Непосредственный впрыск топлива что это: Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива – устройство, принцип действия

Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.

Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).

Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании

дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

 

 

Ошибка

  • Автомобиль — модели, марки
  • Устройство автомобиля
  • Ремонт и обслуживание
  • Тюнинг
  • Аксессуары и оборудование
  • Компоненты
  • Безопасность
  • Физика процесса
  • Новичкам в помощь
  • Приглашение
  • Официоз (компании)
  • Пригородные маршруты
  • Персоны
  • Наши люди
  • ТЮВ
  • Эмблемы
  •  
  • А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ё
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ъ
  • Ы
  • Ь
  • Э
  • Ю
  • Я
Навигация
  • Заглавная страница
  • Сообщество
  • Текущие события
  • Свежие правки
  • Случайная статья
  • Справка
Личные инструменты
  • Представиться системе
Инструменты
  • Спецстраницы
Пространства имён
  • Служебная страница
Просмотры

    Перейти к: навигация, поиск

    Запрашиваемое название страницы неправильно, пусто, либо неправильно указано межъязыковое или интервики название. Возможно, в названии используются недопустимые символы.

    Возврат к странице Заглавная страница.

    Если Вы обнаружили ошибку или хотите дополнить статью, выделите ту часть текста статьи, которая нуждается в редакции, и нажмите Ctrl+Enter. Далее следуйте простой инструкции.

    Двигатель с непосредственным впрыском (GDI)

     

    Бензиновый непосредственный впрыск (GDI) представляет собой более совершенную версию многоточечной системы, в которой топливо впрыскивается непосредственно в камеру сгорания, а не во впускное отверстие. Непосредственный впрыск улучшает эффективность сгорания, увеличивает экономию топлива и снижает выбросы.

    Обе системы используют электронные топливные форсунки для впрыска топлива в двигатель, но разница заключается в том, где они впрыскивают топливо. В системах с распределенным впрыском топливо распыляется во впускные отверстия.

    В настоящее время используются четыре основных типа систем впрыска топлива: впрыск через дроссельную заслонку, впрыск через порт, последовательный впрыск и непосредственный впрыск. Основным преимуществом технологии прямого впрыска является лучшая экономия топлива для большинства применений и немного большая мощность.

    Одна из проблем двигателей GDI связана с наличием мелких частиц масла/грязи, которые могут выдуваться из системы вентиляции картера и оседать на стенках впускного канала и задней части клапана. Углерод прилипает к клапану, потому что топливо не распыляется на заднюю часть клапана, как в системе с распределенным впрыском. Накопление может стать настолько значительным, что кусок может отколоться и повредить каталитический нейтрализатор. Это также может вызвать проблемы с зажиганием.

    Некоторые OEM-производители используют впрыск как через порт, так и через цилиндр, чтобы уменьшить накопление углерода, в то время как другие поставщики работают над ТНВД высокого давления, которые лучше распыляют топливо, чтобы свести накопление к минимуму. Но не существует волшебной формулы для предотвращения накопления углерода.

    Двигатели с непосредственным впрыском также страдают от состояния, называемого преждевременным зажиганием на низких оборотах (LSPI). LSPI — это аномальное сгорание, вызванное повышенным давлением в цилиндре, характерное для двигателей GDI с турбонаддувом, работающих на низких оборотах с высоким крутящим моментом.

    При многоточечном впрыске топливо распыляется по мере того, как оно впрыскивается во впускное отверстие, а затем втягивается в камеру сгорания. Это не самый эффективный метод смешивания и воспламенения топлива, но он все же намного эффективнее карбюратора.

    Новые компьютерные технологии позволили производителям перейти на GDI, чтобы обеспечить более точный контроль процесса сгорания и снизить выбросы. Однако мелкие частицы, которые не распыляются, вызывают горячие точки в камере сгорания. OEM-производители и вторичный рынок знают об этом, и даже производители масел работают над решением проблемы.

    Компьютер, который сообщает форсункам, когда впрыскивать топливо, управляет обеими системами электронным способом, но основное различие заключается в том, где каждая из них распыляет топливо. Впрыск через порт распыляет топливо во впускные отверстия, где оно смешивается с поступающим воздухом.

    Форсунки обычно располагаются в направляющих впускного коллектора. Когда впускной клапан открывается, топливная смесь втягивается в цилиндр двигателя.

    При непосредственном впрыске форсунки находятся в головке блока цилиндров и впрыскивают топливо непосредственно в камеру сгорания, смешиваясь с нагнетаемым воздухом. Воздухозаборник только подает воздух в камеру сгорания с непосредственным впрыском. Сегодня GDI является ведущей технологией, и в ближайшие годы она будет только улучшаться. Впрыск топлива через порт все еще может иметь место, но в качестве второстепенного фактора для условий низкой скорости.

    В этой статье:Предварительное зажигание на низких оборотах, технические характеристики

    Непосредственный и портовый впрыск в двигателях – техническое обслуживание

    Совершенно новые 6,6-литровые газовые двигатели для Chevrolet Silverado HD оснащены технологией прямого впрыска.

    Фото: General Motors

    Двигатели грузовиков немного изменились с тех пор, как первые автомобили появились на дорогах, но основная предпосылка для бензиновых двигателей остается той же: вам нужно топливо, кислород и искра, чтобы заставить его работать. На базовом уровне топливо доставляется путем впрыскивания его в камеру сгорания двигателя посредством расчетного выброса мелкодисперсной струи.

    Первоначально способ смешивания топлива с воздухом заключался в использовании карбюратора, запатентованного в 1872 году. С учетом обновленных потребностей в каталитических нейтрализаторах карбюраторы перестали быть эффективными. Сегодня мы используем впрыск топлива, и есть два основных способа сделать эту смесь в двигателе внутреннего сгорания – непосредственный впрыск или впрыск через порт.

    Что такое непосредственный впрыск? Двигатели с непосредственным впрыском использовались в истребителях во время Второй мировой войны уже довольно давно. Это способ подачи топлива, при котором топливо впрыскивается непосредственно в камеру сгорания.

    «В двигателе с непосредственным впрыском топливо распыляется под экстремальным давлением, используемым для его впрыска — до 2200 фунтов на квадратный дюйм (psi) на совершенно новых 6,6-литровых бензиновых двигателях V-8, предлагаемых на Chevrolet Silverado 2020 года. HD», — пояснил Майк Коциба, помощник главного инженера по двигателям Small Block в General Motors.

    Распределительный впрыск топлива используется с 1980-х годов и означает, что топливо подается в двигатель непосредственно во впускной коллектор или головку блока цилиндров. Топливо распыляется на клапан, который затем использует тепло от клапана для дальнейшего распыления топлива.

    «Обе системы направлены на распыление топлива для более эффективного сгорания топлива. Разница заключается в том, как они распыляют топливо: прямой впрыск использует очень высокое давление и распыляется непосредственно в область свечи зажигания для воспламенения. Впрыск топлива через порт использует тепло от клапанов для распыления топлива перед попаданием в цилиндр, когда клапан открывается», — сказал Коциба.

    Наиболее значительным преимуществом прямого впрыска является впрыск более холодной воздушно-газовой смеси в цилиндр. Это снижение тепла имеет два преимущества.

    «Во-первых, он обеспечивает более высокую степень сжатия, что обеспечивает более высокую производительность и эффективность. Во-вторых, он обеспечивает лучшую работу двигателя при холодном пуске, что особенно важно в холодном северном климате», — отметил Кочиба.

    Самым большим преимуществом системы впрыска топлива во впускной коллектор является естественная очистка клапанов при каждом распылении топлива.

    «Для двигателей с непосредственным впрыском мы разработали сложные системы для предотвращения отложений на клапанах, включая систему принудительной вентиляции картера, которая помогает предотвратить отложение масла на клапанах», — добавил он.

    Одним из недостатков впрыска через порт является то, что топливо может скапливаться и поглощаться окружающими участками, что затрудняет его контроль.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *