Карбюратор принцип работы – Устройство и принцип работы карбюратора

Содержание

Устройство и принцип работы карбюратора

До середины 80-х бензиновые двигатели внутреннего сгорания на легковых и легких грузовых автомобилях массово оснащались карбюраторами. Такие двигатели работают по принципу сгорания заранее приготовленной внешним устройством топливно-воздушной смеси в цилиндрах мотора. Указанная рабочая смесь состоит из капель горючего и воздуха. Карбюратор отвечает за процесс, подразумевающий образование смеси из этих компонентов в нужной пропорции для максимальной эффективности работы ДВС. Простейший карбюратор представляет собой механическое дозирующее устройство.

Читайте в этой статье

Немного истории

Ранние разработки  на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования.

Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным,  дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование  привычного для нас сегодня жидкого топлива.

Стоит учесть, что такое топливо не может воспламениться без участия воздуха. Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях.

Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов.  Для получения качественной топливно-воздушной смеси  горючее в первом устройстве нагревалось, а его  пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения.

Разработки в данной области продолжились, а уже через год  талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.

Модернизация

Главным направлением дальнейшей работы инженеров стала максимальная автоматизация всех процессов смесеобразования. Над совершенствованием конструкции карбюратора трудились лучшие умы многих компаний по производству автомобилей и сопутствующего оборудования. По этой причине  можно встретить великое множество простых и сложных  моделей карбюраторов от многочисленных  мировых производителей.

Дальнейшее развитие

Карбюраторы стали активно вытесняться инжекторными системами только в конце XX века. До этого времени конструкцию карбюратора   усиленно совершенствовали. Последними витками эволюции карбюраторного впрыска стали  карбюраторы под контролем электроники. В таких карбюраторах имелось несколько электромагнитных клапанов, работу которых контролировало специальное  устройство управления. Для примера можно упомянуть марку карбюратора Hitachi. В конструкции насчитывалось  без малого 5 клапанов, а заслонки управлялись электронным способом.

Последнее поколение конструктивно сложных карбюраторов отлично демонстрирует уже упомянутая модель карбюратора Hitachi. Этот карбюратор устанавливался на автомобили марки  Nissan в самом конце 80-х и в начале 90-х годов. Сложность этого поколения карбюраторов заключается в большом количестве вспомогательных устройств, особенно если сравнивать продукт Hitachi с примитивным «Солекс», который ставился на ВАЗ.

Вспомогательные устройства отвечали за стабилизацию работы карбюратора в различных режимах. К таким режимам и особенностям эксплуатации можно отнести резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов силового агрегата после включении  климатической установки, а также многие другие.

Доведенный до совершенства карбюратор последних поколений базово состоял из многочисленных устройств. Мы назовем только некоторые из них для ознакомления:

  1. Система регулирования температуры  наружного воздуха;.
  2. Обогреватель впускного коллектора;
  3. Клапан прекращения подачи топлива;
  4. Клапан устройства обогащения смеси;
  5. Биметаллическая пружина воздушной заслонки в устройстве механизма открытия дросселя;
  6. Система быстрого холостого хода и т.д;

Такие устройства относятся к последним «электронным» карбюраторам. Дополнительные элементы в этих моделях были выполнены в виде отдельных аналоговых устройств. Устройства  управлялись простейшей электроникой или работали по принципу саморегулирования (биметаллическая пружина).

Примечательно то, что простые механические карбюраторы являются очень универсальными устройствами и могут быть установлены при помощи переходника на разные модели автомобилей. Отличным примером является все тот же прекрасно известный отечественным автомобилистам карбюратор «Солекс».

Карбюратор и инжектор

Далее в истории систем топливоподачи и смесеобразования сначала появился моновпрыск (моноинжектор), а полностью электронный впрыск и производительные топливные форсунки окончательно вытеснили морально устаревшие карбюраторы.

Главным преимуществом инжектора является намного более точное и своевременное дозирование топлива для получения нужных пропорций топливно-воздушной смеси. Появление и внедрение в автоиндустрию доступных по цене микропроцессоров в итоге привело к тому, что необходимость в сложном карбюраторе и дополнительных устройствах в его конструкции попросту исчезла. Все функции отдельных элементов карбюратора взял на себя один единственный блок управления (ЭБУ), а в конструкции  инжектора установили простые устройства исполнения.

Ошибочно полагать, что инжектор является более экономичным решением сравнительно с карбюратором. Хорошо отстроенный карбюратор демонстрирует схожие показатели по расходу топлива. Популярность распределенного впрыска обусловлена тем, что именно такой механизм топливоподачи способен соответствовать всем жестким современным нормам и требованиям по экологичности ДВС. Карбюратор удовлетворить такие требования не может, что обусловлено его конструктивными особенностями и производительностью жиклеров.

Сегодня карбюраторный впрыск  встречается только на тех двигателях, основным назначением которых является целевая установка на спецтехнику. Причиной такого решения стала уязвимость электронных инжекторных систем во время тяжелых  условий эксплуатации. Электронные узлы и модули инжектора страдают от повышенной влажности и загрязненности, а форсунки чувствительны к качеству топлива. Для примера стоит сказать, что однозначно лучше установить на транспортное спецсредство при использовании такового на болотах именно механический карбюратор, который не перегорит. Такой карбюратор всегда можно с легкостью обслужить, почистить и просушить при необходимости.

Виды карбюраторов

Как мы уже говорили, процесс модернизации карбюраторов породил большое количество видов данного устройства от разных производителей. Все это многообразие  карбюраторов условно можно разделить на три группы:

  • барботажный;
  • мембранно-игольчатый;
  • поплавковый;

Два первых типа карбюраторов уже давно практически не встречаются, так что останавливаться на этих конструкциях мы не будем. Целесообразнее рассмотреть поплавковый карбюратор, который еще можно увидеть в различных модификациях на гражданских автомобилях эпохи 90-х в наши дни.

Устройство поплавкового карбюратора

Главной задачей карбюратора  является смешение топлива и воздуха. Разные модели  карбюраторов осуществляют этот процесс по схожему принципу. Поплавковый карбюратор состоит из следующих элементов:

  • поплавковая камера;
  • поплавок;
  • запорная игла поплавка,
  • жиклер;
  • смесительная камера;
  • распылитель;
  • трубка Вентури;
  • дроссельная заслонка;

Поплавковый карбюратор устроен так, что к его поплавковой камере подведена  специальная магистраль. По этой магистрали из топливного бака в карбюратор подается топливо. Регулирование количества топлива в камере осуществляется посредством двух элементов, которые взаимосвязаны. Речь идет о поплавке и игле. Падение уровня топлива в поплавковой  камере означает, что и поплавок опустится вместе с иглой. Таким образом получится, что опустившаяся игла откроет доступ для проникновения в камеру  следующей порции горючего. При заполнении камеры бензином поплавок поднимется, а игла при этом параллельно перекроет горючему доступ.

В нижней части поплавковой камеры находится следующий элемент под названием жиклер. Жиклер выполняет функцию калибратора и  обеспечивает дозирование подачи горючего. Через жиклер топливо попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.

Конструктивно смесительная камера имеет диффузор. Указанный элемент создан для того, чтобы увеличивать скорость воздушного потока. Диффузор отвечает за создание разрежения воздуха в непосредственной близости от распылителя. Это помогает вытягивать топливо из поплавковой камеры, а также способствует лучшему его распылению в смесительной камере. Таково базовое устройство простого поплавкового карбюратора.

Дроссельная заслонка : холодный пуск и холостой ход

То количество рабочей топливно-воздушной смеси, которое поступит в цилиндры двигателя,  будет зависеть от положения дроссельной заслонки. Заслонка имеет прямую связь с педалью газа. Но это еще не все.

Некоторые автомобили с карбюратором имели дополнительное устройство для управления дроссельной заслонкой. Этот элемент хорошо знаком любителям старой «классики» от ВАЗ. В народе это устройство автомобилисты прозвали «подсос», а само устройство создано для холодного запуска. Элемент выполнен в виде специального рычага, который находится в нижней части торпедо со стороны водителя.

Рычаг позволяет дополнительно  управлять дроссельной заслонкой. Если вытянуть «подсос» на себя, в таком случае заслонка прикрывается. Это позволяет ограничить доступ воздуха и увеличить уровень разрежения в смесительной камере карбюратора.

Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру намного интенсивнее, а недостаточное количество поступившего  воздуха заставляет карбюратор готовить  для двигателя обогащенную рабочую смесь. Именно такая смесь лучше всего подходит для уверенного запуска холодного мотора.

Стоит отметить, что первым во всей конструкции подвергся последующей модернизации именно  холодный пуск, уже знакомый нам под названием «подсос».  К простейшим же карбюраторам заслуженно относится некогда распространенный и  популярный карбюратор «Солекс»,  которому многим обязана линейка классических автомобилей ВАЗ.

Работа карбюраторного двигателя в режиме холостого хода  осуществляется следующим образом:

  • карбюратор оборудован специальными дополнительными воздушными жиклерами. Эти жиклеры отвечают за подачу строго дозированного количества воздуха;
  • воздух проходит под дроссельной заслонкой и далее по рабочему алгоритму смешивается с бензином. При этом весь процесс происходит тогда, когда педаль газа не выжата и отпущена;

Вот так и выглядит базовое устройство и принцип работы карбюратора поплавкового типа.

Сильные и слабые стороны устройства

Главным  достоинством карбюратора является его доступная по цене ремонтопригодность. В свободной продаже по сей день существуют специальные ремонтные комплекты, которые позволяют вернуть карбюратор в строй достаточно быстро. Для ремонта карбюратора не требуется арсенал какого-либо специального оборудования, а отремонтировать устройство при наличии определенных умений и навыков под силу практически любому автомобилисту.

Механический карбюратор не так сильно боится загрязнений и воды,  так как их попадание не может окончательно вывести его из строя. В этом одновременно кроется как сильная, так и слабая сторона устройства. Карбюратор нужно достаточно часто подстраивать и обязательно чистить по сравнению с инжекторным впрыском, но он выносливее электронных решений при возникновении ряда таких условий, которые относятся к тяжелым или даже экстремальным условиям эксплуатации.

К дополнительным плюсам карбюратора относят его меньшую чувствительность к топливу низкого качества, а процесс чистки не представляется сложным. Хотя карбюратор и является относительно сложным устройством, но диагностировать неисправности и обслуживать его определенно проще сравнительно с забитой или неисправной инжекторной системой.

К главным минусам карбюратора можно отнести необходимость его регулярной чистки и подстройки. Карбюратор может преподнести сюрпризы в процессе эксплуатации, так как наблюдается зависимость от внешних погодных условий. В зимний период в  корпусе карбюратора может накапливаться и затем замерзать конденсат. В жару карбюратор склонен к перегреву, что ведет к интенсивному испарению горючего и падению мощности ДВС.

Последним аргументом против карбюратора является повышенная токсичность выхлопа,  что и привело к отказу от его использования на современных авто по всему миру. Сегодня карбюратор оправданно считается безнадежно устаревшим «классическим» решением.

Читайте также

krutimotor.ru

Устройство, принцип работы и основные разновидности карбюратора

На сегодняшний день большое количество автомобилей функционирует благодаря смеси бензина и воздуха. Подобные моторы общепринято называть ДВС, и именно в строении бензинового мотора есть такое спецоборудование, как карбюратор. В данной статье мы рассмотрим основные принципы работы и подробно проанализируем его конструкцию.

Что такое карбюратор, назначение

Карбюратор – это один из сложнейших частей топливной концепции любого бензинового аппарата. Его предназначение заключается в изготовлении топливно-воздушной смеси (ТВС) способом насыщения бензина кислородом в необходимых количествах с последующей подачей уже готовой массы в цилиндры. Перемешивание всех компонентов осуществляется в нужной консистенции, соответствующей режимам работы двигателя.

Процедура подачи горючего совершается исключительно благодаря карбюратору, в котором есть такой механизм, как диффузор. Он рассчитан для сужения воздушного горла механизма. Иными словами, в период прохождения атмосферы через данное сужение, наступает спад давления. Затем в ход идет небольшой проем, для подачи топлива. Под большим давлением горючее выжимается из камеры в горловину карбюратора, откуда смесь направляется в выходной канал и затем поступает в цилиндры мотора.

Виды карбюраторов

Процесс улучшения карбюратора повлек за собой создание огромного количества видов этого устройства различными изготовителями.

По времени открытия заслонок смесительных камер карбюратор делится:

  • с поочередным открытием клапанных заслонок второстепенных камер;
  • с синхронным открытием клапанных заслонок.

На сегодняшний день виды карбюраторов можно поделить на три основные группы:

  1. Поплавковый – это самый оптимальный и распространенный вид карбюраторов. На фоне других он выделяется особой надежностью, незамысловатой настройкой. Состоит он из поплавковой и смесительной камер.
  2. Мембранно-игольчатый – вмещает несколько, разделенных перегородками, камер. В последних находится поршень с иглой, которая заслоняет и открывает топливный канал, влияя этим на клапан. Основным преимуществом подобного вида считается простота.
  3. Барботажный – такого рода карбюратор предполагает собой обогреваемый внешне стальной цилиндр. Коксовое топливо поступает в сосуд, под названием барботер (находящийся в нижней части агрегата) и протекает через слой разогретого материала. Вследствие соприкосновения коксового газа с сырьем происходит самоиспарение углеводородов, после чего газ насыщается их парами. Часть сырья, которое не подверглось испарению, время от времени устраняют из механизма.

По количеству смесительных камер делятся на: однокамерные, двухкамерные и четырехкамерные.

Внутреннее устройство

Несмотря на то что инжектор считается более подходящим и совершенным, на дорогах все еще остается огромное число машин, мотор которых снабжен карбюратором.

Как говорилось ранее, практически в каждой машине стоит карбюратор поплавкового типа. Простой агрегат состоит из двух главных камер: смесительной и поплавковой. Роль поплавковой заключается в дозировке и сохранности горючего; поддерживается неизменная подача топлива при различных условиях эксплуатации двигателя.

Внутри узла есть углубление со встроенным поплавком, связанным с клапаном игольчатого вида, который расположен в канале бензонасоса. В момент расхода поплавок опускается, в следствие канал открывается, и топливо закачивается в углубление.

Вторая камера гарантирует перемешивание горючего. Для такого действия существует диффузор – специально суженый участок; он помогает придать ускорение проходящему потоку воздуха.

Чтобы иметь полное представление о том, как выглядит внутреннее устройство агрегата, рекомендуем просмотреть видеоролик:

Принцип работы

Простой карбюратор не способен обеспечить мотор подходящей, согласно составу, смесью на всех этапах работы. Автолюбитель кроме количества ТВС, обязан распоряжаться ее качеством благодаря рукояти «подсоса», связанной с атмосферной заслонкой.

При вытягивании ручки, створка закрывается и в смесительную камеру воздух поступает в меньшем количестве, а разрежение заполняется топливом наиболее усилено. Этот факт немаловажен, особенно при запуске двигателя в холоде, когда необходима богатая смесь, которая может загореться при отрицательных температурах.

Создание сбалансированной топливной смеси в камере механизма совершается не полностью. Часть горючего не может улетучиться и смешаться с атмосферой. Капли горючего, которые не успели испариться, перемещаются и оседают на стенах камеры и выпускных патрубков.

Горючее, которое оседает на стенах, формирует некую пленку, которая перемещается с небольшой скоростью. Для того чтобы улетучить пленку бензина, впускные патрубки при функционировании мотора подвергается подогреву. Большее распространение имеет жидкостный подогрев либо нагрев газами. Можно смело заявить, что генерация горючей смеси завершается в конце впускного трубопровода мотора.

Плюсы минусы карбюратора

Основным плюсом принято считать доступную цену ремонта. Следующий положительный момент заключается в том, что карбюратор не боится загрязнений и попадания воды.

Однако не все так гладко, ведь данный механизм нужно достаточно часто очищать и подстраивать. В холодное время года в корпусе аппарата может скапливаться и замерзать конденсат. В жару механизм может легко перегреться, что приведет к интенсивному испарению топлива и падению мощности ДВС. Заключительным доводом против карбюратора считается высокая токсичность выхлопа, что и повергло к отказу его применения в нынешних автомобилях.

Возможные проблемы карбюратора

Сейчас мы перечислим возможные проблемы при работе с карбюратором, чтобы вы могли обойти их стороной:

  • В случае если мотор не запускается либо глохнет после пуска, это явный признак отсутствия топлива в поплавковой камере или нарушение состава горючей смеси;
  • Если мотор на холостом ходу функционирует нестабильно или постоянно глохнет, то возможны:
  1. загрязнение каналов либо жиклеров холостого хода;
  2. проблемы в работе электромагнитного клапана;
  3. поломки в функционировании элементов ЭПХХ и БУ;
  4. сбой и деформация резинного уплотнительного кольца.
  • В связи с концепцией первой камеры, при отсутствии должных оборотов не исключается возможность полной остановки пуска машины. Чтобы устранить эту неполадку нужно как следует промыть или продуть каналы, а также заменить поврежденные детали.

Принцип функционирования карбюратора – это самое первое, что вы должны понимать. Карбюратор – это одна из самых важных механизмов каждого мотора, без которого ни один автомобиль не будет работать как механические часы. И, если вы научитесь самостоятельного его чистить и подстраивать, то вам не придется долго искать хорошего мастера для воплощения индивидуальных желаемых настроек мощности и расхода своего ТС.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

pricurivatel.ru

Карбюратор: устройство и принцип работы

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.
Обращаться на почту [email protected].

Жидкое топливо в бензиновых двигателях не может обеспечить работу поршневой группы. Для создания крутящего момента на коленчатом валу необходима серия циклических микровзрывов в цилиндрах, в то время, как жидкий бензин просто горит. Когда топливо смешивается с воздухом (содержащим большое количество кислорода), создается смесь, способная образовывать вспышку, обладающую большой кинетической энергией.

Автомобильные карбюраторы – история развития

На заре двигателестроения применение газа стало невыгодным. Возникла необходимость создания устройства, которое могло с высокой степенью надежности и безопасности обеспечить формирование из бензина и воздуха качественной смеси. Принцип работы карбюратора первой серии основывался на испарении паров топлива. Камера нагревалась от внешнего источника тепла, бензиновые пары смешивались с воздухом за счет конвекции.

Принцип работы первых карбюраторов

Характеристики такого карбюратора не позволяли развивать большую мощность, поэтому эта конструкция не прижилась в моторостроении. Для первых экземпляров автомобилей было достаточно того, что они просто ехали, в дальнейшем потребности клиентов росли, стал развиваться автоспорт. Возникла необходимость создать карбюратор, не имеющий ограничений по мощности мотора.

Следующее поколение, изобретенное немецкими инженерами Даймлером и Майбахом, работало по принципу распыления топлива. Размеры агрегата уменьшились (не было необходимости встраивать объемную испарительную камеру с емкостью для нагрева), а производительность, напротив, выросла в разы. Фактически был создан вакуумный карбюратор, конструкция которого используется в современных моделях. Главный технический прорыв – переход топлива в газообразное состояние происходил принудительно, что давало простор для экспериментов с производительностью. Разумеется, устройство карбюратора Даймлера – Майбаха было не похоже на современные конструкции высокопроизводительных вакуумных моделей со специальным ресивером и контролем за разряжением воздуха.

Современный вакуумный карбюратор

Однако принцип работы был таким же, как на любом современном образце.

Устройство карбюратора (типовое описание для всех модификаций)

На схеме изображено взаимное расположение основных узлов:

Схема основных узлов карбюратора

  1. Трубка подачи бензина от топливного насоса;
  2. Поплавок с игольчатым клапаном, перекрывающим топливопровод;
  3. Жиклер приема топлива из поплавковой камеры;
  4. Форсунка распылителя жидкого топлива;
  5. Камера смесителя, в которой образовывается топливная смесь;
  6. Воздушная заслонка, регулирующая объем входящего потока чистого воздуха из фильтра;
  7. Диффузор, формирующий направление потока воздуха;
  8. Заслонка дросселя, регулирующая подачу смеси во впускной тракт двигателя.

Как работает карбюратор?

Рассмотрим работу каждого узла.

  1. Бензин под небольшим давлением (не путать с высокопроизводительными форсунками инжекторных систем) поступает в поплавковую камеру. Важно поддерживать уровень топлива в карбюраторе, не превышающий расположение жиклера. Иначе в смесительной камере не будет происходить аэрозольное распыление. Для каждой модели установлен верхний предел заполнения камеры, за которым механически «следит» поплавок с игольчатым клапаном. Такая конструкция выбрана потому, что небольшим усилием можно удерживать давление входящего топливопровода. При достижении предела – клапан запирает входное отверстие, при падении уровня – заполняет камеру бензином;
  2. Недостаток конструкции (к сожалению, безальтернативной) – высокая зависимость от загрязнения. Игольчатый клапан может «зависнуть» в закрытом состоянии, и работа мотора будет остановлена;
  3. Далее бензин поступает в жиклер. Диаметр этого элемента строго регламентирован, не допускаются отклонения даже в сотые доли миллиметра. В противном случае, на входе в смесительную камеру не будет происходить аэрозольное распыление, и топливовоздушная смесь не сформируется, а на жидком бензине, как уже говорилось, ДВС не работает;
  4. Из диффузора выходит аэрозоль из мельчайших капелек бензина, готовая для смешивания с воздухом;
  5. Камера смесителя (фактически – корпус карбюратора) предназначена для формирования газообразной смеси, состоящей из паров бензина и кислорода, содержащегося в воздухе. Бензин, равно как и воздух, попадает в камеру не под напором, а наоборот, за счет разряжения. При движении цилиндра вниз, возникает разница в давлении, своеобразный вакуум. За счет специально рассчитанной формы корпуса, потоки топлива и воздуха смешиваются равномерно, образуя качественную смесь;
  6. Заслонки (дроссельная и воздушная) управляемые педалью газа, дозируют интенсивность потока воздуха и скорость всасывания топлива из жиклера. Мотор работает интенсивнее, скорость вращения коленвала меняется вместе с мощностью и крутящим моментом.

Все системы карбюратора должны работать слаженно: если один из каналов (жиклеров) будет засорен, или неверно настроить положение заслонок, формирование смеси будет нарушено. Возрастет расход бензина, потеряется мощность, силовой агрегат будет работать неустойчиво, поэтому все узлы должны быть чистыми, их размер соответствовать заводским расчетам, произведена настройка регулировочных параметров. На карбюраторе есть ряд подстроечных винтов, правильные технические характеристики устанавливаются с их помощью. На иллюстрации показан пример карбюратора «Озон».

Карбюратор Озон

Хорошо настроенный карбюратор «выжимает» из мотора максимум возможностей при наименьших затратах на топливо. Разные модели карбюраторов могут иметь свои способы регулировки, но общий принцип единый.

У каждого карбюратора есть инструкция по выставлению параметров. Регулировка может производиться самостоятельно, или на профильном сервисе. При смене условий эксплуатации (количество кислорода в воздухе, регулярная нагрузка на автомобиль, включение кондиционера в летний период и пр.), следует произвести повторную настройку.

Чем отличаются карбюратор классической конструкции и устройство с электронным управлением?

Выше по тексту были описаны принципы работы механического карбюратора. Все настройки устанавливаются с помощью винтов, и не могут быть изменены динамически, в ходе работы. Схема карбюратора постоянно совершенствуется, и в новых моделях (некоторые выпускаются по сей день) достаточно много электроники. Например, электромагнитным клапаном оснащены практически все механические модели.

На этом устройстве остановимся подробнее:

Дело в том, что при полностью отпущенной педали газа, дроссельная заслонка перекрыта, и мотор по идее должен заглохнуть. Для работы ДВС без нагрузки (просто чтобы не заводить его каждый раз после остановки), внедрена система холостого хода. С ее помощью, даже при перекрытых заслонках, в корпус поступает минимальный объем бензина и воздуха. Формируемой топливной смеси достаточно для поддержания работоспособности силового агрегата без нагрузки на коленвал.

Этот параметр требует точной регулировки: если обороты холостого хода завышены, вырастет расход бензина, а если занижены – мотор будет глохнуть при остановках. При изменении условий работы (температура, наличие климатической установки с кондиционером, дополнительное оборудование, дающее нагрузку на генератор), режим холостого хода меняется, поэтому был установлен клапан холостого хода (электрический), который управляет процессом линейно, в зависимости от нагрузки.

Никакой программы управления нет, в клапан заходит лишь провод питания. В зависимости от некоторых условий работы, положение клапана меняется.

Электромагнитный клапан на карбюраторе

Это далеко не все электронные системы, которые могут быть внедрены в механику процесса. Например, все регулировки заводятся на блок управления, типа ЭБУ для инжекторных моторов. Такой микрокомпьютер постоянно отслеживает параметры нагрузки на силовой агрегат, и в реальном времени может менять настройки карбюратора. Задавая себе вопрос: «какой карбюратор лучше поставить?», можно рассматривать внедрение в машину современной конструкции. В отличие от карбюраторов традиционного исполнения, электронные системы не нуждаются в периодической настройке, но имеют более высокую стоимость, и сложнее в обслуживании и ремонте. Для обеспечения электроники исходными данными, на двигатель устанавливаются различные датчики, которые следят за параметрами мотора. На основе получаемой информации, исполнительные механизмы карбюратора приводятся в действие.

Виды карбюраторов по производителям – какой выбрать?

У всех на слуху различие т.н. китайской продукции, и карбюраторов именитых брендов (в список которых входят и ДААЗ, и Солекс, и Озон…). На самом деле, это не более, чем предрассудки. Изделие, выпущенное на заводе, с соблюдением технологии, имеющее сертификат качества, будет хорошо работать вне зависимости от географии производства. Низким качеством отличаются лишь так называемые товары «no-name», собранные крестьянами из Поднебесной буквально напильником на коленке, поэтому при подборе нового карбюратора, прежде всего ориентируйтесь на известность производителя и наличие сопроводительной документации. Разумеется, и гарантийные обязательства должны быть обеспечены сервисными центрами в пределах доступности. То есть, если вы живете в Калининграде, а ближайший сервисный центр производителя в Димитровграде – есть смысл подыскать другой экземпляр.

Итог

Не следует бояться этого на первый взгляд сложного устройства. Схема работы простая и надежная, залог нормального функционирования – чистота всех внутренних элементов и правильная настройка.

 

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Карбюратор: описание,история,устройство,принцип работы,регулировка,обслуживание. | НЕМЕЦКИЕ АВТОМАШИНЫ

В этой статье вы узнаете о системах впрыска топлива. Карбюратор – это самый первый механизм, который позволял соединять в нужной пропорции бензин с воздухом для приготовления топливовоздушной смеси и подачи ее в камеры сгорания двигателя. Эти устройства активно применяются и по сей день – на мотоциклах, бензопилах, мотокосах и так далее. Вот только из автомобильной индустрии они были давно вытеснены инжекторными системами впрыска, более продвинутыми и совершенными.

Немного истории

Ранние разработки  на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования. 

Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным,  дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование  привычного для нас сегодня жидкого топлива. Стоит учесть, что такое топливо не может воспламениться без участия воздуха.

Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях. Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов.

 Для получения качественной топливно-воздушной смеси  горючее в первом устройстве нагревалось, а его  пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения. Разработки в данной области продолжились, а уже через год  талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.

Что такое карбюратор

Карбюратором называют важнейший узел среди всех систем автомобиля. Он относится к устройству двигателя внутреннего сгорания и предназначен для образования топливовоздушной смеси. Карбюрация (то есть создание) смеси осуществляется путём смешения жидкого горючего и воздуха, при этом важное значение имеет пропорциональность частей.

Сегодня карбюраторы используются на самых разных двигателях для обеспечения работы разнообразных технических устройств. Первые типы карбюраторов (барботажные) ныне уже не используются, так как их вытеснили более производительные мембранно-игольчатые и поплавковые.

Мембранно-игольчатый карбюратор состоит из камер, которые разделены специальными мембранами. Между собой мембраны довольно жёстко фиксируются штоком, один из концов которого представляет собой иголку. Игла во время работы карбюратора движется вверх-вниз и то открывает клапан подачи горючего, то закрывает его. Это самый простой на сегодняшний день тип карбюраторных механизмов, который используют на газонокосилках, самолётах и некоторых видах грузовых автомобилей (например, на ЗИЛ-138).

Поплавковый карбюратор представлен сегодня в нескольких модификациях, однако все они имеют схожий принцип работы. В качестве основного элемента такого устройства выступает поплавок и поплавковая камера. Именно камера отвечает за своевременную подачу горючего и воздуха, в ней формируется топливовоздушная смесь и подаётся в камеру сгорания. Поплавковый карбюратор гарантирует бесперебойную работу мотора и обеспечивают хорошую динамику и тягу. Поэтому такой карбюраторный вид устройств получил в современном автомобилестроении особенную популярность.

КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ КАРБЮРАТОРА

Карбюратор поплавкового типа представляет собой единый узел, включенный в систему питания. За время использования такой системы на автомобилях было разработано большое количество карбюраторов, имеющие разные особенности по конструкции, но все они функционируют используя один принцип.

Простейший поплавковый карбюратор состоит из двух камер:

  1. поплавковой;
  2. и смесительной.

В задачу первой входит дозирование топлива и поддержание его на определенном уровне. Благодаря этой камере обеспечивается стабильная подача бензина при разных условиях работы мотора.

Конструктивно она очень проста. Внутри узла имеется полость с помещенным в нее поплавком, связанным с клапаном игольчатого типа, который размещен в канале подачи бензина от бензонасоса. По мере расхода топлива поплавок опускается, а с ним и клапан, в результате канал открывается и бензин закачивается в полость. При закачке необходимого уровня поплавок вместе клапаном поднимается вверх и полностью перекрывает канал.

Вторая камера обеспечивает смешивание топлива в проходящий воздушный поток. Для этого в ней установлен диффузор – специально суженый участок камеры. Благодаря этому диффузору, воздух, проходящий через него, значительно ускоряется.

Две эти камеры соединены между собой распылителем. Та его сторона которая установлена в поплавковой камере дополнительно оснащена жиклером – специальной вставкой со сквозным отверстием определенного диаметра. Его задача – обеспечивать подачу строго определенного количества бензина. Второй конец распылителя выведен в диффузор.

Работает все так: на такте впуска в цилиндре поршень движется вниз, создавая разрежения. Из-за этого происходит всасывание воздуха через воздухозаборник с установленным в него фильтром. Этот заборник располагается на карбюраторе, поэтому поток проходит через смесительную камеру.

Движение воздуха при ускорении в диффузоре, обеспечивает образование разрежения в распылительной трубке, из-за чего топливо начинает из него вытекать и подмешиваться в проходящий поток.

Регулировка подаваемой смеси в цилиндры обеспечивается дроссельной заслонкой, которая установлена за диффузором. Путем перекрывания канала, по которому движется топливовоздушная смесь, регулируется скорость движения воздуха. Именно на эту заслонку и воздействует водитель, нажимая на акселератор.

 

Устройство карбюратора подразумевает еще одну заслонку – воздушную. Если дросселем регулируется подаваемое количество уже готовой смеси, то вторая заслонка перекрывает подачу воздуха. А поскольку в цилиндрах разрежение при работающем моторе все же создается, то смесь получается обогащенной, которая характеризуется повышенным содержанием топлива.

Роль дроссельной заслонки в работе карбюратора

Количество топливной смеси, которое поступает в цилиндры, зависти от положения дроссельной заслонки, которая, в свою очередь, связана с педалью газа.

Кроме того, в салоне некоторых карбюраторных автомобилей на приборной панели есть специальный рычаг, которым также можно управлять заслонкой. Обычно его называют «подсос», хотя технически это «устройство холодного пуска». Вытягивая его ручку на себя, водитель прикрывает воздушную заслонку, ограничивая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха готовит для мотора обогащенную горючую смесь, которая и необходима для пуска холодного двигателя.

Для того чтобы двигатель работал на холостом ходу, в карбюраторе есть  специальные дополнительные калиброванные воздушные жиклеры, через которые строго определенное количество воздуха попадает под дроссельную заслонку и смешивается с топливом, даже если убрать ногу с педали газа.

Достоинства и недостатки карбюратора

Основное достоинство карбюратора заключается в его ремонтопригодности. К этому устройству можно приобрести ремкомплект, который можно заменить, в случае необходимости, даже на улице. Однако это достоинство давно уже утратило практический смысл: развитие компьютерной диагностики сделало ремонт инжектора, практически равноценным по простоте занятием. Программу диагностики можно установить даже на iPhone, и успешно считывать ошибки при помощи кабеля-переходника.

Недостатки карбюратора связаны с тем, что он представляет собой достаточно тонкое и сложное механическое устройство. Его необходимо время от времени регулировать, чистить и беречь от засоров. Кроме того, его работа зависит от погодных условий: зимой в нем может замерзнуть конденсат, летом он перегревается, и топливо начинает интенсивно испаряться. В общем и целом можно сказать, что это устройство морально устарело.

Сравнение моновпрыска и карбюраторной системы

Моновпрыском называется одна из разновидностей электронной системы впрыска топлива в двигатель. Можно сказать, что моновпрысковые системы являются своего рода переходной моделью от карбюратора к инжектору.

Впервые моновпрыск был разработан и установлен для самолётов как более современная модификация карбюраторного агрегата, которая исключала «провалы» в подачи топлива во время исполнения фигур в воздухе.

Существенной разницей между моновпрыском и карбюраторной системой можно считать наличие у моновпрыскового устройства компьютерного блока контроля подачи и расхода горючего, а также бензинового насоса и одной форсунки, работающей от электричества. Тип работу моновпрыска аналогичен карбюратору, только с использованием более современных компонентов.

Главным достоинством системы моновпрыска является бесперебойная работа мотора, так как в агрегате постоянно поддерживается минимальное давление в 1 бар. То есть транспортные средства с моновпрыском могут бесперебойной работать при резком обгоне или торможении, когда как карбюраторные механизмы не всегда могут гарантировать стабильность мотора в этих режимах.

К тому же моновпрыск гарантирует повышение мощности силового агрегата засчёт отсутствия провалов в питании.

Однако карбюраторы и по сей день считаются более экономичными устройствами, так как впрыск топлива осуществляется не в одной точке, а по всей камере, что позволяет использовать весь поступающий объём горючего. По этой причине двигатели с карбюраторами легче заводятся в зимнее время.

Таким образом, карбюраторные устройства обладают хорошими характеристиками в плане экономного потребления горючего и возможности запуска в любых климатических условиях. Моновпрыск обеспечивает более стабильную работу мотора и высокие качества мощности автомобиля.

РЕГУЛИРОВКА И ОБСЛУЖИВАНИЕ КАРБЮРАТОРА

При своей сложной конструкции регулировок у карбюратора не так уж и много, и касаются они только системы холостого хода и уровня топлива в камере с поплавком.

Чтобы установить стабильную работу мотора на ХХ, имеются два специальных винта – количества (воздушный) и качества (топливный). Первый представляет собой упорный элемент, которым регулируется степень открытия дросселя для поступления через зазор между ним и стенкой воздуха для создания смеси.

Второй винт – игольчатый, установлен в канал, по которому эмульсия попадает в задроссельный канал. Путем вкручивания и выкручивания изменяется сечение этого канала, и как следствие – количества подаваемой эмульсии.

Недостатком карбюратора является то, что у него имеется большое количество каналов и жиклеров небольшого сечения. Поэтому в процессе эксплуатации загрязняющие элементы, попадающие вместе с воздухом и бензином, оседают в них и закупоривают каналы и жиклеры.

Поэтому важно периодически проводить чистку узла. Сделать это можно вручную, с полной разборкой узла, промывкой и продувкой каналов.

Но последнее время появились специальные чистящие средства. Такие очистители представляют собой особую смесь, которая попадая в каналы обеспечивает отслоение и растворение отложение и смол в каналах, после чего они попадают в цилиндры вместе с топливом и сгорают. Но стоит отметить, что таким средством удается удалить только небольшие засорения. В случае большого количества отложений удалить их можно только вручную.

 

 

 

seite1.ru

Как работает карбюратор?

Современные двигатели используют управляемую электроникой систему, которая называется впрыском топлива (или инжектором), который должен регулировать топливно-воздушную смесь ровно с той минуты, как Вы повернёте ключ и до того времени, когда Вы выключаете двигатель, когда доедете до места назначения. Но пока эти умные гаджеты не были изобретены, практически все двигатели опирались на гениальное устройство по регулированию воздушно-топливной смеси, называемой карбюраторами. Ведь то, сколько именно топлива и воздуха поступает в двигатель, должно изменяться от момента к моменту, в зависимости от того, как быстро Вы едете и множества других факторов. И именно регулированием этого соотношения занимается карбюратор. Давайте поближе взглянем на то, что это такое, как устроен и как работает карбюратор!

Если Вы читали статью о том, как работает двигатель внутреннего сгорания, то Вы знаете, что их работа основана не только на физических механических процессах, но и химических тоже: их работа построена вокруг химической реакции под названием «сгорание», когда Вы сжигаете топливо в окружении воздуха, и, таким образом, превращаете тепловую энергию в механическую, а смесь из топлива и воздуха превращаете не без огромной помощи каталитического нейтрализатора в углекислый газ и воду в качестве выхлопных газов. Но для эффективного сжигания топлива Вы должны использовать много воздуха. Это относится не только к автомобильному двигателю, но и ко всем другим процессам горения: к восковой свече, открытому костру и даже пожару в каком-либо доме.

Так выглядит современный многокомпонентный карбюратор

И да, в случае с костром Вам никогда не придётся беспокоиться о том, что слишком много или слишком мало воздуха поступает в него для его оптимального горения. В случае с пожаром в помещении, напротив, отсутствие воздуха имеет гораздо более важное значение. Кстати, цвет огня покажет Вам, достаточно ли ему кислорода — так, синий цвет огня означает, что он пресыщен кислородом, а красный цвет сигнализирует о его недостатке. Нужно знать, что для двигателя вредно как слишком малое количество воздуха в топливо-воздушной смеси, так и слишком большое его количество.

Что такое карбюратор?

Вот почему бензиновые двигатели спроектированы так, чтобы в цилиндры подавалось всегда нужное количество воздуха, чтобы топливо сгорало должным образом и целиком. Получение правильной топливно-воздушной смеси в каждый нужный определённый момент — это результат работы карбюратора, который представляет собой довольно простую конструкцию: трубку, которая позволяет воздуху и топливу поступать в двигатель через клапаны, смешивая их вместе в различных количествах, чтобы удовлетворить широкий спектр различных дорожных условий. Карбюраторы были придуманы примерно в конце 19-го века, когда они были впервые разработаны автомобильным «пионером» (и учредителем компании Mercedes) Карлом Бенцем (1844-1929). А карбюратор на самом первом мотоцикле Harley Davidson был выполнен из консервной банки — видите, мы не шутим, когда говорим, что карбюратор — это очень простая вещь.

Тем не менее, сегодня карбюраторные автомобили почти не производят, так как в наши времена он попросту стал пережитком прошлого — ему на смену пришли очень умные, управляемые бортовым компьютером чипсеты, называемые инжекторами или системами (независимого) впрыска топливо-воздушной смеси в цилиндры. Однако, с тем, что не забывать о том, что когда-то существовало такое гениальное творение человечества, как карбюратор, и пишется данная статья. Кроме того, есть также возможность переделать карбюраторную систему питания на инжекторную.

Как карбюратор работает?

Карбюраторы немного отличаются по дизайну и сложности между собой в зависимости от конкретного производителя, применяемости в конкретном автомобиле и, конечно же, развития своего производства (ведь карбюраторы устанавливались на машины в течение почти века).

Простейшим (причём, существующим) карбюратором, по существу, является большая вертикальная трубка с потоком воздуха над цилиндрами двигателя со второй горизонтальной трубкой, соединённой с первой с одной стороны и с каналом подачи топлива на другой стороне — посмотрите на рисунок выше. В то время как воздух проходит вниз по первой трубке, он проходит через участок в этой трубке, который значительно уже всей трубки (примерно посередине этой трубки), что заставляет его ускориться и уменьшает его давление. Такой эффект имеет своё научное название — эффект Вентури. Падение давления воздуха создаёт всасывающее действие, и в камеру теперь всасывается топливо.

Воздушный поток заставляет топливо присоединиться к нему, и это именно то, что нам нужно, не правда ли? Но как мы можем регулировать воздушно-топливную смесь? Карбюратор имеет два поворотных клапана выше и ниже показанной на нашем рисунке трубки Вентури. В верхней части находится клапан под названием дроссель, который регулирует то, сколько воздуха может проникать в трубку. Если дроссель закрыт, то поступает очень мало воздуха вниз по трубке, а за счёт эффекта Вентури засасывается больше топлива, так что двигатель получает обогащённую топливную смесь. Это удобно, когда двигатель холодный при первом его запуске и работает довольно медленно.

Внизу нашей трубки — уже ниже её сужения — есть второй клапан, который называется дроссельная заслонка. Чем более открыта дроссельная заслонка, тем больше воздуха проходит через карбюратор и больше топлива он увлекает за собой непосредственно в цилиндры. А большое количество топлива и воздуха, проходящего в двигатель, даёт больше энергии и больше мощности нашему двигателю, и в конечном итоге наша машина едет быстрее. То есть именно открытие дроссельной заслонки заставляет автомобиль ускориться. Дроссель подключен к педали акселератора в автомобиле (или ручке акселератора на руле мотоцикла).

Между тем, в том месте, где топливо входит в вертикальную трубку, устройство карбюратора немного сложнее, чем мы описали его выше. В качестве дополнения к топливной магистрали есть своего рода мини-топливный бак под названием поплавковая камера (маленький бачок с поплавком и игольчатым клапаном внутри). В то время как топливо из поплавковой камеры поступает в карбюратор, логично, что уровень топлива в камере опускается. Внутри камеры поверх топлива плавает специальный поплавок, который падает вместе с уровнем топлива. Когда поплавок опускается ниже определенного уровня, открывается игольчатый клапан, позволяя камере пополнить запасы топлива. После того, как камера снова заполнится топливом, поплавок поднимается и закрывает клапан, в результате чего подача топлива снова отключается. Если Вы видели, как работает сливной бачок унитаза, то, в общем-то, это тот же принцип работы: когда Вы смываете воду из унитаза, бачок опустошается и поплавок опускается вниз, сгибая рачаг, который открывает поступление воды в бачок; а когда бачок снова наполняется до определённого уровня водой, то поднятый поплавок вновь закрывает доступ воды — таким образом, если кто-то Вас спросит, что общего между двигателем и унитазом, Вы знаете, что ответить!

Давайте теперь представим, как работает простейший карбюратор во всех его компонентах:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, предварительно очищаясь воздушным фильтром автомобиля.
  2. Когда двигатель запускается в первый раз, дроссель (синий) может быть установлен так, что почти блокирует верхнюю часть трубки, чтобы уменьшить количество воздуха, поступающего в неё (что даёт большее содержание топлива в топливо-воздушной смеси, поступающей в цилиндры).
  3. В центре трубки воздух проходит через узкую щель под названием Вентури. Это заставляет его его ускориться и вызывает падение его давления.
  4. Падение давления, в свою очередь, создаёт эффект всасывания на топливопроводе (справа), и топливо (оранжевое) попросту втягивается в трубку.
  5. Дроссельная заслонка (зелёная) умеет поворачиваться, чтобы открыть или закрыть трубку. Когда дроссельная заслонка открыта, большое количество воздуха и топлива поступает в цилиндры, и двигатель производит больше мощности, и машина в результате едет быстрее.
  6. Смесь воздуха и топлива поступает в цилиндры.
  7. Топливо (оранжевое) подаётся из мини-топливного бака под названием поплавковая камера.
  8. Когда уровень топлива падает, поплавок в камере падает вместе в ним и открывает клапан в верхней части.
  9. Когда этот клапан открывается, топливо поступает в поплавковую камеру из основного бензобака. Это вновь заставляет топливо вместе с поплавком подниматься и на определённом уровне поднятия поплавок этот закрывает клапан и перекрывает подачу топлива.
Регулировка карбюратора

На самом деле карбюратор работает «нормально» на полном газу. В этом случае дроссельная заслонка параллельна длине трубки, что позволяет максимальному количеству воздуха проходить через карбюратор. Если дроссель закрыт, то поток воздуха создаёт хороший вакуум в трубке Вентури и этот вакуум втягивает дозированное количество топлива через специальное сопло. Вы можете увидеть пару винтов на карбюраторе на фото ниже. Один из этих винтов (с маркировкой «Hi») контролирует, сколько топлива поступает в трубку Вентури на полном газу.

Когда двигатель работает на холостом ходу, дроссель почти закрыт, и это создаёт почти вакуум в трубке. Такой вакуум отлично втягивает в себя топливо через крошечное отверстие, называемое жиклёром. Другой винт из пары обозначен «L» и регулирует количество топлива, которое протекает через жиклёр.

Оба этих винта представляют собой просто игольчатые клапаны. Поворачивая их, Вы регулируете, сколько топлива будет поступать в камеру карбюратора в тех или иных обстоятельствах. Когда Вы регулируете их, Вы напрямую контролируете, сколько топлива проходит через жиклёры и основную трубку.

howcarworks.ru

Принцип работы и устройство карбюратора

На первый взгляд карбюратор может показаться очень сложным устройством. Однако небольшой объём теоретических знаний поможет полностью разобраться с его принципом работы. Что, в свою очередь, позволит самостоятельно выполнять чистку и регулировку карбюратора. Для выполнения этих операций на должном уровне достаточно базовой информации.

Как работает карбюратор

Независимо от модели, принцип работы карбюратора аналогичен. Конструктивно любой карбюратор выполнен по следующей схеме: канал для создания топливовоздушной смеси, в котором есть специальное калибровочное отверстие для входа воздуха, поплавковая камера и выход для готовой смеси.

При работающем моторе во впускном коллекторе (элемент, соединяющий силовой агрегат и топливную систему) создаётся пониженное давление, по отношению к атмосферному. Это приводит к возникновению вакуума в карбюраторе. Благодаря этому в карбюратор, по специальному сужающемуся каналу затягивается воздух и выполняется захват бензина из топливной камеры. В процессе эти ингредиенты смешиваются, что приводит к созданию топливовоздушной смеси, которая воспламеняется в КЗ (камере сгорания) и заставляет двигаться поршни. Количество топлива в готовой смеси зависит от давления, создаваемого в смешивающей камере. Благодаря тому, что камера соединена с атмосферой, из-за разницы давления, бензин поднимается вверх, смешиваясь с воздухом. Далее смесь поступает в камеру сгорания. Сужение прохода ускоряет движение воздуха, что приводит к ещё большему его разряжению.

Подача топлива с воздухом

Управление подачей топлива и воздуха осуществляется педалью газа, она соединена с воздушной заслонкой (ВЗ) и элементом, перекрывающим поплавковую камеру (ПК). Когда педаль свободна, мотор работает на холостом ходу (ХХ). Заслонка почти полностью закрывает калиброванный канал подачи воздуха, а игла проём в топливной камере. Деталь для перекрытия поплавковой камеры выполнена в виде иглы, разделённой на несколько частей, каждая из которых имеет свою толщину. Таким образом, чем выше она поднимается, тем больше происходит подача топлива. Воздушная заслонка работает по такому же принципу, чем шире проём, тем больше поток.

Что такое холостой ход карбюратора — ХХ

Холостой ход можно сравнить с режимом ожидания. Он необходим для стабильного поддержания нужных оборотов в момент, когда автомобиль не едет, чтобы мотор не заглох. В этот случае, воздушная смесь насыщена минимальным количеством топлива, необходимым для поддержания стабильной работы системы.При отпущенной педали газа, игла золотника максимально перекрывает главный канал подачи бензина. Воздушная заслонка остаётся чуть открытой. Проход, через который осуществляется подача бензина, размещён за воздушной заслонкой. Горючая смесь начинает поступать по этому каналу только тогда, когда в карбюраторе есть увеличенное разряжение, которое возникает при сильном открытии воздушной заслонки. Для создания топливовоздушной смеси на ХХ в конструкции предусмотрен дополнительный канал подачи кислорода. В нём есть специальный элемент для регулировки качества горючей смеси. Чем сильнее закручен винт, тем больше смесь насыщается бензином. Увеличиваются обороты холостого хода, и наоборот — откручивание винта снижает их. Таким образом, выполняя регулировку этого винта можно добиться оптимальных опций, повысить экономичность.

Для правильной дозировки ингредиентов горючей смеси, в местах забора устанавливаются жиклёры. Они представляют собой специальный элемент с определённым диаметром прохода, который не позволяет расходовать топлива или воздуха выше установленной нормы. Также жиклёр может выполнять функцию регулировочного винта.

Для чего нужна поплавковая камера в карбюраторе

 

1 — держатель оси поплавка;
2 — язычок поплавка;
3 — поплавок

ПК является одним из основных элементов карбюратора, в котором находится топливо. Уровень жидкости в камере регулируется и контролируется с помощью специального поплавка. К нему прикреплена иголка. Она закрывает канал подачи горючей смеси из бензобака. При уменьшении уровня топлива, поплавок начинает опускаться, а иголка поднимается. При заполнении камеры поплавок поднимается и уровень стабилизируется.

В карбюраторе предусмотрен механизм дополнительного подсоса управления ДЗ. Этот элемент предназначен для ручного обогащения смеси. Для этой функции предусмотрен дополнительный канал, он меньше, чем основной. Управление механизмом подсоса реализовано специальным рычагом на приборной панели. Сначала необходимо вытянуть полностью на себя элемент, тем самым максимально открыть заслонку, по мере прогрева мотора рычаг нужно постепенно вернуть в исходное положение.

Регулировка карбюратора

Регулировка карбюратора может осуществляться только на хорошо прогретом моторе. Независимо от конструкции, принцип выполнения калибровки элементов идентичный.

  • Поплавковая камера. Регулировка и контроль уровня жидкости в ёмкости осуществляется с помощью поплавка, соединённого проволокой с иглой. Уровень необходимого топлива в камере указан в руководстве по эксплуатации конкретной модели автомобиля. Сверьте текущие показатели, замерьте с помощью штангенциркуля высоту зеркала. Если уровень выше нормы, аккуратно возьмите в руку поплавок и прогните его вниз методом механического воздействия на проволоку. Если уровень топлива ниже нормы — поднимите его.
  • Настройка ХХ. Оптимальное количество оборотов на ХХ составляет 800-900 единиц. Закрутите винт качества смеси до упора и выкрутите его на 4-5 оборота обратно. Закрутите до упора винт количества и открутите 3 раза. Включите двигатель, постепенно начните закручивать первый винт, в процессе обороты должны поднять и начаться нестабильная работа мотора. Когда начнётся этап неустойчивости, начните закручивать регулировочный элемент, пока двигатель снова не начнёт работать стабильно. В завершение выполните корректировку винтом количества.
  • Регулировка жиклёров. С помощью подсоса нужно закрыть воздушную заслонку. Хвостовик тяги должен находиться в конце паза штока ПУ карбюратора. При отклонении следует устранить подгибанием тяги. Затем нужно снять крышку, а потом замерить зазор от кромки стенки камеры до ВЗ. Необходимые показатели указаны в руководстве по эксплуатации. Настройка выполняется с помощью регулировочного винта ПУ.

vipwash.ru

Устройство и принцип работы карбюратора ВАЗ

Дорогие друзья, в данном мануале мы попытаемся на пальцах объяснить основные принципы работы любого карбюратора, о его устройстве, с иллюстрациями и достаточно подробными комметариями. Особенно полезной будет эта статья для новичков, которые хотят разобраться в теме. В статье мы рассмотрим следующие моменты:

Режимы работы двигателя и состав горючей смеси, систему холостого хода и переходную систему, устройство поплавковой камеры и принципы ее работы, главную дозирующую систему карбюратора, систему пуска, принцип работы эконостата и многое другое. Ведь от правильной работы всех этих узлов напрямую зависит аппетит вашего авто. Он может быть как выше так и ниже того, который указан в технических характеристиках вашей машины. К примеру расходы Ваз — 2114, 2110, 2112 можете узнать пройдя по ссылке, паспортные расходы семерки ВАЗ-2107 можете глянуть здесь, и т.д. В общем запаситесь терпением, попкорном и приготовьтесь к интересному чтиву.

Режимы работы двигателя и состав горючей смеси

СОСТАВ ГОРЮЧЕЙ СМЕСИ Для работы двигателя внутреннего сгорания необходима смесь топлива с воздухом. В карбюраторных двигателях топливо (бензин) смешивается с воздухом в определенной пропорции вне цилиндров и, частично испарившись, образует горючую смесь. Этот процесс называется карбюрацией, а прибор, приготавливающий такую смесь, — карбюратором. Смесь, пройдя по впускному трубопроводу, попадает в цилиндры двигателя, где смешивается с остатками горячих отработавших газов, образуя рабочую смесь. Частички распыленного топлива при этом испаряются. Для пуска двигателя и его работы на разных режимах, необходим различный состав горючей смеси. Поэтому карбюратор устроен так, что позволяет изменять количественное соотношение распыленного топлива и воздуха в смеси, поступающей в цилиндры двигателя. Для полного сгорания 1 кг топлива необходимо около 15 кг воздуха. Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности. Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет. При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На смеси переобедненной, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры. Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива. Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна. ПУСК ДВИГАТЕЛЯ При пуске холодного двигателя часть распыляемого топлива оседает на стенках впускного трубопровода, а часть испарившегося топлива, попав в цилиндры, конденсируется на стенках. К тому же при низкой температуре воздуха смесеобразование ухудшается, т. к. замедляется испарение бензина. Поэтому для пуска холодного двигателя необходимо, чтобы карбюратор приготовил переобогащенную топливовоздушную смесь. РАБОТА НА ХОЛОСТОМ ХОДУ На холостом ходу частота вращения коленчатого вала двигателя невелика, а дроссельные заслонки карбюратора почти полностью закрыты. Из-за этого вентиляция цилиндров не столь эффективна, по сравнению с работой на средней и высокой частотах вращения коленчатого вала и мало количество горючей смеси, поступающей в двигатель. В рабочей смеси содержится большое количество отработавших (остаточных) газов. Поэтому для устойчивой работы двигателя на холостом ходу необходима обогащенная смесь. РЕЖИМ ЧАСТИЧНЫХ НАГРУЗОК На режиме частичных нагрузок от двигателя не требуется полная мощность. Дроссельные заслонки открыты не полностью, но вентиляция цилиндров хорошая. Поэтому на этом режиме достаточно обедненной горючей смеси. Соотношение развиваемой двигателем мощности к количеству потребляемого топлива позволяет считать режим частичных нагрузок самым экономичным. РЕЖИМ ПОЛНОЙ НАГРУЗКИ На режиме полной нагрузки от двигателя требуется максимальная или близкая к максимальной мощность. Двигатель при этом работает на высоких оборотах, а дроссельные заслонки полностью (или почти полностью) открыты. Для этого режима требуется обогащенная смесь, обладающая повышенной скоростью сгорания. РЕЖИМ РЕЗКОГО УВЕЛИЧЕНИЯ НАГРУЗКИ При работе двигателя в режиме резкого увеличения нагрузки, например при разгоне автомобиля, необходима обогащенная смесь. Но поскольку процесс смесеобразования обладает некоторой инертностью, чтобы предотвратить возникновение «провала» при наборе скорости, требуется дополнительное кратковременное обогащение горючей смеси. Для этого дополнительное топливо впрыскивается непосредственно в смесительную камеру карбюратора.

ОСНОВНЫЕ СИСТЕМЫ КАРБЮРАТОРА

Современные карбюраторы оснащены десятком различных систем и устройств, которые имеют разветвленную сеть каналов, многочисленные калиброванные отверстия, сложные рычажные передачи и пневматические камеры. Сразу разобраться в этом хитросплетении непросто. Поэтому полезно рассмотреть все основные системы по отдельности на примере упрощенных схем. И начать следует с принципа работы и устройства простейшего карбюратора.

Конструкция простейшего карбюратора

Для работы бензинового двигателя необходимо во всасываемый воздух добавлять топливо, которое затем сгорает в цилиндре при рабочем ходе поршня. Чтобы топливо надежно воспламенялось и полностью сгорало, необходимо тщательно перемешивать его с воздухом и при этом выдерживать оптимальный со-став горючей смеси на всех режимах работы двигателя. Эти функции выполняет карбюратор, соединенный впускным трубо-проводом с цилиндрами двигателя. Простейший карбюратор состоит из двух камер: поплавковой и смесительной. Процесс приготовления горючей смеси продолжается на всем пути движения топлива и воздуха по впускному тракту, вплоть до цилиндров, но начинается с распы-ления топлива в смесительной ка-мере карбюратора. Для этого в смесительной камере установлен распылитель в виде трубки. Срез трубки выведен в центр диффузора камеры. Диффузор — это участок сужения смесительной камеры. Скорость воздушного потока в диффузоре возрастает, и у распылителя возникает разрежение. Под действием этого разрежения топливо вытекает из распылителя и интенсивно перемешивается с воздухом. В распылитель топливо поступает из поплавковой камеры, с которой он связан каналом. В канале установлен жиклер — пробка со сквозным отверстием определенных размеров и формы. Жиклер ограничивает поступление топлива в рас-пылитель. Одно из условий нормальной работы карбюратора — правильная установка уровня топлива в поплавковой камере. Поддерживается уровень топлива в камере при помощи поплавкового механизма с игольчатым клапаном. Топливо подается в поплавковую камеру по топливо-проводу. По мере заполнения камеры поплавок поднимается, а игла запирает отверстие клапана, при этом вытесняемый топливом воздух выводится наружу через специальное отверстие. Поплавковая камера и распылитель представляют собой сообщающиеся сосуды. Уровень топлива в поплавковой камере устанавливается так, чтобы он находился чуть ниже среза распылителя. При повышенном уровне топливо будет выходить из распылителя, переобогащая смесь, при пониженном — поступление топлива в распылитель недостаточно, в результате чего образуется сильно обедненная горючая смесь. Для того чтобы изменять состав смеси, в смесительной камере над диффузором установлена воздушная заслонка. По мере закрывания воздушной заслонки смесь будет обогащаться. Чрезмерное прикрывание заслонки приведет к переобогащению смеси и остановке двигателя. Для регулировки количества топливовоздушной смеси, поступающей в цилиндры, в нижней части смесительной камеры установлена дроссельная заслонка. Когда воздушная и дроссельная заслонки полностью открыты, сопротивление потоку воздуха минимально. Простейший карбюратор готовит горючую смесь оптимального состава только в определенном диапазоне частот вращения коленчатого вала. Диапазон зависит от пропускной способности жиклера, сечения диффузора, уровня топлива и положения дроссельной заслонки. Автомобильный двигатель должен работать в широком диапазоне частот вращения коленчатого вала и при постоянно изменяющейся нагрузке. Для приготовления смеси оптимального состава на всех возможных режимах работы автомобильные карбюраторы оборудованы дополнительными системами.

Главная дозирующая система

Главная дозирующая система карбюратора предназначена для подачи основного количества топлива на всех режимах работы двигателя, кроме режима холостого хода. При этом на средних нагрузках она должна обеспечивать приготовление требуемого количества обедненной смеси приблизительно постоянного состава. В простейшем карбюраторе по мере открытия дроссельной заслонки увеличение расхода воздуха, проходящего через диффузор, про-водит медленнее, чем увеличение расхода топлива, вытекающего из распылителя. Горючая смесь становится богатой. Чтобы исключить переобогащение смеси, необходимо компенсировать ее состав воздухом в зависимости от степени открытия дроссельной заслонки. В карбюраторе такое возмещение осуществляет главная дозирующая система. В карбюраторах «Солекс» компенсация осуществляется пневматическим торможением: топливо в распылитель поступает не непосредственно из поплавковой камеры, а через эмульсионный колодец — вертикальный канал, в котором установлена эмульсионная трубка. Стенки трубки имеют отверстия для выхода воздуха, поступающего в нее сверху через воздушный жиклер. Поступление топлива в эмульсионный колодец определяется топливным жиклером. В эмульсионном колодце топливо смешивается с воздухом, выходящим из отверстий эмульсионной трубки. В результате в распылитель попадает топливная эмульсия, а не чистое топливо. По мере открытия дроссельной заслонки в диффузоре увеличивается разрежение и возрастает истечение эмульсии из распылителя. Одновременно растет поступление воздуха в эмульсионный колодец через воздушный жиклер, из за чего уменьшается поступление топлива из поплавковой камеры через топливный жиклер. Количество топлива, проходящего через жиклер, соответствует поступающему в диффузор количеству воздуха, что и обеспечивает компенсацию состава смеси. Требуемый состав горючей смеси задается подбором проходных сечений топливного и воздушного жиклеров, а также типом эмульсионной трубки.

СБАЛАНСИРОВАННАЯ ПОПЛАВКОВАЯ КАМЕРА

В простейшем карбюраторе поплавковая камера связана с атмосферой через отверстие в крышке. В процессе эксплуатации по мере загрязнения воздушного фильтра в диффузоре такого карбюратора будет возрастать разрежение и, следовательно, смесь начнет обогащаться. Чтобы исключить влияние загрязнения воздушного фильтра на состав горючей смеси, внутренняя полость поплавковой камеры соединена ка-налом с горловиной карбюратора.

Система холостого хода и переходная система

Для. работы двигателя на холостом ходу с минимальной частотой вращения коленчатого вала требуется малое количество горючей смеси. Следовательно, дроссельная заслонка должна быть почти полностью закрыта. При этом разрежение в диффузоре недостаточно для вступления в работу главной дозирующей системы. Поэтому карбюратор дополнительно оборудован системой холостого хода, которая готовит топливовоздушную смесь в количестве, обеспечивающем устойчивую работу двигателя при закрытой дроссельной заслонке. Каналы системы холостого хода связывают задроссельное пространство (полость впускного трубопровода) с эмульсионным ней частью смесительной камеры. При работе двигателя на холостом ходу под дроссельной заслонкой об-разуется высокое разрежение. Под действием разрежения топливо из эмульсионного колодца проходит в топливный канал холостого хода, где смешивается с воздухом, поступающим по воздушному каналу из верхней части смесительной камеры. Соотношение топлива и воздуха в эмульсии определяется пропускной способностью топливного и воздушного жиклеров, которые установлены в каналах холостого хода. Далееэмульсия поступает в задроссельное пространство, где смешивается с воздухом, проходящим через зазор между стенкой камеры и заслонкой. Зазор регулируется упорным винтом «количества»(SOLEX). Количество топливной эмульсии, проходящее по каналу в задросельное пространство, регулируется винтом с конусообразным наконечником (винтом «качества»). При заворачивании винта проходное сечение канала уменьшается. И наоборот. При плавном открытии дроссельной заслонки расход воздуха через смесительную камеру увеличивается, а количество поступающей эмульсии остается на прежнем уровне. Разрежение в диффузоре при этом еще недостаточно для вступления в работу главной дозирующей системы. В результате смесь обедняется и в работе двигателя наблюдается «провал». Для обеспечения плавного перехода от холостого хода к режиму средней нагрузки служит переходная система, которая объединена с системой холостого хода. Канал переходной системы соединяет эмульсионный канал системы холостого хода снаддроссельным пространством смесительной камеры. Выходное отверстие канала расположено таким образом, что, после приоткрытия дроссельной заслонки, оно оказывается в зоне разрежения; через него поступает дополнительное количество эмульсии в смесительную камеру, сглаживая переход от одного режима работы двигателя к другому. На холостом ходу, когда дроссельная заслонка закрыта, часть воздуха через канал переходной системы подмешивается к топливной эмульсии. Изменение состава смеси компенсируется подбором жиклеров. При заворачивании винта «количества» дроссельная заслонка приоткрывается. В результате расход воздуха через канал переход ной системы уменьшается, а через зазор между стенками смесительной камеры и заслонкой увеличивается. Количество горючей смеси, поступающей в двигатель, увеличивается, и частота вращения коленчатого вала возрастает. При отворачивании винта заслонка закрывается и частота вращения коленчатого вала снижается.

Ускорительный насос

Главная дозирующая система обеспечивает бесперебойную работу двигателя только при очень плавном открытии дроссельной заслонки. При резком открытии заслонки (например, для интенсивного разгона автомобиля) в первый момент процесс смесеобразования нарушается. Чтобы исключить «провал» в работе двигателя на этом режиме, карбюратор оснащен специальным устройством — ускорительным насосом. Он предназначен для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки. На карбюраторах широко применяется ускорительный насос диафрагменного типа с приводом от оси дроссельной заслонки. При открытии заслонки кулачок, механически связанный с ее осью, поворачивается и нажимает толкатель диафрагмы. Когда дроссельная заслонка закрывается, кулачок перестает воздействовать на толкатель. Диафрагма под действием возвратной пружины перемещается в исходное положение, создавая разрежение в полости насоса. Шарик нагнетательного клапана при этом закрывает отверстие в колодце под распылителем, шарик всасывающего клапана пропускает топливо в насос. Бензин из поплавковой камеры проходит через всасывающий клапан, заполняя полость насоса. При резком нажатии педали «газа», кулачок давит на телескопический толкатель, сжимая его пружину. При этом шарик нагнетательного клапана под давлением топлива приподнимается, открывая путь топливу из полости насоса в распылитель. Резкого перемещения диафрагмы не происходит, т.к. топливо не может быстро пройти через малое выходное отверстие распылителя. Поскольку пружина толкателя жестче возвратной пружины диафрагмы, первая, преодолевая сопротивление последней, перемещает диафрагму, вытесняя порцию топлива через нагнетательный клапан и распылитель в смесительную камеру карбюратора. Процесс впрыскивания получается растянутым по времени до нескольких секунд. Этим обеспечивается устойчивая работа двигателя при ускорении автомобиля, и, кроме того, диафрагма предохраняется от разрыва под действием давления топлива.

Система пуска

При пуске двигателя частота вращения коленчатого вала невелика, разрежение во впускной системе мало, и бензин плохо испаряется. К тому же, как уже было отмечено ранее, на холодном двигателе, особенно при низкой температуре окружающего воздуха, большая часть образовавшихся паров топлива конденсируется во впускном тракте. Поэтому для стабильного пуска двигателя необходимо приготовить в карбюраторе заведомо переобогащенную топливовоздушную смесь. Для этого следует закрыть воздушную заслонку и приоткрыть дроссельную. Тогда в диффузоре создается разрежение, достаточное для вытекания необходимого количества топлива из распылителя даже при медленном вращении коленчатого вала. Образуется рабочая смесь, пригодная для пуска двигателя. Но как только в цилиндрах появятся первые вспышки, чтобы двигатель не заглох от пере-обогащения, необходимо приоткрыть воздушную заслонку, открывая путь воздуху в диффузор. Для выполнения этих операций карбюратор дополнен специальным пусковым устройством. На карбюраторах двигателей отечественных автомобилей широко применяется пусковое устройство с ручным управлением. Оно состоит из воздушной заслонки, автоматического устройства ее приоткрывания и элементов привода. Воздушную заслонку водитель закрывает из салона автомобиля при помощи рукоятки, которая связана тягой с приводом заслонки. Привод обеспечивает заслонке возможность слегка приоткрываться, а возвратная пружина стремится удержать ее в закрытом положении. На карбюраторе установлено устройство, автоматически приоткрывающее воздушную заслонку на необходимую величину, что предотвращает переобогащение горючей смеси сразу после пуска. Устройство состоит из камеры с диафрагмой, пружины и тяги. Камера каналом связана с задроссельным пространством карбюратора. С началом устойчивой работы двигателя за дроссельной заслонкой происходит резкое увеличение разрежения, откуда по каналу оно передается в камеру. Диафрагма, преодолевая сопротивление пружины, перемещается и через тягу приоткрывает воздушную заслонку, обедняя смесь. Благодаря тому что заслонка закреплена на оси несимметрично, под действием разрежения, в смесительной камере она стремится открыться, «помогая» пусковому устройству. Воздушная заслонка связана с дроссельной заслонкой механизмом, обеспечивающим приоткрывание дроссельной заслонки при полном закрытии воздушной. Величина приоткрывания дроссельной заслонки должна обеспечить стабильную работу холодного двигателя при прогреве. По мере прогрева двигателя водитель вручную открывает воздушную заслонку и прикрывает дроссельную, снижая частоту вращения коленчатого вала до минимально устойчивой.

Экономайзер мощностных режимов

Для получения от двигателя максимальной мощности необходима обогащенная горючая смесь. Для ее приготовления карбюратор оборудован специальной системой, называемой экономайзером мощностных режимов. Система обеспечивает поступление дополнительного топлива в распылитель, минуя главный топливный жиклер. Для включения экономайзера мощностных режимов применяется пневматический или механический привод. Пневматическийпривод срабатывает при падении разрежения в смесительной камере, а не по мере открывания дроссельной заслонки. Это дает возможность в нужной степени обогащать смесь при разгоне автомобиля, обеспечивая хорошую приемистость, и сохранять обедненную смесь при равномерном движении, обеспечивая экономичность. При прикрытой дроссельной заслонке разрежение из задроссельного пространства поступает по каналу к диафрагме экономайзера. При этом диафрагма сжимает возвратную пружину, а ее толкатель не касается шарика клапана экономайзера, и клапан закрыт. При открытии дроссельной заслонки разрежение под ней (соответственно и у диафрагмы) уменьшается. Под действием пружины диафрагма смещается, и ее толкатель, утапливая шарик клапана, открывает канал экономайзера. Дополнительное топливо из поплавковой камеры поступает в распылитель главной дозирующей системы, обогащая смесь.

Эконостат

Эконостат предназначен для дополнительного обогащения горючей смеси на режимах максимальных нагрузок при высокой частоте вращения коленчатого вала. Эконостат — это распылитель, установленный в самой верхней части смесительной камеры, над диффузором. Топливо в него подается непосредственно из поплавковой камеры по каналу, в котором установлен топливный жиклер, предотвращающий переобогащение горючей смеси. Иногда, для более тонкой настройки экономайзера, в верхнюю часть канала дополнительно устанавливается воздушный жиклер. Через него подводится воздух, который смешивается в канале с топливом. Поскольку выходное отверстие распылителя расположено в зоне низкого разрежения, экономайзер вступает в работу только при полном открывании дроссельной заслонки. При этом частота вращения коленчатого вала должна быть достаточно высокой, чтобы в зоне выходного отверстия распылителя возникло разрежение, достаточное для подъема топлива в канале до уровня распылителя. Поступающее через распылитель топливо смешивается с потоком топливо-воздушной смеси, дополнительно обогащая ее.

Двухкамерный карбюратор

Для улучшения смесеобразования и распределения горючей смеси по цилиндрам необходимо обеспечить низкое сопротивление движению воздуха через диффузор карбюратора при больших нагрузках и поддерживать достаточное разрежение в нем при малых нагрузках. Этим требованиям в наибольшей степени удовлетворяет конструкция двухкамерного карбюратора с последовательным включением камер. Первая камера — основная — обеспечивает работу двигателя на режимах холостого хода, а также при малых и средних нагрузках. Вторая — дополнительная — включается в работу при больших нагрузках. Привод дроссельной заслонки второй камеры может быть механическим или пневматическим. В первом случае начало открывания заслонки второй камеры происходит при определенном угле открытия дроссельной заслонки первой камеры. Во втором случае момент открывания зависит от величины разрежения в смесительных камерах. 

www.vazdriver.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *