Педаль газа с электронным управлением дросселем
Содержание
- Педаль газа с механическим управлением дросселем
- Педаль газа с электронным управлением дросселем
- Крутящий момент
- Неисправности электронной педали газа
- При отсутствии сигнала с одного датчика положения педали газа:
- При отсутствии сигналов с двух датчиков положения педали газа одновременно:
- При отсутствии сигнала с одного датчика положения дроссельной заслонки:
- При отсутствии сигнала с обоих датчиков положения дроссельной заслонки:
На современных автомобилях вместо обычного тросикового привода управления дроссельной заслонкой устанавливается так называемая «электронная педаль газа». В таких авто положением дроссельной заслонки управляет электроника. Когда вы нажимаете или отпускаете педаль газа, информация об этом идёт в блок управления (ЭБУ) и только после обработки и корректировки уже даётся команда в модуль дроссельной заслонки. О плюсах и минусах такой системы, а также о признаках неисправностей и пойдёт речь в данной статье.
Для тех, кто привык к механическим приводам, где нажатие на педаль газа напрямую вызывает перемещение дроссельной заслонки, будет непривычным и неизвестным управление автомобилем с электронной системой. Чтобы разобраться, нужно понять принцип работы «электронной педали» и её отличие от обычной механической.
Педаль газа с механическим управлением дросселем
В механическом приводе управления дроссельной заслонкой к педали газа прикреплён тросик, который идёт напрямую из салона в подкапотное пространство и другим концом прикручивается к приводу управления дросселем (полукруглая железная деталь рядом с дросселем). При нажатии на педаль тросик натягивается и тянет на себя эту деталь, которая напрямую соединена с дроссельной заслонкой и находится обычно с ней на одной оси вращения.
Заслонка приоткрывает или закрывает трубопровод, по которому в двигатель подаётся воздух. Остальное делает электроника. Чтобы добиться нужного крутящего момента, электронный блок изменяет момент зажигания и момент впрыска топлива в камеру сгорания. Тем самым регулируется топливно-воздушная смесь и достигается требуемая величина крутящего момента.
Педаль газа с электронным управлением дросселем
Здесь всю работу на себя берёт электроника. На педальном механизме установлены датчики положения педали газа. Информация с этих датчиков поступает в электронный блок управления, в котором анализируются все необходимые параметры для оптимального изменения величины крутящего момента. Эти параметры анализируются постоянно, непрерывно и при нажатии на педаль газа, после совершения нужных рассчётов электроника подаёт команду в модуль управления дроссельной заслонкой. Команда — это сигнал изменения положения заслонки на определённую величину угла.
Получив такую команду, модуль управления выполняет перемещение дроссельной заслонки. Для этого используется электродвигатель. Положение заслонки меняется, также при необходимости меняются момент зажигания и впрыска, достигается нужный крутящий момент и автомобиль трогается с места или ускоряется.
В модуле управления расположены угловые датчики положения дроссельной заслонки, информация с них поступает также в электронный блок, тем самым происходит обратная связь и электроника «узнаёт», в каком положении сейчас находится заслонка, выполнилась ли команда на изменение угла и т.п. Данная информация со всех датчиков поступает в блок управления постоянно. При изменении какого-либо параметра мгновенно принимаются меры для оптимального изменения других важных параметров. Благодаря этому достигается оптимальная работа двигателя, нужный крутящий момент, оптимальный расход топлива, а также устойчивая работа двигателя на холостых оборотах.
Крутящий момент
Чтобы изменить величину крутящего момента, электронный блок управления может изменить один или несколько параметров:
- угол открытия дроссельной заслонки
- давление наддува (если двигатель с турбонаддувом)
- момент зажигания
- момент впрыска топлива
- включение/отключение цилиндров
Величина крутящего момента постоянно корректируется и зависит от следующих факторов:
- условия запуска двигателя
- устойчивые обороты холостого хода
- содержание O2 в отработавших газах
- ограничения по мощности и количеству оборотов
- АКПП (при переключении передач)
- контроль тяги при торможении
- принудительный холостой ход при торможении
- работа оборудования (климат-контроль, кондиционер)
- круиз-контроль (включен ли режим)
Неисправности электронной педали газа
В электронной системе предусмотрена контрольная лампа EPC, которая загорается на приборной панели при наличии какой-либо неисправности в системе или при нарушении её работы. Если сигнал с датчиков перестанет приходить или будет приходить неверным, эта лампа оповестит вас об этом.
В приводном механизме педали газа размещены 2 датчика — это потенциометры со скользящим контактом, эти контакты соприкасаются с контактными дорожками. Один датчик нужен для того, чтобы отправлять информацию о положении педали. Второй является контрольным и также передаёт информацию.
При изменении положения педали газа происходит изменение сопротивления этих датчиков, электронный блок «видит» это по изменению значения напряжения.
Если возникают какие-то неполадки, то как правило нужно заменить один или оба датчика, а также проверить контакт между датчиком и дорожками. Бывает, что на эти дорожки попадает грязь или пыль и нужного контакта не достагается. В этом случае их необходимо хорошо почистить.
При отсутствии сигнала с одного датчика положения педали газа:
- регистрируется неисправность, включается контрольная лампа EPC
- работа на холостых оборотах до того момента, пока система не опознает работоспособность второго датчика
- после проверки и получения сигнала со второго датчика можно ехать дальше
- при нажатии на педаль газа до упора обороты будут расти медленно
- система будет пытаться себя «подстраховать», определяя холостой ход по сигналам торможения и положению педали тормоза
- отключатся дополнительные системы, влияющие на работу двигателя — круиз-контроль
При отсутствии сигналов с двух датчиков положения педали газа одновременно:
- регистрируется неисправность, включается контрольная лампа EPC
- на педаль газа не реагирует
- на холостом ходу обороты повышены до 1500 об/мин
При отсутствии сигнала с одного датчика положения дроссельной заслонки:
- регистрируется неисправность, включается контрольная лампа EPC
- отключается круиз-контроль и принудительный холостой ход
- нормально реагирует на педаль газа
При отсутствии сигнала с обоих датчиков положения дроссельной заслонки:
- выключается привод заслонки
- на педаль газа не реагирует
- холостые обороты повышены до 1500 об/мин
Таким образом, по симптомам можно определить, какой именно датчик вышел из строя.
Особенности ЭСУД с электронной педалью газа ВАЗ-2123
Автомобиль ВАЗ-2123 с 2015 г. оснащается электронной системой управления двигателем с контроллером MЕ17.9.71 2123-1411020-50 под нормы токсичности ЕВРО-5.
Схема электронной системы управления двигателем: 1 — аккумулятор, 2 — главное реле, 3 — замок зажигания, 4 — диагностический датчик концентрации кислорода, 5 — адсорбер, 6 — компрессор кондиционера, 7 — клапан продувки адсорбера, 8 — управляющий датчик концентрации кислорода, 9 — форсунка, 10 — топливная рампа, 12 — воздушный фильтр, 13 — диагностический разъем, 14 — датчик массового расхода воздуха, 15 — тахометр, 16 — блок иммобилайзера, 17 — электронная педаль газа, 18 — дроссельный узел, 19 — контрольная лампа неисправности системы управления двигателем, 20 — датчик фаз, 21 — катушка зажигания, 22 — датчик температуры охлаждающей жидкости, 23 — контроллер, 24 — свеча зажигания, 25 — датчик положения коленчатого вала, 26 — правый вентилятор системы охлаждения, 27 — дополнительное реле, 28 — реле правого вентилятора системы охлаждения, 29 — левый вентилятор системы охлаждения, 30 — реле левого вентилятора системы охлаждения, 31 — реле топливного насоса, 32 — топливный фильтр, 33 — гравитационный клапан, 34 — топливный модуль, 35 — датчик скорости, 36 — датчик детонацииЭлектронная система управления двигателем (ЭСУД) состоит из контроллера, датчиков параметров работы двигателя и автомобиля, а также исполнительных устройств.
Контроллер представляет собой мини-компьютер специального назначения, в его состав входят оперативное запоминающее устройство (ОЗУ), программируемое постоянное запоминающее устройство (ППЗУ) и электрически репрограммируемое запоминающее устройство (ЭРПЗУ).
ОЗУ используется микропроцессором для временного хранения текущей информации о работе двигателя (измеряемых параметров) и расчетных данных.
Также в ОЗУ записываются коды возникающих неисправностей.
Эта память энергозависима, т. е. при прекращении электрического питания (отключении аккумуляторной батареи или отсоединении от контроллера колодки жгута проводов) ее содержимое стирается.
ППЗУ хранит программу управления двигателем, которая содержит последовательность рабочих команд (алгоритмов) и калибровочных данные (настроек).
ППЗУ определяет важнейшие параметры работы двигателя: характер изменения крутящего момента и мощности, расход топлива, угол опережения зажигания, состав отработавших газов и т. п. ППЗУ энергонезависимо, т. е. содержимое его памяти не изменяется при отключении питания.
ЭРПЗУ хранит идентификаторы контроллера, двигателя и автомобиля.
Записывает эксплуатационные параметры, а также нарушения режимов работы двигателя и автомобиля. Является энергонезависимой памятью.
Контроллер является центральным устройством системы управления двигателем.
КонтроллерОн получает информацию от датчиков и управляет исполнительными механизмами, обеспечивая оптимальную работу двигателя при заданном уровне показателей автомобиля.
Контроллер расположен в зоне ног пассажира и крепится к щитку передка.
Контроллер управляет исполнительными механизмами, такими как топливные форсунки, дроссельный патрубок с электроприводом, катушка зажигания, нагреватель датчика кислорода, клапан продувки адсорбера и различными реле.
Контроллер управляет включением и выключением главного реле (реле зажигания), через которое напряжение питания от аккумуляторной батареи поступает на элементы системы (кроме электробензонасоса, электровентилятора, блока управления и индикатора состояния АПС).
Контроллер включает главное реле при включении зажигания.
При выключении зажигания контроллер задерживает выключение главного реле на время, необходимое для подготовки к следующему включению (завершение вычислений, установка дроссельной заслонки в положение, предшествующее запуску двигателя).
При включении зажигания контроллер, кроме выполнения упомянутых выше функций, обменивается информацией с АПС (если функция иммобилизации включена).
Если в результате обмена определяется, что доступ к автомобилю разрешен, то контроллер продолжает выполнение функций управления двигателем.
В противном случае работа двигателя блокируется.
Контроллер выполняет также функцию диагностики системы.
Он определяет наличие неисправностей элементов системы, включает сигнализатор и сохраняет в своей памяти коды, обозначающие характер неисправности и помогающие механику осуществить ремонт.
В системе управления двигателем используется ДМРВ термоанемометрического типа с частотной характеристикой цифрового выходного сигнала.
Он расположен между воздушным фильтром и шлангом впускной трубы.
Сигнал ДМРВ представляет собой частотный (Гц) сигнал, частота следования импульсов которого зависит от количества воздуха, проходящего через датчик (увеличивается при увеличении расхода воздуха).
Диагностический прибор считывает показания датчика как расход воздуха в килограммах в час.
Дроссельный узел с датчиком положения дроссельной заслонкойВ системе с ЭДП применяются два ДПДЗ.
ДПДЗ входят в состав дроссельного патрубка с электроприводом.
ДПДЗ представляет собой резистор потенциометрического типа, на один из выводов которого подается опорное напряжение (5 В) с контроллера, а на второй «масса» с контроллера.
С вывода, соединенного с подвижным контактом потенциометра, подается выходной сигнал ДПДЗ на контроллер.
Контроллер управляет положением дроссельной заслонки с помощью электропривода в соответствии с положением педали акселератора.
По показаниям ДПДЗ контроллер отслеживает положение дроссельной заслонки.
При включении зажигания контроллер устанавливает заслонку в предпусковое положение, степень открытия которой зависит от температуры охлаждающей жидкости.
В предпусковом положении дроссельной заслонки выходной сигнал ДПДЗ 1 должен быть в пределах 0,65…0,79 В, выходной сигнал ДПДЗ 2 в пределах 4,21…4,35 В.
Если в течение 15 секунд не запустить двигатель и не нажать на педаль акселератора, то контроллер обесточивает электропривод дроссельного патрубка и дроссельная заслонка устанавливается в положение 7-8 % открытия дросселя.
В обесточенном состоянии (LIMP HOME) электропривода дроссельной заслонки выходной сигнал ДПДЗ 1 находится в пределах 0,80…0,85 В, выходной сигнал ДПДЗ 2 в пределах 4,15…4,20 В.
Далее если в течении 15 секунд не проводить никаких действий наступит режим проверки («обучения») 0-положения дроссельной заслонки — полное закрытие и открытие дроссельной заслонки на предпусковое положение и в дальнейшем электропривод дроссельной заслонки снова перейдет в обесточенный режим.
При любом положении дроссельной заслонки сумма сигналов ДПДЗ 1 и ДПДЗ 2 должна быть равна (5±0,1) В.
При возникновении неисправности цепей ДПДЗ контроллер обесточивает электропривод дроссельной заслонки, заносит в свою память ее код и включает сигнализатор.
При этом дроссельная заслонка устанавливается в положение 7-8 % открытия дросселя.
На автомобилях с электронным дроссельным узлом применяется электронная педаль акселератора, которая электрически передает сигнал о положении педали акселератора контроллеру.
Электронная педаль акселератораЭлектронная педаль газа располагается на кронштейне под правой ногой водителя.
В электронной педали газа используются два датчика положения педали акселератора (ДППА).
ДППА представляют собой резисторы потенциометрического типа, на которые подается питание от контроллера 5 В.
ДППА механически связаны с приводом от рычага педали.
Две независимые пружины между рычагом педали и корпусом создают возвратное усилие.
Получая аналоговый электрический сигнал от ЭПА, контроллер формирует сигнал для управления положением дроссельной заслонки.
Выходное напряжение ДППА меняется пропорционально нажатию педали акселератора.
При отпущенной педали акселератора сигнал ДППА 1 должен быть в пределах 0,46…0,76 В, сигнал ДППА 2 в пределах 0,23…0,38 В.
При полностью нажатой педали акселератора сигнал ДППА 1 должен быть в пределах 2,80…3,10 В, сигнал ДППА 2 в пределах 1,40…1,55 В.
При любом положении педали акселератора сигнал ДППА 1 должен быть в два раза больше сигнала ДППА 2.
Датчик температуры охлаждающей жидкости (ДТОЖ)
Датчик установлен в потоке охлаждающей жидкости двигателя, на патрубке отводящем водяной рубашки двигателя.
Датчик температуры охлаждающей жидкости (ДТОЖ)Чувствительным элементом датчика температуры охлаждающей жидкости является термистор, т. е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры.
Высокая температура вызывает низкое сопротивление, а низкая температура охлаждающей жидкости — высокое сопротивление.
Контроллер выдает в цепь датчика температуры охлаждающей жидкости напряжение 5 В.
Датчик детонации (ДД)Датчик детонации (ДД) установлен на блоке цилиндров (рис. 10).
Пьезокерамический чувствительный элемент ДД генерирует сигнал напряжения переменного тока, амплитуда и частота которого соответствуют параметрам вибраций двигателя.
При возникновении детонации амплитуда вибраций определенной частоты повышается.
Контроллер при этом корректирует угол опережения зажигания для гашения детонации.
Управляющий датчик кислорода (УДК)
Наиболее эффективное снижение токсичности отработавших газов бензиновых двигателей достигается при массовом соотношении воздуха и топлива в смеси (14,5… 14,6) : 1.
Управляющий датчик кислорода (УДК)Данное соотношение называется стехиометрическим.
При этом составе топливовоздушной смеси каталитический нейтрализатор наиболее эффективно снижает количество углеводородов, окиси углерода и окислов азота, выбрасываемых с отработавшими газами.
Для оптимизации состава отработавших газов с целью достижения наибольшей эффективности работы нейтрализатора применяется управление топливоподачей по замкнутому контуру с обратной связью по наличию кислорода в отработавших газах.
Диагностический датчик кислорода (ДДК)
Для снижения содержания углеводородов, окиси углерода и окислов азота в отработавших газах используется каталитический нейтрализатор.
Нейтрализатор окисляет углеводороды и окись углерода, в результате чего они преобразуются в водяной пар и углекислый газ.
Нейтрализатор также восстанавливает азот из окислов азота.
Контроллер следит за окислительно-восстановительными свойствами нейтрализатора, анализируя сигнал диагностического датчика кислорода, установленного после нейтрализатора.
Датчик скорости автомобиля выдает импульсный сигнал, который информирует контроллер о скорости движения автомобиля. ДСА установлен на входном валу раздаточной коробки.
Датчик скорости автомобиля (ДСА)При вращении ведущих колес ДСА вырабатывает 6 импульсов на метр движения автомобиля.
Контроллер определяет скорость автомобиля по частоте следования импульсов.
Датчик положения коленчатого вала установлен на крышке привода распределительного вала на расстоянии около 1±0,4 мм от вершины зубца задающего диска, закрепленного на коленчатом валу двигателя.
Датчик положения коленчатого вала (ДПКВ)Задающий диск объединен со шкивом привода генератора и представляет собой зубчатое колесо с 58 зубьями, расположенными с шагом 6°, и «длинной» впадиной для синхронизации, образованной двумя пропущенными зубьями.
При совмещении середины первого зуба зубчатого сектора диска после «длинной» впадины с осью ДПКВ коленчатый вал двигателя находится в положении 114° (19 зубьев) до верхней мертвой точки 1-го и 4-го цилиндров.
При вращении задающего диска изменяется магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.
Контроллер определяет положение и частоту вращения коленчатого вала по количеству и частоте следования этих импульсов и рассчитывает фазу и длительность импульсов управления форсунками и катушкой зажигания.
Датчик фаз устанавливается на приливе головки блока цилиндров.
Датчик фаз (датчик положения распределительного вала)Принцип действия датчика основан на эффекте Холла.
На распределительном валу двигателя есть специальный штифт.
Когда штифт проходит напротив торца датчика, датчик выдает на контроллер импульс напряжения низкого уровня (около 0 В), что соответствует положению поршня 1-го цилиндра в такте сжатия.
Сигнал датчика фаз используется контроллером для организации последовательного впрыска топлива в соответствии с порядком работы цилиндров двигателя.
Выключатель сигнала торможения входит в состав узла педали тормоза и предназначен для подачи на контроллер ЭСУД соответствующих сигналов о нажатии /отпускании водителем педали тормоза.
Выключатель сигнала торможенияВ системах управлением дроссельной заслонкой по проводам (Е-газ) сигналы выключателя педали тормоза играют важную роль, поскольку используются функцией безопасности ПО контроллера ЭСУД.
По этой причине очень важно обеспечить, чтобы выключатель сигнала тормоза всегда находился в рабочем состоянии.
В случае несоответствия его функциональной характеристики переключения, например, при самопроизвольном изменении значений регулировок, указанных в инструкции (из-за вибраций педали тормоза, износа выключателя и блока педалей), двигатель автомобиля может переходить в аварийный режим работы с принудительно уменьшенной мощностью.
Выключатель сигнала положения педали сцепления входит в состав узла педали сцепления и предназначен для подачи на контроллер ЭСУД сигнала о нажатой педали сцепления.
Выключатель сигнала положения педали сцепленияВыключатель имеет одну группу контактов, коммутирующую напряжение с клеммы «15» выключателя зажигания.
При нажатой педали сцепления контакты разомкнуты.
Сигнал выключателя положения педали сцепления используется ПО контроллера ЭСУД для улучшения ездовых характеристик автомобиля.