На какой скорости: Как переключать передачи на механической КПП?

Содержание

На какой скорости нужно проезжать лужи, чтобы не потерять управление: полезные советы для автомобилистов

Статья

На какой скорости нужно проезжать лужи, чтобы не потерять управление?

В межсезонье и даже зимой на дорогах нередки лужи. Мокрый снег тает и заполняет водой низины на асфальтовом полотне. Если попасть в них на большой скорости, то жди беды.

Колеса с одного бока машины вязнут в воде и испытывают дополнительное сопротивление, в то время как другие колеса остаются на сухой поверхности. Тем самым на автомобиль начинает действовать разворачивающий момент, отклоняющий траекторию движения в одну или другую сторону. Строительные нормы обязывают делать середину дороги выпуклой, чтобы отводить воду. Поэтому лужи в основном скапливаются по краям.

В дождь и в мокрый снег опасна асфальтовая колея. По ней буквально текут ручьи, и автомобили, попадающие колесами в эти затопленные ложбины, выбивают из них гигантские брызги. Колеса всплывают на водной глади и теряют связь с поверхностью. Этот эффект получил название аквапланирования. Примерно так же плоские камешки начинают скользить и прыгать, если с силой бросить их под острым углом к поверхности реки. По такому же принципу работают водные лыжи.

Эффект аквапланирования опасен не сам по себе, а теми ошибками, которые допускает водитель, когда чувствует потерю управляемости. Представим себе банальную ситуацию. Машина влетает в глубокую лужу примерно на 100 км/ч. Она с шумом разбрасывает брызги, колеса всплывают, как на водных лыжах, и автомобиль отрывается от асфальта. Человек пытается управлять, крутит руль, но ничего не происходит. Это пугает, и водитель поворачивает руль на больший угол. В итоге колеса становятся , и как только аквапланирование заканчивается, машину мгновенно бросает на соседнюю полосу.

Этот маневр настолько дезориентирует водителя, что он может бросить руль и ударить по тормозам. Другие же, пытаясь бороться с машиной, активно крутят руль, да так сильно, что машина совсем перестает слушаться и уходит в занос. В общем, хаотичные действия водителя способны привести к аварии. Как же действовать при аквапланировании?

Нужно помнить, что эффект аквапланирования зависит от нескольких факторов: от скорости и площади пятна контакта колес, а также от массы автомобиля. Среднеразмерный седан класса С «всплывает» при скорости около 63 км/ч и испытывает затруднения с управляемостью на расстоянии около 3–4 метров.

Большие автомобили класса D испытывают эффект аквапланирования на 65–67 км/ч, но за счет идеальной развесовки «проплавают» дальше. К примеру, премиальные BMW или Audi могут глиссировать на метр дальше за счет равномерного распределения массы.

Тем самым по мокрой дороге, где возможно образование глубоких луж, лучше не ехать свыше 80 км/ч. Эту скорость можно легко сбросить резким торможением перед лужей, если она неожиданно появится на пути. Главное, не штурмовать водоем на скорости свыше 60 км/ч.

Но если это произошло и начался процесс аквапланирования, то паниковать не стоит. Что ни делай, автомобиль будет скользить прямо. Важно, чтобы он выехал из лужи столь же прямо, как и вошел туда. Поэтому оставляем руль в покое и дожидаемся окончания аквапланирования. Как только машина сбросит скорость, пробьет водную пленку и вновь уцепится за асфальт, можно маневрировать и тормозить.

При этом важно, чтобы колеса были хорошо накачаны до рекомендованных производителем значений и имели неизношенные покрышки с глубиной протектора не менее 4 мм для зимних шин и не менее 1,5 мм для летних. Иначе канавки будут плохо отводить воду, и шины начнут скользить на мокрой дороге и без аквапланирования.

Автор: Владимир Гаврилов

ПДД РФ, 10. Скорость движения \ КонсультантПлюс

ПДД РФ, 10. Скорость движения

10.1. Водитель должен вести транспортное средство со скоростью, не превышающей установленного ограничения, учитывая при этом интенсивность движения, особенности и состояние транспортного средства и груза, дорожные и метеорологические условия, в частности видимость в направлении движения. Скорость должна обеспечивать водителю возможность постоянного контроля за движением транспортного средства для выполнения требований Правил.

При возникновении опасности для движения, которую водитель в состоянии обнаружить, он должен принять возможные меры к снижению скорости вплоть до остановки транспортного средства.

10.2. В населенных пунктах разрешается движение транспортных средств со скоростью не более 60 км/ч, а в жилых зонах, велосипедных зонах и на дворовых территориях не более 20 км/ч.

(в ред. Постановлений Правительства РФ от 24.01.2001 N 67, от 04.12.2018 N 1478)

(см. текст в предыдущей редакции)

Примечание. По решению органов исполнительной власти субъектов Российской Федерации может разрешаться повышение скорости (с установкой соответствующих знаков) на участках дорог или полосах движения для отдельных видов транспортных средств, если дорожные условия обеспечивают безопасное движение с большей скоростью. В этом случае величина разрешенной скорости не должна превышать значения, установленные для соответствующих видов транспортных средств на автомагистралях.

(примечание в ред. Постановления Правительства РФ от 14.12.2005 N 767)

(см. текст в предыдущей редакции)

10.3. Вне населенных пунктов разрешается движение:

мотоциклам, легковым автомобилям и грузовым автомобилям с разрешенной максимальной массой не более 3,5 т на автомагистралях — со скоростью не более 110 км/ч, на остальных дорогах — не более 90 км/ч;

(в ред. Постановления Правительства РФ от 24.03.2017 N 333)

(см. текст в предыдущей редакции)

автобусам, в которых места для сидения пассажиров оборудованы ремнями безопасности, предназначенным для перевозки исключительно сидящих пассажиров, — не более 90 км/ч, другим автобусам — не более 70 км/ч;

(в ред. Постановления Правительства РФ от 06.10.2022 N 1769)

(см. текст в предыдущей редакции)

легковым автомобилям при буксировке прицепа, грузовым автомобилям с разрешенной максимальной массой более 3,5 т на автомагистралях — не более 90 км/ч, на остальных дорогах — не более 70 км/ч;

(в ред. Постановления Правительства РФ от 06.10.2022 N 1769)

(см. текст в предыдущей редакции)

грузовым автомобилям, перевозящим людей в кузове, — не более 60 км/ч;

автобусам, осуществляющим организованные перевозки групп детей, — не более 60 км/ч;

(в ред. Постановлений Правительства РФ от 24.01.2001 N 67, от 06.10.2022 N 1769)

(см. текст в предыдущей редакции)

абзац исключен. — Постановление Правительства РФ от 24.01.2001 N 67.

(см. текст в предыдущей редакции)

Примечание. По решению собственников или владельцев автомобильных дорог может разрешаться повышение скорости на участках дорог для отдельных видов транспортных средств, если дорожные условия обеспечивают безопасное движение с большей скоростью. В этом случае величина разрешенной скорости не должна превышать значения 130 км/ч на дорогах, обозначенных знаком 5.1, и 110 км/ч на дорогах, обозначенных знаком 5.3.

(примечание введено Постановлением Правительства РФ от 23.07.2013 N 621)

10. 4. Транспортным средствам, буксирующим механические транспортные средства, разрешается движение со скоростью не более 50 км/ч.

Тяжеловесным транспортным средствам, крупногабаритным транспортным средствам и транспортным средствам, осуществляющим перевозки опасных грузов, разрешается движение со скоростью, не превышающей скорости, указанной в специальном разрешении, при наличии которого в соответствии с законодательством об автомобильных дорогах и о дорожной деятельности допускается движение по автомобильным дорогам таких транспортных средств.

(в ред. Постановления Правительства РФ от 26.03.2020 N 341)

(см. текст в предыдущей редакции)

(п. 10.4 введен Постановлением Правительства РФ от 24.01.2001 N 67)

10.5. Водителю запрещается:

превышать максимальную скорость, определенную технической характеристикой транспортного средства;

превышать скорость, указанную на опознавательном знаке «Ограничение скорости», установленном на транспортном средстве;

(в ред. Постановления Правительства РФ от 16.02.2008 N 84)

(см. текст в предыдущей редакции)

создавать помехи другим транспортным средствам, двигаясь без необходимости со слишком малой скоростью;

резко тормозить, если это не требуется для предотвращения дорожно-транспортного происшествия.

———————————

<*> Сноска исключена с 1 июля 2008 года. — Постановление Правительства РФ от 16.02.2008 N 84.

(см. текст в предыдущей редакции)

Скорость против скорости

Как расстояние и перемещение имеют совершенно разные значения (несмотря на их сходство), так и скорость и скорость. Скорость — это скалярная величина, которая относится к тому, «как быстро движется объект». Скорость можно рассматривать как скорость, с которой объект преодолевает расстояние. Быстро движущийся объект имеет высокую скорость и преодолевает относительно большое расстояние за короткий промежуток времени. Сравните это с медленно движущимся объектом с низкой скоростью; он покрывает относительно небольшое расстояние за то же время. Объект без движения имеет нулевую скорость.

 

Скорость как векторная величина

Скорость — это векторная величина, которая относится к «скорости, с которой объект меняет свое положение». Представьте себе человека, который быстро движется — один шаг вперед и один шаг назад — и всегда возвращается в исходное исходное положение. Хотя это может привести к безумной активности, это приведет к нулевой скорости. Поскольку человек всегда возвращается в исходное положение, движение никогда не приведет к изменению положения. Поскольку скорость определяется как скорость изменения положения, это движение приводит к нулевой скорости. Если человек в движении хочет максимизировать свою скорость, то этот человек должен приложить все усилия, чтобы максимизировать величину, на которую он смещается от своего исходного положения. Каждый шаг должен быть направлен на то, чтобы продвинуть этого человека дальше от того, с чего он начал. Наверняка человек ни в коем случае не должен менять направления и начинать возвращаться в исходное положение.

Скорость является векторной величиной. Таким образом, скорость знает направление . При оценке скорости объекта необходимо следить за направлением. Было бы недостаточно сказать, что объект имеет скорость 55 миль в час. Необходимо включить информацию о направлении, чтобы полностью описать скорость объекта. Например, вы должны описать скорость объекта как 55 миль/ч, восток . Это одно из существенных различий между скоростью и скоростью. Скорость является скалярной величиной и не следить за направлением ; скорость является векторной величиной и знает направление .

 

Определение направления вектора скорости

Задача описания направления вектора скорости проста. Направление вектора скорости совпадает с направлением движения объекта. Не имеет значения, ускоряется объект или замедляется. Если объект движется вправо, то его скорость описывается как направленная вправо. Если объект движется вниз, то его скорость описывается как нисходящая. Таким образом, самолет, летящий на запад со скоростью 300 миль/час, имеет скорость 300 миль/час на запад. Обратите внимание, что скорость не имеет направления (это скаляр), а скорость в любой момент времени — это просто значение скорости с направлением.

 

Расчет средней скорости и средней скорости

Когда объект движется, его скорость часто меняется. Например, во время обычной поездки в школу происходит много изменений скорости. Вместо того, чтобы измеритель скорости поддерживал устойчивые показания, стрелка постоянно движется вверх и вниз, отражая остановку и запуск, ускорение и замедление. В один момент машина может двигаться со скоростью 50 миль в час, а в другой момент она может остановиться (т. е. 0 миль в час). Тем не менее, во время поездки в школу человек может проехать в среднем 32 мили в час. Среднюю скорость во время всего движения можно рассматривать как среднее значение всех показаний спидометра. Если бы показания спидометра можно было собирать с интервалом в 1 секунду (или с интервалом в 0,1 секунды, или.
..), а затем усреднять вместе, можно было бы определить среднюю скорость. Теперь это будет много работы. И, к счастью, есть короткий путь. Читай дальше.

 

Средняя скорость во время движения часто рассчитывается по следующей формуле:

В отличие от этого, средняя скорость часто вычисляется по этой формуле

Давайте начнем реализацию нашего понимания этих формул со следующей задачи:

В: Во время отпуска Лиза Карр преодолела в общей сложности 440 миль. Ее поездка заняла 8 часов. Какова была ее средняя скорость?

Чтобы вычислить ее среднюю скорость, мы просто делим пройденное расстояние на время в пути.

Это было просто! Лиза Карр в среднем разгонялась до 55 миль в час. Возможно, она не двигалась с постоянной скоростью 55 миль в час. Она, несомненно, была остановлена ​​в какой-то момент времени (возможно, для перерыва в ванной или на обед), и, вероятно, в другие моменты времени она двигалась со скоростью 65 миль в час. Тем не менее, она развивала среднюю скорость 55 миль в час. Приведенная выше формула представляет собой сокращенный метод определения средней скорости объекта.


Средняя скорость по сравнению с мгновенной скоростью

Поскольку движущийся объект часто меняет свою скорость во время движения, принято различать среднюю скорость и мгновенную скорость. Различие заключается в следующем.

  • Мгновенная скорость — скорость в любой данный момент времени.
  • Средняя скорость — среднее значение всех мгновенных скоростей; находится просто по соотношению расстояние/время.

Вы можете думать о мгновенной скорости как о скорости, которую показывает спидометр в любой данный момент времени, а о средней скорости как о среднем значении всех показаний спидометра в ходе поездки. Поскольку задача усреднения показаний спидометра была бы достаточно сложной (а может быть, и опасной), среднюю скорость чаще рассчитывают как отношение расстояния к времени.

Движущиеся объекты не всегда движутся с неустойчивой и меняющейся скоростью. Иногда объект будет двигаться с постоянной скоростью с постоянной скоростью. То есть объект будет преодолевать одно и то же расстояние каждый регулярный интервал времени. Например, бегун по пересеченной местности может бежать с постоянной скоростью 6 м/с по прямой в течение нескольких минут. Если ее скорость постоянна, то расстояние, пройденное за каждую секунду, одинаково. Бегун будет преодолевать расстояние 6 метров каждую секунду. Если бы мы могли измерять ее положение (расстояние от произвольной начальной точки) каждую секунду, то заметили бы, что положение меняется на 6 метров каждую секунду. Это будет резко контрастировать с объектом, который меняет свою скорость. Объект с изменяющейся скоростью будет перемещаться на разное расстояние каждую секунду. В приведенных ниже таблицах данных изображены объекты с постоянной и изменяющейся скоростью.

Теперь давайте снова рассмотрим движение этого учителя физики. Учитель физики проходит 4 метра на восток, 2 метра на юг, 4 метра на запад и, наконец, 2 метра на север. Все движение длилось 24 секунды. Определить среднюю скорость и среднюю скорость.

Учитель физики прошел 12 метров за 24 секунды; таким образом, ее средняя скорость составила 0,50 м/с. Однако, поскольку ее перемещение равно 0 м, ее средняя скорость равна 0 м/с. Помните, что смещение относится к изменению положения, а скорость зависит от этого изменения положения. В этом случае движения учителя происходит изменение положения на 0 метров и, следовательно, средняя скорость равна 0 м/с.

Вот еще один пример, аналогичный тому, что мы видели ранее при обсуждении расстояния и смещения. На приведенной ниже диаграмме показано положение лыжника в разное время. В каждый из указанных моментов времени лыжник поворачивается и меняет направление движения. Другими словами, лыжник движется от A к B, затем C и D.

Используйте диаграмму, чтобы определить среднюю скорость и среднюю скорость лыжника в течение этих трех минут.

Когда закончите, нажмите кнопку, чтобы просмотреть ответ.


В качестве последнего примера рассмотрим футбольного тренера, расхаживающего взад-вперед вдоль боковой линии. На приведенной ниже диаграмме показаны несколько позиций тренера в разное время. В каждой отмеченной позиции тренер делает «разворот» и движется в противоположном направлении. Другими словами, тренер перемещается из позиции A в B, затем в C и затем в D.

Какова средняя скорость и средняя скорость тренера? Когда закончите, нажмите кнопку, чтобы просмотреть ответ.


В заключение, скорость и скорость являются кинематическими величинами, которые имеют совершенно разные определения. Скорость, будучи скалярной величиной, представляет собой скорость, с которой объект преодолевает расстояние. Средняя скорость — это расстояние (скалярная величина) за отношение времени. Скорость

не знает направления . С другой стороны, скорость — векторная величина; это с учетом направления . Скорость – это скорость изменения положения. Средняя скорость — это смещение или изменение положения (векторная величина) за отношение времени.

 

Мы хотели бы предложить… Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактива Name That Motion. Он находится в разделе «Интерактивная физика» и позволяет учащемуся применять понятия скорости, скорости и ускорения.


Посетите назовите это движение.

 

Следующий раздел:

Перейти к следующему уроку:

Как быстро движется свет? | The Speed ​​of Light

Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать комиссионные. Вот как это работает.

Скорость света — это предел скорости всего в нашей Вселенной. Или это? (Изображение предоставлено: Гетти/Юичиро Чино)

Скорость света в вакууме равна 299 792 458 метров (983 571 056 футов) в секунду. Это около 186 282 миль в секунду — универсальная постоянная, известная в уравнениях как «с» или скорость света.

Согласно специальной теории относительности физика Альберта Эйнштейна , на которой основана большая часть современной физики, ничто во Вселенной не может двигаться быстрее света. Теория утверждает, что по мере того, как материя приближается к скорости света, масса материи становится бесконечной. Это означает, что скорость света действует как ограничение скорости на всем

вселенная . Скорость света настолько неизменна, что, согласно Национального института стандартов и технологий США, она используется для определения международных стандартных измерений, таких как метр (и, соответственно, миля, фут и дюйм). С помощью некоторых хитроумных уравнений он также помогает определить килограмм и единицу измерения температуры Кельвин .

Но, несмотря на репутацию скорости света как универсальной константы, ученые и писатели-фантасты проводят время, размышляя о путешествиях со скоростью, превышающей скорость света. До сих пор никому не удавалось продемонстрировать настоящий варп-двигатель, но это не замедлило нашего коллективного стремления к новым историям, новым изобретениям и новым областям физики.

Связанный: Специальная теория относительности выдерживает испытание высокой энергией

Что такое световой год?

A l световой год — это расстояние, которое свет может пройти за один год — около 6 триллионов миль (10 триллионов километров). Это один из способов, которым астрономы и физики измеряют огромные расстояния в нашей Вселенной.

Свет проходит от луны к нашим глазам примерно за 1 секунду, что означает, что луна находится на расстоянии примерно 1 световой секунды. Солнечному свету требуется около 8 минут, чтобы достичь наших глаз, поэтому 9Солнце 0117 находится примерно в 8 световых минутах от нас. Свету от Альфа Центавра , которая является ближайшей звездной системой к нашей, требуется примерно 4,3 года, чтобы добраться сюда, поэтому Альфа Центавра находится на расстоянии 4,3 световых года.

«Чтобы получить представление о величине светового года, возьмите окружность Земли (24 900 миль), разложите ее по прямой линии, умножьте длину линии на 7,5 (соответствующее расстояние равно одному световому -секунда), затем поместите 31,6 миллиона одинаковых строк встык», — Исследовательский центр Гленна НАСА 9.0117 говорит на своем веб-сайте . «В результате расстояние составляет почти 6 триллионов (6 000 000 000 000) миль!»

Звезды и другие объекты за пределами нашей солнечной системы находятся на расстоянии от нескольких световых лет до нескольких миллиардов световых лет. И все, что астрономы «видят» в далекой Вселенной, буквально является историей. Когда астрономы изучают объекты, находящиеся далеко, они видят свет, который показывает объекты в том виде, в каком они существовали в то время, когда свет покинул их.

Этот принцип позволяет астрономам увидеть вселенную такой, какой она была после Большой взрыв , который произошел около 13,8 миллиардов лет назад. Объекты, находящиеся на расстоянии 10 миллиардов световых лет от нас, кажутся астрономам такими, какими они выглядели 10 миллиардов лет назад — относительно скоро после возникновения Вселенной, — а не такими, какими они выглядят сегодня.

Похожие: Почему вселенная — это история

Скорость света Часто задаваемые вопросы, на которые отвечает эксперт

скорость света.

Экзопланетный астроном

Доктор Роб Зеллем — штатный научный сотрудник Лаборатории реактивного движения НАСА, научно-исследовательского центра, финансируемого из федерального бюджета и находящегося в ведении Калифорнийского технологического института. Роб является руководителем проекта Exoplanet Watch, гражданского научного проекта по наблюдению за экзопланетами, планетами за пределами нашей Солнечной системы, с помощью небольших телескопов. Он также является руководителем отдела научной калибровки прибора коронограф римского космического телескопа Нэнси Грейс, который будет непосредственно отображать экзопланеты.

Что быстрее скорости света?

Ничего! Свет — это «универсальный предел скорости» и, согласно теории относительности Эйнштейна, это самая высокая скорость во Вселенной: 300 000 километров в секунду (186 000 миль в секунду).

Является ли скорость света постоянной?

Скорость света является универсальной константой в вакууме, таком как космический вакуум. Однако свет *может* слегка замедлиться, когда он проходит через поглощающую среду, такую ​​как вода (225 000 километров в секунду = 140 000 миль в секунду) или стекло (200 000 километров в секунду = 124 000 миль в секунду).

Кто открыл скорость света?

Одно из первых измерений скорости света было проведено Рёмером в 1676 году при наблюдении спутников Юпитера. Скорость света была впервые измерена с высокой точностью в 1879 году в эксперименте Майкельсона-Морли.

Откуда мы знаем скорость света?

Рёмер смог измерить скорость света, наблюдая затмения спутника Юпитера Ио. Когда Юпитер был ближе к Земле, Рёмер заметил, что затмения Ио происходили немного раньше, чем когда Юпитер был дальше. Ремер объяснил этот эффект тем, что свету требуется время, чтобы пройти большее расстояние, когда Юпитер был дальше от Земли.

Как мы узнали скорость света?

Аристотель, Эмпедокл, Галилей (на фото), Оле Рёмер и бесчисленное множество других философов и физиков в истории рассматривали скорость света. (Изображение предоставлено НАСА)

Еще в V веке греческие философы, такие как Эмпедокл и Аристотель, расходились во мнениях относительно природы скорости света. Эмпедокл предположил, что свет, из чего бы он ни состоял, должен двигаться и, следовательно, должен иметь скорость движения. Аристотель опроверг точку зрения Эмпедокла в собственном трактате 9.0117 О чувстве и чувственном , утверждая, что свет, в отличие от звука и запаха, должен быть мгновенным. Аристотель, конечно, ошибался, но чтобы доказать это, потребуются сотни лет.

В середине 1600-х годов итальянский астроном Галилео Галилей поставил двух человек на холмы на расстоянии менее мили друг от друга. Каждый человек держал экранированный фонарь. Один раскрыл свой фонарь; когда другой человек увидел вспышку, он тоже раскрыл свою. Но экспериментального расстояния Галилея было недостаточно для того, чтобы его участники могли зафиксировать скорость света. Он мог только заключить, что свет движется как минимум в 10 раз быстрее звука.

В 1670-х годах датский астроном Оле Рёмер пытался составить надежное расписание для моряков в море и, согласно НАСА , случайно придумал новую наилучшую оценку скорости света. Чтобы создать астрономические часы, он записал точное время затмений спутника Юпитера , Ио, от Земли . Со временем Рёмер заметил, что затмения Ио часто отличаются от его расчетов. Он заметил, что затмения отставали больше всего, когда Юпитер и Земля удалялись друг от друга, появлялись раньше времени, когда планеты приближались, и происходили по расписанию, когда планеты находились в своих ближайших или самых дальних точках. Это наблюдение продемонстрировало то, что мы сегодня знаем как эффект Доплера, изменение частоты света или звука, излучаемого движущимся объектом, что в астрономическом мире проявляется как так называемое красное смещение , сдвиг в сторону «более красных», более длинных волн в объекты, быстро удаляющиеся от нас. Опираясь на интуицию, Рёмер определил, что свету требуется измеримое время, чтобы добраться от Ио до Земли.

Рёмер использовал свои наблюдения для оценки скорости света. Поскольку размер Солнечной системы и орбита Земли еще не были точно известны, утверждалось в статье 1998 года в American Journal of Physics , он немного ошибся. Но, наконец, у ученых появилось число, с которым можно было работать. По расчетам Ремера, скорость света составляет около 124 000 миль в секунду (200 000 км/с).

В 1728 году английский физик Джеймс Брэдли провел новый набор расчетов на основе изменения видимого положения звезд, вызванного движением Земли вокруг Солнца. Он оценил скорость света в 185 000 миль в секунду (301 000 км/с) — с точностью до 1 % от реального значения. 0117 Американское физическое общество .

Две новые попытки в середине 1800-х вернули проблему на Землю. Французский физик Ипполит Физо направил луч света на быстро вращающееся зубчатое колесо с зеркалом, установленным на расстоянии 5 миль (8 км), чтобы отразить его обратно к источнику. Изменение скорости колеса позволило Физо рассчитать, сколько времени потребовалось свету, чтобы выйти из отверстия к соседнему зеркалу и обратно через зазор. Другой французский физик, Леон Фуко, использовал вращающееся зеркало, а не колесо, чтобы выполнить практически тот же самый эксперимент. Каждый из двух независимых методов показал точность около 1000 миль в секунду (1609км/с) скорости света.

15 августа 1930 года в Санта-Ана, Калифорния, д-р Альберт А. Майкельсон стоял рядом с вакуумной трубкой длиной в милю, которая будет использоваться в его последнем и самом точном измерении скорости света. (Изображение предоставлено Getty/Bettman)

Другим ученым, который разгадал тайну скорости света, был уроженец Польши Альберт А. Майкельсон, который вырос в Калифорнии в период золотой лихорадки в штате и оттачивал свой интерес к физике во время учебы в Военно-морском флоте США. Академия, согласно Университет Вирджинии . В 1879 году он попытался воспроизвести метод определения скорости света Фуко, но Майкельсон увеличил расстояние между зеркалами и использовал очень качественные зеркала и линзы. Результат Майкельсона 186 355 миль в секунду (299 910 км / с) считался самым точным измерением скорости света за 40 лет, пока Майкельсон не измерил его сам. Во втором раунде экспериментов Майкельсон посветил светом между двумя горными вершинами с тщательно измеренными расстояниями, чтобы получить более точную оценку. И в третьей попытке незадолго до смерти в 1931, согласно журналу Смитсоновского института Air and Space , он построил разгерметизированную трубу длиной в милю из гофрированной стальной трубы. Трубка имитировала почти вакуум, который устранял бы любое влияние воздуха на скорость света для еще более точного измерения, которое в итоге оказалось лишь немного ниже принятого сегодня значения скорости света.

Майкельсон также изучал природу самого света, написал астрофизик Итан Сигал в научном блоге Forbes, Starts With a Bang . Лучшие умы физиков во время экспериментов Майкельсона разделились: был ли свет волной или частицей?

Майкельсон вместе со своим коллегой Эдвардом Морли исходил из предположения, что свет движется как волна, как и звук. И точно так же, как звуку нужны частицы для движения, рассуждали Майкельсон, Морли и другие физики того времени, свет должен иметь какую-то среду для движения. Это невидимое, необнаружимое вещество было названо «светоносным эфиром» (также известным как «эфир»).

Хотя Майкельсон и Морли построили сложный интерферометр (самую простую версию прибора, используемого сегодня на объектах LIGO ), Майкельсон не смог найти никаких свидетельств существования какого-либо светоносного эфира. Он определил, что свет может путешествовать и действительно путешествует в вакууме.

«Эксперимент — и вся работа Майкельсона — были настолько революционными, что он стал единственным человеком в истории, получившим Нобелевскую премию за очень точное отсутствие открытия чего-либо», — написал Сигал. «Сам эксперимент, возможно, был полным провалом, но то, что мы из него узнали, было большим благом для человечества и нашего понимания Вселенной, чем любой успех!» 92. Уравнение описывает взаимосвязь между массой и энергией — небольшие количества массы (m) содержат или состоят из огромного количества энергии (E). (Вот что делает ядерные бомбы такими мощными: они преобразуют массу во взрывы энергии.) Поскольку энергия равна массе, умноженной на квадрат скорости света, скорость света служит коэффициентом преобразования, точно объясняющим, сколько энергии должно быть внутри материи. А поскольку скорость света — это такое огромное число, даже небольшое количество массы должно равняться огромному количеству энергии.

Чтобы точно описать вселенную, элегантное уравнение Эйнштейна требует, чтобы скорость света была неизменной константой. Эйнштейн утверждал, что свет движется через вакуум, а не через какой-либо светоносный эфир, и таким образом, что он движется с одной и той же скоростью независимо от скорости наблюдателя.

Подумайте об этом так: наблюдатели, сидящие в поезде, могут смотреть на поезд, движущийся по параллельному пути, и думать о его относительном движении как о нуле. Но наблюдатели, движущиеся почти со скоростью света, все равно воспринимали бы свет как удаляющийся от них со скоростью более 670 миллионов миль в час. (Это потому, что двигаться очень, очень быстро — один из немногих подтвержденных методов путешествие во времени — время на самом деле замедляется для тех наблюдателей, которые стареют медленнее и воспринимают меньше моментов, чем наблюдатель, движущийся медленно.)

Другими словами, Эйнштейн предположил, что скорость света не зависит от времени или места. что вы его измеряете, или как быстро вы сами двигаетесь.

Следовательно, объекты с массой никогда не могут достичь скорости света. Если бы объект когда-нибудь достиг скорости света, его масса стала бы бесконечной. И в результате энергия, необходимая для перемещения объекта, также стала бы бесконечной: это невозможно.

Это означает, что если мы основываем наше понимание физики на специальной теории относительности (что делает большинство современных физиков), скорость света является непреложным пределом скорости нашей Вселенной — максимальной скоростью, на которой может двигаться что-либо.

Что движется быстрее скорости света?

Хотя скорость света часто называют пределом скорости Вселенной, на самом деле Вселенная расширяется еще быстрее. Вселенная расширяется со скоростью немногим более 42 миль (68 километров) в секунду на каждый мегапарсек расстояния от наблюдателя, писал астрофизик Пол Саттер в предыдущей статье для журнала 9.0117 Space.com . (Мегапарсек составляет 3,26 миллиона световых лет — очень большой путь.)

Другими словами, галактика, удаленная на 1 мегапарсек, удаляется от Млечного Пути со скоростью 42 мили в секунду (68 км/с). с), в то время как галактика, находящаяся на расстоянии двух мегапарсеков, удаляется со скоростью почти 86 миль в секунду (136 км/с) и так далее.

«В какой-то момент на каком-то непристойном расстоянии скорость зашкаливает и превышает скорость света, и все это от естественного, регулярного расширения пространства», — объяснил Саттер. «Кажется, это должно быть незаконно, не так ли?»

Специальная теория относительности обеспечивает абсолютный предел скорости во Вселенной, согласно Саттеру, но теория Эйнштейна 1915 года относительно общей теории относительности допускает другое поведение, когда физика, которую вы изучаете, больше не является «локальной».

«Галактика на дальнем конце вселенной? Это область общей теории относительности, а общая теория относительности говорит: какая разница! Эта галактика может иметь любую скорость, какую захочет, пока она остается далеко, а не рядом тебе в лицо», — написал Саттер. «Специальную теорию относительности не волнует скорость — сверхсветовая или какая-то другая — далекой галактики. И вам тоже не стоит».

Свет когда-нибудь замедляется?

Свет движется медленнее в алмазе, чем в воздухе, и он движется в воздухе немного медленнее, чем в вакууме. (Изображение предоставлено Shutterstock)

Обычно считается, что свет в вакууме распространяется с абсолютной скоростью, но свет, проходящий через любой материал, может быть замедлен. Величина, на которую материал замедляет свет, называется его показателем преломления. Свет изгибается при контакте с частицами, что приводит к уменьшению скорости.

Например, свет, проходящий через атмосферу Земли, движется почти так же быстро, как свет в вакууме, замедляясь всего на три десятитысячных скорости света. Но свет, проходящий через алмаз, замедляется менее чем вдвое по сравнению с обычной скоростью, сообщает PBS NOVA . Тем не менее, он путешествует по драгоценному камню со скоростью более 277 миллионов миль в час (почти 124 000 км/с) — достаточно, чтобы изменить ситуацию, но все же невероятно быстро.

Свет может быть захвачен — и даже остановлен — внутри ультрахолодных облаков атомов, согласно исследованию 2001 года, опубликованному в журнале 9.0117 Природа . Совсем недавно в исследовании 2018 года, опубликованном в журнале Physical Review Letters , был предложен новый способ остановить свет на его пути в «исключительных точках» или местах, где два отдельных световых излучения пересекаются и сливаются в одно.

Исследователи также пытались замедлить свет, даже когда он движется в вакууме. Группа шотландских ученых успешно замедлила одиночный фотон или частицу света, даже когда он двигался в вакууме, как описано в их исследовании 2015 года, опубликованном в журнале 9.0117 Наука . В их измерениях разница между замедленным фотоном и «обычным» фотоном составляла всего несколько миллионных долей метра, но это продемонстрировало, что свет в вакууме может быть медленнее, чем официальная скорость света.

Можем ли мы путешествовать быстрее света?

Истории по теме:

Научная фантастика любит идею «скорости деформации». Путешествия со скоростью, превышающей скорость света, делают возможными бесчисленные научно-фантастические франшизы, уплотняя бескрайние просторы космоса и позволяя персонажам с легкостью перемещаться между звездными системами и обратно.

Но хотя путешествия со скоростью, превышающей скорость света, не гарантированно невозможны, нам нужно использовать довольно экзотическую физику, чтобы заставить это работать. К счастью для энтузиастов научной фантастики и физиков-теоретиков, существует множество возможностей для изучения.

Все, что нам нужно сделать, это понять, как не двигаться самим — поскольку специальная теория относительности гарантирует, что мы будем уничтожены, прежде чем мы достигнем достаточно высокой скорости, — а вместо этого перемещать пространство вокруг нас. Легко, верно?

Одна из предложенных идей включает в себя космический корабль, который мог бы свернуть вокруг себя пространственно-временной пузырь. Звучит здорово, как в теории, так и в художественной литературе.

«Если бы капитан Кирк был вынужден двигаться со скоростью наших самых быстрых ракет, ему потребовалось бы сто тысяч лет, чтобы добраться до следующей звездной системы», — сказал Сет Шостак, астроном из Поиска внеземного разума (SETI). ) Институт в Маунтин-Вью, Калифорния, в интервью 2010 года дочернему сайту Space.com LiveScience . «Поэтому научная фантастика уже давно постулировала способ преодолеть скорость светового барьера, чтобы история могла развиваться немного быстрее».

Без путешествий со скоростью, превышающей скорость света, любой «Звездный путь» (или, если на то пошло, «Звездная война») был бы невозможен. Если человечеству суждено когда-нибудь добраться до самых дальних и постоянно расширяющихся уголков нашей вселенной, физики будущего должны будут смело отправиться туда, куда еще не ступала нога человека.

Дополнительные ресурсы

Чтобы узнать больше о скорости света, воспользуйтесь этим забавным инструментом от Academo , который позволяет визуализировать, с какой скоростью свет может перемещаться из любого места на Земле в любое другое. Если вас больше интересуют другие важные числа, познакомьтесь с универсальными константами, которые определяют стандартные системы измерения по всему миру с помощью 9.0117 Национальный институт стандартов и технологий . А если вам интересно узнать больше об истории скорости света, ознакомьтесь с книгой Джона Спенса « Скорость света: Призрачный эфир и гонка за измерением скорости света » (Оксфорд, 2019 г. ).

Библиография

Аристотель. «О чувстве и разумном». Архив интернет-классики, 350 г. н.э. http://classics.mit.edu/Aristotle/sense.2.2.html .

Д’Альто, Ник. «Трубопровод, измеривший скорость света». Журнал Smithsonian, январь 2017 г. https://www.smithsonianmag.com/air-space-magazine/18_fm2017-oo-180961669/.

Фаулер, Майкл. «Скорость света.» Современная физика. Университет Вирджинии. По состоянию на 13 января 2022 г. https://galileo.phys.virginia.edu/classes/252/spedlite.html#Albert%20Abraham%20Michelson .

Джованнини, Даниэль, Жакилин Ромеро, Вацлав Поточек, Гергели Ференци, Фиона Спейритс, Стивен М. Барнетт, Даниэле Фаччо и Майлз Дж. Пэджетт. «Пространственно структурированные фотоны, которые движутся в свободном пространстве медленнее скорости света». Наука, 20 февраля 2015 г. https://www.science.org/doi/abs/10.1126/science.aaa3035 .

Гольдзак, Тамар, Алексей Александрович Майлыбаев и Нимрод Моисеев. «Свет останавливается в исключительных точках».

Письма о физическом обзоре 120, вып. 1 (3 января 2018 г.): 013901. https://doi.org/10.1103/PhysRevLett.120.013901 .

Хазен, Роберт. «Что заставляет бриллиант сверкать?» PBS NOVA, 31 января 2000 г. https://www.pbs.org/wgbh/nova/article/diamond-science/.

«Какой длины световой год?» Проект Glenn Learning Technologies, 13 мая 2021 г. https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/how_long_is_a_light_year.htm .

Новости Американского физического общества. «Июль 1849 г.: Физо публикует результаты эксперимента со скоростью света», июль 2010 г. http://www.aps.org/publications/apsnews/201007/physicshistory.cfm .

Лю, Чиен, Закари Даттон, Сайрус Х. Бехрузи и Лене Вестергаард Хау. «Наблюдение за хранением когерентной оптической информации в атомной среде с использованием остановленных световых импульсов». Природа 409, нет. 6819 (январь 2001 г.): 490–93. https://doi.org/10.1038/35054017 .

НИСТ. «Познакомьтесь с константами». 12 октября 2018 г. https://www.nist.gov/si-redefinition/meet-constants .

Уэллетт, Дженнифер. «Краткая история скорости света». PBS NOVA, 27 февраля 2015 г. https://www.pbs.org/wgbh/nova/article/brief-history-speed-light/.

Ши, Джеймс Х. «Оле Ро/Мер, скорость света, видимый период Ио, эффект Доплера и динамика Земли и Юпитера». Американский журнал физики 66, вып. 7 (1 июля, 1998): 561–69. https://doi.org/10.1119/1.19020 .

Сигел, Итан. «Неудачный эксперимент, изменивший мир». Forbes, 21 апреля 2017 г. https://www.forbes.com/sites/startswithabang/2017/04/21/the-failed-experiment-that-changed-the-world/.

Стерн, Дэвид. «Рёмер и скорость света», 17 октября 2016 г. https://pwg.gsfc.nasa.gov/stargaze/Sun4Adop1.htm .

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: community@space.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *