. Когда скорость вращения колеса автомобиля растет, возрастает напор масла, который идет от насоса в турбину. Таким образом, крутящий момент на последней увеличивается. Соответственно, обороты колеса и скорость движения машины тоже растут.

О КПД

Что касается коэффициента полезного действия, он на порядок ниже, чем на вальных КПП.

Максимальное его значение составляет от 0.82 до 0.95. Но при средних оборотах двигателя, данный коэффициент не превышает отметки в 0.75. Эта цифра растет с увеличением нагрузки на гидротрансформатор.

Обслуживание и ремонт гидромеханической коробки передач

При эксплуатации данной трансмиссии, необходимо следить за уровнем масла. Данная жидкость здесь является рабочей. Именно масло задействует турбины для передачи крутящего момента. На механических же коробках оно просто смазывает трущиеся шестерни. Производители рекомендуют производить замену масла на гидромеханических коробках каждые 60 тысяч километров. Стоит отметить, что в конструкции такой КПП имеется свой фильтр. Он тоже меняется при достижении данного срока. Эксплуатация на низком уровне масла грозит пробуксовкой и перегревом трансмиссии.

Что касается ремонта, чаще всего выходит из строя гидравлический трансформатор. Признак неисправности — невозможность включения одной из передач, увеличенное время «срабатывания» нужной скорости. Также в этом случае разбирается и чистится сетка-маслозаборник и меняется клапан золотникового типа. Если имеются течи, необходимо проверить и состояние уплотнительных элементов. Во время эксплуатации на фильтре образуется металлическая стружка. Она забивает механизм и уровень давления масла падает. При повышенных нагрузках ресурс данного очистительного элемента снижается. В таком случае его рекомендуют менять раз в 40 тысяч километров.

Как продлить ресурс

Чтобы увеличить срок эксплуатации гидромеханической коробки, необходимо следить за уровнем масла. При его недостаточном количестве возникает перегрев коробки. Рабочая температура не должна превышать 90 градусов. Современные автомобили оснащаются Его загорелась контрольная лампа, не стоит игнорировать ее. В дальнейшем это может спровоцировать поломку гидротрансформатора.

Также не следует переключать передачи без выжима педали тормоза. Коробка примет на себя весь удар, особенно если переключиться с первой на заднюю без предварительного оттормаживания. На ходу, если это затяжной спуск, не рекомендуется включать «нейтралку». Это также существенно снижает ресурс гидравлического трансформатора и рабочих муфт. В остальном же необходимо придерживаться регламента замены масла и фильтров. Срок эксплуатации данной КПП составляет порядка 350 тысяч километров.

Заключение

Итак, мы выяснили, что собой представляет гидромеханическая коробка передач. Как видите, при должном обслуживании она будет такой же надежной, как механическая. При этом водителю не придется постоянно выжимать сцепление.

Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП. Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач;
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач . Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.

Об устройстве гидромеханической коробки

Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:

  1. гидротрансформатор;
  2. управляющие механизмы;

Про гидротрансформатор

Основой гидромеханического автомата является гидротрансформатор. Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.

Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:

  • насосное, осуществляющее связь между двигателем и гидротрансформатором;
  • турбинное, выполняющее связь с валом (первичным) коробки передач;
  • реакторное, предназначенное для усиления крутящего момента.

Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач.

Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.

Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора.

Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.

Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет. Это особенно полезно при начале движения, когда выполняется гидромеханическая передача мощности от двигателя, работающего на холостом ходу, к неподвижной трансмиссии.

Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками.

Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.

Про планетарную коробку

В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.


В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач;
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.

По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.

Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.



Гидромеханическая передача является комбинированной, в которой наряду с гидротрансформатором применяется ступенчатая коробка передач. Обычно такую коробку передач сокращенно называют ГМП или ГМКП.

Гидротрансформатор, как и гидромуфта был изобретен немецким профессором Германом Феттингером в начале прошлого века. Прежде чем найти применение на автомобилях, эти гидродинамические передачи использовались в судостроении.

На автомобилях ГМП впервые появилась в США — в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile . В настоящее время в США гиромеханическими коробками передач оснащаются почти 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей.
В Европе массовое применение гидромеханических коробок передач началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz , Opel , BMW .

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро¬трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и вальные ступенчатые коробки передач с автоматическим управлением.

Устройство и работа гидротрансформатора, а также его отличие от гидромуфты подробнее рассмотрено .

В некоторых случаях гидротрансформатор устанавливается дополнительно к стандартному фрикционному сцеплению и ступенчатой коробке передач, при этом переключение передач происходит ручным способом.
В такой конструкции достаточно однодискового сцепления, так как оно служит только для отключения первичного вала коробки передач от турбинного колеса трансформатора при переключении передач, а плавность увеличения крутящего момента обеспечивает гидротрансформатор.
Достоинством такой передачи является относительная простота конструкции и управления по сравнению с автоматизированной передачей. Однако наиболее часто гидротрансформатор используется в сочетании двух- или трехступенчатой коробкой передач без стандартного фрикционного сцепления.
Коробки передач выполняются вальными или чаще планетарными. Управление переключением передач автоматическое или полуавтоматическое.

Двухступенчатая вальная коробка передач

Гидротрансформатор в сочетании с двухступенчатой вальной коробкой передач применяется в гидромеханической передаче автобуса ЛиАЗ-677М (рис. 1 ).
Она представляет собой редуктор с расположенными внутри него валами: первичным 3 , вторичным 11 и промежуточным 15 . Первичный вал связан с турбиной гидротрансформатора, а вторичный вал – с карданной передачей трансмиссии. Первая (понижающая) передача имеет передаточное число 1,79 , а вторая передача – прямая, т. е. ее передаточное число равно единице.

Особенностью такой коробки передач является то, что для включения передач наряду с зубчатой муфтой используются многодисковые муфты (фрикционы), работающие в масле.
Ведущие диски фрикционов – стальные, а ведомые – металлокерамические. Они устанавливаются на внутренних или наружных шлицах и имеют возможность незначительного перемещения в осевом направлении. В разъединенном положении пакет дисков удерживают пружины, сжимание дисков происходит от воздействия масла, подаваемого в цилиндр включения фрикциона.

При включении первой передачи срабатывает фрикцион 5 , который блокирует зубчатое колесо 4 с первичным валом 3 . Муфта 8 при этом смещается влево и блокирует зубчатое колесо 7 с вторичным валом 11 .
Крутящий момент передается через зубчатое колесо 4 первичного вала, зубчатые колеса 16 и 14 промежуточного вала и зубчатое колесо 7 на вторичный вал 11 . При включении второй передачи срабатывает фрикцион 6 , который блокирует первичный вал 3 с вторичным валом 11 . Муфта 8 устанавливается в нейтральное положение.

Для движения задним ходом муфта 8 перемещается в правое положение и блокирует зубчатое колесо 10 с вторичным валом 11 , затем включается фрикцион 5 . Крутящий момент передается через зубчатые колеса 4, 16, 13, 12, 10 на вторичный вал 11 коробки передач.

При включении фрикциона 2 происходит блокировка гидротрансформатора, когда турбинное и насосное колеса жестко соединяются друг с другом, и он переходит в режим гидромуфты.



Трехступенчатая планетарная коробка передач

В гидромеханических передачах наибольшее применение нашли планетарные коробки передач. Они обладают компактностью, пониженным уровнем шума при работе и длительным сроком службы. Переключение передач в них происходит практически без разрыва потока мощности.

Основным звеном планетарной коробки передач является планетарный ряд (рис. 2 ), состоящий из эпициклического (коронного) зубчатого колеса 1 , солнечного зубчатого колеса 2 , водила 3 и сателлитов 4 .
Оси сателлитов установлены на водиле и вращаются вместе с ним, т. е. они подвижны. В зависимости от того, какой элемент планетарного ряда является ведущим, а какой заторможен, происходит изменение передаточных чисел планетарного ряда.

Двухступенчатые коробки передач имеют один планетарный ряд. Многоступенчатые могут иметь два и более планетарных рядов, которые связаны друг с другом.
Торможение элементов планетарных рядов при переключении передач производится фрикционными муфтами (фрикционами) или ленточными тормозными механизмами.

Конструкция гидромеханической передачи легкового автомобиля, в которой гидротрансформатор сочетается с трехступенчатой планетарной коробкой передач представлена на рис. 3 .

Гидротрансформатор 1 состоит из трех колес с лопастями. Вал 2 турбинного колеса является ведущим валом коробки передач. Ведомый вал 12 коробки передач расположен соосно с ведущим валом. Коробка передач включает два одинаковых планетарных ряда 7 и 8 , три многодисковых фрикциона 5, 6, 9 и два ленточных тормозных механизма 4, 10 .

Переключение передач осуществляется включением фрикционов и тормозных механизмов в различных комбинациях (рис. 4 ).
В нейтральном положении включен тормозной механизм 10 (рис. 3 ) и сблокирована муфта 13 свободного хода. Ведомый вал 12 не вращается.

На первой передаче включены фрикцион 6 и тормозной механизм 10 , а также включена муфта 13 свободного хода. Эпициклическое зубчатое колесо планетарного ряда 8 вращается с угловой скоростью ведущего вала 2 , а солнечное зубчатое колесо заторможено, водило вращает эпициклическое зубчатое колесо планетарного ряда 7 , в котором солнечное зубчатое колесо также заторможено. Ведомым является водило этого ряда, выполненное заодно с ведомым валом 12 . Муфта свободного хода 13 включена.

На второй передаче включены фрикцион 5 и тормозной механизм 10 . Эпициклическое зубчатое колесо планетарного ряда 8 вращается свободно, а планетарного ряда 7 – с угловой скоростью ведущего вала 2 .
Так как солнечное зубчатое колесо заторможено, то вращается водило и ведомый вал 12 . Муфта свободного хода 13 включена.

На третьей передаче включены фрикционы 5 и 6 , а также тормозной механизм 10 . Эпициклическое зубчатое колесо и водило планетарного ряда 8 ведущие. С такой же угловой скоростью вращаются эпициклические зубчатые колеса и водило планетарного ряда 7 , т. е. ведущий и ведомый валы вращаются с одинаковой частотой.

На передаче заднего хода включен фрикцион 6 и тормозной механизм 4 . Водило планетарного ряда 8 заторможено, а эпициклическое зубчатое колесо ведущее.
Солнечное зубчатое колесо вращается в обратном направлении, в этом же направлении вращается солнечное зубчатое колесо планетарного ряда 7 . Так как эпициклическое зубчатое колесо планетарного ряда 7 заторможено, ведомым является водило, связанное с ведомым валом 12 .
Муфта свободного хода 13 заблокирована.



С появлением роботизированных коробок передач с двумя сцеплениями начало казаться, что дни гидромеханической АКПП сочтены — более простые, дешевые и эффективные «роботы» должны были вытеснить классический автомат. Но время шло, а автоматы никуда не исчезали – напротив, за последние годы они стали гораздо совершеннее.

Текст: Олег Карелов.

Основа гидромеханического автомата (впрочем, слегка пошатнувшаяся в последнее время, о чем чуть ниже) – это гидротрансформатор. Аналогично сцеплению в механической трансмиссии роль гидротрансформатора – передача крутящего момента от двигателя к коробке передач с возможностью проскальзывания, дабы автомобиль мог плавно тронуться с места. Однако на этом сходство с фрикционным сцеплением заканчивается – внутри гидротрансформатор устроен совсем иначе.

Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.

Принцип его работы легко проиллюстрировать на следующем примере. Представим два вентилятора, установленные друг напротив друга. Если мы включаем один из них, то создаваемый им воздушный поток приводит в движения и второй вентилятор. Эта же идея реализована в гидротрансформаторе. В нем есть насосное колесо, вращаемое двигателем и создающее поток масла, и турбинное, связанное с валом коробки и воспринимающее давление потока. Разница с вентиляторами лишь в том, что насосное колесо осуществляет забор масла не с обратной стороны, а с передней центральной части, то есть является центробежным насосом. Отброшенное им вперед по внешнему контуру масло попадает на лопатки турбинного колеса, перенаправляется к центру и возвращается обратно. То есть циркуляция жидкости происходит фактически в замкнутом объеме между двух колес, что позволяет максимально их сблизить, уменьшив рассеяние потока и увеличив эффективность передачи крутящего момента.

Но самые интересные свойства гидротрансформатора связаны с наличием третьего колеса – реактора. Служит оно для воздействия на возвращающийся к насосному колесу поток и, соответственно, располагается в середине гидротрансформатора. Закреплено оно неподвижно, а потому попадающий на его лопатки поток создает направленную в обратную сторону силу реакции, которая дополнительно подкручивает турбинное колесо.

Получается, что гидротрансформатор увеличивает крутящий момент на выходе! И чем больше разница в скорости вращения турбинного и насосного колеса, тем больше эта сила реакции потока, и тем значительнее увеличивается момент – в пределе он может умножаться в три раза. То, что нужно для уверенного старта с места, когда двигатель работает на оборотах холостого хода, а вал трансмиссии неподвижен.

Эти свойства гидротрансформатора – увеличивать крутящий момент и допускать долгое проскальзывание – вообще говоря, позволяют и вовсе обойтись без коробки передач. Например, BMW 750i 1986-го модельного года спокойно трогался с третьей передачи и на ней же достигал 250 км/ч! Но, конечно, такое под силу лишь избранным, да и то ценой ухудшения динамики и расхода топлива. Всем же остальным обойтись без механизма переключения трудновато.

В гидромеханическом автомате для изменения передаточного числа используются планетарные передачи. Это принципиально отличает его от механической трансмиссии с параллельными валами.

В чем же преимущества такой конструкции? С планетарной передачей проще организовать автоматическую смену скоростей – для этого нужно лишь замыкать между собой отдельные её шестерни. Гораздо компактнее и сама передача – теоретически эта сборка из всего лишь пяти шестерен позволяет реализовать пять скоростей: 4 передних и 1 заднюю. И хотя на практике, вследствие конструктивных ограничений, приходится применять большее количество планетарный рядов, тем не менее, этот узел все равно остается очень небольшим.

Как он работает? В планетарной передаче есть три элемента: первый – центральная солнечная шестерня; второй — вращающиеся вокруг неё сателлиты – шестерни, чьи оси жестко связаны друг с другом; и третий — большое эпициклическое зубчатое колесо, обхватывающее сателлиты. Соответственно, процесс переключения здесь осуществляется установлением жесткой связи между двумя элементами из этой тройки или их блокировкой на корпус. Например, жесткое соединение солнечной шестерни и осей сателлитов дает прямую передачу – эпицикл уже не может проворовываться относительно них, и вся планетарная передача вращается как единое целое.

Если же затормозить на корпус коробки оси сателлитов, то солнечная и эпициклическая шестерни начнут вращаться в разные сторону – получаем заднюю передач. И так далее.

Все эти торможения и блокировки осуществляются с помощью фрикционов и тормозных лент, а управляет ими сложная гидросистема, включающая в себя множество каналов, клапанов, гидроаккумуляторов и, конечно, насос, создающий давление масла. Эта гидравлика первоначально и реализовывала всю управляющую логику, причем опираясь всего на два параметра: нагрузку на двигатель и скорость автомобиля.

С распространением электроники в конце 80-ых годов автомат стал точнее оценивать условия движения. Например, он уже не будет нагружать слишком ранними переключениями еще непрогретый двигатель, а при смене передач учтет температуру собственного масла, то есть сделает поправку на его вязкость. Это особенно важно для обеспечения плавности переключения. Дело в том, что избежать провалов тяги позволяет так называемое перекрытие передач: включение следующей скорости, еще до выключения текущей передачи. Такой процесс требует точности: слишком малое перекрытие ведет к провалу тяги, а слишком большое – и вовсе резко затормозит автомобиль. Разумеется, электроника тут позволяет гораздо аккуратнее выдерживать необходимые моменты переключений. Увеличивает она и ресурс трансмиссии, корректируя работу в зависимости от степени износа. Но главное – она помогает улучшить экономичность.

Изначально гидромеханический автомат – далеко не самый эффективный способ передачи крутящего момента. Основные потери в нем связаны с гидротрансформатором – даже в установившемся режиме движения насосное и турбинное колесо проскальзывают относительно друг друга. Тратится энергия и на удерживание фрикционов и тормозных лент – масленый насос поддерживает давление в десятки атмосфер. В результате КПД автомата не превышает 85%, в то время как КПД механической коробки близок к 98%!

Чтобы улучшить этот показатель стали применять блокировку гидротрансформатора – на повышенной передаче, при достижении определенной скорости, встроенный фрикцион, похожий на обычное сцепление, жестко связывает турбинное и насосное колесо. Кстати, этот момент легко отследить по тахометру – обороты мотора слегка падают, будто включилась еще одна передача. В таком режиме КПД уже поднимается до 94%.

С развитием электронного управления блокировка гидротрансформатора стала производиться на всех передачах – фрикцион разжат лишь в момент старта и переключения скорости. При этом, правда, иногда страдает плавность переключений. Как показывает опыт наших замеров, многие современные автоматы уступают в этом плане старым моделям. Особенно это заметно на 6-ступенчатых моделях ZF – на их графике продольного ускорения отчетливо видно, как за одним провалом тяги в момент переключения следует второй рывок, вызванный уже блокировкой гидротрансформатора.

Некоторые пошли еще дальше. Инженеры Mercedes и вовсе отказались от гидротрансформатора – вместо него они стали применять сцепление. Правда, не сухое, как в механических трансмиссиях, а мокрое, выдерживающее более длительную пробуксовку. Замыкается оно в момент старта, и, соответственно, все переключения передач происходят при наличии жесткой связи коробки с двигателем.

Это существенно поднимает требования к синхронизации процессов включения-выключения скоростей, но КПД возрастает до 97%, то есть сравнивается с показателями роботизированных механических коробок. Постоянное жесткое соединение с валом мотора означает и более линейные отклики на педаль газа, что востребовано в мощных спортивных моделях AMG.

Последняя же тенденция, которую уже нельзя не заметить – это рост числа передач. В середине прошлого десятилетия, когда появились 7-скоростные «роботы» с двумя сцеплениями, гидромеханический автомат явно отставал – 6-ступенчатые модели только начинали появляться. Но затем быстро последовали семи-, восьми скоростные, на подходе уже и 10-скоростные коробки. Разумеется, столь сложные агрегаты уже не отличаются надежностью и ресурсом – детали приходится сильно уменьшать в размерах, но зато по экономичности и разгонной динамике они обыгрывают механическую трансмиссию. Уступая последним в КПД, многоскоростные автоматы позволяют точнее удерживать мотор в оптимальном диапазоне оборотов, что и определяет, в конечном счете, динамические свойства автомобиля.

Многоступенчатость позволяет без ущерба для плавности ускорить и процесс смены передач, ведь перепад оборотов двигателя становится меньше. Впрочем, и раньше у автоматов не было проблем с быстродействием: например, 4-скоростная коробка ZF, устанавливаемая на BMW конца 80-ых годов, перещелкивала передачи за 0,3 с – среди протестированных нами автомобилей подобным быстродействием обладал только «робот» Porsche 911! Обычные же преселективные трансмиссии работают примерно в два раза медленнее.

Таким образом, у современного автомата практически нет слабых мест. Сохранив свои главные качества – плавность переключений и способность долгое время работать в режиме пробуксовки при движении на малых скоростях, он стал гораздо эффективнее и интеллектуальнее. Правда, пока все эти достижения доступны лишь на дорогих автомобилях – сложные, многоступенчатые автоматы, разумеется, и стоят немало, а потому сегмент недорогих моделей все-таки постепенно переходит на роботизированные коробки – в условиях борьбы за экономичность старые 4-, 5-скоростные автоматы уступают позиции.

Но это лишь локальное поражение – в будущем гидромеханических коробок сомневаться не приходится.

26.11.2011


Вопросы? Комментарии? (5)

как работает автоматическая КПП — Auto-Self.ru

Начнем с того, что в США автомобили, оснащенные автоматической трансмиссией, появились в 1940-х годах. Как известно, наличие автоматической коробки передач существенно облегчает процесс эксплуатации транспортного средства, также снижаются нагрузки на водителя, повышается безопасность и т.д. 

Отметим, что под «классической» автоматической коробкой следует понимать гидромеханическую коробку передач (гидромеханический автомат). Далее мы рассмотрим устройство коробки — автомат, конструктивные особенности, а также преимущества и недостатки КПП данного типа.

Содержание

  • Автомобиль с автоматической трансмиссией: преимущества и недостатки
  • Коробка автомат: устройство
  • Принцип работы и конструкция гидротрансформатора
  • Из чего состоит АКПП: как устроена и работает механическая часть коробки
  • Управление АКПП и принцип работы автоматической коробки

Автомобиль с автоматической трансмиссией: преимущества и недостатки

Начнем с плюсов. Установка автоматической трансмиссии  позволяет  водителю во время езды не использовать рычаг переключения передач, также не задействована нога для постоянного выжима сцепления при переходе на повышенную или пониженную ступень.

Другими словами, изменение скорости  происходит автоматически, то есть сама коробка учитывает нагрузку на ДВС, скорость движения ТС, положение педали газа, желание самого водителя резко ускориться или двигаться плавно и т.д.

В результате комфорт вождения автомобиля с АКПП значительно возрастает, передачи переключаются автоматически, мягко и плавно, двигатель, элементы трансмиссии и ходовой части защищены от сильных нагрузок. Более того, многие коробки автомат предусматривают возможность не только автоматического, но и ручного переключения передач.

Что касается минусов, они также имеются. Прежде всего, конструктивно АКПП является сложным и дорогостоящим агрегатом, отличается сниженной ремонтопригодностью и ресурсом по сравнению с механическими (ручными) КПП. Автомобиль с  данным типом КПП  расходует больше топлива, автоматическая коробка отдает меньше крутящего момента на колеса, так как КПД коробки автомат несколько снижен.   

Также наличие в автомобиле автоматической трансмиссии накладывает на водителя определенные ограничения. Например, коробку автомат нужно прогревать перед поездкой, желательно избегать постоянных резких стартов и слишком интенсивного торможения.

На машине с автоматической коробкой нельзя буксовать, не допускается буксировка автомобиля с коробкой автомат на высокой скорости на большие расстояния без вывешивания ведущих колес и т.д. Еще добавим, что такую коробку сложнее и дороже обслуживать.    

Коробка автомат: устройство

Итак, даже с учетом определенных недостатков, автоматическая гидромеханическая   коробка по ряду причин долгое время оставалась наиболее распространенным решением для изменения крутящего момента среди других типов автоматических трансмиссий.

Прежде всего, даже с учетом того, что ресурс и производительность таких коробок ниже, чем у «механики», гидромеханическая коробка передач достаточно надежна и долговечна. Теперь давайте рассмотрим устройство АКПП.

Автоматическая коробка передач состоит из следующих базовых элементов:

Управление коробкой автомат производится при помощи селектора. Как правило, АКПП имеют следующие основные режимы:

  • Режим Р – парковка;
  • Режим R – движение задним ходом;
  • Режим N –нейтральная передача;
  • Режим D –езда вперед с автоматическим переключением передач;

Также могут иметься и другие режимы. Например, режим L2 означает, что включаться будет только первая и вторая передачи при движении вперед, режим L1 указывает на включение только первой передачи, режим S следует понимать как спортивный, могут иметься различные «зимние» режимы и т. д.

Дополнительно может быть реализована имитация ручного управления АКПП, то есть водитель может повышать или понижать передачи самостоятельно (вручную). Еще добавим, что коробка автомат также зачастую имеет режим kick-down (кик-даун), который позволяет автомобилю резко разгоняться при такой необходимости.

Срабатывает режим «кик-даун» в том случае, когда водитель резко нажимает на газ, после чего коробка быстро переходит на пониженные передачи, тем самым позволяя раскрутить двигатель до высоких оборотов.

Как видно, коробка — автомат фактически состоит из гидротрансформатора, механической коробки передач, а также системы управления, что в совокупности и образует гидромеханическую коробку. Давайте рассмотрим ее устройство.

Принцип работы и конструкция гидротрансформатора

Гидротрансформатор необходим для того, чтобы передавать и изменять крутящий момент от двигателя на коробку. Также гидротрансформатор уменьшает вибрации. Устройство гидротрансформатора предполагает наличие насосного, турбинного и реакторного колеса.

Также в гидротрансформаторе имеется блокировочная муфта и муфта свободного хода. Гидротрансформатор (ГДТ, часто в обиходе называется «бублик») является частью АКПП, однако имеет отдельный корпус из прочного материала, заполненный рабочей жидкостью.

Насосное колесо ГДТ присоединено к коленвалу двигателя. Турбинное колесо связано с самой коробкой передач. Между турбинным и насосным колесом также присутствует реакторное колесо, которое является неподвижным. Каждое из колес гидротрансформатора имеет лопасти, которые отличаются по своей форме. Между лопастями реализованы каналы, через которые проходит трансмиссионная жидкость (трансмиссионное масло, ATF, от  англ. Automatic Transmissions Fluid).

Блокировочная муфта необходима для блокировки гидротрансформатора в некоторых режимах работы. Обгонная муфта или муфта свободного хода отвечает за то, чтобы жестко закрепленное реакторное колесо получило возможность вращаться в противоположную сторону.

Теперь давайте рассмотрим, как работает гидротрансформатор. Его работа основана на замкнутом цикле и заключается в том, что от насосного колеса трансмиссионная жидкость подается на турбинное колесо. Затем поток  жидкости поступает к реакторному колесу.

Лопасти реактора сконструированы так, чтобы усиливать скорость потока жидкости АТФ. Затем ускоренный поток перенаправляется на насосное колесо, заставляя его вращаться с большей скоростью Результат — увеличение величины крутящего момента. Стоит добавить, что максимальный момент достигается при вращении гидротрансформатора  на самой малой скорости.

Когда раскручивается коленвал двигателя, происходит выравнивание угловых скоростей  насосного и турбинного колеса, при этом поток трансмиссионной жидкости изменяет направление. Затем происходит срабатывание муфты свободного хода, после чего начинает вращаться реакторное колесо. В этом случае гидротрансформатор переходит в режим гидромуфты, то есть происходит передача только крутящего момента.

Дальнейший набор скорости приводит к блокировке гидротрансформатора (блокировочная  муфта замкнута), в результате чего происходит прямая передача крутящего момента от мотора к коробке. При этом блокировка ГДТ происходит на разных передачах.

Следует отметить, что  в современных автоматических коробках передач реализован режим работы с проскальзыванием муфты блокировки гидротрансформатора. Такой режим исключает полную блокировку гидротрансформатора.

Данный  режим работы возможно реализовать в том случае, если условия соответствующие, то есть когда нагрузка и скорость подходят для его активации. Главной же задачей проскальзывания муфты становится более интенсивный разгон автомобиля, снижение расхода горючего, более мягкое и плавное включение передач.

Из чего состоит АКПП: как устроена и работает механическая часть коробки

Сама автоматическая коробка передач (АКПП), как и механическая, ступенчато изменяет крутящий момент при движении машины вперед, а также позволяет двигаться назад при включении задней передачи.

При этом в автоматических коробках обычно используется планетарный редуктор. Данное решение компактное, позволяет реализовать эффективную работу. Например, МКПП зачастую имеет два планетарных редуктора, которые соединены последовательно и работают совместно.

Объединение редукторов делает возможным получить необходимое число ступеней (скоростей) в коробке. Простые АКПП имеют четыре ступени (четырехступенчатый автомат), тогда как современные решения могут иметь шесть, семь, восемь, или даже девять  ступеней.

Планетарный редуктор включает в себя несколько последовательных планетарных передач. Такие передачи образуют планетарный ряд. Каждая из планетарных передач включает:

  • солнечную шестерню;
  • сателлиты;
  • коронную шестерню;
  • водило;

Возможность изменить крутящий момент и передать вращение становится доступной в том случае, когда происходит блокировка элементов планетарного ряда. Заблокирован может быть один или два элемента (солнечная или коронная шестерня, водило).

Если заблокирована коронная шестерня, тогда происходит увеличение передаточного числа. Если же солнечная шестерня неподвижна, тогда передаточное отношение будет уменьшено. Заблокированное водило означает, что происходит смена направления вращения.

За саму блокировку отвечают фрикционные муфты (фрикционы), а также тормоз. Муфты блокирует детали планетарного ряда между собой, тогда как тормоз удерживает нужные элементы редуктора благодаря соединению с корпусом КПП. В зависимости от конструкции той или иной АКПП, могут быть использованы ленточный или многодисковый тормоз.

Замыкание муфт и тормозов происходит благодаря гидроцилиндрам. Управление такими гидроцилиндрами реализовано из специального модуля (распределительный модуль).

Еще в общей конструкции автоматической коробки может присутствовать обгонная муфта, задачей которой становится удерживание водило, что позволяет предотвратить его вращение в противоположную сторону. Получаются, передачи в АКПП переключаются благодаря фрикционам и тормозам.

Управление АКПП и принцип работы автоматической коробки

Что касается принципов работы АКПП, коробка работает по заданному алгоритму включения и выключения фрикционов и тормозов. Система управления такими включениями и выключениями на современных коробках электронная,  то есть имеет селектор (рычаг), датчики и ЭБУ коробкой передач.

Блок управления автоматической коробкой передач интегрирован в ЭСУД и тесно связан с блоком управления двигателем. По аналогии с ЭБУ двигателем, блок управления АКПП также взаимодействует с различными датчиками, которые передают на него сигналы о частоте вращения КПП, температуре трансмиссионной жидкости, положении педали газа, режимах установки селектора и т.д.

ЭБУ коробкой передач производит обработку полученных сигналов, затем отправляет команды на исполнительные устройства в распределительном модуле. В результате коробка определяет, какую передачу включить в тех или иных условиях (повышенную или пониженную).

При этом нет четкого заданного алгоритма, то есть точка перехода на разные передачи «плавающая» и определяется самим ЭБУ коробкой. Такая особенность позволяет системе работать более гибко.

Гидроблок (он же гидравлический блок, гидроплита, распределительный модуль) фактически осуществляет управление трансмиссионной жидкостью ATF, отвечая за срабатывание фрикционов и тормозов в АКПП. Данный модуль имеет электромагнитные клапаны (соленоиды) и специальные распределители, которые соединены между собой узкими каналами.

Рекомендуем также прочитать статью о том, что делать, если появилась течь между двигателем и коробкой передач. Из этой статьи вы узнаете о причинах, по которым моторное масло из ДВС вытекает в месте соединения мотора и коробки, а также что делать в этом случае.

Соленоиды нужны для переключения передач, так как они регулируют давление рабочей жидкости в коробке. Работа данных клапанов контролируется и регулируется блоком управления АКПП. Распределители отвечают за выбор рабочих режимов и задействуются посредством рычага (селектора).

За циркуляцию гидравлической жидкости в автоматической коробке отвечает насос коробки. Насосы бывают шестеренчатыми и лопастными, их приводит в действие ступица гидротрансформатора. Важно понимать, что насос вместе с гидроплитой (гидроблоком) являются важнейшими деталями в конструкции гидравлической части коробки автомат.

С учетом того, что в процессе работы коробка имеет свойство нагреваться, АКПП зачастую имеет собственную систему охлаждения. При этом, в зависимости от конструкции, может присутствовать отдельный масляный радиатор коробки автомат, или же охладитель или теплообменник, который включается в общую систему охлаждения силового агрегата.

Поделитесь с друзьями в соц.сетях:

Гидромеханическое оборудование — Muhr en

Muhr HYDROCON

Что отличает хорошее гидромеханическое оборудование?
Безопасность. Качественный. Устойчивость.

Все это требует разумного планирования. Для нас интеллектуальное планирование означает симбиоз опыта и новейших знаний в области биоинженерии.

Будь то размеры, конструкция, привод, простота сборки или экологическая совместимость – «ноу-хау» за 50 лет и 2000 проектов Muhr Hydro являются основой для зрелых технологий и отлаженных процессов. Это создает доверие. И, в конце концов, не доверие ли определяет хорошую гидромеханическую технику?

Гидромеханическое оборудование HYDROCON – качество, которому можно доверять.

HYDROCON

Решетки/корзины для мусора

Ноу-хау для идеального потока.
Экран звучит просто, но на самом деле это настоящая наука. Кстати, это одна из причин нашего сотрудничества с самыми разными исследовательскими учреждениями.
Характеристики потока и колебаний, риск засорения, способность (само)очищаться, безвредность для рыбы — только этот перечень важных факторов проясняет назначение экрана в рамках всей системы.

В рамках нашего ассортимента HYDROCON мы поставляем сетки, точно соответствующие вашим целям. Будь то вертикальный, горизонтальный или изогнутый, с большим разнообразием профилей и покрытий, изготовленных из различных материалов. С подходящим расстоянием между стержнями и формой, для любого мыслимого контура всасывания, в любом монтажном положении.
Для оптимального расхода и максимальной рентабельности. Экраны, от которых вы можете получить прибыль.

HYDROCON

Запорные устройства

Водонепроницаемый — на него можно положиться.

Запорное устройство — всеобъемлющий термин. Как и наша линейка HYDROCON. Потому что они охватывают все многообразие этого термина:

Рулонные и раздвижные ворота в виде одиночных и двойных ворот, сегментные водосливы с откидными затворами, водосливы, запорные клапаны, бревенчатые ворота, аварийные ворота, запорные лаги, подъемные балки, алюминиевые затворы бревенчатые системы, системы водосливов и шлюзов и т. д. и т. д.

Помимо проектов нового строительства, запорные устройства HYDROCON также особенно хорошо подходят для реконструкции. Здесь мы уделяем особое внимание полной интеграции новой системы в существующую структуру. Таким образом, вы избавлены от дорогостоящих работ по реконструкции и можете сохранить существующую структуру. Просто шикарное качество.

HYDROCON

Сферические клапаны

Сферический клапан относится к основным предохранительным устройствам гидроэлектростанции.

Уже несколько десятков лет он должен закрываться — в любых возможных и невозможных условиях эксплуатации, абсолютно надежно и без компромиссов.

HYDROCON

Сферические клапаны

Muhr Сферические клапаны HYDROCON разрабатываются индивидуально для вашего предприятия и точно соответствуют преобладающим условиям эксплуатации.

Технические характеристики

  • Номинальный диаметр: DN 700-3000 мм
  • Номинальное давление воды: PN 20-125 бар
  • Исполнение корпуса: литой/сварной
  • Давление гидравлического масла: 63-250 бар
HYDROCON

Сферические клапаны

В зависимости от размера и давления воды шаровые клапаны должны противодействовать до 3000 тонн водные массы — силы, которые позволяют без компромиссов !

В зависимости от индивидуальных требований и типа турбины используются различные варианты привода :

  • Масло/масло — закрытие с помощью гидроцилиндров (управляемых или неуправляемых)
  • Масло/закрывающий груз — закрытие с помощью закрывающего груза
  • Масло/вода — закрытие давлением воды из затвора
HYDROCON

Сферические клапаны

Открытие и закрытие при каждом пуске/остановке или для остановки водяной турбины

Уплотнение для защиты от неравномерного запуска турбины в случае утечки через направляющий аппарат или входные патрубки

Временный поток регулирование в режиме турбины или насоса

Предохранительное устройство для осмотра и обслуживания турбины, как со стороны входа, так и со стороны выхода

HYDROCON

Шаровые клапаны

В случае падения давления масла в системе управления турбиной или в системе подачи

При выходе из строя электрического управления турбиной или питания электростанции

При механическом повреждении турбины, водовода, регулирующих клапанов или байпасных/нагнетательных линий

Минимум двукратного расхода воды

HYDROCON

Индивидуальные системы

Особая изобретательность.

При эксплуатации гидроэлектростанций и водозаборных сооружений с течением времени часто возникают одна или две возможности для оптимизации. Или вам требуется решение для очень индивидуальной ситуации. Или вы хотите иметь модуль расширения для существующей системы. Для таких случаев мы предоставляем поддержку в виде наших индивидуальных систем HYDROCON с продуктами и услугами для гидромеханического оборудования.

Примерами этого являются захваты для мусора в стационарном, поворотном и/или мобильном или плавающем исполнении. Или системы подъема бревен различных конструкций, например, складной вариант для перевозки на грузовике для гибкого использования на нескольких электростанциях.
Свяжитесь с нами, чтобы сообщить о своих требованиях и воспользоваться нашим многолетним межотраслевым опытом в этой области.

Хотите получать регулярные обновления от Muhr?

Для регистрации на информационный бюллетень

RACO ГИДРОМЕХАНИЧЕСКОЕ ОБОРУДОВАНИЕ — RACO — Каталоги в формате PDF | Техническая документация

Добавить в избранное

{{requestButtons}}

Выдержки из каталога

Гидромеханическое оборудование RACO RACO Schwelm

Гидромеханическое оборудование RACO Электроприводы RACO для ваших гидротехнических применений Для управления шлюзами и плотинами компания RACO разработала специальную систему. В зависимости от применения (упор, скорость, динамические силы, ожидаемый срок службы и т. д.) геометрия конструкции винта и гайки определяется и изготавливается RACO. Во время инженерной подготовки проекта все необходимые расчеты по коду, тестовые документы и сертификаты будут созданы RACO. Особое внимание уделено гидротехническим условиям применения электропривода при следующих условиях…

Концепция автоматизации гидротехнических сооружений RACO Критерием принятия решения о внедрении автоматизированной системы шлюза и плотины является экономическая эффективность, на которую существенно влияет количество операций шлюзования. Инновационные и в то же время вариативные технические решения наших электроприводов задают новые ориентиры: Высокая доступность Высокая надежность Не требует обслуживания благодаря долговременной смазке M в соответствии с немецким регламентом класса защиты от воды WGK Чрезвычайно безвреден для окружающей среды и E экономичный благодаря запуску …

RACO Schwelm RACO предлагает функциональную надежность Блокировка сегментов моста является невралгическим моментом в общей последовательности операций. Независимо от условий окружающей среды операции блокировки или разблокировки должны выполняться даже после продолжительных периодов простоя. Только после того, как будет достигнуто и подтверждено точное положение втянутого или выдвинутого положения, разрешающий сигнал может инициировать следующий шаг. приводы для мостов с: подъемом моста А, приводом засова приводы для защитных ворот на шлюзах и плотинах А: подъемные защитные ворота, раздвижные защитные ворота приводы для замков и плотин…

RACO Schwelm Новые характеристики спроса приводят к новым критериям проектирования нашей продукции. Как производитель высококачественных приводных систем для систем линейного перемещения, RACO выборочно дополняет свой ассортимент продукции. Электрические приводы серии Heavy Duty исторически отличаются прочной конструкцией и долговечностью даже в экстремальных условиях эксплуатации. Опция: Защита от ударов, корпус подпружиненной гайки с плавающей S-образной гайкой, высокоэффективный эластомер, поглощающий удары, врезное кольцо для защиты от случайного чрезмерного хода, система амортизации, конфигурируемая в. ..

наше ноу-хау ценно для ваших клиентов Являясь поставщиком полного ассортимента продукции, RACO может предложить от уровня компонентов до привлекательных интегрированных системных решений, которые могут раскрыть потенциал экономии. Независимо от формы снижения затрат, если оно сочетается с увеличенным сроком службы, более коротким временем цикла, простотой установки, отсутствием обслуживания, снижением веса, наша программа включает множество альтернативных решений. Основываясь на нашем опыте работы с различными приложениями и эксплуатации более 250 000 приводов, мы гордимся тем, что поставляем индивидуальные проектные решения для конкретных…

Все каталоги и технические брошюры RACO

  1. Электроприводы RACO для сценического оборудования и выставочного оборудования

    4 страницы

  2. Precision in Motion

    12 страниц

  3. ШАРОВЫЕ ВИНТЫ RACO

    40 страниц

  4. ПРИВОДНЫЕ РЕШЕНИЯ RACO ДЛЯ КРАНОВЫХ СИСТЕМ

    6 страниц

  5. Интеллектуальные электрические приводы RACOmatic Технические данные и конфигурации

    20 страниц

  6. Интеллектуальные электрические приводы RACOmatic®

    32 страницы

  7. «RACO поддерживает процесс в движении» Позиционирование, транспортировка и автоматизация

    6 страниц

  8. RACO поддерживает процесс в движении

    6 страниц

  9. Контроллер RACO RCM 100

    4 страницы

  10. Привод датчика COMPACT с тензодатчиком

    2 страницы

  11. COMPACT Цилиндр позиционирования и управления

    4 страницы

  12. Электрические приводы COMPACT размер 7

    4 страницы

  13. Электрические приводы COMPACT размер 6

    4 страницы

  14. Электрические приводы COMPACT

    2 страницы

  15. Электронный датчик положения RACO EPS02/06

    2 страницы

  16. Пружинная тормозная система RACO — безопасное решение

    6 страниц

  17. Поворотный привод DM IV

    8 страниц

  18. Прецизионные шарико-винтовые пары RACO

    40 страниц

  19. 3. 5.0 Позиционирующий цилиндр

    4 страницы

  20. МОДУЛЬНАЯ СИСТЕМА — СЕРИЯ ДЛЯ ТЯЖЕЛЫХ УСЛОВИЙ (ТИП 1) РАЗМЕР 9,10,11

    4 страницы

  21. МОДУЛЬНАЯ СИСТЕМА — СЕРИЯ ДЛЯ ТЯЖЕЛЫХ УСЛОВИЙ (ТИП 1) РАЗМЕР 4,5,6,7,8

    8 страниц

  22. Электрические приводы COMPACT

    16 страниц

Архивные каталоги

  1. Обзор продукта

    12 страниц

Сравнить

Удалить все

Сравнить до 10 продуктов

Гидромеханическое оборудование от Hydropol Project & …

Hydropol — Гидромеханическое оборудование от Hydropol Project & …
    org/BreadcrumbList»>
  1. Панировочные сухари
  2. Компании
  3. Hydropol Project & Management a.s.
  4. Товары
  5. Hydropol — Гидромеханическое оборудование

0

Делиться Поделиться с Facebook Поделиться в Твиттере Поделиться с LinkedIn

Группа компаний «Гидропол» способна спроектировать и поставить гидромеханическое оборудование различных типов и параметров, специально адаптированное под конкретные нужды объекта и заказчика. Он всегда соответствует всем индивидуальным требованиям в области строительных материалов, эффективности, долговечности, экологических ограничений, расположения и т. д.

Оборудование передается на аутсорсинг и изготавливается по индивидуальному заказу с нашими соответствующими техническими, качественными и коммерческими гарантиями:
Водосливные затворы

  • Водосливные затворы меньших размеров с пружинным управлением, более крупные водосливные затворы с гидравлическим управлением, включая серводвигатели и гидравлические приводные устройства с управляющим масляным трубопроводом.
  • Резиновые плотины/водосливы (надувные гибкие мембранные плотины), включая анкерное крепление, водяные насосы, фитинги и трубопроводы.
  • Нижние выпускные отверстия Джонсон и полые струйные клапаны с электрическим или гидравлическим приводом, включая серводвигатели и гидравлические приводные устройства с трубопроводом управляющего масла.
  • Плавучие заграждения Стальные сварные плавучие конструкции.
  • Решетки для крупного мусора, защита от льда Решетчатые сетки больших размеров
  • Стеллажи мелкие решетчатые решетки в основном из прямоугольных или крыльевых профильных стержней, соединенных в единые поля размерами от 1 х 1 м до 8 х 10 м.
  • Мусороуборочные машины различных типов: цепные, телескопические, двухплечевые, канатно-проволочные, всех типов стационарные или передвижные. Протертые или промытые транспортеры для мусора, контейнер для мусора.
  •   Принадлежности для впуска Хранение ворот, поручней, лестниц, крышек и т. д.
    • Остановочные журналы обрабатываются стационарно или передвижно. Изготовлен из сварных металлоконструкций, пескоструйная обработка, металлизация, покраска. Размеры от 1 х 1 м до 8 х 10 м, напор до 50 м вод. ст.
    • Затворы шлюзовые с механическим или гидравлическим приводом. Шлюзовые затворы с гидравлическим приводом, включая сервоприводы и гидроприводы с трубопроводом управления маслом. Размеры от 1 х 1 м до 8 х 10 м, напор до 50 м вод. ст.
    • Затворы поворотные DN 500 DN 4 000, PN 2,5 — PN 25, запорные на полном ходу, с механическим, электрическим или гидравлическим приводом. Поворотные затворы с гидравлическим приводом, включая серводвигатели и гидравлические исполнительные устройства с трубопроводом управляющего масла.
  • Краны шаровые и шаровые Ду 250 Ду 2 500, Ру 6 — Ру 63, с системой мягкого и металлического уплотнения или с уплотнительными кольцами с гидравлическим приводом, закрывающиеся на полном ходу, с механическим, электрическим или гидравлическим приводом. Клапаны с гидравлическим приводом, включая серводвигатели и гидравлические приводные устройства с трубопроводом управляющего масла.
  • Байпасы DN 50 DN 250, PN 2,5 — PN 63 с электрическим или гидравлическим приводом, включая технологический и контрольный маслопроводы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *