Положение дроссельной заслонки на холостых оборотах: Диагностика ДПДЗ

Содержание

Диагностика ДПДЗ

  1.    Главная
  2.   »   Диагностика ДПДЗ

Диагностика и ремонт датчика положения дроссельной заслонки

В представленной статье будет рассмотрено устройство датчика положения дроссельной заслонки, диагностика и симптомы неисправностей ДПДЗ, а так же его ремонт.

Устройство датчика положения дроссельной заслонки

Итак, если Вы задались вопросом, каким образом устроен датчик положения дроссельной заслонки, то стоит сначала рассмотреть принцип его работы.

Датчик положения дроссельной заслонки относится к типу датчиков резистивного типа. Данное название обуславливает принцип его работы, а именно, если разобрать данный датчик, то внутри мы обнаружим подвижной элемент в виде ползунка, который скользит по дорожке в виде дуги или подковы. К одному из концов данной дорожки подается питающее напряжение, другой конец дорожки соединен с массой, а с подвижного ползунка снимается выходной сигнал.

Неисправность датчика положения дроссельной заслонки:

Какие же неисправности датчика положения дроссельной заслонки чаще всего встречаются на практике? Если отбросить неисправности связанные с перетертыми проводами, подходящими к датчику и т.п. то можно выделить главную и наиболее часто встречающуюся неисправность датчиков данного типа, а именно это износ резистивного слоя на дорожках по которым скользит ползунок. Как правило, износ наблюдается на начальном участке движения ползунка в связи с наиболее частым использованием данного участка.

Если Вы разобрали датчик дроссельной заслонки, то в большинстве случаев износ резистивного слоя будет заметен в ходе визуального осмотра, как на представленном фото.

На датчик подается напряжение с ЭБУ автомобиля, однако при измерении напряжения Вы увидите, что на датчике напряжение варьируется от 0,3-0,5 В в одном положении и до 3,7-4,8 В в полностью открытом положении дросселя. Это сделано для того, чтобы ЭБУ могло идентифицировать неисправность в цепи датчика, будь то КЗ или обрыв.

В отдельных моделях автомобилях могут применяться датчики положения дроссельной заслонки с инверсной выходной характеристикой, то есть напряжение при закрытом дросселе будет максимальным, а по мере открытия дросселя оно будет падать.

Так же следует обратить внимание, что на автомобилях, где положение дроссельной заслонки задаётся при помощи электропривода ( в народе известная, как «электронная педаль») в указанных моделях положение дроссельной заслонки определяется при помощи не одного, а сразу двух потенциометров которые объединены в одном устройстве. При этом не имеет значения задает ли электронная педаль положение только в режиме холостого хода или во всем диапазоне. Один из двух потенциометров имеет инверсную выходную характеристику, а второй прямую выходную характеристику. На подобных системах, так же можно встретить концевой микро-выключатель который срабатывает в момент, когда педаль акселератора полностью отпущена водителем.

Как обнаружить неисправность датчика положения дроссельной заслонки без разборки датчика и снятия его с автомобиля:

— неисправность датчика положения дроссельной заслонки можно легко определить при помощи сканера, мотортестера или простого мультиметра. В данной статье мы рассмотрим пример обнаружения неисправности при помощи сканера.

Обратите внимание, что все приборы кроме мотортестера, не смогут обнаружить неисправность в виде износа резистивного слоя кроме очень сильных и протяженных участков, т.к. как правило только мотортестер успевает отобразить диаграмму в корректном виде, сканер в следствии низкой скорости обмена с ЭБУ не сможет обнаружить поврежденные участки небольшой протяженностью занимающие в диаграмме место с десятые секунды.

Итак, зайдите в сканере в режим снятия параметров в режиме реального времени, после чего перейдите в раздел снимающий показания положения дроссельной заслонки в процентном соотношении или вольтаж на датчике, после этого начните

медленно открывать дроссельную заслонку и следите за выходными сигналами со сканера. Наиболее удобно снимать данные показания в режиме осциллограммы, если конечно Ваш сканер поддерживает данную функцию. Данные с датчика должны расти медленно без скачков и резких падений. В случае если нарастание сигнала имеет резкие провалы или рост, то это свидетельствует об износе резистивного слоя на дорожках датчика.

Не обращайте внимания на незначительные изменения осциллограммы, это может быть обусловлено дрожью Вашей руки. Так же следует отметить, что при низкой скорости обмена между сканером и ЭБУ автомобиля возможен пропуск дефектного слоя резистивной дорожки, если он совсем короткий, но данный факт скорее исключение, чем правило.

При снятии датчика с автомобиля так же не будет лишним осуществить промывку дроссельного узла, отложения на стенках которого, так же могут мешать нормальной работе датчика.

Ремонт датчика положения дроссельной заслонки

Восстановить изношенный резистивный слой на дорожках, в бытовых условиях невозможно, поэтому единственным способом ремонта без замены датчика или дорожек является возможность в некоторых датчиках смещения резистивных дорожек относительно ползунка. Для этого в датчике предусмотрен специальный винт который фиксирует то или иное положение дорожек относительно ползунка, поэтому допустим при сильном износе начала резистивного слоя дорожки мы можем, ослабив винт, сместить его в область недоступную ползунку и таким образом избежать замены датчика положения дроссельной заслонки.

Симптомы неисправности датчика положения дроссельной заслонки

В случае износа резистивного слоя, в зависимости от места износа автомобиль может вести себя различными способами. Может наблюдаться нестабильная работа автомобиля на холостом ходу, автомобиль может попросту глохнуть на холостом ходу, либо при нажатии на педаль акселератора могут наблюдаться провалы в движении либо наоборот рывки и перегазовки.

Так же в отдельных случаях при замене оригинального датчика положения дроссельной заслонки на некачественный аналог может наблюдаться зависимость работы датчика от температуры, то есть по мере нагревания корпуса ДПДЗ выходное значение будет меняться. К примеру, на холодном двигателе датчик имеет выходное напряжение около 500 мВ, ЭБУ сохраняет данное значение, как положение закрытого дросселя и приступает к стабилизации оборотов холостого хода. После нагревания корпуса датчика, выходное значение меняется на 560 мВ, ЭБУ не понимает, что это напряжение холостого хода т.к. он сохранил 500 мВ и не стабилизирует холостой ход.

При данной неисправности может кратковременно помочь выключение зажигания с последующим повторным пуском двигателя, чтобы ЭБУ сохранил новое значение выходного сигнала, как положение закрытого дросселя.

Установить наличие данной неисправности датчика положения дроссельной заслонки можно путем измерения выходного значения на холодном двигателе (не работавшем не менее 2,5 часов) и на прогретом двигателе. Если значение сильно различаются имеет место быть данный дефект и датчик необходимо менять на более качественный.

Положение дроссельной заслонки на холостых оборотах

Главная » Разное » Положение дроссельной заслонки на холостых оборотах

проверка и устранение неисправностей. Фото и видео

Рассмотрим на фото и видео такую тему, как положение дроссельной заслонки, принцип работы ДПДЗ, какое положение ДЗ считается нормой, причины завышенного или заниженного положения ДЗ, а также некоторые важные нюансы при диагностике данного узла.

Ну что же, Друзья, продолжаем знакомится с основными параметрами переменных при диагностике автомобиля. И сегодня рассмотрим такой параметр, как положение дроссельной заслонки или положение ДЗ.

Датчик положения дроссельной заслонки

Сам датчик положения дроссельной заслонки автомобиля расположен в/на дроссельном узле и в народе получил название «датчик правой ноги».

Он измеряет величину открытия дроссельной заслонки и передаёт эти данные в блок управления двигателем.

Этот датчик потенциометрического типа, т.е. работает по принципу обычного переменного резистора. Переменные резисторы мы чаще всего встречаем в регуляторах громкости аудиоаппаратуры и во многих других участниках нашей бытовой жизни.

Бытует мнение, что датчик положения дроссельной заслонки является чуть ли не самым главным дозирующим элементом в системе управления двигателем и по его сигналу вычисляется нагрузка на двигатель.

Давайте внесём ясность. Это нужно понимать для правильной диагностики автомобиля.

Мы уже упоминали в статье Бедная смесь о том, что двигатель внутреннего сгорания работает на воздухе с добавлением паров топлива. Также мы поняли, что главным дозирующим фактором является расход воздуха!

Расход воздуха — это главный и стартовый фактор для всех последующих действий, предпринимаемых ЭБУ в процессе управления двигателем.

Из этого можно сделать правильный вывод, что датчик положения дроссельной заслонки не является основным дозирующим устройством.

Можете его отключить и автомобиль сильно от этого не расстроится, а поедет дальше без особых проблем из пункта А в пункт Б или В, или Г. В общем, куда необходимо, туда и поедет.

Вся нагрузка на двигатель будет основываться на данных датчиков измерения расхода воздуха.

А массой этого самого воздуха мы управляем физическим открытием/закрытием дроссельной заслонки.

Положение дроссельной заслонки (положение ДЗ)

Не смотря на всё вышесказанное, измерение положения дроссельной заслонки играет хоть и не основную, но очень важную роль в процессе управления двигателем. Оно помогает более точно управлять процессами.

Например, такой режим работы двигателя, как принудительный холостой ход или режим отсечки (торможение двигателем). Положение дроссельной заслонки помогает ЭБУ оценить ситуацию и включить этот режим.

Допустим, скорость автомобиля составляет 55 км/ч, обороты двигателя 2600 об/м. Мы отпускаем педаль акселератора, положение ДЗ становится минимальным, ЭБУ это видит и включает режим отсечки, выключая подачу топлива через форсунки. Это позволяет более эффективно использовать торможение двигателем, повышая безопасность и увеличивая ресурс тормозной системы, а также экономить топливо и в разы уменьшить выброс вредных веществ в нашу с Вами атмосферу.

Но я слукавлю, если не скажу, что ЭБУ и так увидит, что мы закрыли заслонку по резко упавшему давлению во впускном коллекторе (с системой ДАД) или по резкому уменьшению массы потребляемого воздуха (с системой ДМРВ). Как видим, и в этом случае измерение положения дроссельной заслонки только помогает более точно определить фактор отсечки или торможения двигателем.

Положение дроссельной заслонки на холостых оборотах

Какие должны быть показания положения ДЗ на оборотах холостого хода?

Разные! Почему?

Этот параметр в большей степени относится к ярым фанатикам чистки дроссельной заслонки каждую неделю, а то и через день.

Существует два основных способа управлять оборотами холостого хода при помощи РХХ (регулятор холостого хода). Именно управлять оборотами хх! А не поддерживать обороты хх! Это очень важно!

Так вот:

  1. При помощи регулятора холостого хода, установленного в байпасном канале
  2. При помощи регулятора холостого хода, управляющего непосредственно дроссельной заслонкой

И та, и другая система встречается на разных автомобилях. Даже Шевроле Лачетти использует разный способ регулировки холостого хода. На двигателях 1,4л и 1,6л используется второй метод, а на двигателях 1,8 используется первый метод.

Этот параметр в диагностике обзывается, как «Шаги РХХ» или «Положение ДЗ Шаг». Это более подробно мы рассмотрим в одной из будущих статей, а сейчас кратко объясню в чём заключается принципиальная разница этих двух способов. Это необходимо для понимания диагностики положения дроссельной заслонки.

Как мы уже знаем, все процессы в двигателе начинаются с подачи воздуха. Подачей воздуха мы можем регулировать обороты двигателя в разных режимах. То же самое происходит и при регулировке оборотов холостого хода. Подавая определённую массу воздуха, мы регулируем обороты хх в нужных пределах.

Примечание! Регулятор холостого хода осуществляет грубую регулировку оборотов хх (порядка +/- 50 об/м. После этого более точно обороты хх регулируются посредством изменения УОЗ. Но это тема другой статьи и сейчас это не столь важно.

Так вот, в первом случае заслонка полностью закрывается, а необходимый для холостого хода воздух, подаётся в обход дроссельной заслонки по специальному каналу. В этом канале находится специальный клапан-регулятор, который регулирует массу воздуха, проходящую через этот канал.

А во втором случае подача воздуха осуществляется через саму дроссельную заслонку. Заслонка приоткрывается/прикрывается при помощи электродвигателя и через неё проходит необходимая масса воздуха для работы двигателя на холостом ходу.

То есть, очевидно, что в первом случае при работе двигателя в режиме холостого хода правильные значения положения ДЗ будут равны нулю! Так как воздух идёт не через дроссельную заслонку, а через специальный канал РХХ.

А во втором случае при работе двигателя в режиме холостого хода правильные значения положения ДЗ будут равняться нескольким процентам (градусам). Равняться нулю показания не могут, так как если заслонка закроется полностью, тогда двигатель заглохнет.

Вот у нас уже получился первый вывод. Вот его суть.

Чтобы правильно диагностировать положение дроссельной заслонки, первым делом необходимо определить, как осуществляется регулировка оборотов холостого хода на этом конкретном автомобиле. Если по первому способу — тогда положение ДЗ на холостом ходу должно быть равно 0%! А если по второму способу — тогда несколько процентов!

Примечание: Во всех сферах нашей жизни встречаются исключения. Тут тоже. Например, Лачетти 1.8 ЛДА хоть и имеет отдельный регулятор холостого хода, но положение дроссельной заслонки на холостом ходу составляет 10-11%

В первом случае всё просто и понятно. Если значения отличны от нуля, значит либо дроссельная заслонка не может плотно закрыться из-за грязи или ещё чего-то, либо датчик положения дроссельной заслонки показывает не правду, что означает его износ и поломку.

А вот во втором случае не всё так однозначно.

Бытует мнение, что если открытие ДЗ составляет более 5%, тогда необходима обязательная чистка этой самой заслонки. Это так, но со множеством нюансов.

И самые главные из них — это те, о которых мы уже говорили выше:

  • регулятор холостого хода не поддерживает холостой ход, а регулирует его
  • нагрузка на двигатель высчитывается по расходу воздуха (давлению в коллекторе). Чем больше масса потребляемого воздуха — тем больше нагрузка. И наоборот, чем больше нагрузка на двигатель, тем больше ему необходимо воздуха.

Завышенное положение дроссельной заслонки

Очень часто приходится отвечать на одни и те же вопросы. Самый главный из них такой — «Почистил дроссельную заслонку, а её показания положения дроссельной заслонки не изменяются и составляют 5-7%. Дроссельный узел износился?»

Приведу пример из жизни. Человек очень сильно озадачился завышенными показаниями положения ДЗ, которые составляли около 7-9% на холостом ходу. Начитавшись форумов в интернете и сайтов под названием «Пишулишьбыписать», приступил к выдраиванию дроссельного узла. Помыл — не помогло. Значит плохо помыл. Помыл ещё раз и очень дотошно. Снова не помогло. Что же делать, уже блестит, как у кота что-то там, а всё-равно по показаниям грязный!

Затем его озадаченность переросла уже в более кардинальную фазу — наверное, заслонка подклинивает и не закрывается.

Хорошо хоть не успел разобрать дроссельный узел в поисках подклинивания.

Вовремя проведенная внимательная диагностика выявила причину его бессонных ночей.

Виновником оказался… генератор.

Достаточно было всего одного взгляда на ремень вспомогательных агрегатов, чтобы понять, что что-то не так.

Оказалось, ротор генератора на столько туго вращался, что двигателю не хватало стандартной мощности холостого хода для его вращения. И, естественно, ЭБУ приоткрыл дроссельную заслонку для доступа большей массы воздуха.

Вот так. Но зато дроссель теперь очень чистый

Из этого у нас уже вылезло второе правило. Вот его суть.

Если значения в параметре «положение ДЗ» завышены, то это не обязательно значит, что нужно всё бросать и бежать с выпученными глазами чистить дроссельную заслонку.

Можете проверить данный факт сами, кому интересно. Запустите двигатель, подключите диагностический адаптер, нажмите на тормоз и попытайтесь тронуться с места не нажимая педаль акселератора. Обратите внимание на положение дроссельной заслонки. По мере повышения нагрузки на двигатель, также будут расти и показания положения ДЗ. ЭБУ сам будет приоткрывать дроссельную заслонку, чтобы повысить мощность и сохранить необходимые обороты холостого хода в заданных пределах даже под нагрузкой.

Также сам ЭБУ управляет положением ДЗ при запуске и прогреве двигателя, приоткрывая и прикрывая её в зависимости от прогрева двигателя и температуры окружающей среды.

Поэтому можно сделать выводы, почему положение дроссельной заслонки на Лачетти 1.4/1.6 и похожих авто может быть завышено:

  1. Дроссельный узел загрязнен и дроссельная заслонка не закрывается до необходимых значений. Необходима чистка.
  2. На двигатель действует повышенная нагрузка и ЭБУ целенаправленно увеличивает процент открытия ДЗ, чтобы обеспечить работу двигателя на холостом ходу. Тут необходима комплексная диагностика двигателя и навесного оборудования.

Заниженное положение дроссельной заслонки

Давайте вернёмся к чистке дроссельной заслонки и внесём ещё одну ясность.

Часто приходится наблюдать такой себе своеобразный рейтинг чистых заслонок 

Прямо радость у людей, когда после чистки (или не чистки) дроссельной заслонки показания положения ДЗ меньше, чем у того неудачника, который плохо почистил. У него 2,5%, а у меня получилось аж 0,8%! Круть просто!

Стоит ли радоваться такому низкому значению положения дроссельной заслонки?

Опять же, чтобы не быть голословным, давайте проведём эксперимент.

За основу возьмём наш известный факт, что для определённых параметров работы двигателя необходима определённая масса воздуха.

Подключаем адаптер для диагностики автомобиля и запускаем двигатель на холостом ходу. Смотрим параметр «положение ДЗ»

Положение (открытие) дроссельной заслонки составляет 2,4%. Положение регулятора холостого хода (ШАГ) составляет 24

Отключаем какой-нибудь шланг от впускного коллектора. Например, короткий шланг от клапана системы вентиляции картера

Этим мы обеспечим подсос лишнего воздуха во впускной коллектор.

А вот теперь смотрим на показания положения дроссельной заслонки

Значение положения ДЗ стало 0,8%! Во как круто почистили дроссельную заслонку, даже не вымазывая рук

А положение РХХ стало всего 5 шагов.

Понятно, что произошло?

Массы воздуха, поступившей через отключенный шланг почти хватает для работы двигателя на холостом ходу, поэтому, чтобы обороты не возросли выше необходимых, ЭБУ прикрыл дроссельную заслонку.

Поэтому радоваться маленьким значениям положения дроссельной заслонки на автомобилях с регулировкой холостого хода при помощи ДЗ не стОит!

Существуют две основные причины заниженного положения дроссельной заслонки на Лачетти 1. 4/1.6 и похожих автомобилях:

  1. Подсос воздуха во впускной коллектор. При этом также снижаются шаги регулятора холостого хода.
  2. Не правильно отрегулирован трос от педали газа к дроссельной заслонке. При этом шаги регулятора холостого хода не снижаются, а остаются в норме.

Более подробно об этом я рассказываю в видео в конце данной статьи. Обязательно посмотрите его, если на Вашем авто заниженное положение ДЗ.

Правильное положение дроссельной заслонки

Из всего вышесказанного необходимо подвести общий вывод о правильном положении дроссельной заслонки.

Для автомобилей с системой регулировки холостого хода посредством РХХ, установленного в отдельном байпасном канале в обход дроссельной заслонки:

  • Значение положения ДЗ обычно должно быть равно 0%. Повышенные значения свидетельствуют о препятствии закрытию заслонки (грязь, заедания, повреждения и т.д.) либо о неисправности самого датчика положения дроссельной заслонки или его проводки.

Для автомобилей с системой регулировки холостого хода посредством воздействия на саму заслонку:

  • Положение дроссельной заслонки должно составлять обычно 2-4% на полностью прогретом и полностью исправном двигателе, включая исправность всех его вспомогательных агрегатов (генератор, насос ГУР) и выключенных потребителях (кондиционер, фары, обогрев заднего стекла и т.д.)! Завышенное значение положения дроссельной заслонки может быть вызвано повышенной, по какой-то причине, нагрузкой на двигатель, загрязнением ДЗ, неисправностью ДПДЗ или его проводки. Заниженные показания положения дроссельной заслонки могут быть вызваны подсосом лишнего воздуха в обход дроссельной заслонки(очень часто!) или неправильной регулировкой привода дроссельной заслонки.

Проверку датчика положения дроссельной заслонки в этой статье рассматривать не будем, так как это я подробно описал в статье Как проверить ДПДЗ

Видео о положении дроссельной заслонки

Вот видео, в котором я подробно описал правильное положение дроссельной заслонки, а также привел реальные примеры причин завышенного и заниженного положения ДЗ

На этом пока всё. Вопросы, замечания и дополнения излагайте в комментариях!

Всем Мира и ровных дорог!!!

Вернуться на главную рубрики Диагностика автомобилей

Предыдущий параметр — Температура воздуха на впуске

По теме:

22+

moylacetti.ru

Размышления о датчике положения дроссельной заслонки — DRIVE2

Внимание: много букв!

В этой записи я затрону владельцев автомобилей Лада с электронной системой впрыска топлива, без системы электронной педали газа.

Вступление
В СУД входит немалое количество датчиков, которые служат для того, чтобы информировать ЭБУ о параметрах работы системы. В комплекс этих датчиков входит датчик положения дроссельной заслонки — ДПДЗ, в народе — датчик правой ноги. Разберемся о некоторых тонкостях его работы.

ЭБУ Bosch M7.9.7+

Немного теории
Если ДПДЗ выдает напряжение в диапазоне от 0.3 до 0.7 В, то ЭБУ считает, что дроссельная заслонка полностью закрыта. Нажимая педаль газа, и тем самым поворачивая дроссельную заслонку, а вместе с ней и ДПДЗ, напряжение его сигнала увеличивается и контроллер начинает считать открытие дроссельной заслонки шагом в один процент: 1, 2, 3 и так далее.

Диапазон напряжений, указанный выше, существует не зря. Сделано это (по моим догадкам) для упрощения выпуска датчиков. ЭБУ в этом диапазоне будет воспринимать «0%» и не нужно отстраивать каждый датчик, допустим в напряжение 0.69 В.

А как на практике?
Однако существует такой нюанс, допустим на заводе установили ДПДЗ на дроссельный узел, закрепили его и при закрытой ДЗ он выдает напряжение в 0.4 В, а не 0.69 В. В таком случае ход педали при «0% открытии дроссельной заслонки» увеличится. Попробую объяснить понятнее. Вы открываете дроссельную заслонку, как и при 0. 69 В, но контроллер дольше воспринимает её закрытое положение, так как нужно еще повернуть ДПДЗ, чтобы его напряжение увеличилось с 0.4 до 0.7 В, а ведь вместе с ним Вы поворачиваете ДЗ.

Привод дроссельной заслонки

Открывая ДЗ Вы увеличиваете подачу воздуха, но чтобы сохранить обороты холостого хода (ведь % открытия еще нет), ЭБУ начинает уменьшать шаги открытия регулятора холостого хода. Когда же напряжение ДПДЗ станет равным 0.7 В или больше, ЭБУ поймает 1% и выйдет на обороты примерно 1500 в минуту, так как физически ДЗ открыта уже довольно много.

Следствие
На нейтральной передаче невозможно выйти на обороты чуть выше ХХ, например на 950 или 1200, в зависимости от положения ДПДЗ в конкретном случае, тоже самое и при движении на 1-ой передаче. Из-за этого тяжело двигаться на малых нажатиях педали, переходный режим между ХХ и нагрузкой неправильный, машина может подергиваться.

Что делать?
Особо внимательные и вникающие в то, что я написал, должны догадаться сами. Надеюсь такие найдутся.

Решение довольно простое: нужно установить ДПДЗ так, чтобы при закрытой ДЗ он выдавал напряжение, как можно ближе к значению 0.7 В, тем самым 1% будет появляться при самом малом нажатии педали и ДЗ будет также открываться совсем немного, что практически исключит изменение положения РХХ при малых нажатиях на педаль.

Второе решение, куда более сложное и радикальное — установка электронного привода ДЗ или Е-газа. Там ХХ управляется контроллером, непосредственно открытием ДЗ. Никакого РХХ, дополнительных каналов, перетечек и прочего там нет.

Попробуйте на нейтральной передаче выбрать обороты немного выше ХХ: 950-1200 и напишите о результатах в комментариях, указав установлена ли электронная педаль газа на Вашей машине или нет.

Всем удачи!

www.drive2.ru

Настройка холостого хода на дросселях — Лада 2113, 1.6 л., 2007 года на DRIVE2

Всем привет!

Давно ничего не писал полезного о настройке моторов. Так как у меня все машины работают по дросселю (ДМРВ или ДАД отстутствует), хочу поделиться как я настраиваю холостой ход на них. Сейчас у меня две машины, 2108 (для кольца и льда) и 21099 (для драга и льда), обе гонки крутятся на 8 клапанах. Кратко опишу конфигурации каждой из двух машин.

Полный размер

8ку или 99ку взять покататься?

1. 2108. Мотор 1.6 8кл с Чёрной Бури:
коленвал 75.6
шатун приора
8кл стк поршень 82.5 (группа С)
зазор поршень-цилиндр 6 соток
кольца SM наборные
гбц расточены каналы, 32×30
т-образный клапан
лёгкие тарелки с роспуском 1мм
прокладка гранта
распредвал МС-08, 310-306, 11.5
форсунки бош 107, насос 60 л/ч, давление 4 атм
дросселя вертикальные Stinger 4×46мм
выпуск Stinger на 51мм, резонатор сразу за пауком
расчётная степень сжатия 11.8
бензин 95 город, 100й для гонок
ЭБУ м73 на спортивной прошивке j73sx

Полный размер

Под капотом 2108

2. 21099. Мотор 1. 5 8кл:
коленвал 71.0
шатун приора
8кл стк поршень 82.5 (группа B) с дырками в юбке
зазор поршень-цилиндр 5 соток
кольца Кольбеншмидт коробчатые
гбц каналы сток, убрана ступень на впуске, создана обратная ступень на выпуске
сток клапан
лёгкие тарелки без роспуска
прокладка гранта
распредвал Нуждин 10.93 (с Чёрной Бури), 282гр фаза
форсунки сток, насос 110 л/ч (выносной под капотом), давление 3.2 атм
ресивер Брагин нового образца (круглый)
выпуск Stinger на 51мм, резонатор сразу за пауком
расчётная степень сжатия 12
бензин 95 город, 100й для гонок
ЭБУ я7.2 на спортивной прошивке j7esa 0.7.5

Полный размер

Под капотом 21099 и 2108

Видно, что оба мотора почти одинаковые, но по своей сути очень разные, геометрией, степенью сжатия. 99ка мощная и не моментная, ей легче даётся максималка, а 8ка выигрывает сильно в моменте и ускорению. По конфигурации датчиков есть одно отличие: у 99ки есть РХХ, у 8ки его нет, т. к. дросселя без РХХ, холостой регулируется только УОЗом.

Рассмотрим вначале настройку 2108, там попроще, т.к. РХХ отсутствует. 2108 работает на платной спортивной прошивке j73sx. Вся регулировка сводится к настройке УОЗ на ХХ.

1. Для начала примерно выставить дросселя, надо чтобы они открывались вместе синхронно на одну и ту же величину, я делал на глаз, сильной точности не добивался.
2. Приоткрыть дросселя.
3. Запустить мотор и посмотреть как он работает и на каких оборотах. Если маленькие обороты, чуть добавить.
4. Далее откатать ПЦН (БЦН — если у вас прошивка j7esa). Откатать можно в моей программе Моторчик

Полный размер

ПЦН 2108


5. На горячую обороты держаться, кое-как но держаться. Пора переходить к тонкой настройке.
6. Выставить УОЗ на ХХ, делать легче всего в онлайне, мой график УОЗ получился такой:

Полный размер

Кривая УОЗ на холостых


7. Настроить максимальное смещение УОЗ на ХХ. Это и будут границы минимального и максимального УОЗ. Обычно ставлю от -10 до 10, ХХ получается ровно бубнящий.

Полный размер

Минимальное смещение УОЗ


Полный размер

Максимальное смещение УОЗ


8. Выставить пропорциональные коэффициенты 1й и 2й. Они отвечают за реакцию изменения УОЗ, если обороты стали меньше или выше желаемых. Обычно я ставлю 0.1000 и первый и второй во всех прошивках.

Полный размер

Настройка пропорциональных коэффицентов — реакция УОЗ по изменению оборотов ХХ


9. Ну и для запуска в мороз нам нужна коррекция по УОЗ от температуры ДТОЖ. Будьте внимательны, калибровка коррекции инвертированная. Если стоит -5гр, то к текущему УОЗ будет прибавлено 5гр. Пример, был УОЗ на ХХ 5гр, коррекция стоит -5гр, итоговый УОЗ будет 10гр.

Полный размер

Коррекция УОЗ на ХХ


10. Настроить первый переходной коэффициент — именно он будет сильно влиять за включение флага ХХ, когда обороты будут падать после сброса газа или во время езды на торможении мотором. Рассчитать обороты первого коэффициента можно в моей программе Моторчик. Например, желаемые холостые на прогретую выставлены 1100 об/мин, после выставления первого переходного получили 1500 об/мин — обороты на которых флаг ХХ выставится в «ДА». Если обороты зависают например на 1600 об/мин, стоит поднять обороты первого переходного — до 1700 об/мин. И еще, если всё равно зависают, можно поступить хитрее, включать топливо на 1600 об/мин при сбросе газа, тогда обороты точно не зависнут на 1600 об/мин и наступит ХХ и ЭБУ вернёт обороты к желаемым 1100 об/мин.

Полный размер

Коэффициент первого переходного режима ХХ

Полный размер

Задать обороты включения топлива

Ну всё, дроссельный таз 2108 настроен, он уверенно бурчит на холостых, переходим к тазу на ресивере — 21099. Как я писал выше, в этой конфигурации появился РХХ. Именно алгоритмы его работы у многих вызывают трудности. Вообще я могу без РХХ настроить и всё будет работать и запускаться в любой мороз, но раз он у меня был, решил его поставить и попробовать как он будет работать в режиме ДПДЗ+ДТВ. Прелесть РХХ в том, что когда температура впускного воздуха высокая, РХХ прикрывается и УОЗ не так сильно уходит вниз, звук от работы мотора намного тише, чем без РХХ с поздним УОЗом. Таким образом, в этой конфигурации у нас два регулятора — УОЗ и РХХ. Для настройки УОЗ на ХХ делаем всё тоже самое, единственное добавляется РХХ, поэтому просто составлю еще один список обязательных действий, которые нужно добавить к первому (регулирование УОЗ).

1. Жёсткость РХХ ставлю в 1цу, никаких дополнительных реакций не нужно, РХХ на дроссельном режиме должен как можно плавнее перемещаться.

Полный размер

Жёсткость РХХ в 1цу


2. Выставить границы работы РХХ — минимальное и максимальное положение РХХ.

Полный размер

Обязательно задать границы движения РХХ, не задавать большие диапазоны, иначе сложно поймать холостой.


3. Выставить желаемое положение РХХ простой линией — без всяких наклонов, нам нужно сокращать лишние движения РХХ.

Полный размер

Желаемое положение РХХ


4. Задать кривую «Коррекция по температуре ОЖ».

www.drive2.ru

Как отрегулировать дроссельную заслонку и выставить угол положения?

Аналог современного автомобиля – это устройство из множества узлов и агрегатов. Отклонения в работе самого маленького составляющего может привести к достаточно серьезным проблемам. Датчик положения дроссельной заслонки (ДПДЗ) – это один из примеров такого типа составляющих. А регулировка дроссельной заслонки — это неотъемлемый элемент плановой диагностики любого автомобиля.

Дроссельная заслонка представлена в виде воздушного клапана, функциональная задача которого заключается в регулировке количества воздуха, попадающего к мотору. К принципиальным особенностям агрегата относится изменение сечения воздушного канала. При её открытом положении воздух спокойно движется по впускному коллектору. Датчик положения дроссельной заслонки, расположенный здесь, и определяет угол открытия. Эта функция осуществляется за счет его связи с блоком управления двигателя. Сигналы, поступающие от датчика, способствуют подаче команды от блока управления для увеличения количества впрыскиваемой горючей смеси. Таким образом, рабочая смесь обогащается, а работа мотора приближена к максимальным оборотам.

Его датчик включает два вида резисторов:

  • Однооборотный постоянный.
  • Переменный.

Сумма их сопротивления примерно равна 8 кОм. Опорное напряжение здесь подается на один из крайних выводов из контроллера, а второй вывод соединяется с массой. Благодаря этому сигнал поступает к контроллеру, информируя о нынешнем положении дроссельной заслонки. Значение напряжения импульса зависит от уровня положения элемента, стандартный интервал которого 0.7 до 4 Вт.

Важно: открытое состояние агрегата свидетельствует об уровне давления во впускной системе автотранспорта аналогично атмосферному; при закрытом состоянии – это значение уменьшается к состоянию вакуума.

Типовое разнообразие

Всем известны два типа ДПДЗ:

  1. Образец с механическим типом привода.
  2. Агрегат с электрическим типом привода.
Датчик положения дроссельной заслонки

Первый тип внедряется автомобильном транспорте эконом-класса. Комплектация элементов объединена в отдельном блоке, который включает в себя следующие детали:

  • корпус;
  • дроссельную заслонку;
  • датчик;
  • регулятор холостого хода.

В качестве дополнения здесь также расположены патрубки, функциональная задача которых заключается в обеспечении работы систем улавливания паров бензина и вентиляции картера.

Корпус заслонки входид в состав системы охлаждения. Функциональная задача регулятора холостого хода заключается в поддерживании частоты вращения коленвала в закрытом положении заслонки при запуске либо прогреве двигателя. РХХ представляет собой шаговый электродвигатель и клапан. Функциональные задачи этих деталей в регулировке подачи воздуха, поступающего к системе впуска в обход.

В современных условиях большинство заводов-производителей укомплектовывают машины заслонками электрического типа привода. Эти элементы характеризуются собственной электронной системой управления. Таким образом, на всех скоростных диапазонах и нагрузках машины обеспечивается оптимальная величина крутящего момента. К увеличению мощности и динамики владельцы получают снижение расхода топлива и уровня токсичности выхлопных газов.

Этот элемент включает в себя следующие механизмы:

  • Корпус.
  • Дроссельную заслонку.
  • Электродвигатель.
  • Редуктор.
  • Датчик положения дроссельной заслонки.
  • Возвратный пружинный механизм.
ДПДЗ

Отличия электрического типа заслонки

Основные функциональные различия:

  • Отсутствие механической связи между педалью газа и заслонкой;
  • Регулировка ХХ путем непосредственного перемещения заслонки.
  • Электронная система в силах самостоятельно повлиять на величину крутящего момента ДВС. Это возможно благодаря отсутствия жесткой связи между педалью газа и дроссельной заслонкой. Это условие сохраняется даже при нажатии водителем на акселератор.

Подобные функциональные изменения возможны благодаря работе датчиков входного типа блока управления и исполнительного устройства. Это устройство электронной системы управления дополнительно характеризуется датчиком положения педали акселератора, выключателем положения тормоза и сцепления. Благодаря всему этому блок управления двигателя успешно реагирует на сигналы датчиков, преобразуя их на модуль заслонки в управляющие действия.

Альтернативная замена

Иногда встречаются автомобили с параллельной установкой 2-х ДПДЗ. В функциональном смысле подобный монтаж никакой мощности не прибавит, но в случае выхода из строя одного агрегата бесперебойную работу осуществляет второй. Поэтому внедрение двух ДПДЗ осуществляется с целью повышения надежности работы модуля. Эти элементы могут быть как бесконтактного типа так и с контактом скользящего типа. В качестве дополнения такая конструкция модуля включает аварийное положение заслонки, которое действует благодаря возвратному пружинному механизму.

Характер неисправностей

Неисправности или неправильная регулировка заслонки могут проявляться в следующих особенностях:

  • неуверенный или затрудненный запуск двигателя;
  • повышенный расход топлива;
  • увеличенные обороты холостого хода;
  • провалы при наборе скорости;
  • дергания при переключении.

Регулировочные работы

Именно на заслонку приходится основной процент работы. В силу того, что заслонка участвует в подвижной работе мотора постоянно, её угол положения требует периодической регулировки. Обратите внимание, такой процесс достаточно кропотливый. Не избежать замены дроссельной заслонки, если её регулировка приводит к каким-либо отклонениям. Дабы избежать подобных казусов при замене, рассмотрим детально подробности правильной регулировки дроссельной заслонки.

Во-первых, отключите зажигание, чтобы привести дроссельную заслонку в закрытое положение. Во-вторых, отключите в датчике разъем, параллельно проверив наличие проводимости между клеммами. Уверьтесь в том, что напряжения отсутствует. Затем можно приступать к настройке и регулировке датчика. После этого необходимо прибегнуть к помощи щупа толщиной 0,4 мм. Применяется он путем расположения между рычагом и винтом параллельно с расположением прокладки корпуса дроссельной заслонки.

С помощью омметра (можно воспользоваться другим аналогичным прибором) необходимо убедиться в том, что здесь напряжение также отсутствует. Наличие напряжения говорит о неисправности датчика и его надобности в дальнейшей замене. При соблюдении условия отсутствия напряжения, приступаем к непосредственной регулировке датчика. Манипуляции следующие: поворачивайте привод дроссельной заслонки до тех пор, пока угол между клеммами не достигнет значения, равного техническим стандартам на имеющегося транспортного средства. По завершении работ убедитесь в том, крепко ли закручены винты на датчике. В процесс регулировки они могли разболтаться.

autodont. ru

Renault Laguna 2.0 — Французский ослик › Бортжурнал › Адаптация/калибровка дроссельной заслонки (2 способа) — высокие обороты холостого хода

И так, после замены свечей и чистки дроссельной заслонки – обороты холостого хода ниже 1100 не опускаются. На ютубе находил видео, где герметиком восстанавливают слой по окружности, типа «который стёрся очистителем», были мысли так делать прочитав коментарии. Потом в комментариях где-то увидел про «адаптацию» / «калибровку» дросселя. Скажу заранее, после проведения данной калибровки – обороты ХХ стали 650 об/мин, совершенно другая машина стала, в том числе расход понизился. На драйве находил текстовую инструкцию, о том, как в клипе это сделать, но так как версии постоянно обновляются – то на более свежих (у меня 178 версия) даже похожего нет. В свежей версии называется это ПРОГРАММИРОВАНИЕ ВПУСКНОГО ТРАКТА. Ниже рассмотрены два способа с помощью диагностического прибора и ручной способ, из которых предпочтителен способ программирования с помощью диагностического прибора
С ПОМОЩЬЮ ДИАГНОСТИЧЕСКОГО ПРИБОРА
заводим машину, температура охлаждающей жидкости должна быть в районе 90 градусов.

Полный размер

Подключаемся

Полный размер

ждем

Полный размер

система впрыска — продолжить

Полный размер

ждем

Полный размер

диагностика по ЭБУ

Полный размер

система впрыска

Полный размер

слева переходим в документацию

Полный размер

операции предусмотренные до/после ремонта — переходим в первый пункт программирования

Полный размер

в самый низ — нажимаем на синюю ссылку

www.drive2.ru

Про дроссельную заслонку — Chevrolet Lacetti, 1.6 л., 2007 года на DRIVE2

Наткнулся на записьwww.drive2.ru/l/6074187/, которая натолкнула меня на мысли вот какие (если не хочется читать весь пост по ссылке)
«Если я правильно понимаю физику процесса то после чистки регулятор хх без сброса адаптации вернет заслонку в то положение к которому он обучен. Следовательно имеем 2 варианта:
— если заслонка до чистки была не сильно загрезнина, то увеличение оборотов хх не последует. т. к. изменение поступающего в двиг. воздуха не значительно.
— если нагара было много и рхх привык открывать заслонку на 7-8% то после чистки в двигатель на хх будет поступать значительно больше воздуха — следствие повышенные обороты.
Я когда делал чистку сразу сбросил адаптации по этому для статистики не подойду, но думаю что изменение с 7% до 1.7% было бы существенным для оборотов.»
В дополнение к размышлизмам провёл эксперимент на хх дроссель по БК открыт на 2%

На хх

После поднял обороты до 2000 — открытие дросселя по БК 5%

На 2-х тыс.

Т.е. получается если бы я не сбросил адаптации у меня обороты должны были (при положении заслонки 7%) держатся на уровне 2500-3000? Или мой эксперимент не верный и зависимость между этими показаниями не линейная?
Дополнение:
Зависимость между оборотами и положением дросселя все же линейная, судя по очертаниям графиков на том же БК.

Графики дроссель обороты после поездки.

Фото механизма рхх с сайта lacetti-club. ru

Обновление статистики
Добавлю записи:
после чистки обороты плавают
www.drive2.ru/l/6438433/
www.drive2.ru/l/3818939/
www.drive2.ru/l/6450139/
www.drive2.ru/l/6490063/
www.drive2.ru/l/6526692/
www.drive2.ru/l/6680395/
www.drive2.ru/l/6932401/
www.drive2.ru/l/7000058/
Обороты не плавают
www.drive2.ru/l/6890923/
www.drive2.ru/l/6074187/
www.drive2.ru/l/6598550/

www.drive2.ru

2. Процент открытия дроссельной заслонки

Параметр отображает степень открытия дроссельной заслонки и изменяется в диапазоне от 0 до 100%. При отпущенной педали дроссельной заслонки параметр должен показывать 0%. При полностью нажатой педали (дроссельная заслонка полностью открыта) параметр должен показывать 100%.

В данной системе управления установление нулевого положения дроссельной заслонки не регулируется. Предполагается, что узел дросселя выполнен точно в соответствии с ТУ.

Работа двигателя на холостом ходу с отпущенной педалью дроссельной заслонки должна сопровождаться параметром THR=0 и RXX=ДА (признак холостого хода). Параметр положения дроссельной заслонки является важным в определении режимов работы двигателя, поскольку именно нажатием на педаль дроссельной заслонки водитель определяет свое желание управлять автомобилем: двигаться быстрее или равномерно, останавливаться или выжимать всю мощность из двигателя. На рис.3 в координатах дроссель-обороты приведены основные режимы, которые определяются в алгоритмах работы двигателя по положению дроссельной заслонки:
-Переход к регулированию оборотов на холостом ходу, 
-Выход на мощностные режимы работы двигателя, 
-Режим отсечки топлива при движении автомобиля накатом, 
-Отсечка топлива в режиме пуска двигателя.

 

Рис. 3

Ошибки, связанные с датчиком положения дроссельной заслонки:

Р0122 – низкий уровень сигнала датчика положения дроссельной заслонки
Если такая ошибка попала в память блока управления, то можно не сомневаться, что выходной провод датчика, каким-то образом соединен с землей аккумуляторной батареи, либо провод питания датчиков 5В соединен с землей. В последнем случае такая же ошибка должна сопровождаться неисправностями и по датчику температуры и по датчику массового расхода воздуха. В датчиках российского производства эта ошибка чаще возникает из-за поломки самого датчика – внутренний резистивный слой нарушен, нет контакта внутри датчика. Неисправность, скорее всего, кроется в соединительных разъемах датчика и блока управления (например, попадание влаги).
Р0123 – высокий уровень сигнала датчика положения дроссельной заслонки
Этот код неисправности возникает при обрыве общего провода (массы) жгута датчика. Необходимо прозвонить жгут от разъема датчика к блоку.

Цепи датчика положения дроссельной заслонки проверяются с помощью имитатора датчика ИД-2 (см.рис.4).


Рис. 4

Еще одна маловероятная причина — неисправен блок управления.

При появлении постоянных кодов неисправности Р0122, Р0123 двигатель переходит на резервный режим работы. Положение дроссельной заслонки восстанавливается по текущему расходу воздуха (цикловому наполнению воздуха). Шаговый мотор занимает максимально открытое положение. На автомобиле возможно движение до станции технического обслуживания.

Неисправность — не сбрасываются (медленно сбрасываются) обороты при отпускании педали дроссельной заслонки. Положение дроссельной заслонки при отпущенной педали остается 1-2%. Система не переходит в режим холостого хода или переход происходит с запозданием (0% дроссельной заслонки появляется значительно позже, чем отпущена педаль). Резкая «перегазовка» помогает сбросить обороты. Необходимо: проверить натяжение тросика педали дроссельной заслонки, проверить на внутреннее загрязнение дроссельную заслонку, проверить работу пружинного механизма дроссельного патрубка, питающее напряжение датчика должно + 5,00 В.

Непонятные неисправности:
-плохо исполнен узел дроссельной заслонки — стопорный винт мешает датчику точно определить нулевое положение 
-неисправен датчик. Посадка на вал дроссельной заслонки не позволяет ему в закрытом положении точно определить нулевое положение 
-питающее напряжение датчика более 5. 01В. Напряжение определяется внутренним источником блока управления. Замерить напряжение, отсоединив клеммы с -датчиков температуры и массового расхода воздуха, возможно неисправен блок управления. 

Неисправность — автомобиль не достигает достаточной мощности.
Уровень дроссельной заслонки не достигает 100% — напольный коврик попал под педаль и она не имеет полного хода (или подобная причина), проверить ход дроссельной заслонки.

Неисправность — резкие рывки и провалы при нажатии на педаль дроссельной заслонки.
Если рывки и провалы появляются из-за датчика дроссельной заслонки, это значит, что резистивный слой нарушен незначительно в средних положениях дроссельной заслонки. Должен появиться код Р0122.

Проверка: При медленном открытии дроссельной заслонки необходимо убедиться, что параметр «Положение дроссельной заслонки» принимает все значения от 0.00 до 100.00%.

xn--80aea1clef.xn--p1ai

Нестабильные обороты ХХ.

Самостоятельная чистка дроссельного узла — DRIVE2

Эта запись из серии, «Делай сам, делай где угодно». То есть в принципе может сделать каждый, и даже на улице.

Полный размер


Бывает что нет возможности ехать в сервис, а «невозможности» бывают разные, от банальных «нет денег», до экзотических «Я не доверяю никому, даже сам себе, но все таки ремонтникам в сервисе я не доверяю больше чем себе» — это мой случай ))))
И так, вдруг в вашем селе произошла не приятность, обороты ХХ перестали быть стабильными, на прогреве вместо положенных по холодному 1500-2000, у нас на тахометре 1000, а в прогретом варианте, вместо 850, стрелка тахометра уверенно висит в районе 1500, распугивая случайных пешеходов, и заигрывая с рядом стоящими на светофоре гонсчегами…
Проходят дни, недели, и вам это надоедает.
Основных проблем нестабильного ХХ не так много:
1. Подсос воздуха мимо расходомера (если стоит MAF)
2. Ошибки датчиков и программные ошибки
3. Неисправность тросика
4. Избыточный расход воздуха через систему РХХ и Дросселя
Именно эта проблема чаще всего делает мозг автолюбителям.
Но из нее следует 2 направления… механический износ дросселя и рхх, а так же загрязнение каналов и частей системы РХХ нагаром, в следствии чего заслонка клапана РХХ, не способна корректно регулировать воздушный поток.
Откуда нагар? Из системы принудительной вентиляции Картера. На современных машинах обычно 2 контура. и каждый из них привносит свою лепту.
Вращение коленчатого вала создает в картере завихрения воздуха, взбалтывая масло и отделяя его пары, а прорвавшиеся, под давлением из цилиндров, через поршневые кольца, газы, создают избыточное давление в картере. Поэтому вентиляция картера жизненно необходима двигателю, но экологические стандарты уже давно запретили вентиляцию в атмосферу.
Производители вентилируют газы через дроссельный узел во впускной коллектор, а оттуда в цилиндры, где они успешно догорают, разбавляя свежую смесь масляными парами и отработанными газами.
Проходя через дроссель и систему РХХ, масляные пары оседают на стенках загрязняя обе системы. Конечно же в клапанной крышке предусмотрено отделение маслянных паров от газов, методом конденсирования масла на поверхностях лабиринта, однако эта система далека от совершенства, поэтому автолюбители часто тюнингуют свои машины «маслопомойками».
Для избежания таких картин

ну вот… хотел кратко рассказать откуда грязь… получилось на пол записи о маслопомойках.
Допустим, Вы все таки сами решились разобрать и почистить дроссель… при очередной вылазке на дачу. под легкое, или не очень, пиво/водку/коньяк — (нужное подчеркнуть).
Что обязательно заранее купить?
Прокладки камеры РХХ, и дросселя, у меня их есть… и обычно больше 1 штуки

Полный размер


необходимую химию, очиститель карбюратора, бензин, очиститель тормозов и т.д.

Снимаем впускной патрубок, и откручиваем дроссель, обычно это не представляет трудностей.
*(ремарка автора… фотографий гораздо больше чем 20, и я с болью в сердце выбирал более нужные, поэтому не все шаги будут подкреплены фотографиями)

Как только я снял дроссель, «картина маслом» мне сразу же не понравилась

Полный размер


Но тут… как всегда, неожиданно, в августе пошел дождь :)) пришлось по быстрому свернуть мастерскую на улице, прикрыть капот и ретироваться в подсобное помещение, оно же моторный цех, оно же сарай для хлама.

Открутив 3 болта, отсоединяем камеру РХХ от дроссельного узла, увиденная там картина не понравилась еще больше.

Зачем нужна прокладка камеры РХХ? в большинстве случаях, обратно поставить старую не получиться

Замачиваем все ВДэхой на несколько минут

Наказываем… и ставим в угол

А сами идем собственно к тому ради чего мы сюда и приехали — готовиться к пиво/водка/коньяк (нужное подчеркнуть)

ВД имеет в своем составе жирные кислоты, и поэтому оно не самый лучший состав для очистики, зато она является проникающим составом, и достаточно сильно размягчает отложения

Дальше берем, очиститель карбюратора/тормозных дисков/бензин и намывает как кот свои причиндалы

Будем считать, что с помывкой мы справились.
Но довольно часто, после промывки дросселя, у пользователей возникают еще большие проблемы.
Связанно это с механическим износом дросселя и узлов РХХ.
Вот например известный «тест лампочкой»…

Полный размер


В данном случае износ дросселя уже имеет место быть, конечно он пока еще не критический, но дроссель начинает проситься на помойку.
Возможно уменьшить зазор, при помощи антифрикционного покрытия производства Molykote, например как описано вот тут. Не знаю насколько долговечно, возможно как нибудь попробую.
Можно подкрутить упорный болт, слегка уменьшив зазор.

Полный размер


НО… делать это следует таким образом, чтобы не было «закусывания дросселя» в крайнем положении. И скорее всего сильно уменьшить зазор не особо получиться, поэтмоу в большинстве случаях не рекомендуется трогать заводскую настройку.
Дальше… РХХ
обычно РХХ это комплексная система, в тойотах регулятор холостого хода на камере рхх, состоит из 3 частей.
— Камера РХХ
— Шток с заслонкой
— головка двигателя
Продается это дело готовым комплектом, уже настроенным. Именно поэтому болты крепящие головку двигателя не Филипс, не торкс, не шлиц, а вот такие

Конечно если вы уже продвинутый пользователь, и хотите посмотреть что внутри, то можете сделать так

При этом следует учитывать, что у головки двигателя существует некоторая регулировка, поэтому отверстия овальные

Мне в принципе все равно, мозги не стандартные, ХХ у меня задран до 1100, и программно регулируется, так что я в любом случае смогу поймать свой ХХ, на любом положении головки двигателя. А вот стоковым пользователям будет не так сладко.
Но если все таки очень хочется посмотреть что внутри (хотя ничего интересно там нет), можно вскрыть заглушку задней части и смазать шток. так как с завода там никакой смазки нет.
Более того, после того как я полностью разобрал всю систему, шток заслонки на 2ух закрытых подшипниках, и звук вращения штока, говорит о том, что подшипники говорят да свиданья, и просятся на помойку вместе с дросселем, но выбора на данный момент нет. поэтому промываем все до блеска, набиваем смазкой и собираем обратно. Существует мнение, что вязкая смазка, может затруднит регулировку РХХ в большой минус, а смазывать подшипники стоит силиконовой смазкой. Единственно что мне не нравится в силиконовой смазке, то что со временем она сильно теряет свои смазочные свойства, тем более в таких условиях, и будет больше создавать трение чем его убирать.

После обратной сборки, первое время поведение ХХ может быть крайне не адекватным, поэтому на время проведения работ, рекомендуется скинуть клемму аккумулятора, а после прогрева некоторое время постоять с заведенным двигателем на ХХ, чтобы РХХ адаптировался.

Если понравилось, задавайте вопросы, жамкайте кнопки, и рекомендуем друзьям ) Если не понравилось, жмем кнопку «удалить» 🙂

www.drive2.ru

Дроссельная заслонка: назначение, конструкция, принцип работы

С самого момента изобретения принцип работы дроссельной заслонки не изменился. Да, она «обросла» дополнительными датчиками, моторчиками и патрубками, управляется бортовым компьютером, делается из более технологичных материалов, но ее суть осталась неизменной. Как раньше она регулировала подачу воздуха в карбюратор, так и теперь дроссельный узел подает воздух в двигатель.
Однако, несмотря на свою «табуреточную» простоту, дроссельная заслонка выполняет важную функцию, и любые ее сбои моментально сказываются на работе двигателя.

Что такое дроссельная заслонка, назначение, виды

Дроссельная заслонка – это механический клапан, который регулирует объем воздуха, поступающего в камеру сгорания. Угол открытия определяет, сколько воздуха проходит через нее за единицу времени и попадает в цилиндры. В зависимости от угла открытия, воздух может проходить беспрепятственно, частично, либо не проходить вообще.

Типовая схема дроссельной заслонки

Когда водитель нажимает педаль газа, это и есть управление углом открытия заслонки. «Педаль в пол» – она максимально раскрывается и двигатель выдает полную мощность. На холостых оборотах, наоборот, пропускает минимум воздуха, чтобы смесь была богаче. Другими словами, она реагирует на действия водителя, а электронный блок управления (ЭБУ), в свою очередь, реагирует на положение заслонки, подавая соответствующее количество топлива.

Где находиться дроссельная заслонка в автомобиле

Как уже было сказано, схема оказалась настолько удачной, что не претерпела изменений в своем базовом принципе до сегодняшних дней. Но, конечно, дроссельная заслонка тоже совершенствовалась, как и остальные элементы автомобиля. Так что в настоящее время на автомобилях используются три типа:

  1. Механические;
  2. Электромеханические;
  3. Электронные.
Механическая заслонка, принцип работы

Это самый простой и примитивный вид, который до сих пор используется в некоторых автомобилях.

Устройство механической дроссельной заслонки

Принцип работы заключается в следующем:

  1. Педаль газа соединяется с дроссельной заслонкой тросом и поворотными рычагами. Нажимая на педаль, водитель напрямую воздействует на поворотный диск заслонки и он открывается на нужный угол;
  2. Угол раскрытия фиксирует датчик положения, который передает информацию на блок управления двигателем. Соответственно, он косвенно отвечает за объем подачи топлива на форсунки.

Датчики положения на дроссельной заслонке могут быть двух типов:

  1. Потенциометрический (датчик угловых перемещений). Его конструктивные особенности – реостат со спиралью и скользящим контактом, который соединен с осью поворота дроссельной заслонки;

    Устройство потенциометрического датчика угловых перемещений на дроссельной заслонке

  2. Магниторезистивный. Он состоит из ползунка, соединенного с осью заслонки, и резистивных дорожек, над которыми ползунок перемещается. За счет отсутствия прямого контакта между элементами этот датчик более долговечный, чем потенциометрический.
Схема магниторезистивного датчика угловых перемещений на дроссельной заслонке

На холостом ходу заслонка полностью закрыта, так что для работы двигателя воздух идет в обход через регулятор холостого хода – отдельный байпасный канал, где находится электроклапан. И для дополнительной подачи воздуха (например, если на холостом ходу водитель включает кондиционер или другое электрооборудование) предусмотрен еще один канал, также идущий в обход впускного коллектора.

В современных механических датчиках предусмотрена система подогрева каналов холостого хода, чтобы в холодный сезон предотвратить обледенение. К специальным патрубкам подведена охлаждающая жидкость от двигателя, которая выполняет функцию подогрева.

Электромеханическая дроссельная заслонка
Устройство электромеханической дроссельной заслонки

Ее устройство почти такое же, как у механической, но с небольшим дополнением: на ней установлен электропривод для работы на холостом ходу, который управляется ЭБУ. По сути, этот привод выполняет работу регулятора холостого хода: дает воздуху поступать в двигатель, даже если водитель не «газует».
Остальные элементы остались те же: тросовая система соединений, датчик положения заслонки.

Электрическая (электронная) заслонка, принцип работы
Электронная дроссельная заслонка

Тут всё «по-взрослому»: никаких тросов и рычагов, только умная и быстрая электроника. Такая система ставится на современные автомобили, в которых есть возможность выбирать режим движения.

К электронной системе управления дросселем относятся:

  1. Датчики положения педали газа. В зависимости от того, как сильно водитель «газует», меняются показания датчика, передаваемые на ЭБУ;
  2. Датчик положения дроссельной заслонки;
  3. Электропривод заслонки с редуктором и возвратным механизмом.
Типовая схема работы электронной дроссельной заслонки

Электронная заслонка управляется ЭБУ на всех режимах. Кроме того, она дает возможность переключать режимы: в спокойной городской езде не позволит слишком резко рвануть с места, а в режиме «драйв», наоборот, подстегнет двигатель на старте.

Что лучше, механическая или электрическая заслонка?

Спорить о том, какая система лучше, занятие неблагодарное. Зависит от того, какие приоритеты у автовладельца.

К примеру, механический дроссель можно считать «прошлым веком», поскольку не ставится на современные автомобили, но в то же время он отлично выполняет свои функции. И имеет однозначные плюсы: меньше слабых мест (каждый дополнительный датчик или моторчик – дополнительная деталь, которая может поломаться) и простота ремонта или замены. Однако будем откровенны, с сегодняшними стандартами экономии топлива и экологической безопасности механической заслонке уже не справиться.

Электронный дроссель имеет больше шансов на поломку, даже чисто статистически, ведь в нём есть дополнительные элементы. Как только любой датчик выходит из строя, начинаются «танцы с бубном» и поиск ошибок. Однако представить современный автомобиль без точного и тонкого управления двигателем, для чего нужна именно электронная заслонка – просто невозможно. Поэтому механические дроссели потихоньку уходят в прошлое, а им на смену приходит электроника.

Неисправности, регулировка и ремонт

1. Основное слабое место – датчик положения дроссельной заслонки. Именно он чаще всего выходит из строя, в результате чего начинаются сбои в работе двигателя:

  • Автомобиль не заводится или заводится плохо;
  • На холостом ходу начинаются «сюрпризы»: двигатель либо работает слишком активно, либо глохнет;
  • Пропадает плавность движения, появляются рывки и провалы в работе мотора;
  • Ухудшается динамика разгона, внезапно пропадает тяга;
  • Увеличивается расход топлива;
  • На панели приборов включаются индикаторы неисправностей, в частности, может загораться и гаснуть «Check Engine».

Однако ни один из этих признаков не указывает напрямую на неисправность именно дроссельной заслонки. Для определения причины придется провести диагностику.

2. Еще одна проблема, хоть не такая неприятная, как поломка датчика – засорение обходных каналов. В этом случае симптомы будут связаны только с работой двигателя на холостом ходу. Плавающие обороты, внезапная остановка – всё это может быть поводом для проверки и чистки дросселя.

3. Третья неисправность – подсос воздуха через сам блок дроссельной заслонки или сквозь пробой во впускном коллекторе. В результате в двигатель поступает кислорода больше нормы и повышаются обороты тогда, когда этого не требуется. К тому же нет ничего хорошего в том, что в цилиндры поступает воздух в обход фильтра.

Если нарушена герметичность соединения дросселя и впускного коллектора, либо сама заслонка не закрывается нормально, это решается путем ее чистки и повторной установки. Однако подсос воздуха может идти и через другие слабые места, так что лучше обратиться на СТО за квалифицированной помощью. Возможно, «травят» уплотнители форсунок, место подвода вакуумного усилителя тормозов, есть другие неисправности на пути воздуха к цилиндрам. Проблемы нужно найти и устранить.

4. И, наконец, может сбиться адаптация заслонки. Адаптация – это настройка ЭБУ, чтобы он корректно увязывал положение педали газа с положением дросселя. Сбой адаптации может произойти при отключении аккумулятора или ЭБУ, снятии самой заслонки для чистки и ремонта, ее замена и т.д. Провести адаптацию можно и самостоятельно, но лучше доверить это специалистам. Стоит услуга недорого, делается быстро, напортачить там сложно.

Работа дроссельной заслонки зависит от других элементов системы подачи воздуха. В частности, на нее влияет качество воздушного фильтра: если владелец автомобиля нарушает регламент ТО, фильтр пропускает меньше воздуха, чем необходимо, и появляются проблемы, с признаками неисправности.

Также важно состояние антифриза, если он подается для обогрева регулятора холостого хода. И, конечно, сбои в работе ЭБУ могут привести к проблеме с подачей воздуха. В свою очередь, дроссельная заслонка при поломке может наделать много неприятностей, особенно при работе двигателя на переобогащенной смеси. Берегите свою машину, и она будет служить верой и правдой!

vaznetaz.ru

Дроссельная заслонка

В качестве горючего в двигателях внутреннего сгорания автомобилей ВАЗ-2109, ВАЗ-2110 и остальных моделей, выпускаемых или выпускавшихся Волжским автозаводом, используется бензин. Однако в цилиндрах он сгорает не сам по себе, а в смеси с воздухом. Дроссельная заслонка нужна для приготовления топливовоздушной смеси в необходимых пропорциях. Находится она за воздушным фильтром перед впускным коллектором.

По большому счету дроссельная заслонка – это воздушный клапан, который регулирует количество воздуха, попадающего в двигатель. Принцип ее работы заключается в изменении сечения воздушного канала. Когда она полностью открыта, воздух беспрепятственно попадает во впускной коллектор. Для определения угла открытия предназначен датчик положения дроссельной заслонки, который связан с блоком управления двигателем. Основываясь на сигналах, которые передает датчик, блок управления подает команду увеличить количество впрыскиваемого топлива, рабочая смесь обогащается, и мотор работает на максимальных оборотах.

Чем меньше угол открытия заслонки, тем меньше воздуха попадает в коллектор, и тем ниже обороты двигателя.

Устройство дроссельной заслонки

Сама дроссельная заслонка представляет собой круглую пластину, способную поворачиваться на 90 градусов вокруг своей оси (от полного закрытия до полного открытия). Устанавливается она внутри корпуса, там же размещается ее привод, регулятор холостого хода (РХХ) и датчик положения дроссельной заслонки. Все эти элементы вместе образуют блок дроссельной заслонки или дроссельный узел. Следует отметить, что на ВАЗ-2109 с инжекторным двигателем, ВАЗ-2110 и ВАЗ-2115 узел применяется один и тот же.

Устройство корпуса дроссельного узла не такое простое, как могло бы показаться на первый взгляд. Помимо всего прочего он является еще и частью системы охлаждения двигателя. В нем имеются каналы для циркуляции охлаждающей жидкости. Также он оснащен патрубками, один из которых связан с системой вентиляции картера двигателя, а второй – с системой улавливания паров бензина.

Регулятор холостого хода

Регулятор холостого хода – это электромеханическое устройство, задачей которого является поддержание определенной частоты вращения коленвала при полностью закрытой дроссельной заслонке. Например, во время прогрева мотора или изменения нагрузки, когда включается дополнительное оборудование. Устройство регулятора холостого хода следующее: внутри корпуса находится шаговый электромотор, с которым соединена подпружиненная конусная игла. Когда мотор работает на холостом ходу игла, перемещаясь вперед-назад, регулирует площадь поперечного сечения обходного воздушного канала, через который проходит воздух при полностью закрытой заслонке.

Дроссельная заслонка может иметь привод двух видов:

  1. механический, как у автомобилей ВАЗ-2109, ВАЗ-2110, ВАЗ-2114;
  2. электрический, который применяется на большинстве современных автомобилей.
Механический привод

У ВАЗ-2109, ВАЗ-2110 и других устаревших моделей Волжского автозавода дроссельная заслонка связана с педалью газа посредством стального троса. Механический привод имеет очень простое устройство и низкую стоимость, поэтому до сих пор применяется на многих недорогих автомобилях.

Электрический

Если дроссельная заслонка оснащена электрическим приводом, то прямой связи между ней и педалью газа нет. Принцип работы заслонки с электроприводом не меняется, но ее устройство намного сложнее. Упрощенно такой узел работает следующим образом. Силу нажатия на педаль газа регистрирует специальный датчик, который передает эту информацию блоку управления двигателем, угол открытия заслонки определяет датчик положения дроссельной заслонки, и также передает соответствующие сигналы блоку управления. Контроллер постоянно сравнивает эти значения и подает команды электродвигателю на увеличение или уменьшение угла открытия заслонки.

Главной отличительной особенностью дроссельной заслонки с электроприводом является отсутствие регулятора холостого хода. Когда мотор работает на холостых оборотах, дроссельная заслонка не закрывается полностью, угол ее открытия задается блоком управления в соответствии с параметрами работы силового агрегата. Электронная дроссельная заслонка, в отличие от механической, имеет не один датчик положения, а два. Если один датчик, он же потенциометр дроссельной заслонки, выйдет из строя, дроссельный узел все равно будет работать.

Датчик положения дроссельной заслонки

Этот датчик является потенцимером. При воздействии на педаль газа изменяется положение заслонки и напряжение подаваемое на контролер. В закрытом состоянии напряжение составляет 0,7В, при полностью открытой 4В. В соответствии с этими данными датчик и контролирует подачу топлива.

Если возникает неисправность датчика положения, то контролер не сможет правильно определять положение заслонки. Это вытекает в следующие неисправности:

  • во всех режимах работы двигателя обороты начинают плавать, на холостом ходу обороты будут повышенными;
  • при выключении передачи (нейтраль) во время движения, двигатель может глохнуть;
  • иногда может загораться лампочка CHECK.

Для проверки работоспособности датчика положения, можно воспользоваться мультиметром. При включенном зажигании щупы подключаются к разъемам В и С. Изменение положения заслонки должно приводить к изменению напряжения.

Для чего нужна модернизация дроссельной заслонки на ВАЗ-2109, 2110, 2115

В магазинах запчастей продаются дроссельные узлы с заслонками увеличенного диаметра (52, 54 и 56 мм) для автомобилей ВАЗ-2109, 2110 или 2115. По заверениям продавцов, установив такую заслонку взамен штатной 46-миллиметровой, владелец авто получит значительные преимущества: машина становится отзывчивее к педали газа, пропадают проблемы с холостыми оборотами, улучшается динамика автомобиля, и особенно это заметно, если заменить штатный воздушный фильтр фильтром нулевого сопротивления. Главный довод, который пытаются внушить автовладельцам, заключается в том, что мотору для эффективной работы требуется больше воздуха, для чего необходимо заменить штатный дроссельный узел на усовершенствованный. Приводят даже цифры: диаметр ресивера ВАЗ-2109 или ВАЗ-2110 составляет 53 мм, и заслонка диаметром 46 мм якобы «душит» мотор.

Многие владельцы ВАЗ-2109 и ВАЗ-2110 поддаются на уговоры и меняют штатное устройство на усовершенствованное. После этого, действительно, мотор работает лучше, и машина едет динамичнее. Причина улучшений на деле оказывается куда прозаичнее: вместо старого, грязного дроссельного узла, который давно нуждался в тщательной очистке, владелец поставил новый. В итоге двигатель вернулся к работе в штатном режиме, что и воспринимается владельцами, как обещанная отзывчивость и резвость автомобиля.

Не нужно забывать о том, что увеличенный воздушный поток ведет к нарушению смесеобразования, поскольку ЭБУ не в состоянии скорректировать подачу бензина. Для устранения такой проблемы автовладельцы, как правило, «перепрошивают» блок управления и расплачиваются в результате возросшим аппетитом машины.

znanieavto.ru

Датчик положения дроссельной заслонки как проверить. Принцип работы и строение

Бывает так, что автомобиль начинает нестабильно работать или глохнуть на холостых оборотах. Причин такого поведения двигателя бывает много, но одной из них являются неисправности датчика положения дроссельной заслонки (ДПДЗ). В принципе, это явление довольно часто встречается, и вам может показаться сперва, что есть какая-то очень серьезная проблема с двигателем. Для того чтобы убедиться в том, что никакой серьезной поломки нет, а все дело в датчике дроссельной заслонки, необходимо проверить его исправность прежде, чем куда-либо обращаться.

ДПДЗ и проблемы с ним

Датчик представляет собой устройство, определяющее угол, на который повернута дроссельная заслонка. Это датчик, без которого ваш двигатель не смог бы корректно работать. Если говорить проще, то можно сказать, что он показывает, открыта заслонка, или нет.

К тому же следует учитывать, что от датчика во многом зависит, в какой момент будет происходить зажигание, а в случае если у вас автоматическая коробка передач, – насколько правильно она будет работать. Вот почему надо следить за этим датчиком.

Проблема с датчиком заключается в том, что когда присутствует неисправность датчика, она может быть закрыта, а «мозги» считают ее открытой, соответственно, начинают подавать большее количество топлива, что будет соответствовать подходящей воздушно-топливной смеси. Вследствие этого двигатель начинает переливать, и он глохнет.

Безусловно, мало приятного в том, когда мотор постоянно глохнет. Помимо того, есть еще одна проблема. Когда двигатель работает в таком режиме, это может вызвать его выход из строя. Если это случится, то поломка может быть очень дорогостоящей. Но даже если неисправность дроссельной заслонки не повлечет за собой более серьезные проблемы, то все равно станет бить по вашему карману, так как двигатель начнет потреблять гораздо больше топлива, чем это нужно.

Если вы хотите проверить, в порядке ли датчик, то вы должны знать, где он находится. Для того чтобы найти его, сначала отследите дроссельный патрубок. Как раз на нём и расположен датчик, соединенный с осью заслонки.

Признаки неисправности датчика

Чтобы вы смогли выявить неисправность датчика, вам нужно знать все симптомы, которые могут указывать на наличие этой проблемы:

  • Двигатель начинает глохнуть в тот момент, когда вы переключаете передачу. А точнее в момент, когда вы выключаете передачу во время движения.
  • Нестабильность оборотов на холостом ходу, причем независимо от того, в каком режиме работает двигатель.
  • Присутствие рывков, когда вы набираете скорость, даже если вы стараетесь делать это плавно.
  • Мотор начинает глохнуть, если вы неожиданно уберете ногу с газа.
  • Ощутимо снижается мощность двигателя.

Бывают случаи, когда на приборной панели может ненадолго загореться значок «check engine», про эту особенность вы узнаете немного дальше в статье. Как бы то ни было, в случае если вы заметили один или несколько из данных признаков, то лучше не затягивать и проверить состояние, в котором находится датчик.

Как осуществить проверку

В проверке нет ничего сложного, но стоит отметить, что нужно четко придерживаться некоторой последовательности, к тому же вам потребуется дополнительный прибор – тестер.

Небольшая справка относительно лампочки «check engine»: она напоминает вам о том, что в двигателе существует какая-то неисправность и вам необходимо выполнить проверку или же ремонт двигателя. По идее, она должна загореться при включении зажигания и затем тут же потухнуть. В случае если она не гаснет, это значит, что компьютер обнаружил некоторые проблемы. В данном случае, скорее всего, нужно обратиться к специалистам.

  • В первую очередь выключите зажигание. Еще раз убедитесь в том, что на приборной панели лампочка «check engine» не горит.
  • В случае если лампочка погасла, вы можете смело открыть капот и начинать проверку датчика.
  • Сначала проверьте, есть ли минус.
  • Далее проверьте, идет ли питание на датчик (учтите, что значения могут быть разные в зависимости от того, какое напряжение используется в автомобиле).
  • Не снимая датчик с места, подключите минус на «массу», а плюс к выходному контакту, который идет на ЭБУ.
  • Не трогая никоим образом заслонку, включите зажигание. Прибор при этом должен будет показать напряжение до 0,7 вольт.
  • После этого поверните ручку, полностью открыв дроссельную заслонку. В этом положении прибор должен показать не меньше 4 вольт.
  • Выключите зажигание.
  • С выключенным зажиганием надо опять подключиться к датчику.
  • Затем плавно и без рывков крутить сектор, в тоже время смотрите на то, какие показания дает прибор.
  • В случае если они медленно растут без каких-либо резких рывков и колебаний, все в порядке.
  • Но если нет – то это свидетельствует о том, что на дорожке резистора сформировались протертые места.

Обратите внимание на то, что данные показатели очень важны, ведь они влияют на то, правильно ли будет работать блок управления, отвечающий за уровень подачи топлива в инжекторы. Ведь могут быть ситуации, когда дроссельная заслонка закрыта, а компьютер воспринимает ее полностью открытой, или наоборот. И то и другое негативно сказывается на двигателе.

В случае если вы наблюдаете серьезные рывки, нужно будет поменять датчик.

В случае если вы поменяли датчик положения дроссельной заслонки, то после этого регулировка датчика не нужна. Для контроллера начальное положение – это тот момент, когда заслонка полностью закрыта.

Причины поломки датчика

К сожалению, вы не в силах избавить себя от всех поломок каких-либо механизмов и деталей или датчиков в машине. А что касается датчика, то существует несколько причин, почему он может выйти из строя:

  1. Ползунок с резистивным слоем утрачивает контакт. Это может быть вызвано сломанным наконечником, который задирается на подложке, в результате этого ломаются и все остальные. Стоит отметить, что в данном случае датчик может продолжить работать, пока у него еще есть резистивный слой. В результате этого сердечник окончательно выходит из строя. В случае если у вас есть эта неисправность датчика, то ее будет труднее выявить, потому как в нестабильной работе двигателя вы можете или другие причины.
  2. Не повышается линейное напряжение сигнала на выходе. Это может происходить из-за того, что напыление основы стирается до основания в том месте, где находится начало ползунка.

Обратите внимание, что если у вас существует неисправность ДПДЗ, то на приборной панели не должно появляться никаких дополнительных сигналов, потому что самодиагностика автомобиля не выявляет эту проблему, определить ее можно только по тем признакам, которые были перечислены выше.

И напоследок, выберите качественный датчик, если все же вам приходится его менять. Лучше не ставьте недорогой пленочно-резистивный датчик, потому как это может привести к тому, что он скоро перестанет корректно работать, и вы опять начнете замечать симптомы неисправности датчика при езде на автомобиле. Но еще хуже то, что очередная поломка ДПДЗ может, в свою очередь, нанести вред двигателю.

Лучшим вариантом будет бесконтактный датчик. Естественно, его цена намного выше, но зато вы можете быть уверены в том, что он будет служить вам долго и стабильно.

Подводя итоги, можно сделать вывод, что если вы заметили какие-нибудь симптомы, которые свидетельствуют о наличии проблемы с датчиком положения дроссельной заслонки, то проверка его состояния не будет слишком сложной операцией. Если все же, при проверке вы выявили, что датчик неисправный, то замените его. При этом лучше все-таки не экономить, ведь на качестве комплектующих к двигателю экономить нельзя. Любите свой автомобиль, и тогда он вам отплатит долгой службой и надежностью.

Видео

В представленной статье будет рассмотрено устройство датчика положения дроссельной заслонки, диагностика и симптомы неисправностей ДПДЗ , а так же его ремонт.

Устройство датчика положения дроссельной заслонки

Итак, если Вы задались вопросом, каким образом устроен датчик положения дроссельной заслонки, то стоит сначала рассмотреть принцип его работы.

Датчик положения дроссельной заслонки относится к типу датчиков резистивного типа. Данное название обуславливает принцип его работы, а именно, если разобрать данный датчик, то внутри мы обнаружим подвижной элемент в виде ползунка, который скользит по дорожке в виде дуги или подковы. К одному из концов данной дорожки подается питающее напряжение, другой конец дорожки соединен с массой, а с подвижного ползунка снимается выходной сигнал.

Неисправность датчика положения дроссельной заслонки:

Какие же неисправности датчика положения дроссельной заслонки чаще всего встречаются на практике? Если отбросить неисправности связанные с перетертыми проводами, подходящими к датчику и т.п. то можно выделить главную и наиболее часто встречающуюся неисправность датчиков данного типа, а именно это износ резистивного слоя на дорожках по которым скользит ползунок. Как правило, износ наблюдается на начальном участке движения ползунка в связи с наиболее частым использованием данного участка. Если Вы разобрали датчик дроссельной заслонки, то в большинстве случаев износ резистивного слоя будет заметен в ходе визуального осмотра, как на представленном фото.

На датчик подается напряжение с ЭБУ автомобиля, однако при измерении напряжения Вы увидите, что на датчике напряжение варьируется от 0,3-0,5 В в одном положении и до 3,7-4,8 В в полностью открытом положении дросселя. Это сделано для того, чтобы ЭБУ могло идентифицировать неисправность в цепи датчика, будь то КЗ или обрыв.

В отдельных моделях автомобилях могут применяться датчики положения дроссельной заслонки с инверсной выходной характеристикой , то есть напряжение при закрытом дросселе будет максимальным, а по мере открытия дросселя оно будет падать.

Так же следует обратить внимание, что на автомобилях, где положение дроссельной заслонки задаётся при помощи электропривода (в народе известная, как «электронная педаль») в указанных моделях положение дроссельной заслонки определяется при помощи не одного, а сразу двух потенциометров которые объединены в одном устройстве. При этом не имеет значения задает ли электронная педаль положение только в режиме холостого хода или во всем диапазоне. Один из двух потенциометров имеет инверсную выходную характеристику, а второй прямую выходную характеристику. На подобных системах, так же можно встретить концевой микро-выключатель который срабатывает в момент, когда педаль акселератора полностью отпущена водителем.

Как обнаружить неисправность датчика положения дроссельной заслонки без разборки датчика и снятия его с автомобиля:

Неисправность датчика положения дроссельной заслонки можно легко определить при помощи сканера , мотортестера или простого мультиметра . В данной статье мы рассмотрим пример обнаружения неисправности при помощи сканера.

Обратите внимание, что все приборы кроме мотортестера, не смогут обнаружить неисправность в виде износа резистивного слоя кроме очень сильных и протяженных участков, т.к. как правило только мотортестер успевает отобразить диаграмму в корректном виде, сканер в следствии низкой скорости обмена с ЭБУ не сможет обнаружить поврежденные участки небольшой протяженностью занимающие в диаграмме место с десятые секунды.

Итак, зайдите в сканере в режим снятия параметров в режиме реального времени, после чего перейдите в раздел снимающий показания положения дроссельной заслонки в процентном соотношении или вольтаж на датчике, после этого начните медленно открывать дроссельную заслонку и следите за выходными сигналами со сканера. Наиболее удобно снимать данные показания в режиме осциллограммы, если конечно Ваш сканер поддерживает данную функцию. Данные с датчика должны расти медленно без скачков и резких падений. В случае если нарастание сигнала имеет резкие провалы или рост, то это свидетельствует об износе резистивного слоя на дорожках датчика.

Не обращайте внимания на незначительные изменения осциллограммы, это может быть обусловлено дрожью Вашей руки. Так же следует отметить, что при низкой скорости обмена между сканером и ЭБУ автомобиля возможен пропуск дефектного слоя резистивной дорожки, если он совсем короткий, но данный факт скорее исключение, чем правило.

При снятии датчика с автомобиля так же не будет лишним осуществить промывку дроссельного узла, отложения на стенках которого, так же могут мешать нормальной работе датчика.

Ремонт датчика положения дроссельной заслонки

Восстановить изношенный резистивный слой на дорожках, в бытовых условиях невозможно , поэтому единственным способом ремонта без замены датчика или дорожек является возможность в некоторых датчиках смещения резистивных дорожек относительно ползунка. Для этого в датчике предусмотрен специальный винт который фиксирует то или иное положение дорожек относительно ползунка, поэтому допустим при сильном износе начала резистивного слоя дорожки мы можем, ослабив винт, сместить его в область недоступную ползунку и таким образом избежать замены датчика положения дроссельной заслонки.

Симптомы неисправности датчика положения дроссельной заслонки

В случае износа резистивного слоя, в зависимости от места износа автомобиль может вести себя различными способами. Может наблюдаться нестабильная работа автомобиля на холостом ходу, автомобиль может попросту глохнуть на холостом ходу, либо при нажатии на педаль акселератора могут наблюдаться провалы в движении либо наоборот рывки и перегазовки.

Так же в отдельных случаях при замене оригинального датчика положения дроссельной заслонки на некачественный аналог может наблюдаться зависимость работы датчика от температуры, то есть по мере нагревания корпуса ДПДЗ выходное значение будет меняться. К примеру, на холодном двигателе датчик имеет выходное напряжение около 500 мВ , ЭБУ сохраняет данное значение, как положение закрытого дросселя и приступает к стабилизации оборотов холостого хода. После нагревания корпуса датчика, выходное значение меняется на 560 мВ , ЭБУ не понимает, что это напряжение холостого хода т.к. он сохранил 500 мВ и не стабилизирует холостой ход.

При данной неисправности может кратковременно помочь выключение зажигания с последующим повторным пуском двигателя, чтобы ЭБУ сохранил новое значение выходного сигнала, как положение закрытого дросселя.

Установить наличие данной неисправности датчика положения дроссельной заслонки можно путем измерения выходного значения на холодном двигателе (не работавшем не менее 2,5 часов) и на прогретом двигателе. Если значение сильно различаются имеет место быть данный дефект и датчик необходимо менять на более качественный.

Дроссельная заслонка в автомобиле — конструктивный узел, входящий в систему впуска на бензиновых силовых агрегатах. При возникновении неисправностей в механизме нужно проверить датчик положения дроссельной заслонки. Для этого можно воспользоваться одним из способов.

[ Скрыть ]

Характеристика датчика положения дроссельной заслонки

Предназначение датчика заключается в регулировке объема воздушного потока, который поступает в мотор. Этот воздух используется для образования горючей смеси.

Где расположен датчик в авто?

Чтобы при необходимости выполнить диагностику устройства, автовладельцу надо знать, где находится ДПДЗ. Контроллер устанавливается в моторном отсеке. Его можно увидеть сбоку от дроссельной магистрали на оси самой заслонки.

Расположение контроллера на дросселе

Конструкция устройства

Конструктивно устройство включает в себя следующее:

  1. Корпус контроллера. Этот компонент выполнен из термостойкого стеклопластика. Корпус оснащается двумя фланцами, которые используются для фиксации контроллера к дроссельному узлу.
  2. Соединительное устройство, оснащенное тремя контактами. Этот компонент объединен с корпусом контроллера.
  3. Резистивное устройство, выполненное из керамики.
  4. Токосъемный элемент. Эта составляющая предназначена для обеспечения электрического контакта с резистивной деталью.
  5. Цанговый зажим, оснащается шлицем.
  6. Резиновая прокладка. Используется для монтажа контроллера на ось дроссельного узла.

Назначение датчика положения дроссельной заслонки

Сам контроллер отвечает за корректное выявление положения заслонки на дроссельном узле. Его показания влияют на работу системы подачи топлива. Силовой агрегат в соответствии со значениями устройства выполняет регулировку объема поступаемого бензина при определенном режиме функционирования. ДПДЗ используется для преобразования углового положения заслонки дросселя в напряжение постоянного тока.

Особенности работы устройства:

  1. Данные, которые передает контроллер, позволяют вычислить величину открытия заслонки. Поступающая на управляющий модуль информация обеспечивает расчет основных параметров управления силовым агрегатом. Причем данные определяются с учетом типа езды машины.
  2. Само по себе устройство представляет потенциометр, оснащенный токосъемником. Последний используется для перемещения по установленному радиусу сектора, составляющего от 0 до 80 градусов. Ось данного конструктивного элемента при монтаже прибора должна быть связана с приводом дроссельного узла.
  3. Параметр выходного сопротивления потенциометра может меняться с учетом нажатия на педаль газа. В зависимости от ее положения изменяется и степень открытия заслонки узла.
  4. Питание контроллера производится посредством подачи стабилизированного напряжения. Величина исходит от управляющего модуля и должна составлять в районе 5 вольт. Допускается отклонение в размере 0,1 В в большую или меньшую сторону.

Схематический принцип действия контроллера

Технические параметры устройства

Основные технические свойства контроллеров ДПДЗ:

  1. Напряжение для питания устройства подается на два вывода — 1 и 2.
  2. Величина сопротивления, которое образуется между выводами 1 и 2, составляет от 1,8 до 2 кОм.
  3. Параметр открытия полностью закрытой заслонки узла — от 0 до 2%.
  4. Величина напряжения, которое подается на выходы под номерами 3 и 2 при закрытой заслонке составляет от 0,25 до 0,65 вольт.
  5. Величина открытия заслонки узла составляет более 90 градусов.
  6. Параметр напряжения, которое подается на 3 и 2 вывода при полном дросселе, составляет от 3,9 до 4,7 вольт.
  7. Число полных циклов активации устройства при его работе — не меньше одного миллиона.
  8. Градуировочное свойство зависимости параметра напряжения на выходе от угла поворота обладает линейным характером. Оно измеряется в диапазоне от 0 до 100 градусов. Напряжение составляет от 0,25 до 4,8 вольт. Значение наклона характеристики варьируется в районе 48 мВ.
  9. Параметр рабочей зоны контроллера находится в линейной области характеристики в диапазоне от 10 до 90 градусов. Это соответствует величине открытия заслонки узла на угол от 0 до 100 градусов. Значение наклона варьируется в районе 39 мВ.

Разновидности

Существует два основных вида устройств:

  1. Датчики пленочно-резистивные. Такой тип контроллеров обычно ставится штатно при производстве авто. Срок эксплуатации пленочно-резистивных устройств в среднем составляет примерно 55 тыс. км. Но по факту они выходят из строя чаще.
  2. Бесконтактный тип устройств. Такие ДПДЗ функционируют на основе магнитно-резистивного явления, используется эффект Холла. Цена бесконтактных датчиков выше, но срок эксплуатации огромный. Эти приборы более надежные, поэтому редко выходят из строя.

Андрей Серомолотов показал, как с бесконтактным ДПДЗ работает машинный двигатель.

Симптомы неисправности датчика

Основные признаки, по которым можно выявить проблемы в работе контроллера ДПДЗ:

  1. В работе силового агрегата на холостом ходу возникают сложности. Обороты нестабильные, могут резко увеличиваться или падать, водитель при этом не жмет на педаль газа.
  2. Силовой агрегат может заглохнуть, когда водитель переключает передачу из одного режима в другой. Произвольная остановка мотора возможна как при езде на нейтральной скорости, так и при стоянке, к примеру, на светофоре или в пробке.
  3. Расход бензина существенно возрастает. Иногда рост потребления горючего незаметен для автовладельца. Тогда определить перерасход можно только путем замера.
  4. Фиксируется нестабильность в оборотах холостого хода. Причем это не зависит от режима функционирования силового агрегата.
  5. Мощность мотора машины значительно падает. Ее снижение обычно точно можно заметить при движении на подъеме, когда включена повышенная передача. Переключившись на более низкую скорость, можно избежать падения «тяги».
  6. Если автомобиль разгоняется или двигается на невысокой скорости, могут ощущаться рывки при нажатии на газ.
  7. Двигатель глохнет, как только водитель отпускает педаль газа.
  8. Из впускного коллекторного устройства начинают раздаваться звуки хлопков. Они появляются периодически, иногда их можно услышать при нажатии на газ.
  9. На панели приборов появляется световой индикатор Check Engine. Он может гореть постоянно либо загораться периодически.

Иван Васильевич подробно на практике рассказал о симптомах неисправностей ДПДЗ.

Причины возникновения неисправностей

Причины, по которым может потребоваться ремонт либо замена ДПДЗ:

  1. Закислились контактные элементы. Эту проблему сложно назвать поломкой, но она относится к неисправностям, которые можно устранить. При длительной эксплуатации контакты датчика могут окислиться. Это связано с работой ДПДЗ в условиях перепадов температур и воздействии влаги. Для ликвидации проблемы надо демонтировать контроллер и произвести очистку контактных элементов ваткой, обработанной средством WD-40.
  2. Стирание напыления на основании начального отрезка передвижения ползунка. Если резистивная основа удаляется, работа контроллера будет некорректной. Во время передвижения ползунка величина напряжения, которое поступает на управляющий модуль, увеличится. Но в результате стирания этого не происходит, поскольку сопротивление отсутствует. Это приводит к появлению неполадок, иногда происходят сбои в работе управляющего модуля.
  3. Повреждение наконечников на устройстве. Если это происходит, то на подкладке образуются заусеницы, что в итоге приведет к поломке остальных элементов. В некоторых случаях контакты продолжат функционировать, но это продлится недолго, тем более что износ подложки увеличится. При подобных проблемах ползунок и резистивный слой откажутся контактировать, что приведет к неработоспособности мотора машины.
  4. Поломка ползунка. Данный компонент устройства при длительной эксплуатации изнашивается. В результате он может отойти от необходимой траектории, что приведет к неполадкам.

Одна из причин выхода из строя контроллера положения заслонки дросселя показана в ролике канала «Все Сам».

Как проверить датчик положения дроссельной заслонки?

Чтобы проверить датчик положения дроссельной заслонки, потребуется помощь электрика. Если действовать самостоятельно, то надо подготовить тестер — мультиметр.

Инструкция по проведению проверки с помощью мультиметра

Процедура диагностики выполняется так:

  1. Чтобы облегчить доступ к устройству, с магистрали, подключенной к дросселю, надо демонтировать воздуходувы. Эти патрубки идут от воздушного фильтрующего механизма. В зависимости от конструктивных особенностей машины может потребоваться демонтаж вентиляционных магистралей от патрубка, которые идут к крышке головки блока цилиндров.
  2. От контроллера отсоединяется разъем с проводниками. Для этого надо нажать на фиксатор, который крепит колодку.
  3. Затем мультиметр переводится в режим вольтметра. Минусовой щуп тестера подключается к массе двигателя или кузову, чтобы обеспечить заземление. А положительный контакт идет к выходу, который на датчике маркируется как 1 или символ А.
  4. Теперь производится запуск двигателя и на запущенном агрегате выполняется замер рабочих параметров. Диапазон напряжения, в котором работает контроллер, должен составить от 4,8 до 5,2 вольт. Если эта величина полностью отсутствует либо слишком низкая, это говорит о наличии обрыва в электроцепи. При такой проблеме производится диагностика контактных элементов либо проверка работы электронного блока управления. Если причина заключается в управляющем модуле, возможно, потребуется его перепрошивка, в критических ситуациях выполняется замена процессора.
  5. Затем зажигание отключается, и тестер переводится в режим работы омметра.
  6. Клеммы устройства надо подключить к двум выводам штекера, которые не использовались. Когда заслонка закрыта, выполняется диагностика величины сопротивления. Если контроллер работоспособен, то полученные параметры составят в диапазоне от 0,9 до 1,2 кОм.
  7. Затем заслонка принудительно открывается, и проверка выполняется еще раз. Величина сопротивления должна увеличиться до 2,7 кОм.

Процедура диагностики контроллера с использованием тестера представлена пользователем Alex ZW.

Есть еще один вариант проверки, актуален для отечественных автомобилей ВАЗ, немного отличается от вышеописанного способа:

  1. Заслонка дроссельного узла закрывается, а зажигание в машине включается.
  2. При помощи вольтметра производится проверка параметра напряжения на выходе устройства. Полученный параметр должен составить не больше 0,7 вольт. Для определения выхода надо посмотреть на колодку с проводниками, подключенными к прибору. Два кабеля идут на заземление и питание, а третий контакт является выходным.
  3. Затем заслонка открывается, и параметр напряжения на выходе замеряется еще раз. Эта величина должна составить не меньше 4 вольт.
  4. Следующим этапом будет диагностика изменения рабочего параметра на выходе при закрытии и открытии заслонки. Когда положение этого элемента изменяется, напряжение должно меняться плавно, скачки не допускаются.

Как заменить датчик положения дроссельной заслонки?

Замена контроллера выполняется так:

  1. В автомобиле деактивируется зажигание. АКБ отключать необязательно, поскольку устройство обесточено.
  2. Открывается моторный отсек, от контроллера отключается разъем и выкручиваются болты, которые его крепят. Фиксирующих винтов обычно два, но их число может изменяться в зависимости от модели устройства и машины.
  3. Вышедший из строя ДПДЗ демонтируется. Контакты, к которому он подключен, очищаются щеткой.
  4. Выполняется монтаж нового контроллера. При установке надо осторожно соединить торцевую часть оси заслонки с местом монтажа устройства.
  5. Затем контроллер прокручивается по кругу. Это важно сделать для того, чтобы совместить отверстия и зафиксировать болты, которые его крепят. После закручивания винтов на датчик устанавливается колодка с проводами.

Как отрегулировать датчик положения дроссельной заслонки?

После замены датчика положения дроссельной заслонки выполняется его регулировка, это позволит добиться правильной работы ДПДЗ.

Регулировать новый контроллер надо так:

  1. Производится демонтаж гофрированной магистрали, подключенной к впускному коллекторному прибору. После отсоединения выполняется визуальная диагностика состояния самой заслонки. Необходимо вытереть этот элемент, а также впускное коллекторное устройство, используя тряпку, смоченную в горючем.
  2. Затем упорный болт заслонки отпускается. Сам элемент открывается до конца и резко отпускается, при выполнении этой задачи должен раздаться щелчок удара об упор.
  3. Производится регулировка натяжения упорного болта, в процессе надо щелкать заслонкой. Когда данный компонент перестает «закусываться» и перемещается свободно, винт надо зафиксировать с помощью гайки.
  4. Затем ослабляются болты, которые фиксируют контроллер. Один щуп тестера подключается к контактному элементу холостых оборотов, а второй подсоединяется между упорным болтом и самой заслонкой. Корпус контроллера проворачивается до момента, пока параметр напряжения не начнет меняться с открытием заслонки.
  5. Когда это произойдет, болты можно закрепить.

Дмитрий Мазницын подробно рассказал о процедуре регулировки контроллера положения заслонки дросселя на примере Фольксваген Пассат.

Что делать, если после регулировки датчика возникли проблемы с холостыми оборотами?

Если регулировка датчика положения дроссельной заслонки привела к скачкам холостых оборотов, надо выполнить процедуру ознакомления электронного блока с характеристиками нового ДПДЗ.

Задача выполняется так:

  1. Производится отключение клемм от АКБ. Зажимы ослабляются гаечным ключом, после чего надо подождать около 20 минут.
  2. Затем клеммы подключаются обратно. Перед следующим этапом надо убедиться, что заслонка узла закрыта.
  3. Ключ вставляется в замок, и выполняется активация зажигания примерно на 15 секунд. Силовой агрегат не заводится. После этого зажигание отключается.
  4. Затем надо подождать еще около 20 секунд. За это время микропроцессорный модуль сможет запомнить в своей памяти характеристики нового ДПДЗ.

Видео «Процедура регулировки ДПДЗ»

Канал Resta представил подробное руководство по выполнению процедуры регулировки контроллера после его замены.

Дроссельная заслонка – один из ключевых компонентов, который отвечает за работу двигателя автомобиля. Она является частью впускной системы, и от ее правильной работы зависит количество воздуха, которое поступит в камеру сгорания, где он детонирует после смешивания с бензином.

Чтобы процесс детонации был максимально эффективным, электронный блок управления автомобиля должен контролировать время открытия дроссельной заслонки, тем самым впуская столько воздуха, сколько потребуется для образования идеальной смеси в конкретный момент времени. За информацию о том, в каком положении находится дроссельная заслонка, отвечает соответствующий датчик. При его выходе из строя водителя ожидают неприятности, которые могут привести к поломке деталей двигателя.

Виды датчиков положения дроссельной заслонки (ДПДЗ)


В зависимости от типа конструкции можно разделить датчики положения дроссельной заслонки на следующие виды:

  • Пленочно-резистивные. Простые варианты потенциометров, и они способны проработать около 50 тысяч километров до выхода из строя;
  • Магниторезистивные или бесконтактные. Их принцип работы основан на эффекте Холла, а стоимость подобных датчиков гораздо выше, чем пленочно-резистивных вариантов. При этом ресурс датчика зависит только от качества исполнения механических элементов, и они способны работать более 100 тысяч километров.

Устанавливается ДПДЗ, в большинстве случаев, на корпусе дроссельной заслонки со стороны противоположной приводу воздушной заслонки. Подвижный элемент датчика имеет механическую связь с осью заслонки.

Симптомы выхода из строя датчика положения дроссельной заслонки

Независимо от типа датчика, определить его неисправность можно по следующим признакам:


Если на автомобиле проявляются перечисленные выше неисправности и горит лампочка Check Engine, велика вероятность, что вышел из строя именно датчик положения дроссельной заслонки. При этом важно отметить, лампочка «Проверьте двигатель» включается при неисправности датчика положения дроссельной заслонки не на всех автомобилях.

Основные причины неисправностей

В зависимости от того, какой тип датчика используется на автомобиле, можно выделить основные проблемы, которым они подвержены.

Бюджетные пленочно-резистивные датчики положения дроссельной заслонки чаще всего выходят из строя по причине износа резистивного слоя механическим путем. Так при работе может быть изношен движок датчика. Еще одной распространенной причиной выхода из строя пленочно-резистивного варианта датчика является попадание на него грязи, которая приводит в негодность рабочую поверхность.

Бесконтактные ДПДЗ чаще всего выходят из строя по причине механической поломки движущегося узла. Также среди типичных «болезней» можно выделить неисправности в работе электронного преобразователя получаемых магнитных сигналов в постоянное напряжение.

Как проверить датчик положения дроссельной заслонки

Проверка датчика положения дроссельной заслонки требует наличия мультиметра. В зависимости от типа датчика и автомобиля, на котором он установлен, будут варьироваться приведенные в инструкции ниже значения напряжения и сопротивления, снимаемого с датчика. При этом кардинально процесс проверки ДПДЗ отличаться на различных моделях автомобилей и датчиков не будет.

Чтобы проверить датчик положения дроссельной заслонки, выполните следующие действия:


Как отмечалось выше, цифры измерений могут варьироваться, в зависимости от модели датчика и автомобиля. Посмотреть результаты для конкретной машины можно в техническом руководстве к ней или на специализированных форумах в интернете.

Если в результате диагностики был сделан вывод о неисправности датчика, его потребуется заменить.

Как заменить датчик положения дроссельной заслонки

Процесс замены датчика положения дроссельной заслонки состоит из трех этапов: снятие старого датчика, установка нового и сброс ошибки о неисправной работе устройства из памяти электронного блок управления. Чтобы заменить ДПДЗ, необходимо выполнить следующие действия:


Следует отметить, что некоторые современные датчики требуется не только заменить, но и отрегулировать. Например, в машинах компании АвтоВАЗ регулировка датчика положения дроссельной заслонки не требуется, но во многих иномарках она необходима.

Как отрегулировать датчик положения дроссельной заслонки

Регулировка ДПДЗ выполняется следующим образом:


Если после выполнения регулировки возникают проблемы с холостыми оборотами (завышены), потребуется провести процедуру обучения электронного блока управления автомобиля параметрам нового датчика.

Проверка датчика дроссельной заслонки потенциометрического типа заключается в проверке соответствия выходного напряжения ДПДЗ фактическому положению дроссельной заслонки во всём диапазоне возможных.

И так, с чего начать диагностику, и как проверить датчик дроссельной заслонки ? Ответом на этот вопрос как раз и будет наглядное видео. В данном случае рассматривается проверка ДПДЗ потенциометрического типа со встроенным датчиком концевого положения, по этому он имеет не 3 вывода, а 4-е. Но прежде всего нужно разобраться что представляет собой этот ДДЗ. По сути это потенциометр, ось которого жёстко связана с осью дроссельной заслонки. На питающие выводы датчика ДЗ, как правило, подается 5В и «масса», а подвижный контакт — сигнальный. используется ЭБУ для расчета количества нужного объема топлива в текущий режим работы и расчета угла опережения зажигания.

Проверка датчика положения дроссельной заслонки начинается с подключения контактов разъема ДПДЗ к мультиметру (предварительно выставив в режим «прозвонки»). После чего, имитируя движения дросселя, проверяем реакцию датчика в крайних положениях заслонки. Не зависимо от того сколько контактов 3 или 4 процедура одинакова. Хрипы говорят о неисправности!

Но чтобы убедиться в своих предположениях можно сделать контрольную проверку на сопротивление датчика (точные данные нужно смотреть в мануале вашего авто, но в общем, это до 10 кОм).

Стоит заметить что подобную проверку также можно проводить и не снимая датчик с дросселя. Для этого от датчика отсоединяем колодку и включаем зажигание, затем «+» мультиметра подключаем к питающему выводу колодки жгута проводов, а «-» на массу двигателя. На циферблате должно светится 4,8-5,2 V. После выключив зажигание проверяем сопротивление таким же методом, как и при снятом ДПДЗ. Когда заслонка закрыта должно показывать меньше сопротивление, а когда она полностью открыта, то значительно больше (точные данные зависят от тех. характеристик датчика). К примеру, датчик дросселя автомобиля ВАЗ должен быть в пределах 0,9-1,2 кОм (заслонка закрыта) и 2,3-2,7 кОм (заслонка открыта). Не попадание значений в промежуток говорит про неисправность датчика дроссельной заслонки.

Для того, чтобы проверить датчик положения дроссельной заслонки с электронной педалью сначала необходимо нажать на педаль газа до упора, а затем снять показания мультиметром в режиме вольтметр. Показания первого и второго датчика в сумме должны соответствовать 5 вольтам – это эталонный показатель, он означает, что дроссельная заслонка в норме.

Далее меряем напряжение датчиков по отдельности. Положение педали газа №1 и датчик положения педали газа №2, при полностью нажатой педали газа, должен соответствовать показанию 4,2 вольта и 2,1 вольт соответственно. И таким образом если разделить показание первого датчика на напряжение на втором то должно получится, что между ними разница ровно в два раза, то есть равно 2,1. Такая закономерность будет свидетельствовать о том, что в положении зажигания «включено» при положении педали газа в пол, наша педаль газа будет показывать верное значение, а значит она исправна. В случае неисправности ДПДЗ , электронный дроссельный узел или педали газа будет выскакивать ошибка P2138 – неверное соотношение напряжений «D»/«E» датчика положения дроссельной заслонки или педали газа. Появление «чека» с таким кодом главный повод к детальной диагностики электронной педали газа.

Вторым этапом проверки может быть отрабатывание педали при нажатии. Для этого требуется замерять сопротивление между двумя соседними дорожками (на разобранной педали нагляднее). При перемещении педали газа, сопротивление между контактами должно плавно меняться. Изменения скачками свидетельствует о том, что педаль газа следует заменить.

Признаки неисправности датчика положения дроссельной заслонки (ДПДЗ)

В современных автомобилях периодически выходит из строя датчик положения дроссельной заслонки (ДПДЗ). Этот небольшой элемент, поддерживающий двигатель автомобиля в рабочем состоянии, периодически изнашивается, поэтому вопрос о его проверке и правильной диагностике неисправностей достаточно актуален.

Большинство современных датчиков положения дроссельной заслонки используют бесконтактные элементы, такие как два магнита и датчик Холла. Эти датчики менее подвержены износу, поэтому и служат дольше.

Задача ДПДЗ состоит в передаче данных о положении дроссельной заслонки компьютеру автомобиля. Датчик содержит электромеханические компоненты, которые подвержены износу. Неисправности ДПДЗ могут привести к передаче неправильной информации или её отсутствию. В результате этого компьютер не может обеспечить эффективное использование топлива двигателем.

Одна из самых больших проблем датчика дроссельной заслонки заключается в том, что это настолько маленький и сложный механизм, что о его ремонте почти во всех случаях не может быть и речи. Но есть и хорошая новость – качественный ДПДЗ не отличается очень высокой стоимостью.

Симптомы неисправности ДПДЗ

Примечательно, что в случае выхода из строя этого датчика все перечисленные ниже признаки неисправности могут проявляться одновременно. Это не значит, что они не могут проявляться по отдельности, но в большинстве случаев автомобилисты замечают больше одного признака.

Загорается индикатор Check Engine на панели приборов

Это первое, что бросается в глаза. Лампочка сигнализирует водителю, что вышел из строя один из важных компонентов двигателя. В любом случае после включения этого индикатора на панели необходимо как можно быстрее провести диагностику, чтобы установить причину проблемы.

Подергивания и задержки во время разгона

Другим распространенным признаком, связанным с поломкой ДПДЗ, является подергивание и вибрация автомобиля, которые особенно сильно ощущаются при активном ускорении. Поскольку компьютер не получает правильных данных о положении дроссельной заслонки, он не может обеспечить оптимальную работу двигателя.

Нестабильный холостой ход

Эта проблема обычно возникает в сочетании с вышеупомянутым симптомом. Как и рывки во время разгона, троение двигателя на холостом ходу вызвано тем, что блок управления не может определить, полностью ли закрыт дроссель во время работы двигателя на холостых оборотах.

Внезапная остановка двигателя

Это может произойти в любое время, без какого-либо предупреждения, на холостом ходу или во время движения. ДПДЗ отправляет неправильный сигнал, в результате чего компьютер останавливает двигатель.

Внезапное увеличение оборотов двигателя на ходу

Это очень опасная ситуация. Обычно бывает так, что при движении на высоких скоростях дроссельная заслонка закрывается, и если водитель сильнее нажимает на педаль акселератора, заслонка открывается слишком резко, из-за чего возникает резкий всплеск динамики. Все это происходит из-за того, что неисправный датчик положения дроссельной заслонки не может обнаружить, в каком состоянии она находится.

К чему приводят поломки ДПДЗ?

Данные, предоставляемые датчиком дроссельной заслонки, очень важны для правильного запуска двигателя, холостого хода, а также быстрой реакции дроссельной заслонки. Всё это может пострадать, если неисправный ДПДЗ передает ошибочную информацию на электронный блок управления двигателем. Обычно автомобилисты также сталкиваются со следующими проблемами:

  1. Трудности при переключении передач.
  2. Значительный рост расхода топлива.
  3. Проблемы при установке угла опережения зажигания

Проверка ДПДЗ

Существуют разные виды датчиков положения дроссельной заслонки. Если вы заметили один из перечисленных выше признаков неисправности датчика, советуем проверить этот элемент двигателя. Помните, что неправильная работа ДПДЗ может привести к низкой эффективности дроссельной заслонки, внезапной остановке двигателя и другим проблемам. В качестве примера приведем способ диагностики потенциометрического ДПДЗ. Для этого нам понадобится вольтметр.

  1. Отсоедините разъем проводки от датчика дроссельной заслонки.
  2. Полностью откройте дроссельную заслонку вручную и проверьте изменения сопротивления между выводами 1 и 2.
  3. Проверьте сопротивление в трех разных положениях педали акселератора.
  4. Вы можете получить сопротивление около 10 Ом при полном нажатии на акселератор, от 2 до 10 Ом при частичном нажатии и 2 Ом при освобождении заслонки.
  5. Посмотрите руководство по ремонту вашего автомобиля или почитайте профильные форумы для получения конкретных цифр, которые могут сообщить, нужно ли вам думать о замене ДПДЗ или же полученные показатели соответствуют нормальным, установленным заводом-производителем.

Больше информации о детальной проверке ДПДЗ и ведущей к нему проводки, читайте в нашей статье.

Замена датчика положения дроссельной заслонки

  • Извлеките неисправный датчик из камеры дроссельной заслонки.
  • Установите новый элемент.
  • Запустите двигатель после подключения разъема датчика дроссельной заслонки.
  • Проверьте, находится ли выходное напряжение ДПДЗ в указанном диапазоне.
  • Затяните болты, чтобы завершить установку датчика.

Как бы вам не хотелось менять датчик положения дроссельной заслонки, это лишь сэкономит ваши деньги. Причина состоит в том, что двигатель расходует больше топлива, так как получает неправильные данные от ДПДЗ. Стоимость датчика не очень высокая, а его проверку и замену легко выполнить самостоятельно. Чем быстрее вы решите эту проблему, тем меньше средств в конечном итоге потратите.

Чистка дроссельной заслонки: порядок действий

Чистка дроссельной заслонки своими руками – достаточно простая процедура. Она не отнимает много времени и сил, но позволяет значительно сэкономить на посещении автосервиса. Соблюдая все рекомендации, приведенные в статье, качество выполненной работы не вызовет сомнений.

Автомобиль – это сложная система различных узлов и агрегатов, обслуживание которой лучше доверять профессионалам. Некоторые неисправности вполне можно диагностировать и решить самостоятельно, что и делают многие автовладельцы в целях экономии.

К примеру, при повышенном расходе топлива, движении рывками, нестабильной работе двигателя на холостых оборотах и сложностях при его запуске первоочередное внимание следует обратить на дроссельную заслонку – вероятней всего, она загрязнена. Демонтаж и очистка этого узла, в среднем, занимает не больше часа. Потребуется лишь несколько инструментов и аккуратность.


Дроссельная заслонка: конструкция и назначение

Дроссельная заслонка участвует в создании топливо-воздушной смеси посредством регулировки подачи воздуха во впускной коллектор двигателя.

С одной стороны она соединена с воздушным фильтром, с другой – с впускным коллектором. При нажатии на педаль акселератора заслонка открывается и пропускает воздушный поток в коллектор. Чем сильнее нажатие, тем больше открывается заслонка и больше воздуха подается. В коллекторе образуется топливо-воздушная смесь, которая затем поступает в двигатель.

В бюджетных автомобилях установлена механическая дроссельная заслонка. Она легко диагностируется, демонтируется и чистится, поэтому большинство автовладельцев сами занимаются обслуживанием данного узла.

Электронная дроссельная заслонка устанавливается на более дорогие модели. Самостоятельно демонтировать и разбирать ее не стоит. Как правило, все неисправности с этим узлом можно решить настройкой или заменой датчика положения заслонки (ДПЗД), который обеспечивает передачу информации на ЭБУ (электронный блок управления) для корректировки работы двигателя.


Причины загрязнения заслонки

Воздух, который поступает в заслонку содержит пыль, твердые взвеси и другие продукты, проникающие через воздушный фильтр, особенно при его несвоевременной замене.

Частицы пыли оседают в моторном масле, которое покрывает корпус дросселя и заслонку.

Причиной загрязнения заслонки может стать также износ цилиндров и поршней, низкокачественное топливо, некорректная работа системы вентиляции картерных газов, вследствие которой смесь из масляного тумана и продуктов горения в больших количествах попадает в узел.

В результате дроссельная заслонка будет периодически «залипать». Большое количество нагара не даст ей полностью закрыться, и она начнет пропускать избыточное количество воздуха. Без очистки в этом случае точно не обойтись.


Внешние симптомы загрязнения

Отложения в заслонке не всегда нарушают работу дроссельного узла. Проблемы могут возникать из-за поломки датчика положения, некорректной работы привода и других неисправностей.

Осложненный запуск двигателя, потеря его мощности и динамики, нестабильная работа на холостых оборотах, задержка оборотов после отпускания педали акселератора свидетельствуют о неполадках в дроссельной заслонке.

Даже если причины неисправности не связаны с дроссельным узлом, проверить и очистить его крайне рекомендуется.

При возникновении проблем с электронной заслонкой лучшим решением будет обращение на станцию технического обслуживания, где квалифицированные сотрудники устранят неисправности и не повредят механизм.


Процесс очистки заслонки

При очистке дроссельной заслонки внимание следует уделить датчику положения (ДПДЗ) и регулятору холостого хода (РХХ). Благодаря им обеспечивается плавное страгивание автомобиля с места и поддержание оптимальных оборотов вала в зависимости от нагрузки на бортовую сеть. Эти датчики следует тщательно очистить, так как поверхностного вмешательства в данном случае будет недостаточно.

Для проведения работ следует подготовить гаечные ключи, отвертку, очиститель и кисть.


Демонтаж узла

Первый этап включает в себя демонтаж дроссельной заслонки. Для этого потребуется снять воздушный патрубок, связывающий воздушный фильтр и дроссельный узел. Затем нужно открутить болты, которыми корпус фильтра соединяется с двигателем, и отсоединить нижний патрубок.

Особое внимание следует обратить внимание на состояние резиновых уплотнений. Со временем они рассыхаются, что вызывает люфт и вибрации корпуса фильтра. При слабой затяжке болтов происходит подсос воздуха. Между корпусом фильтра и заслонкой стоит резиновое кольцо, его рекомендуется надеть на фильтр, что в последующем облегчит сборку.

С механической заслонки необходимо снять тягу. Для этого не нужно прикладывать много усилий, достаточно поддеть ее и отвести в сторону. Затем отсоединяется регулятор холостого хода и датчик положения заслонки посредством отжатия разъемов.

Последнее действие – снятие фиксирующей скобы и вытаскивание дроссельной заслонки.

После демонтажа нужно заткнуть отверстие впускного коллектора салфеткой или чистой ветошью. Это предотвратит попадание пыли внутрь.


Очистка заслонки

Первым делом необходимо снять регулятор холостого хода с заслонки: он крепится при помощи двух винтов. Под ним находится резиновое кольцо. Чтобы его не повредить, не нужно замачивать деталь в бензине или сильно тереть ее. 

Если уплотнитель имеет изношенный вид, его стоит заменить на новый.

Для очистки заслонки подойдут любые средства. Одно из наиболее эффективных – Очиститель металла MODENGY на основе смеси органических растворителей и функциональных добавок.

За несколько минут он удаляет различные химические загрязнения и нефтепродукты, быстро испаряется с поверхностей, не оставляя разводов и следов.

Очистка заслонки снаружи практически не имеет смысла, так как узел быстро обрастает пылью. Тщательно отмыть следует внутренние поверхности заслонки (особенно в месте ее соединения с корпусом), шток и колодец датчика холостого хода, каналы подачи добавочного воздуха.

После этого заслонку необходимо высушить, только потом можно приступать к сборке узла.

Сборка

Сначала устанавливается регулятор холостого хода, после чего заслонка возвращается на штатное место и фиксируется крепящей скобой. Узел должен попасть в паз. Затем нужно установить тягу, при этом наконечники рекомендуется обработать любой пластиной смазкой. Следует также проверить ход тяги вручную. Он должен быть без рывков и закусываний.

Далее патрубок вентиляции надевается на корпус воздушного фильтра и прикручивается болтами, после чего устанавливается воздушный патрубок.


Настройка регулятора холостого хода


После чистки заслонки нужно отрегулировать регулятор холостого хода. Для этого следует отсоединить аккумуляторные клеммы на 15 минут, затем снова их надеть и произвести запуск двигателя.

В течение 10 минут он должен проработать на холостом ходу. Затем на 10 секунд двигатель глушится и опять запускается. После достижения рабочей температуры автомобиль можно эксплуатировать.

Не стоит пугаться, если после замены РХХ возникнут проблемы с оборотами. Это происходит из-за того, что датчик адаптируется к работе и не сразу входит в нужное положение.

Если дроссельная заслонка имеет электроуправление, то ее регулировка происходит следующим образом. После того, как двигатель прогреется до нужной температуры, его следует заглушить на 10 секунд. Затем на 3 секунды включается зажигание и производится 5 нажатий на педаль газа. Спустя несколько секунд педаль выжимается до упора и держится в таком положении до тех пор, пока индикатор на приборной панели «Check engine» не будет гореть постоянно. После этого можно отпустить педаль газа и запустить двигатель.


Периодичность обслуживания заслонки

На вопрос о том, как часто заслонку необходимо очищать, нет однозначного ответа. При активной эксплуатации автомобиля, на больших оборотах и в сложных условиях обслуживать дроссельный узел следует регулярно, так как в таком режиме работы он может полностью засориться уже через 40-50 тыс. км пробега.

При спокойном стиле вождения заслонку достаточно осматривать каждые 100 тыс. км пробега. Однако при возникновении проблем с работой двигателя дроссельный узел начнет быстро загрязняться, пока неполадки не будут устранены.


Ошибки при очистке

Принимая решение о необходимости очистки дроссельного узла, следует помнить об основных ошибках автовладельцев.

Итак, чего делать нельзя?

  • Разбирать заслонку в любой непонятной ситуации

  • Пытаться очистить узел без демонтажа

  • Использовать грубые щетки вместо мягких материалов

  • Не уделять внимания настройке оборотов узла после очистки

  • Удалять специальное покрытие, которое нанесено производителем на внутренние стенки корпуса и саму заслонку

  • Прилагать слишком большие усилия, так как это может привести к повреждениям заслонки и находящегося рядом датчика

Способы увеличения срока службы дроссельной заслонки

При повреждении заводского покрытия на дроссельной заслонке его следует восстановить. Дело в том, что такой защитный слой предотвращает налипание пыли на поверхности и значительно увеличивает срок службы узла.

Для восстановления покрытия применяются специальные антифрикционные составы на основе дисульфида молибдена. Они представлены как в жидком виде, так и в аэрозольных баллонах. Последние использовать намного удобнее – они просты в применении, не требуют специальных навыков или оборудования, и именно поэтому популярны среди автовладельцев.

Антифрикционное твердосмазочное покрытие MODENGY Для деталей ДВС оптимально подходит для применения в дроссельных заслонках.

MODENGY Для деталей ДВС позволяет восстановить заводское покрытие на внутренних поверхностях дроссельной заслонки. В результате они защищены от усиленного нагарообразования, трения и износа.

Материал наносится путем распыления в несколько слоев с промежуточной сушкой каждого в течение 10 минут. Спустя 12 часов при комнатной температуре происходит полное отверждение покрытия.

Перед нанесением покрытия производитель рекомендует обрабатывать поверхности Специальным очистителем-активатором MODENGY, который отлично удаляет различные загрязнения и обеспечивает максимальное сцепление покрытия с основанием.

Приобрести эти материалы можно как по отдельности, так и одним набором, что более выгодно.

Победил проблемы с двигателем | ATV-Блог: заметки квадроциклиста. Эксплуатация, ремонт, тюнинг.

Вчера наконец справился с уже описанными ранее проблемами в двигателе. Собственно, в двигатель я самостоятельно лезть не хотел — поэтому то отвозил его к официальным дилерам, то в неплохой (по предыдущему опыту) автосервис. 
В результате, квадроцикл несколько недель переезжал из одного места в другое, а проблема не решалась. Как ее в итоге решил — излагаю далее.
Официалы после пары недель изучения квадроцикла только руками поразводили: они только коды ошибок мне перечислили, так это я и сам знал прекрасно — благо научился диагностировать самостоятельно через систему самодиагностики. Причем когда я еще только собирался везти к ним квадроцикл — специально заранее позвонил и уточнил, имеется ли у них прибор, позволяющий регулировать датчик положения дроссельной заслонки.

На этот датчик я грешил с самого начала: ну что может приводит к «чиханию» в воздушный фильтр, глушению двигателя и нагреву выхлопа одновременно? Логично, что неправильное положение дроссельной заслонки: смесь либо слишком обогащенная и догорает в глушителе, либо бедная и движок глохнет. Если датчик положения дает неправильные сигналы на ECU, то и системы контроля за работой двигателя будут работать некорректно.

Регулировке датчика положения дроссельной заслонки в руководстве по обслуживанию отведена целая страница. Сначала предлагается протестировать его (проверяется напряжение на контактах), после чего, при наличии отклонений, описана процедура регулировки. В принципе, не сложная процедура, однако точность замеров напряжения должна составлять сотые доли вольта. Плюс ко всему замеры производятся через специальное устройство, которое цепляется на клемму датчика. Вот слева на картинке изображена эта приставка, в которую и предлагают лезть мультиметром.

В свое время я хотел самостоятельно отрегулировать положение датчика, но смутило меня, что провода, изображенные в руководстве по ремонту, другого цвета. Да еще эта приставка непонятная… В общем, позвонил официальным дилерам, спросил — есть ли такая штука у них, умеют ли пользоваться и смогут ли сделать. Да, — говорят, — какие проблемы! Привозите!

Привез. Первым делом спросили, нет ли у кого из знакомых такого же квадроцикла, только без неисправностей. Ну я ответил, что Sportsman 800 ни у кого из знакомых нет, спросил — зачем, мол? А мы, — говорят, — с исправного все датчики по очереди бы перекидывали пока проблема не ушла бы. Я утвердился в очередной раз в своем недоверии к таким «мастерам», но уж раз квадрик привез — то оставил им на растерзание. В итоге они списывались с московскими и ярославскими дилерами, но так ничего и не придумали. Нашли какую-то микротрещину на уплотнительном кольце форсунки, но сказали, что мол она не в рабочей зоне и на работу влиять не должна. А самое смешное, что в конце концов (после моих настоятельных просьб настроить датчик положения дроссельной заслонки) выяснилось: этой приставки для замера напряжения на датчике у них вообще нет. Грамотные специалисты спутали ее с какой-то приставкой для синхронизации карбюраторов. То что у них нет компьютера для диагностики квадроциклов Polaris — я знал уже давно. Вот такие официальные дилеры…. 

В общем, толку никакого от них я не увидел — квадр забрал и увез в другой автосервис, где более  вменяемые мастера проверили электрику. Сказали, что датчики все работают, поменяли высоковольтные провода, поставили новые свечи — но проблема не ушла. Дело в том, что проверяли принципиальную работоспособность датчиков, не зная точные значения напряжения сигнала. В итоге, я начал подумывать о проблемах в системе газораспределения. Однако мотористы, которым я бы отважился отдать квадроцикл на растерзание, были завалены обслуживанием снегоходов и моими проблемами стали бы заниматься только после новогодних праздников. 

Меня это не устраивало, я привез квадр в гараж, снял крышку статора, осмотрел маховик… Про это наверное напишу подробнее позже, пока лишь сообщу что ничего там подозрительного сразу не увидел. Вот только когда пришел к разобранному квадру на следующий день — увидел под ним лужицу антифриза с примесью масла. Видимо, пробило сальник или прокладку — надо будет заменить, так что все равно лезть придется фактически в двигатель….

Ну, вернусь собственно к проблемам с движком. Квадроцикл стоял в гараже, а я смотрел на него и думал, как бы устранить проблему. В один прекрасный момент подумал — а что мешает замерить напругу на контактах датчика положения заслонки простым перебором? там всего три провода, нужную пару вычислить не проблема, мультиметр цифровой еще со времен светодиодных схем в гараже появился — вроде как попробовать-то никто не мешает.

В итоге делать рекомендую прямо на включенном квадроцикле (мотор заводить не нужно, достаточно включить электрическую часть), а не с батарейкой, как предлагают в руководстве.  Дроссельную заслонку надо будет отсоединить от воздуховодов и от нее будет идти интересующий нас провод датчика положения и помещенный в ПВХ-оплетку тросик дросселя. Их отсоединять не нужно. Пользуясь случаем, снова промыл дроссельную заслонку: за время моих экспериментов в ней скопилось порядочно нагара.

Нас будет интересовать вот эта трехконтактная клемма рядом с дроссельной заслонкой (до датчика положения, установленного в корпусе заслонки от клеммы сантиметров 20 провода) :

Клемму разъединяем:

Берем для удобства три заранее приготовленных проводка (я брал жилки из витой пары) с зачищенными от изоляции кончиками:

Проводки одним концом закрепляем в разъеме (следим, разумеется, чтобы они не замыкались):

Разъем соединяем, тем самым зажимая между штатными контактами наши «контакты для тестирования»:

Далее необходимо выкрутить поджимной болт, которым выставляется положение заслонки на холостых оборотах. Болт нужно выкрутить так, чтобы самой заслонки он не касался, а заслонка была бы полностью закрыта. В руководстве рекомендуют на этом этапе пару раз гашеткой акселератора открыть-закрыть заслонку (при уже выкрученном болтике). Этот этап в руководстве по ремонту обозначен как весьма важный, поскольку именно от этого значения (полностью закрытая заслонка) будут определяться остальные режимы ее работы.

Теперь нужно мультиметром найти из наших трех проводков такие два, между которыми напряжение будет в районе 0.5 вольта. Обращаю внимание — напряжения крайне маленькие, а точность настройки в руководстве указана +/-0.01 В — так что замеры только с цифровым мультиметром и с правильно выбранным пределом измерений на нем.

Вот последовательным перебором сочетаний проводов я определил нужную пару (на других парах проводов напряжение, вроде бы 5 В, или вообще отсутствует — в общем, не ошибетесь):

Напряжение 0.538 В, на цвет проводов внимание не обращаем, фиксируем провода к щупам, просто примотав их — для удобства, ибо больше нам щупы переставлять не придется. В руководстве сообщается, что напряжение должно быть 0.528 +/-0.01 В. Видим, что у нас оно идет практически по верхней границе допустимого. Я решил приблизить его к середине диапазона. Для этого, как и расписано в руководстве, ослабляем крепление самого датчика — небольшой болтик под ключ-звездочку:

Смотрим показания мультиметра, немножко вращаем датчик по часовой стрелке, либо против — в зависимости от того, понизить или повысить вольтаж нам нужно. Подтягиваем крепление обратно. При закручивании болтика на место показания мультиметра изменяются. Т.е. нужно экспериментальным путем подобрать нужный запас напряжения, чтобы при закручивании болта вывести показания на нужные 0.528 вольт. Ну вот, после небольшой канители получил 0.523 В:

Это мы выставили начальное положение датчика. Теперь надо привести в соответствие положение дроссельной заслонки на холостых оборотах. Для этого начинаем вкручивать на место выкрученный ранее поджимной болт (не крепление датчика). При этом смотрим на мультиметр. Он должен показать (согласно руководству по настройке) 0.710 В. Поскольку я фотографии делал уже при повторной настройке датчика, то решил сделать чуть поменьше — у меня были высоковаты холостые обороты и я настроил заслонку по нижней границе допустимого диапазона — 0.700 В:

Вот в итоге после установки заслонки на место, обороты двигателя на холостом ходу:

Ниже опускать не стал. Изначально (при первой настройке), при вольтаж 0.710В получил холостые обороты в районе 1400, что слишком много, хотя передачи и при таких оборотах включались без малейшего рывка или удара. Во второй раз я выставил напряжение на 0.7 В и обороты стали 1280+/-10. Вообще же, до всех этих регулировок, напряжение на датчике было примерно 0.5 В  и 0.4 В (вместо 0.710 В и 0.528 В соответственно).

Смело могу заявить: проблема с глушением двигателя при легком нажатии на дроссель, нестабильность оборотов, чихание в воздушный фильтр и стрельба в глушителе — пропали совершенно! Обширный список проблем устранился целиком. Глушитель, правда, греется. Планирую в ближайшее время снова посмотреть его — более детально. Пока же — крайне доволен собой 😉

P.S. Разобравшись с системой регулировки холостого хода на квадроцикле, могу с уверенностью сказать, что регулировка холостых оборотов возможна только с помощью цифрового мультиметра. Крутить регулировочный болт без мультиметра не следует, а уж «регулировать» холостые с помощью натяжения тросика газа на руле — полная бессмыслица.

Устройство, принцип действия, диагностика датчика положения дроссельной заслонки Throttle Position Sensor (TPS).

 Датчик положения дроссельной заслонки расположен на корпусе узла дроссельной заслонки. Служит для измерения степени открытия дроссельной заслонки.     Датчик положения дроссельной заслонки.  Чувствительный элемент датчика положения дроссельной заслонки представляет собой потенциометр, ось которого жёстко связана с осью дроссельной заслонки. На питающие выводы потенциометра подается опорное напряжение +5 V и «масса», а подвижный контакт датчика является сигнальным. Выходной сигнал датчика положения дроссельной заслонки является одним из базовых для расчёта блоком управления двигателем необходимого количества топлива, для определения текущего режима работы двигателя и для расчёта оптимального угла опережения зажигания. Например, в режиме пуска двигателя количество подаваемого топлива рассчитывается по температуре двигателя, по степени открытия дроссельной заслонки и по фактической частоте вращения коленвала.   На работающем двигателе при закрытой дроссельной заслонке блок управления двигателем переходит в режим стабилизации частоты вращения коленчатого вала двигателя — режим поддержания холостого хода. Заданная частота вращения коленвала при этом зависит от температуры охлаждающей жидкости, от нагрузки на двигатель и от скорости движения автомобиля и регулируется путём изменения степени открытия регулятора холостого хода и изменения угла опережения зажигания.   Для устранения «провала» запаздывания набора оборотов в момент резкого открытия дроссельной заслонки, блок управления двигателем кратковременно подает дополнительную порцию топлива.   Если дроссельная заслонка открыта более чем на ~70 %, блок управления двигателем переходит в режим полной нагрузки, обеспечивая максимальную мощность двигателя путём приготовления несколько обогащённой топливовоздушной смеси.   Когда при движении автомобиля дроссельная заслонка резко закрывается, блок управления двигателем активирует режим принудительного холостого хода (или режим торможения двигателем) путём полного прекращения подачи топлива до тех пор, пока обороты двигателя не снизятся до определенной величины.   Остальные относительно стационарные положения дроссельной заслонки между режимом «поддержки холостого хода» и «полной нагрузки», называются режимом «частичной нагрузки» двигателя. В этом режиме блок управления двигателем поддерживает оптимальное соотношение топливно-воздушной смеси близкой к 1:14,7, за счет использования сигнала обратной связи от кислородных датчиков.  Проверка выходного сигнала датчика положения дроссельной заслонки.Диагностика датчика положения дроссельной заслонки потенциометрического типа заключается в проверке соответствия выходного напряжения датчика фактическому положению дроссельной заслонки во всём диапазоне её возможных положений. Для просмотра осциллограммы напряжения выходного сигнала датчика, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов № 14 USB Autoscope II, чёрный зажим типа «крокодил» осциллографического щупа должен быть подсоединён к «массе» двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика.  Схема подключения к датчику положения дроссельной заслонки потенциометрического типа.  
  1. точка подключения чёрного зажима типа «крокодил» осциллографического щупа. 
  2. точка подключения пробника осциллографического щупа.
    В окне программы «USB Осциллограф», необходимо выбрать подходящий режим отображения, в данном случае «Управление => Загрузить настройки пользователя => Potentiometer». Проверка датчика проводится при включенном зажигании и остановленном двигателе.   Осциллограмма напряжения выходного сигнала датчика должна быть записана. Для включения записи осциллограммы, в окне программы «USB Осциллограф», необходимо выбрать «Управление => Запись» после выбора режима «Potentiometer» и включения зажигания. После включения записи осциллограммы, необходимо как можно более плавно открыть дроссельную заслонку до её полного открытия, после чего так же плавно её закрыть. Далее, для остановки записи осциллограммы, в окне программы «USB Осциллограф», необходимо выбрать «Управление => Запись». После завершения записи, записанную осциллограмму можно детально изучить.   При закрытой дроссельной заслонке, значение напряжения выходного сигнала датчика его положения должно находиться в определённом диапазоне, чаще всего — 0,25…0,75 V. Как только дроссельная заслонка начинает плавно открываться, значение напряжения выходного сигнала датчика так же должно плавно увеличиваться синхронно увеличению угла открытия дроссельной заслонки.   Осциллограмма напряжения выходного сигнала исправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки и быстрое её закрытие.  Когда дроссельная заслонка открыта полностью, значение напряжения выходного сигнала датчика должно находиться в диапазоне обычно 3,9.. .4,7 V.   В некоторых системах управления двигателем применяются датчики положения дроссельной заслонки потенциометрического типа с инверсной выходной характеристикой. При закрытой дроссельной заслонке выходное напряжение датчика высокое, а при открытой — низкое.   Во многих системах управления двигателем, где положение дроссельной заслонки задаётся при помощи электропривода (во всём диапазоне возможных положений, либо только в режиме холостого хода), текущее положение дроссельной заслонки определяется при помощи сразу двух потенциометров, конструктивно объединённых. Один из потенциометров имеет прямую выходную характеристику, а другой потенциометр обычно имеет инверсную выходную характеристику. Кроме того, многие узлы дроссельных заслонок со встроенным электроприводом зачастую дополнительно оснащены концевым микро-выключателем холостого хода, срабатывающим тогда, когда педаль акселератора отпущена водителем полностью.    Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем с электронным приводом дроссельной заслонки. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки. сигнала потенциометра, имеющего
  1. Осциллограмма напряжения выходного инверсную выходную характеристику. 
  2. Осциллограмма напряжения выходного сигнала потенциометра, имеющего прямую выходную характеристику.
 
  1. A: Значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению выходного сигнала потенциометра, имеющего инверсную выходную характеристику при закрытой дроссельной заслонке и равно ~4 V.
  2. A: Значение напряжения в момент времени указанный маркером. В данномслучае соответствует напряжению выходного сигнала потенциометра, имеющего прямую выходную характеристику при закрытой дроссельной заслонке и равно ~890 mV.
Наличие двух потенциометров в датчике положения дроссельной заслонки служит для повышения точности измерения текущего положения дроссельной заслонки, для точного распознавания блоком управления неисправностей датчика, а так же для повышения надёжности узла дроссельной заслонки — при выходе из строя одного из потенциометров блок управления двигателем определяет текущее положение дроссельной заслонки по сигналу от исправного потенциометра.   Встречаются спаренные потенциометрические датчики положения дроссельной заслонки, где оба потенциометра имеют прямую выходную характеристику. Выходной сигнал одного потенциометра изменяется в диапазоне положений дроссельной заслонки от «полностью закрыто», до «частично открыто» (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 0% до 30%). Выходной сигнал другого потенциометра изменяется в диапазоне положений дроссельной заслонки от «частично открыто» до «полностью открыто» (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 17% до 100%).Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем BOSCH MONO Motronic. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки. 
  1. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от «полностью закрыто», до «частично открыто».
  2. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от «частично открыто» до «полностью открыто».
  Такая конструкция датчика применяется для повышения точности измерения текущего положения дроссельной заслонки при малых углах её открытия. Высокая точность измерения текущего положения дроссельной заслонки в системе управления двигателем BOSCH MONO Motronic очень важна, так как данная система не оснащена ни датчиком абсолютного давления во впускном коллекторе, ни датчиком расхода воздуха. По этому, величина нагрузки на двигатель и соответствующее ей необходимое количество впрыскиваемого топлива определяются по скорости вращения коленвала, по величине открытия дроссельной заслонки, по температуре двигателя и по температуре входящего воздуха.  Типовые неисправности датчика положения дроссельной заслонки.  Подвижный контакт потенциометрического датчика механически перемещается по контактному резистивному слою датчика, что со временем может стать причиной разрушения этого контактного резистивного слоя. В таком случае, при некоторых положениях подвижного контакта датчика, значение выходного напряжения датчика может не соответствовать фактическому положению дроссельной заслонки.  Дорожка потенциометра с «протёртым» контактным резистивным слоем (на данной иллюстрации показан измерительный потенциометр датчика объёмного расхода воздуха).Как только водитель устанавливает такое положение дроссельной заслонки, при котором ползунок потенциометра датчика заслонки попадает на участок с разрушенным контактным резистивным слоем, возникают резкие рывки в работе двигателя. Блок управления двигателем воспринимает изменения напряжения на дефектном участке как сигнал режима быстрого разгона двигателя, или режима отсечки подачи топлива. Характер влияния неисправности на работу системы управления двигателем зависит от того, на каких режимах работы двигателя, и при каких углах открытия дроссельной заслонки проявляется неисправность. Если показания датчика нарушаются при закрытой дроссельной заслонке, то это приводит к нестабильности оборотов холостого хода — после отпускания педали акселератора двигатель может заглохнуть, либо напротив, обороты холостого хода могут быть сильно завышенными. Если же показания датчика нарушаются при каком-либо другом положении дроссельной заслонки, это вызывает возникновение резких рывков в работе двигателя в моменты, когда дроссельная заслонка принимает положения, при которых проявляется несоответствие выходного сигнала датчика фактическому положению заслонки.Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки, плавное закрытие дроссельной заслонки.В большинстве случаев, несоответствие выходного сигнала датчика положения дроссельной заслонки фактическому углу открытия дроссельной заслонки имеет место при положении дроссельной заслонки «полностью закрыто» и «частично открыто», из-за чего нарушается работа двигателя в режиме холостого хода. Осциллограмма напряжения выходного сигнала неисправного датчика дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное положения открытие дроссельной заслонки.В случае повреждения контактного резистивного слоя датчика во всём диапазоне положений дроссельной заслонки, характер работы двигателя становится непредсказуемым.   Неисправности датчика, вызванные разрушением контактного резистивного слоя датчика, устраняются путём замены датчика положения дроссельной заслонки на новый.   Другой типовой неисправностью датчика является повышенная зависимость выходного напряжения датчика от температуры его корпуса. Данная неисправность является следствием установки некачественного датчика положения дроссельной заслонки на этапе замены износившегося датчика на новый или ещё на этапе производства автомобиля. Проявляется данная неисправность после прогрева двигателя при полностью закрытой дроссельной заслонке как повышение частоты вращения двигателя на холостом ходу.   Характерным признаком неисправности является возможность временного её устранения путём выключения и повторного пуска двигателя. В момент включения зажигания, блок управления двигателем фиксирует («запоминает») текущее значение выходного напряжения датчика положения дроссельной заслонки и принимает его за напряжение, соответствующее полностью закрытой заслонке. После запуска двигателя это значение напряжения служит для блока управления двигателем признаком закрытой дроссельной заслонки, когда водитель полностью отпускает педаль акселератора. При совпадении выходного напряжения датчика со значением, зафиксированным во время включения зажигания, блок управления двигателем переходит в режим стабилизации частоты вращения двигателя на холостом ходу.дроссельной заслонки, когда водитель полностью отпускает педаль акселератора. При совпадении выходного напряжения датчика со значением, зафиксированным во время включения зажигания, блок управления двигателем переходит в режим стабилизации частоты вращения двигателя на холостом ходу.   Если температурная стабильность датчика не удовлетворительна, может возникнуть сбой в работе двигателя на холостом ходу. Например, в момент включения зажигания, когда двигатель холодный (корпус датчика положения дроссельной заслонки холодный) значение выходного напряжения рассматриваемого датчика равно 500 mV. Блок управления двигателем фиксирует это значение как соответствующее полностью закрытой дроссельной заслонке. В моменты, когда выходное напряжение датчика вновь совпадает с этим зафиксированным значением 500 mV, двигатель переходит в режим стабилизации оборотов холостого хода. По мере прогрева двигателя разогревается и корпус датчика, и если с увеличением температуры корпуса датчика его выходное напряжение так же увеличивается, то может наступить момент, когда при закрытой дроссельной заслонке напряжение выходного сигнала будет значительно превышать зафиксированное при включении зажигания значение, и будет равно, например, 550 mV. В таком случае, когда водитель полностью отпускает педаль акселератора, от датчика будет поступать напряжение 550 mV вместо 500 mV, что уже не будет соответствовать сигналу полностью закрытой дроссельной заслонки. Вследствие этого, блок управления двигателем уже не будет переходить в режим стабилизации оборотов холостого хода.   Если же теперь водитель выключит зажигание, после чего вновь запустит двигатель, блок управления двигателем зафиксирует новое текущее значение напряжения датчика положения дроссельной заслонки 550 mV с уже разогретым корпусом и примет его за напряжение, соответствующее полностью закрытой дроссельной заслонки. Теперь, работа двигателя при закрытой дроссельной заслонке будет стабильна, пока температура корпуса датчика положения дроссельной заслонки вновь не измениться.   Диагностика данной неисправности сводится к сравнению двух значений выходного напряжения датчика при полностью закрытой дроссельной заслонке. Первое значение необходимо измерить, когда температура корпуса датчика близка к текущему значению температуры воздуха (двигатель не работал на протяжении минимум 3-х часов). Второе значение необходимо измерить, когда двигатель будет полностью прогрет до рабочей температуры (электро-вентилятор системы охлаждения автоматически включится не менее трёх раз). Данная неисправность устраняется только путём замены некачественного датчика на качественный.   В некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются оптические датчики положения. Типовой неисправностью этих датчиков является проникновение и накопление загрязнений в полостях, где расположены оптические элементы и на самих оптических элементах. Устраняется данная неисправность путём очистки от загрязнений, но только в тех случаях, если конструкция датчика позволяет его разобрать и повторно собрать.   В последнее время, в некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются бесконтактные «линейные» датчики, работающие на эффекте Холла. Эти датчики лишены недостатков резистивного слоя, но при этом имеют «свои» типовые неисправности. Наиболее распространённым дефектом датчика положения дроссельной заслонки на эффекте Холла бывают зоны с нелинейной зависимостью изменения выходного напряжения датчика. На осциллограмме напряжения выходного сигнала при плавном открытии дроссельной заслонки данная неисправность проявляется как «Г-образная ступенька». Такая «ступенька» может перекрывать значительный диапазон возможных положений дроссельной заслонки. При плавном изменении положения дроссельной заслонки внутри такого диапазона значения напряжения выходного сигнала датчика не изменяются. Подобных ступенек на всём диапазоне возможных положений дроссельной заслонки может быть несколько.  Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки работающего на эффекте Холла.  Устраняется данная неисправность только путём замены датчика на исправный.  Датчик крайних положений дроссельной заслонки Throttle Valve Switch.В некоторых системах управления двигателем прежних лет применялись датчики крайних положений дроссельной заслонки на основе концевых микро-выключателей. Микро-выключатель «холостого хода» и микро-выключатель «полной нагрузки».   Датчик крайних положений дроссельной заслонки, измерительными элементами которого являются два микро-выключателя.Каждый из концевых микро-выключателей может принимать одно из двух его возможных состояний — «замкнут» или «разомкнут». В зависимости от текущего состояния микро-выключателя, напряжение его выходного сигнала может принимать значение соответствующее либо низкому уровню сигнала (обычно это значение равно 0 V), либо соответствующее высокому уровню сигнала (обычно это значение равно 5 V, либо 12 V). Вследствие сравнительно быстрого механического износа, микро-выключатели датчика со временем могут перестать срабатывать, особенно часто данная неисправность случается с микро-выключателями холостого хода. Для устранения этого дефекта достаточно периодически вновь отрегулировать положение корпуса датчика относительно корпуса дроссельной заслонки так, чтобы микро-выключатель холостого хода изменял своё состояние сразу же после начала открытия дроссельной заслонки.   Ещё одной распространённой неисправностью концевых микро-выключателей датчиков положения некоторых типов является образование микротрещин в области спайки выходных клемм выключателя с разъёмом датчика. Эта неисправность возникает на автомобилях со значительным пробегом, вследствие воздействия механических нагрузок в области спайки клемм выключателя с разъёмом датчика. Если конструкция датчика позволяет его разобрать и повторно собрать, эту неисправность можно устранить, не прибегая к замене датчика. Достаточно повторно пропаять при помощи паяльника выходные клеммы микро-выключателя в области спаивания с разъёмом датчика.   Проверка исправности концевого микро-выключателя проводится путём измерения сопротивления датчика с помощью омметра. Сопротивление разомкнутого микровыключателя должно стремиться к бесконечности. Когда микро-выключатель замкнут, его сопротивление не должно превышать значения 1 Q. При этом дополнительно следует обратить внимание на стабильность сопротивления микро-выключателя в состоянии «замкнут» при нескольких его срабатываниях. После каждого переключения выключателя в состояние «замкнут» омметр должен показывать одно и то же значение сопротивления датчика с отклонениями не более 0,1 Q. Изменяющиеся значения сопротивления микровыключателя в состоянии «замкнут» могут быть признаком образования микротрещин в области спаивания выходных клемм выключателя с разъёмом датчика, либо признаком подгорания контактов датчика.   Существуют датчики крайних положений дроссельной заслонки, выполненные по технологии, аналогичной технологии изготовления потенциометрических датчиков положения дроссельной заслонки — на основе резистивного слоя. Сопротивление такого датчика при его состоянии «замкнуто» может принимать значения от 0,1 Q до 10 kQ и более. Подобные датчики часто бывают конструктивно объединены в общем корпусе с датчиком положения дроссельной заслонки потенциометрического типа.   Датчик положения дроссельной заслонки потенциометрического типа со встроенным датчиком концевого положения, срабатывающим в положении заслонки «полностью закрыто».Подобные датчики имеют обычно 4-х контактный разъём. Три клеммы разъёма соединены с датчиком положения дроссельной заслонки потенциометрического типа, четвёртая клемма разъёма соединяется с выводом датчика концевого положения дроссельной заслонки. Другой вывод датчика концевого положения дроссельной заслонки соединён с одной из питающих клемм датчика, обычно, с выводом «массы» датчика.

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (TPS)

Общее описание

Датчик положения дроссельной заслонки (TPS) используется для контроля положения дроссельной заслонки в двигателях внутреннего сгорания. TPS обычно располагается на шпинделе дроссельной заслонки, так что он может непосредственно контролировать его положение.
Датчик TPS представляет собой потенциометр, обеспечивающий переменное сопротивление в зависимости от положения дроссельной заслонки (и, следовательно, датчика положения дроссельной заслонки).
Сигнал датчика используется блоком управления двигателем (ЭБУ) в качестве входного сигнала для своей системы управления.Момент зажигания и впрыска топлива (и, возможно, другие параметры) изменяются в зависимости от положения дроссельной заслонки, а также в зависимости от скорости изменения этого положения.
Некоторые модификации дроссельной заслонки имеют встроенные концевые выключатели. Они представляют собой датчик положения закрытой дроссельной заслонки (CTPS) и часто включают датчик положения полностью открытой дроссельной заслонки (WOT), который устанавливается на педаль акселератора.
Сигнал положения дроссельной заслонки может подаваться от простого контакта (TS) или потенциометра (TPS), а также комбинированного датчика TS / TPS.Некоторые системы используют оба типа как отдельные элементы.

Внешний вид
На рис. 1 показан типичный TPS.


Фиг.1

Типы датчиков TPS
По конструкции:

  • с концевыми выключателями
  • потенциометр типа
  • комбинация обоих выше

Принцип работы датчика TPS
Датчик потенциометра дроссельной заслонки (TPS)
TPS предоставляет бортовому контроллеру информацию о холостом ходу, замедлении, скорости ускорения и состоянии полностью открытой дроссельной заслонки (WOT).TPS — трехпроводный потенциометр. По первому проводу на резистивный слой датчика подается напряжение + 5В, а второй провод замыкает цепь датчика на массу. Третий провод подключается к дворнику потенциометра, тем самым изменяя сопротивление и, следовательно, напряжение сигнала, возвращаемого на бортовой компьютер.
На основе полученного напряжения бортовой компьютер может рассчитать холостой ход (ниже 0,7 В), полную нагрузку (около 4,5 В) и скорость открытия дроссельной заслонки.В режиме полной нагрузки бортовой компьютер обеспечивает дальнейшее обогащение топливной смеси. В режиме замедления (закрытая дроссельная заслонка и частота вращения двигателя выше определенного числа оборотов) бортовой компьютер отключает впрыск топлива. Подача топлива возобновляется после того, как частота вращения двигателя достигает значения холостого хода или когда дроссельная заслонка открыта. Некоторые автомобили позволяют регулировать эти значения.

ДАТЧИК ДРОССЕЛЬНОЙ ЗАСЛОНКИ (TS)

ТС сообщает бортовому компьютеру о состоянии холостого хода. Обычно он имеет второй контакт для полностью открытого состояния дроссельной заслонки (WOT).В большинстве случаев бортовой компьютер обеспечивает дополнительное обогащение топливной смеси на холостом ходу и при полностью открытой дроссельной заслонке. Каждый контакт TS имеет два положения — разомкнутое и замкнутое — по которым бортовой компьютер определяет три различных состояния двигателя:

  • Дроссельная заслонка закрыта (контакт холостого хода замкнут)
  • Дроссельная заслонка открыта (контакт холостого хода и WOT разомкнуты)
  • Дроссельная заслонка полностью открыта (контакт холостого хода разомкнут, а контакт WOT замкнут)

Некоторые автомобили допускают регулировку ТС.

Процедура проверки работоспособности TPS
ДАТЧИК ДРОССЕЛЬНОЙ ЗАСЛОНКИ (TS)

ПРИМЕЧАНИЕ: Следующие операции применяются в типичном трехпозиционном переключателе дроссельной заслонки. В некоторых случаях переключатель холостого хода и переключатель полной нагрузки могут быть подключены отдельно. Также есть отдельные выключатели холостого хода и полной нагрузки. В некоторых моделях Rover переключатель дроссельной заслонки расположен на педали акселератора. Независимо от расположения переключателя процедура проверки выполняется одинаково для всех типов датчиков.
— Проверить напряжение ТС

  • Три провода, входящие в муфту дроссельного переключателя, — это заземление, сигнал режима холостого хода и сигнал полной нагрузки.
  • Подсоедините отрицательную клемму вольтметра к массе двигателя.
  • Определите клеммы заземления, холостого хода и полной нагрузки датчика.
  • Включите зажигание, но не запускайте двигатель.
  • Подключите положительный вывод вольтметра к проводу, подключенному к контакту сигнала холостого хода переключателя дроссельной заслонки.
  • Вольтметр должен показывать напряжение 0 В. Если он показывает напряжение 5,0 В, ослабьте винты и отрегулируйте переключатель так, чтобы вольтметр показывал нулевое напряжение.

ПРИМЕЧАНИЕ: В некоторых автомобилях нельзя отрегулировать переключатель дроссельной заслонки.
— Проверить сопротивление ТС

  • Отсоединен разъем дроссельной заслонки.
  • Подключить омметр между массой и клеммами режима холостого хода.
  • Когда переключатель дроссельной заслонки включен, омметр должен показывать сопротивление около 0 Ом.
  • Медленно откройте дроссельную заслонку, и при размыкании переключателя сопротивление должно быть равным бесконечности и оставаться неизменным, даже если дроссельная заслонка полностью открыта.
  • Подключить омметр между заземлением и клеммами режима полной нагрузки.
  • Когда переключатель дроссельной заслонки замкнут, омметр должен показывать разрыв цепи (бесконечное сопротивление).
  • Медленно откройте дроссельную заслонку. Когда переключатель размыкается, он должен щелкнуть, и сопротивление должно оставаться равным бесконечности.Когда угол открытия дроссельной заслонки станет больше 72 градусов, сопротивление будет равно 0 Ом.
  • Если переключатель не работает описанным образом, а включение и выключение нельзя регулировать путем сгибания рычагов управления дроссельной заслонкой, скорее всего, дроссельный переключатель неисправен.

— Возможные повреждения в TS:
1) Отсутствует напряжение 0 В (дроссельная заслонка закрыта)

  • Проверить состояние дроссельной заслонки.
  • Проверить соединение переключателя с массой.
  • Измерьте сопротивление переключателя.
  • Если напряжение в норме при закрытой дроссельной заслонке, резко откройте дроссельную заслонку, переключатель должен щелкнуть, и напряжение должно подняться до 5,0 В.

2) Напряжение низкое или отсутствует (дроссельная заслонка открыта)

  • Проверить, не подключена ли клемма переключателя режима холостого хода к массе.
  • Отсоединить разъем переключателя и проверить наличие напряжения 5,0 В на контакте режима холостого хода.Если напряжение отсутствует, выполните следующие проверки:
    • ,
    • проверить целостность сигнального провода режима холостого хода между переключателем и бортовым контроллером;
    • Если провода переключателя в порядке, проверьте все соединения питания и заземления бортового контроллера. Если они верны, неисправность может быть во встроенном контроллере.

3) Напряжение в норме (дроссельная заслонка открыта)

  • Подключите положительный полюс вольтметра к проводу, подключенному к контакту переключателя режима полной нагрузки.
  • Когда дроссельная заслонка находится в состоянии покоя или приоткрыта, вольтметр должен показывать напряжение 5,0 В.

4) Напряжение низкое или отсутствует (дроссельная заслонка закрыта или слегка приоткрыта)

  • Проверить заземление.
  • Проверить, не заземлен ли контакт переключателя дроссельной заслонки режима полной нагрузки.
  • Отсоедините разъем переключателя. Проверить наличие напряжения 5,0В на контакте разъема в режиме полной нагрузки.При отсутствии напряжения провести следующие проверки:
    • ,
    • проверить целостность сигнального провода режима холостого хода между переключателем и бортовым контроллером;
    • Если провода переключателя в порядке, проверьте все соединения питания и заземления бортового контроллера. Если они верны, неисправность может быть во встроенном контроллере.

5) Напряжение в норме (дроссельная заслонка закрыта или приоткрыта)

  • Полностью откройте дроссельную заслонку.Когда угол открытия становится больше 72 градусов, напряжение должно упасть до нуля. Если напряжение не падает, скорее всего, неисправен дроссельный переключатель.

— Датчик положения дроссельной заслонки (TPS) —

— Проверить напряжение TPS

  1. Подключите отрицательную клемму вольтметра к массе двигателя.
  2. Определите клеммы заземления, холостого хода и полной нагрузки.

ПРИМЕЧАНИЕ. Большинство потенциометров дроссельной заслонки имеют три клеммы, но некоторые могут иметь и дополнительные контакты, которые функционируют как переключатели дроссельной заслонки.Если такой контакт есть, его необходимо проверить, как описано выше для переключателя дроссельной заслонки.

  1. Подключите положительную клемму вольтметра к проводу, подключенному к контактному сигналу потенциометра дроссельной заслонки.
  2. Включите зажигание, но не запускайте двигатель. В большинстве систем показание напряжения должно быть менее 0,7 В.
  3. Откройте и закройте дроссельную заслонку несколько раз, проверив плавность нарастания напряжения.

— Проверить сопротивление TPS

  1. Подключение омметр между потенциометром стеклоочистителем и клеммой опорного напряжения или между токопроводящей стеклоочистителем и землей.
  2. Несколько раз откройте и закройте дроссельную заслонку и проверьте плавность изменения сопротивления. Если сопротивление потенциометра бесконечно или равно нулю, это указывает на неисправность.
  3. Точные значения сопротивления потенциометра дроссельной заслонки не показаны. Одна из причин — многие производители не публикуют контрольные данные. Тот факт, что сопротивление потенциометра поддерживается в определенных пределах, менее важен, чем правильная работа потенциометра, т.е.е. сопротивление плавному изменению при перемещении дроссельной заслонки.
  4. соединение омметр между землей и клеммами опорного напряжения. Сопротивление должно быть постоянным.
  5. Если сопротивление бесконечно или низкое, потенциометр необходимо заменить.

— Возможные неисправности в ТСП
Хаотичный выходной сигнал

  • Хаотичный выходной сигнал наблюдается, когда сигнал напряжения быстро меняется, падает до нуля и исчезает.
  • Когда выходной сигнал потенциометра дроссельной заслонки хаотичен, причиной этого обычно является неисправный потенциометр.В этом случае потенциометр необходимо заменить.

Отсутствует сигнал напряжения

  • Проверить наличие опорного напряжения (5.0V) на дроссельной клемме потенциометра мощности.
  • Проверить состояние заземляющего контакта потенциометра.
  • Проверить сигнальный провод, соединяющий потенциометр дроссельной заслонки с бортовым контроллером.
  • Если источник питания и заземление плохие, проверьте целостность проводов между потенциометром и бортовым контроллером.
  • Если провода потенциометра в порядке, проверьте все соединения питания и заземления бортового контроллера. Если они верны, скорее всего, причина в самом встроенном контроллере.

Выходной сигнал или опорное напряжение равно напряжению аккумуляторной батареи

  • Проверить на короткое замыкание провод, подключенный к положительной клемме автомобильного аккумулятора или провод источника питания.

Проверить потенциометр дроссельной заслонки с помощью осциллографа

  • Наилучший способ получить изменения сигнала потенциометра — использовать осциллограф.
  • Подключите активный щуп осциллографа к сигнальной клемме потенциометра, а щуп GND — к массе двигателя.
  • Запустить двигатель.
  • Плавно нажмите педаль акселератора, а затем резко отпустите педаль. Вы должны увидеть сигнал как на рис. 2.


Рис. 2

Это правильно работающая форма сигнала потенциометра дроссельной заслонки — плавный рост напряжения и быстрое падение.
На рисунках 3, 4 и 5 показаны формы сигналов неисправных потенциометров.


Рис.3


Рис.4


Рис.5

Вы можете отчетливо видеть обрывы сигнала, это означает, что в резистивном слое потенциометра дроссельной заслонки есть обрывы, и его необходимо заменить.

Датчики положения дроссельной заслонки двигателя

В более поздних моделях двигателей с обратной связью по карбюратору или электронным впрыском топлива используется «Датчик положения дроссельной заслонки» (TPS) для информирования компьютера о скорости открытия дроссельной заслонки и относительном положении дроссельной заслонки.Отдельный переключатель холостого хода (иногда называемый переключателем «нос») и / или переключатель широко открытой дроссельной заслонки (WOT) также может использоваться для подачи сигнала компьютеру о наличии этих положений дроссельной заслонки.

Датчик положения дроссельной заслонки обычно устанавливается снаружи на валу дроссельной заслонки, как в случае с большинством дроссельных заслонок с впрыском топлива последних моделей, но на старых автомобилях с карбюраторами с электронной обратной связью датчик TPS был установлен внутри (например, Rochester Varajet, Dualjet и Quadrajet).

Датчик TPS — это, по сути, переменный резистор, который изменяет сопротивление при открытии дроссельной заслонки.Думайте об этом как об электронном эквиваленте механического ускорительного насоса. Сообщая компьютеру, когда дроссельная заслонка открывается, компьютер может обогатить топливную смесь, чтобы поддерживать надлежащее соотношение воздух / топливо.

Начальная установка TPS имеет решающее значение, потому что сигнал напряжения, который компьютер получает обратно от TPS, сообщает компьютеру точное положение дроссельной заслонки. Поэтому начальная регулировка должна быть как можно ближе к заводским характеристикам. Большинство спецификаций даны с точностью до сотых долей вольта! А поскольку для конкретного приложения не существует диапазона «приемлемых» характеристик, TPS следует настроить как можно ближе к тем, которые указаны в руководстве.

Это достигается путем считывания напряжения TPS в определенном положении дроссельной заслонки с помощью цифрового вольтметра с сопротивлением 10 кОм или на автомобилях GM с помощью ручного диагностического прибора, который подключается к диагностическому разъему автомобиля.


Датчик TPS контролирует положение дроссельной заслонки.

TPS НА АВТОМОБИЛЕ

Большинство поздних моделей легковых и грузовых автомобилей не имеют троса газа. Небольшой электродвигатель используется для управления дроссельной заслонкой с использованием сигналов от датчиков положения на педали газа.Когда педаль газа нажата, электрическое сопротивление потенциометров внутри датчиков педали изменяется. Модуль управления отмечает изменение положения и подает команду на открытие дроссельной заслонки. Пара датчиков положения дроссельной заслонки на валу дроссельной заслонки регистрирует изменение положения дроссельной заслонки и подает сигналы обратной связи на модуль управления, чтобы модуль знал точное положение дроссельной заслонки и что все работает правильно.

СИМПТОМЫ ПРИВОДНОСТИ ДАТЧИКА TPS

Классическим признаком неисправного или неправильно отрегулированного TPS является колебание или спотыкание во время ускорения (другими словами, те же симптомы, что и неисправный ускорительный насос).Топливная смесь выходит наружу, потому что компьютер не получает правильного сигнала о необходимости долить топливо при открытии дроссельной заслонки. Цепь обратной связи кислородного датчика в конечном итоге предоставит необходимую информацию, но недостаточно быстро, чтобы двигатель не споткнулся.

Датчики положения дроссельной заслонки обычно испытывают наибольший износ в положении чуть выше холостого хода, так как это положение для большинства вождения. Изношенный датчик может вызвать пропуск или падение показаний при открытии дроссельной заслонки, что приведет к кратковременная потеря входа в PCM.Результатом обычно являются колебания или спотыкание из-за того, что PCM не может обеспечить необходимое обогащение топлива.

Если крепление TPS ослаблено, это будет давать беспорядочный сигнал, заставляющий ECM полагать, что дроссельная заслонка открывается и закрывается. Результатом может быть нестабильный холостой ход и периодические колебания.

Если TPS закорочен, компьютер будет постоянно получать сигнал, эквивалентный широко открытой дроссельной заслонке. Это приведет к обогащению топливной смеси и установит код неисправности, соответствующий слишком высокому сигналу напряжения.

Если TPS открыт, компьютер будет думать, что дроссельная заслонка все время закрыта. Полученная топливная смесь будет слишком бедной, и будет установлен код неисправности, соответствующий слишком низкому сигналу напряжения.

ПРОВЕРКИ ДАТЧИКА TPS

Сначала проверьте наличие кодов неисправности. Коды OBD II, которые могут указывать на проблемы с TPS, включают:

P0120 …. Цепь датчика положения дроссельной заслонки / педали / переключателя А

P0121…. Датчик положения дроссельной заслонки / педали / переключатель A Диапазон цепи / проблема производительности

P0122 …. Низкий входной сигнал цепи датчика положения дроссельной заслонки / педали / переключателя А

P0123 …. Высокий входной сигнал цепи датчика положения дроссельной заслонки / педали / переключателя А

P0124 …. Неисправность цепи датчика положения дроссельной заслонки / педали / переключателя А

P0220 …. Цепь датчика положения дроссельной заслонки / педали / переключателя ‘B’

P0221 …. Датчик положения дроссельной заслонки / педали / переключатель ‘B’ Диапазон цепи / проблема производительности

P0222…. Низкий вход цепи датчика положения дроссельной заслонки / педали / переключателя ‘B’

P0223 …. Высокий входной сигнал цепи датчика положения дроссельной заслонки / педали / переключателя ‘B’

P0224 …. Датчик положения дроссельной заслонки / педали / переключатель ‘B’ Неустойчивый сигнал цепи

P0225 …. Цепь датчика положения дроссельной заслонки / педали / переключателя ‘C’

P0226 …. Датчик положения дроссельной заслонки / педали / выключатель ‘C’ Диапазон цепи / проблема производительности

P0227 …. Низкий вход цепи датчика положения дроссельной заслонки / педали / переключателя ‘C’

P0228…. Высокий входной сигнал цепи датчика положения дроссельной заслонки / педали / переключателя ‘C’

P0229 …. Датчик положения дроссельной заслонки / педали / выключатель ‘C’ Прерывистый сигнал цепи

На более старых автомобилях до OBD II коды датчика положения дроссельной заслонки включают:

* General Motors Pre-OBD II: 21, 22

* Ford (EEC-IV) до OBD II: 23, 53, 63, 73

* Chrysler Pre-OBD II: 24

Если вы обнаружите код, обратитесь к соответствующей диагностической таблице и выполните пошаговые проверки, чтобы выявить причину.Если вы не найдете никаких кодов, вы все равно можете выполнить следующие проверки диагностического прибора и напряжения.


Когда вы смотрите на данные датчика на вашем диагностическом приборе
вы должны найти значение открытия дроссельной заслонки.
Число должно быть небольшим на холостом ходу, затем увеличиваться при открытии дроссельной заслонки.

ПРОВЕРКИ ИНСТРУМЕНТОВ СКАНИРОВАНИЯ

Диагностический прибор, который может отображать данные датчика, обычно показывает положение дроссельной заслонки в процентах от открытия. Инструменты сканирования профессионального уровня также могут отображать фактическое напряжение датчика TPS, в зависимости от программного обеспечения.Подключите диагностический прибор к диагностическому разъему автомобиля, поверните ключ в положение ON и обратите внимание на показания открытия дроссельной заслонки. На холостом ходу он должен быть равен нулю или паре градусов. Нажмите на педаль газа очень сильно S-L-O-W-L-Y, пока дроссельная заслонка не откроется полностью. Вы должны увидеть, как процент открытия дроссельной заслонки постепенно увеличивается до 100 процентов при полностью открытой дроссельной заслонке.

Отсутствие изменений в показаниях диагностического прибора указывает на отсутствие сигнала от датчика положения дроссельной заслонки. Или, если вы видите более 5 процентов открытия на холостом ходу или менее 90 процентов открытия при WOT, это может указывать на проблему с датчиком.

Примечание. Большинство диагностических инструментов не обновляют свои показания достаточно быстро, чтобы обнаружить кратковременный сбой в показаниях TPS во время развертки TPS от холостого хода к WOT. Если на TPS есть место износа, скорее всего, это будет от 0 до 20 процентов открытия дроссельной заслонки. Попробуйте удерживать дроссельную заслонку в диапазоне от 0 до 20 процентов, чтобы проверить, стабильны ли вы. Если показание внезапно падает при удерживании педали газа или рычага дроссельной заслонки в устойчивом положении, это может указывать на неисправность датчика.


ПРОВЕРКА НАПРЯЖЕНИЯ ДАТЧИКА TPS

Если ваш диагностический прибор не может отобразить значение напряжения для TPS, вы можете измерить выходное напряжение датчика, зондировав разъем датчика с помощью вольтметра.Сначала проверьте наличие напряжения на TPS при включенном ключе. TPS не может поставить правильный сигнал, если он не получает опорное напряжение от компьютера. Обратитесь к схеме подключения для эталонного подключения и найдите напряжение 5 В.

Вторая проверка — это показание базового напряжения. Сравните показания напряжения с указанными в руководстве. Значения напряжения TPS часто указываются с точностью до сотых долей вольта, поэтому, если базовое значение напряжения TPS выходит за рамки.05 вольт указанного значения, может потребоваться регулировка (если она регулируется). Если он не регулируется и показания не соответствуют техническим характеристикам, замените датчик.

Третья проверка предназначена для правильного изменения напряжения при открытии и закрытии дроссельной заслонки. Напряжение должно плавно повышаться от примерно 1 вольт до максимум 5 вольт при полностью открытой дроссельной заслонке. Отсутствие повышения напряжения или пропусков в показаниях означает, что датчик необходимо заменить. Наблюдение за выходным сигналом датчика в виде кривой на осциллографе может сэкономить здесь время, потому что легко увидеть любые отклонения на кривой напряжения.


РЕГУЛИРОВКА ДАТЧИКА TPS

В нормальных условиях TPS не требует регулировки. Но если ваш диагноз выявляет проблему с настройкой напряжения TPS, если TPS неисправен и должен быть заменен, или если карбюратор или корпус дроссельной заслонки заменяются, тогда может потребоваться регулировка. Примечание. Это относится только к более старым автомобилям. На большинстве автомобилей последних моделей TPS выполняет самокалибровку. Компьютер двигателя использует показания базового напряжения на холостом ходу, как 0% открытия дроссельной заслонки.

ПРИМЕЧАНИЕ: TPS на большинстве модернизированных карбюраторов предварительно настроен на заводе на «среднюю» настройку для большинства применений, к которым подходит карбюратор. Даже в этом случае TPS следует сбросить до конкретного приложения, в котором он установлен.

До 1982 года все датчики положения дроссельной заслонки GM были регулируемыми. Но в более новых приложениях многие датчики не регулируются. Например, начиная с 1984 года GM перешла на нерегулируемый TPS на двигателях Pontiac 1,8 и 2,5 л.Точно так же Chevy перешла на нерегулируемый TPS, начиная с 1985 года, на двигателе 2,0 л. На двигателях с нерегулируемым TPS, блок управления двигателем использует все, что в режиме ожидания чтения он получает от TPS в качестве основного опорного напряжения точки.

При использовании регулируемых датчиков TPS процедура настройки может варьироваться в зависимости от области применения. На карбюраторах Rochester с внутренним TPS необходимо удалить заглушку, защищающую от несанкционированного доступа, в верхней части карбюратора. В некоторых системах с впрыском топлива корпус дроссельной заслонки необходимо снимать, чтобы просверлить сварные швы, удерживающие винты TPS.В случае установленных снаружи датчиков положения дроссельной заслонки датчик регулируется путем ослабления крепежных винтов (или высверливания крепежных заклепок) и легкого поворота датчика в ту или иную сторону до получения желаемого значения напряжения.

Основные процедуры настройки следующие:

1. Удалите заглушку для защиты от несанкционированного доступа (если имеется), или ослабьте крепежные винты, или снимите заклепки, удерживающие TPS.

2. Обратитесь к электрической схеме в руководстве, чтобы определить, какие разъемы используются для снятия показаний TPS.Например, на карбюраторах Rochester используйте центральную клемму «B» TPS и нижнюю клемму «C». Если автомобиль предоставляет доступ к потоку данных TPS, используйте диагностический прибор для считывания выходных данных датчика, подключив его к диагностическому разъему.

  1. Включите зажигание. Отрегулируйте TPS с дроссельной заслонкой в ​​указанном положении (холостой ход, высокий шаг кулачка быстрого холостого хода или упираясь в упорный винт дроссельной заслонки с полностью втянутым плунжером ISC), пока не будет получено правильное показание напряжения.


Некоторые исторические примечания к датчикам TPS:

Июнь 2011 г.

Новые бесконтактные датчики TPS для замены изношенных датчиков оригинального оборудования

Airtex Engine Management представила линейку передовых датчиков положения дроссельной заслонки бесконтактной конструкции, которые устраняют преждевременный износ и общие проблемы управляемости, характерные для обычных датчиков положения дроссельной заслонки. Новые датчики положения дроссельной заслонки Airtex теперь доступны для многих моделей Dodge, Ford, General Motors и Mazda с середины 1980-х по 2007 год.

Обычное оригинальное оборудование и запасные датчики положения дроссельной заслонки имеют металлические контактные пальцы, которые перемещаются по печатной плате резисторов, чтобы указать положение дроссельной заслонки. Повторяющиеся движения и вибрация транспортного средства могут привести к износу этих пальцев отверстий в доске, появлению мертвых зон, которые приводят к колебаниям двигателя и другим проблемам с управляемостью.

В новых датчиках Airtex используется усовершенствованная интегральная схема на эффекте Холла, которая исключает контакт с печатной платой, вызывающий интенсивный износ.Эта технология до сих пор не была широко доступна на вторичном рынке, несмотря на ее значительные преимущества по сравнению с традиционными датчиками положения дроссельной заслонки.

Для получения дополнительной информации посетите Airtex Engine Management.




B>
Щелкните здесь, чтобы узнать больше о руководстве по датчикам
Краткое руководство по эксплуатации и тестированию датчиков

Другие статьи о датчиках двигателя:

Системы управления дроссельной заслонкой (электронное управление дроссельной заслонкой)

Диагностика круиз-контроля

Проверка датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Датчики положения коленчатого вала CKP

Датчики MAP

Датчики массового расхода воздуха

Датчик массового расхода воздуха 9000 Датчики воздушного потока VAF

Датчики кислорода

Датчики воздушного топлива с широким соотношением сторон (WRAF)

Понимание систем управления двигателем

Модули управления трансмиссией (PCM)

PCM с мгновенным перепрограммированием

Все о бортовой диагностике II (OBD II)

в диагностике OBD II

Диагностика сети контроллеров

(CAN)

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Устранение неполадок системы контроля холостого хода

Клапан регулировки холостого хода (ISC), также называемый клапаном регулировки холостого хода (IAC), используется как на корпусе дроссельной заслонки, так и на многоточечной двигатели с впрыском топлива для регулирования холостого хода.Chrysler называет их мотором с автоматическим холостым ходом (AIS), а Ford — своим. как соленоид регулятора холостого хода (ISC).

Клапан IAC открывает небольшой байпасный контур, позволяющий воздуху обходить дроссельную заслонку. Увеличение объема проходящего воздуха через байпасный контур вокруг дроссельной заслонки увеличивает обороты холостого хода. Уменьшение байпасного воздушного потока снижает скорость холостого хода.

Клапан ISC управляется компьютером двигателя (модулем управления трансмиссией или PCM).Компьютер контролирует холостой ход путем подсчета импульсов зажигания от модуля зажигания в трамблере или датчика положения коленчатого вала при положении дроссельной заслонки Датчик или переключатель дроссельной заслонки сигнализируют компьютеру, что дроссельная заслонка закрыта и двигатель работает на холостом ходу.

Когда частота вращения двигателя на холостом ходу выше или ниже предустановленного диапазона в компьютерной программе, компьютер управляет клапаном ISC. для увеличения или уменьшения потока воздуха в байпасе. Дополнительные входы датчиков от датчика охлаждающей жидкости, выключателя тормоза и датчика скорости может также использоваться компьютером для регулирования холостого хода в соответствии с различными условиями работы.

Скорость холостого хода также может быть увеличена, когда включен компрессор кондиционера, генератор переменного тока заряжается выше определенного напряжения и / или автоматическая трансмиссия включена для предотвращения буксировки двигателя.

ДИАГНОСТИКА ПРОБЛЕМ СКОРОСТИ ХОЛОСТОГО ХОДА

Если ваш двигатель работает на холостом ходу слишком быстро, слишком медленно или глохнет, проблема может быть не в системе управления частотой вращения холостого хода, а в утечке вакуума в двигателе. Сначала проверьте отсутствие утечки вакуума, чтобы исключить эту возможность.

Обычное состояние — соленоид перепускного клапана холостого хода полностью выдвинут (закрыт). Обычно это означает, что в двигателе есть утечка воздуха, и PCM пытается снизить скорость холостого хода, замыкая цепь перепуска воздуха на холостом ходу.

Если имеется обрыв или короткое замыкание в соленоиде холостого хода, проводке или цепи привода, или если скорость холостого хода выходит за пределы допустимого диапазона, обычно устанавливается один или несколько кодов неисправности и включается индикатор проверки двигателя. Если индикатор горит, вам необходимо подключить диагностический прибор к диагностическому разъему и считать коды, которые устанавливают индикатор.


РЕГУЛЯТОР ОБОРОТОВ ХОЛОСТОГО ХОДА ОБЩЕГО ДВИГАТЕЛЯ

На старых автомобилях до OBD II код 11 указывает на проблему в цепи управления воздухом холостого хода. На автомобилях OBD ​​II (1996 г. и новее) коды от P505 до P509 указывают на неисправность системы регулирования холостого хода.

Процедура диагностики включает отключение двигателя ISC, затем запуск двигателя, чтобы проверить, увеличивается ли частота вращения холостого хода (должно). Заглушите двигатель, снова подключите IAC и снова запустите двигатель.На этот раз холостой ход должен вернуться в норму. Если это так, проблема не в цепи IAC или двигателе. Проверьте, нет ли утечек вакуума или других проблем, которые могут повлиять на холостой ход.

Если частота вращения холостого хода не изменяется при отключении IAC и / или не возвращается в нормальное состояние после повторного подключения блока, используйте контрольную лампу для проверки электрических цепей электромагнитного клапана управления частотой вращения холостого хода, когда ключ включен. Контрольная лампа должна загореться и / или погаснуть от яркого до тусклого на всех четырех цепях, если PCM и проводка в порядке (это будет свидетельствовать о неисправности двигателя ISC).Если контрольная лампа не мигает в одной или нескольких цепях, неисправность связана с проводкой или PCM.


БАЙПАС ХОЛОСТОГО ХОДА FORD

Ford не использует перепускной канал холостого хода для регулирования скорости холостого хода в своих старых устройствах с корпусом дроссельной заслонки (CFI), а вместо этого использует соленоид или вакуумную диафрагму для открытия рычажного механизма дроссельной заслонки. Перепуск воздуха на холостом ходу используется только в приложениях с многоточечным впрыском. На более старых автомобилях до OBD II коды 12, 13, 16, 17 и 19 указывают на то, что скорость холостого хода не соответствует спецификации (слишком высокая или слишком низкая).Коды 47 и 48 указывают на проблему с топливной смесью, которая может быть вызвана утечкой воздуха. На автомобилях OBD ​​II (1996 г. и новее) коды от P505 до P509 указывают на неисправность системы регулирования холостого хода.

Процедура диагностики при обнаружении любого из этих кодов заключается в том, чтобы выключить двигатель, отсоединить разъем соленоида перепускного воздушного клапана ISC, затем перезапустить двигатель, чтобы проверить, не падают ли обороты холостого хода (должно, если соленоид ISC работает). Никакие изменения не будут указывать на проблему в двигателе или проводке.

Соленоид ISC можно проверить, измерив его сопротивление. С помощью положительного вывода цифрового вольт / омметра на выводе VPWR и отрицательного вывода на выводе ISC измерьте сопротивление соленоида. Для многих приложений в спецификации указано сопротивление от 7,0 до 13,0 Ом. Если он не соответствует спецификации, соленоид ISC неисправен. Также проверьте наличие короткого замыкания между обоими выводами соленоида ISC и корпусом.

Если ISC в порядке, проверьте напряжение аккумулятора между выводами разъема ISC при включенном ключе.Напряжение также должно меняться при работающем двигателе. Отсутствие напряжения указывает на неисправность проводки или компьютера.

КОНТРОЛЬ СКОРОСТИ ХОЛОСТОГО ХОДА CHRYSLER

На автомобилях Chrysler до OBD II код 25 означает наличие проблемы в цепи драйвера двигателя AIS. На автомобилях OBD ​​II (1996 г. и новее) коды от P505 до P509 указывают на неисправность системы регулирования холостого хода.

Цепь драйвера AIS можно проверить с помощью двунаправленного сканирующего прибора, используя команды для увеличения холостого хода.Никакое изменение заданной скорости холостого хода не скажет вам, что есть проблема в цепи драйвера, проводке или соленоиде. Вы можете снять AIS с корпуса дроссельной заслонки, чтобы увидеть, движется ли стержень клапана внутрь и наружу, или просто послушать, как двигатель гудит.

В тестовом режиме работы двигателя №70, который проверяет минимальный расход воздуха в корпусе дроссельной заслонки, нажатие и удерживание соответствующей кнопки на ручном диагностическом приборе должно замкнуть цепь байпаса AIS. При этом фиксируются момент зажигания и топливная смесь.Скорость холостого хода должна увеличиться примерно до 1300-1500 об / мин. Если это не соответствует спецификации, минимальный поток воздуха через корпус дроссельной заслонки неверен.

УСТАНОВКА НОВОГО СОЛЕНОИДА КОНТРОЛЯ ОБОРОТОВ ХОЛОСТОГО ХОДА

При установке нового соленоида GM IAC или Chrysler AIS шкворень не должен выходить более чем на определенное расстояние от корпуса. Спецификации различаются, поэтому обратитесь к руководству или поищите спецификации в документации по обслуживанию OEM. Chrysler говорит, что один дюйм (26 мм) является пределом, в то время как некоторые GM допускают до 28 мм на одних моделях и 32 мм на других.Если штифт чрезмерно выдвинут, его можно втянуть, нажав на него (GM) или подключив к жгуту проводов и используя тест привода 03, чтобы вставить его (Chrysler).






Другие статьи о топливных системах:

Поиск и устранение утечек вакуума в двигателе

Устранение проблем, связанных с колебаниями

Помпаж на холостом ходу (причина и способ устранения)

Диагностика топливной системы: поиск наилучшего подхода

Диагностика безвозвратных электронных систем впрыска топлива

Устранение неисправностей и очистка топливных форсунок

Дроссельная заслонка Системы проводки (электронное управление дроссельной заслонкой)

Плохой бензин может вызвать проблемы с производительностью

Обновление неисправного газа за 2006 год

Щелкните здесь, чтобы увидеть больше автомобильных технических статей

Признаки неисправного или неисправного датчика положения дроссельной заслонки

Датчик положения дроссельной заслонки (TPS) является частью системы управления подачей топлива вашего автомобиля и помогает обеспечить подачу правильной смеси воздуха и топлива в двигатель.TPS обеспечивает самый прямой сигнал системе впрыска топлива о том, какая мощность требуется двигателю. Сигнал TPS постоянно измеряется и комбинируется много раз в секунду с другими данными, такими как температура воздуха, обороты двигателя, массовый расход воздуха и скорость изменения положения дроссельной заслонки. Собранные данные точно определяют, сколько топлива нужно впрыснуть в двигатель в любой момент времени. Если датчик положения дроссельной заслонки и другие сопутствующие датчики выполняют свою работу правильно, ваш автомобиль ускоряется, движется по круизу или движется по инерции плавно и эффективно, как вы ожидаете, при сохранении оптимальной экономии топлива.

Датчик положения дроссельной заслонки может выйти из строя по нескольким причинам, каждый из которых в лучшем случае приведет к плохой экономии топлива и ограничениям производительности, которые могут создать угрозу безопасности для вас и других автомобилистов в худшем случае. Это также может вызвать проблемы при переключении передач или установке угла опережения зажигания. Этот датчик может выходить из строя постепенно или сразу. В большинстве случаев индикатор Check Engine загорается при обнаружении сбоя TPS. Кроме того, большинство производителей предоставляют режим работы «бездомный» с пониженной мощностью в случае обнаружения неисправности.Это предназначено, по крайней мере, для того, чтобы позволить водителю более безопасно съехать с загруженного шоссе.

Если TPS начинает выходить из строя, даже частично, вам необходимо немедленно заменить его. Замена TPS будет включать в себя очистку соответствующих кодов неисправностей и может потребовать перепрограммирования программного обеспечения нового модуля TPS для соответствия другому программному обеспечению управления двигателем. Все это лучше всего доверить профессиональному механику, который поставит вам диагноз, а затем установит правильную заменяющую деталь.

Вот некоторые общие симптомы неисправного или неисправного датчика положения дроссельной заслонки, на которые следует обратить внимание:

1.Автомобиль не ускоряется, ему не хватает мощности при разгоне или он сам ускоряется

Может показаться, что машина просто не ускоряется должным образом, дергается или колеблется, набирая скорость. Может плавно разгоняться, но не хватает мощности. С другой стороны, может случиться так, что ваша машина внезапно ускоряется во время движения, даже если вы не нажимали педаль газа. Если возникают эти симптомы, есть большая вероятность, что у вас проблема с TPS.

В этих случаях TPS не обеспечивает правильный ввод, бортовой компьютер не может управлять работой двигателя.Когда автомобиль ускоряется во время движения, это обычно означает, что дроссельная заслонка внутри дроссельной заслонки закрывается и внезапно открывается, когда водитель нажимает на акселератор. Это дает автомобилю непреднамеренный скачок скорости, который происходит из-за того, что датчик не может определить закрытое положение дроссельной заслонки.

2. Двигатель не работает плавно, работает слишком медленно или глохнет.

Если вы начинаете испытывать пропуски зажигания в двигателе, заглох или резкую работу на холостом ходу при остановке автомобиля, это также может быть предупреждающим признаком неисправности TPS.Вы не хотите ждать, чтобы проверить это!

Если холостой ход не работает, это означает, что компьютер не может определить полностью закрытую дроссельную заслонку. TPS также может отправлять неверные данные, которые в любой момент приводят к остановке двигателя.

3. Автомобиль ускоряется, но не превысит относительно низкую скорость или не переключится вверх

Это еще один режим отказа TPS, который указывает, что он ложно ограничивает мощность, запрашиваемую педалью акселератора. Вы можете обнаружить, что ваша машина будет ускоряться, но не выше 20-30 миль в час.Этот симптом часто сопровождается потерей мощности.

4. Загорается индикатор проверки двигателя, сопровождающийся любым из вышеперечисленных действий

Индикатор Check Engine может загореться, если у вас возникли проблемы с TPS. Однако это не всегда так, поэтому не ждите, пока загорится индикатор Check Engine, прежде чем вы проверите какой-либо из вышеуказанных симптомов. Проверьте свой автомобиль на наличие кодов неисправностей, чтобы определить источник проблемы.

Датчик положения дроссельной заслонки — ключ к достижению желаемой мощности и топливной экономичности вашего автомобиля в любой дорожной ситуации.Как ясно из перечисленных выше симптомов, выход из строя этого компонента имеет серьезные последствия для безопасности и должен быть немедленно проверен квалифицированным механиком.

причин высокого холостого хода после очистки корпуса дроссельной заслонки

Как семейный кот, мурлыканье вашего двигателя на холостом ходу — знакомый и успокаивающий звук. Когда эти звуки становятся слишком высокими и тревожными, мы тоже наполняемся тревогой и хотим знать, что не так.Когда вы только что потратили время и деньги на обслуживание своего автомобиля, вам нужны ответы, и вы хотите их быстро.

У нас есть они для вас. Вот причины, по которым ваш автомобиль может работать слишком высоко на холостом ходу после очистки корпуса дроссельной заслонки .

Компьютерная регулировка

Корпус дроссельной заслонки представляет собой герметичную систему, которая помогает регулировать количество топливно-воздушной смеси в вашем двигателе. Когда вы разбираете его и чистите, происходит физический сброс системы, а это означает, что компьютер вашего автомобиля должен откалибровать заново, как если бы вы установили полностью новый корпус дроссельной заслонки.Это приводит к добавлению дополнительного топлива в систему, повышая ваши об / мин на холостом ходу до .

Вот небольшой трюк, с помощью которого вы можете помочь компьютеру вашего автомобиля быстро откалибровать его.

1. Включите двигатель и подождите две-три минуты, пока не снизятся холостые обороты.
2. Включите кондиционер при высокой мощности вентилятора примерно на три минуты.

Это должно дать вашему компьютеру представление об общих параметрах дроссельной заслонки вождения… например, speed -ating для вашего компьютера и дроссельной заслонке.Если это не то, что вызывает высокие обороты холостого хода, возможно, ваш дроссель не был очищен должным образом.

Не очищено должным образом

На YouTube есть миллиарды видеороликов «сделай сам» , которые воспитали новое поколение автовладельцев, которые не боятся самостоятельно пробовать любой ремонт. Однако не все видеоролики охватывают все важные детали, и на самом деле есть некоторые вещи, которым вы должны научиться на собственном опыте. Если вы пытались почистить дроссельную заслонку самостоятельно или у кого-то, кто не был обучен специалистом, все еще может быть мусор в отверстии дроссельной заслонки .Это, в свою очередь, может привести к тому, что ваша тарелка будет двигаться хаотично, а не плавно.

В этом случае корпус дроссельной заслонки необходимо снова снять и полностью очистить как переднюю, так и заднюю часть отверстия дроссельной заслонки. После переустановки компьютеру потребуется время, чтобы перенастроить и откалибровать. Вы можете ускорить этот период времени с помощью упражнения, описанного выше.

Если корпус дроссельной заслонки выглядит довольно чистым, когда вы его снимаете, не вставляйте его сразу же.Есть еще один компонент, который нужно проверить.

Регулирующий воздушный клапан

Регулирующий воздушный клапан на холостом ходу сложно чистить, не снимая его с корпуса дроссельной заслонки вашего автомобиля. При стандартной очистке он может быть частично очищен, но в нем все равно может остаться мусор. Чтобы убедиться, что дроссельная заслонка тщательно очищена, снимите регулирующий воздушный клапан и пластину и очистите их по отдельности. Это должно позволить вашей дроссельной заслонке работать более эффективно.

Если вы испробовали все эти стратегии, а ваша машина все еще работает на холостом ходу слишком высоко, есть еще одна возможность, которую следует рассмотреть.

Повреждение датчика дроссельной заслонки

Датчики дроссельной заслонки могли быть повреждены, когда вы или ваш механик чистили двигатель . Возможно, повреждение могло быть вызвано и другими причинами, но если вы заметили изменение сразу после очистки, есть большая вероятность, что датчики были повреждены в этом процессе. Это может произойти, если тарелку открывать и закрывать многократно и быстро. Вам понадобится компьютерный диагностический прибор для проверки активности и положения дроссельной заслонки, чтобы определить вид повреждения и то, какие замены могут потребоваться для устранения проблемы с высокой частотой вращения холостого хода.

Опасности для самостоятельной работы

Если у вас нет инструментов и обучения для выполнения такого рода операций по техническому обслуживанию

на вашем автомобиле, вы плохо рассчитываете риски, когда выполняете их самостоятельно. Зачем рисковать дополнительными дорогостоящими повреждениями, если у вас есть доступ к некоторым из лучших автомехаников в регионе?

Pro Car Mechanics уже много лет обслуживает районы Gardena , Glendale , Long Beach , Anaheim и Los Angeles, CA и имеет отличную репутацию благодаря качественному обслуживанию по ценам ниже местных дилеры.Наши магазины обеспечивают чистую среду, чтобы работа была сделана правильно с первого раза, предотвращая попадание нежелательных веществ в вашу машину, в отличие от проблем, с которыми вы можете столкнуться, пытаясь поработать на своей машине на подъездной дорожке дома. Приходите и проконсультируйтесь со специалистами Pro Car Mechanics .

Следите за нами и ставьте лайки:

Краткая история дроссельных заслонок

На протяжении многих лет бензиновых двигателей внутреннего сгорания основная задача корпуса дроссельной заслонки заключалась в том, чтобы удерживать дроссельную заслонку (или лопасть), которая представляет собой устройство, контролирующее количество воздуха, попадающего в двигатель.То же самое и сегодня. По сути, двигатель внутреннего сгорания — это воздушный насос. Чем больше воздуха входит и выходит из двигателя, тем больше мощность / крутящий момент создается в двигателе. Корпус дроссельной заслонки является основным ограничителем того, сколько воздуха может попасть в двигатель.

Традиционно дроссельная заслонка соединяется с педалью акселератора (или педалью газа) с помощью кабеля. Если водитель хочет ехать быстрее, он нажимает на педаль, которая, в свою очередь, натягивает трос и открывает дроссельную заслонку, чтобы больше воздуха могло попасть в двигатель.Аналогичным образом, если автомобиль оборудован круиз-контролем, у него есть другой кабель, подключенный к дроссельной заслонке и сервоприводу круиз-контроля.

В дополнение к дроссельной заслонке корпус дроссельной заслонки содержит клапан управления воздухом холостого хода (IAC), который позволяет воздуху обходить дроссельную заслонку и контролировать скорость холостого хода автомобиля. В открытом состоянии РХХ позволяет большему количеству воздуха попадать в двигатель, что увеличивает обороты холостого хода. В закрытом состоянии он уменьшает воздушный поток и снижает скорость холостого хода. За всем движением дроссельной заслонки следит датчик положения дроссельной заслонки (TPS).

Из-за новых технологий (таких как гибридные автомобили и дизельные двигатели с электронным управлением) и потребности в снижении выбросов и повышении эффективности производители начали использовать электронное управление дроссельной заслонкой или системы с электронным управлением. Система отводит прямое управление дроссельной заслонкой от водителя и передает его модулю управления трансмиссией (PCM).

Процесс проще с электронным управлением дроссельной заслонкой (ETC). Чтобы сделать запрос, водитель просто нажимает на педаль акселератора (APP), которая по сути представляет собой пружину с несколькими встроенными датчиками положения.Затем PCM анализирует входные данные от различных систем и датчиков на транспортном средстве (трансмиссия, противобуксовочная система, температура двигателя, нагрузка двигателя и т. Д.) И отправляет команду на электродвигатель в корпусе дроссельной заслонки, помещая его в желаемое положение.

Положение определяется одним из нескольких датчиков положения дроссельной заслонки, встроенных в агрегат. TPS сообщает положение в PCM, который затем соответствующим образом настраивает систему. Преимущества систем ETC включают защиту трансмиссии, лучший контроль, комфорт водителя и уменьшение количества компонентов, так как больше нет необходимости в тросе дроссельной заслонки, сервоприводе круиз-контроля или воздушном клапане холостого хода.PCM и двигатель корпуса дроссельной заслонки теперь могут выполнять все эти функции.

Новые возможности обслуживания

С усовершенствованиями и изменениями появляются новые возможности обслуживания, потому что у новых систем есть свои проблемы, которые могут доставлять неудобства водителям и разочаровывать технических специалистов. Общие проблемы со стороны водителей включают освещенные CEL и автомобили, застрявшие в безвыходном режиме.

Эти неисправности могут возникать всего на несколько миллисекунд, но симптомы могут сохраняться в течение всего ездового цикла, что затрудняет их точное определение специалистом.Например, указывает ли код неисправности на проблему с TPS или жгутом проводов двигателя? Причина неисправности в электродвигателе или неисправности проводки? Доступно ли обновление программного обеспечения для автомобиля? Техник должен ответить на все эти вопросы, чтобы поставить правильный диагноз.

Как только техник определяет необходимость замены корпуса дроссельной заслонки, он должен проявлять осторожность при установке нового. Например, он должен установить новые прокладки или уплотнения, чтобы предотвратить утечку вакуума, и затянуть гайки и болты, чтобы обеспечить плотную посадку.Самое главное, технический специалист должен следовать инструкциям производителя в отношении повторного обучения в режиме ожидания.

У многих производителей есть простая процедура, которая включает в себя очистку памяти PCM (предыдущие состояния холостого хода и коды неисправностей), затем запуск двигателя и разрешение ему работать на холостом ходу в течение следующих периодов времени:

• Две минуты в парке с выключенным кондиционером.

• Две минуты в парке с включенным кондиционером.

• Две минуты на передаче с выключенным кондиционером и педалью тормоза.

• Две минуты на передаче с включенным кондиционером и ногой на тормозе.

После этого процесса следует провести тест-драйв (возможно, с несколькими замедлениями при закрытом дросселе), чтобы убедиться, что автомобиль отремонтирован правильно и не глохнет на холостом ходу.

Обратите внимание, что некоторые производители используют более сложный процесс. Ниссаны конца 90-х — начала нулевых — один из примеров. Их процесс, по-видимому, требует, чтобы техник делал хоккей-поки, заставляя его подпрыгивать на левой ноге, задерживать дыхание и тереть левую руку о голову.Если сложный процесс не выполняется со 100% точностью, автомобиль не будет работать на холостом ходу должным образом и / или не включит CEL.

Вывод таков: независимо от того, какой автомобиль получит новый корпус дроссельной заслонки, для техника очень важно найти правильную процедуру повторного обучения на холостом ходу после работы.

Райан Койман — директор по обучению в Standard Motor Products Inc. Помимо того, что он руководит отмеченной наградами учебной программой PTS SMP, он также является лицом видеороликов SMP «Обзор установки» на YouTube.Он имеет сертификаты ASE Master L1, L2 и L3, а его статьи были опубликованы более чем в 30 периодических изданиях.

Скачать PDF

OBDII


Управление двигателем

Современные двигатели с электронным управлением обеспечивают отличную производительность, хорошую топливную экономичность и минимальное загрязнение окружающей среды. Без мощного бортового компьютера (ов) транспортного средства и программного обеспечения, которое управляет всеми аспектами подачи топлива, момента зажигания и контроля выбросов, такой уровень точной настройки и мониторинга системы был бы невозможен.Компьютер транспортного средства (PCM), датчики и диагностические программы постоянно контролируют различные параметры системы управления двигателем, определяя, работает ли транспортное средство так, как было задумано изначально.

Диагностическое программное обеспечение OBD II контролирует производительность, когда автомобиль находится в эксплуатации, и сигнализирует водителю о наличии условий, при которых выбросы из выхлопной трубы могут в 1,5 раза превышать уровень, на который автомобиль был сертифицирован EPA, или существует вероятность повреждения двигателя или возгорания.

Задача PCM — управлять трансмиссией. Это включает в себя систему зажигания двигателя, систему впрыска топлива и систему контроля выбросов. PCM получает входные данные от множества датчиков и переключателей. В свою очередь, PCM контролирует, прямо или косвенно, компоненты для достижения правильного момента зажигания, подачи топлива и надлежащей очистки от загрязняющих веществ. Давайте посмотрим на некоторые системы автомобиля, которыми управляют PCM и система OBD II.


Модуль управления трансмиссией (PCM)

Задача PCM — управлять трансмиссией.Это включает в себя систему зажигания двигателя, систему впрыска топлива и систему контроля выбросов. PCM получает входные данные от множества датчиков и переключателей. В свою очередь, PCM прямо или косвенно управляет реле, соленоидом и другими компонентами для достижения правильного момента зажигания, подачи топлива и надлежащей обработки загрязняющих веществ. PCM транспортного средства, датчики и диагностические программы постоянно контролируют различные параметры системы управления двигателем, определяя, работает ли транспортное средство так, как было изначально задумано.

Контроль холостого хода является функцией PCM на всех транспортных средствах, оборудованных OBD ​​II. PCM может контролировать количество воздуха, который обходит дроссельную заслонку, когда дроссельная заслонка полностью закрыта, тем самым контролируя обороты двигателя на холостом ходу. Электронное управление воздухом позволяет подавать необходимое количество воздуха для поддержания желаемых оборотов холостого хода. Это также позволяет PCM динамически реагировать на изменения нагрузки двигателя, когда компрессор кондиционера включен, генератор переменного тока заряжается выше определенного напряжения и / или автоматическая коробка передач включена.

Диагностическое программное обеспечение OBD II контролирует производительность, когда автомобиль находится в эксплуатации, и сигнализирует водителю о наличии условий, при которых выбросы из выхлопной трубы могут в 1,5 раза превышать уровень, на который автомобиль был сертифицирован EPA, или существует вероятность повреждения двигателя или возгорания.

Другой важной функцией PCM является передача условий работы системы и диагностической информации автомобилистам и, при необходимости, ремонтному персоналу. На автомобилях, оборудованных OBD ​​II, это можно сделать двумя способами.Первый — через контрольную лампу двигателя, которую иногда называют светом индикатора неисправности (MIL), которая расположена на панели дисплея приборной панели. Второй метод связи с PCM — использование диагностического сканера OBD II.

Давайте взглянем на датчики и компоненты, с которыми PCM взаимодействует для управления различными системами на транспортных средствах, совместимых с OBD II.


Проверьте свет двигателя

Индикатор проверки двигателя загорается, чтобы предупредить автомобилиста о неисправности трансмиссии или системы управления двигателем.Он находится на приборной панели большинства автомобилей. На автомобилях, оборудованных OBD-II, индикатор указывает на два уровня обнаружения неисправности. Если индикатор горит постоянно, это указывает на незначительную неисправность, такую ​​как неплотная крышка бензобака или неисправный датчик кислорода. Если индикатор мигает, это указывает на серьезную неисправность, которая может повредить каталитический нейтрализатор, если ее не устранить. Когда горит контрольная лампа MIL, блок управления двигателем сохраняет код неисправности, связанный с неисправностью, который можно получить с помощью диагностического прибора и использовать для дальнейшей диагностики.

Контрольная лампа двигателя загорится во время работы двигателя, если PCM обнаружит системную неисправность, которая может вызвать увеличение выбросов. Когда загорается индикатор Check Engine, в память PCM также записывается диагностический код неисправности (DTC), соответствующий неисправности. Некоторые проблемы могут генерировать более одного кода DTC, а некоторые автомобили могут страдать от нескольких проблем, которые также устанавливают несколько кодов. Индикатор проверки двигателя может включаться и выключаться, гореть постоянно или мигать.При некоторых типах периодических проблем лампа включается только во время неисправности. Когда проблема исчезнет, ​​лампа погаснет. При других проблемах индикатор загорится, и он будет гореть до тех пор, пока неисправность не будет диагностирована и устранена.

Индикатор проверки двигателя очень полезен для быстрого обнаружения проблем, но не дает конкретной информации о работе автомобиля. Более подробную диагностику можно выполнить с помощью диагностического диагностического прибора OBD II. Диагностический прибор прикреплен к разъему диагностического разъема (DLC), расположенному под приборной панелью на стороне водителя автомобиля.Диагностический прибор расшифрует код ошибки, хранящийся в PCM транспортного средства, вместе со многими другими диагностическими сигналами, чтобы помочь ремонтному персоналу точно определить источник неисправности.


Диагностический соединитель (DLC)

DLC на транспортных средствах, оборудованных OBD ​​II, представляет собой стандартизированный 16-контактный диагностический разъем, используемый для сопряжения сканирующего прибора с PCM, что обеспечивает доступ к бортовой диагностике и потокам данных в реальном времени. Большинство производителей сделали разъем канала передачи данных OBD-II единственным в автомобиле, через который все системы диагностируются и программируются.


Передний датчик кислорода

Датчик кислорода предоставляет информацию о топливовоздушной смеси в реальном времени. PCM использует это для постоянной корректировки и точной настройки соотношения воздух / топливо. Это снижает выбросы и оптимизирует топливную экономичность и производительность. Неисправный кислородный датчик обычно приводит к богатой работе двигателя, потреблению большего количества топлива и загрязнению.


Задний датчик кислорода

Нижний кислородный датчик работает так же, как верхний кислородный датчик в выпускном коллекторе.Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах. Сигнал высокого или низкого напряжения сообщает PCM о богатой или бедной топливной смеси.

Нижний кислородный датчик в основном используется при контроле эффективности каталитического нейтрализатора. PCM контролирует эффективность преобразователя, сравнивая сигналы датчика кислорода на входе и выходе. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик не должен показывать активности.Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика, это означает, что эффективность преобразователя снизилась и преобразователь не очищает загрязняющие вещества в выхлопных газах. Когда эффективность преобразователя, кажется, снизилась до точки, когда транспортное средство может превышать предел загрязнения, PCM включает лампу проверки двигателя и устанавливает диагностический код неисправности.


Датчик массового расхода воздуха (MAF)

Датчик массового расхода воздуха (MAF) используется для измерения расхода воздуха, поступающего в двигатель с впрыском топлива.PCM использует информацию о воздушных массах для расчета и подачи правильного количества топлива в цилиндры при любых условиях работы двигателя. Датчик расположен в воздухозаборном трубопроводе перед корпусом дроссельной заслонки и выдает электрический сигнал на PCM, который изменяется пропорционально объему воздуха, поступающего в двигатель. Датчик массового расхода воздуха является основным входом для PCM в отношении информации о потоке воздуха, а датчик кислорода обеспечивает обратную связь с обратной связью, чтобы в реальном времени вносить коррективы в сжигаемую топливно-воздушную смесь.

Любой воздух, попадающий в систему впуска воздуха после датчика массового расхода воздуха, не будет учитываться PCM, и может возникнуть неправильная воздушно-топливная смесь. Это приведет к плохой работе, менее экономичной работе двигателя и вероятности чрезмерных выбросов.

Экран, защищающий датчик массового расхода воздуха, может накапливать мусор, приводя к неверным показаниям. Когда PCM подозревает, что есть проблема с датчиком массового расхода воздуха, он устанавливает код DTC и загорается индикатор Check Engine.


Датчик абсолютного давления в коллекторе (MAP)

В некоторых системах впрыска топлива датчик абсолютного давления в коллекторе (MAP) используется для расчета объема воздуха, поступающего в двигатель. Датчик MAP выдает электрический сигнал на PCM, отображающий мгновенную информацию о давлении в коллекторе. Эти данные вместе с частотой вращения двигателя и температурой воздуха используются для расчета плотности воздуха и определения массового расхода воздуха в двигателе, который, в свою очередь, определяет необходимое дозирование топлива для оптимального сгорания и.Большинство систем впрыска топлива обычно имеют либо датчик MAP, либо датчик массового расхода воздуха, но не то и другое вместе.


Датчик температуры охлаждающей жидкости CTS)

Датчик охлаждающей жидкости контролирует температуру двигателя. PCM использует эту информацию для регулирования широкого спектра функций зажигания, подачи топлива и выбросов. Например, когда двигатель холодный, топливно-воздушная смесь должна быть богаче для улучшения управляемости. PCM также использует сигнал датчика охлаждающей жидкости, чтобы определить, когда автомобиль готов к запуску определенных диагностических мониторов.ЕСЛИ PCM подозревает, что есть какая-либо проблема с датчиком CTS, он установит код DTC и загорится индикатор Check Engine.


Датчик температуры воздуха (ATS)

Датчик температуры воздуха часто называют датчиком температуры всасываемого воздуха или датчиком температуры воздуха в коллекторе и используется для измерения температуры воздуха, всасываемого в двигатель. PCM использует сигнал от этого датчика для изменения базовой воздушно-топливной смеси, сжигаемой в цилиндрах.Это помогает снизить выбросы и улучшить работу двигателя. Если PCM подозревает, что есть какая-либо проблема с датчиком ATS, он установит код DTC и загорится индикатор Check Engine.


Датчик положения дроссельной заслонки (TPS)

Датчик положения дроссельной заслонки (TPS) обычно подсоединяется к валу дроссельной заслонки в корпусе дроссельной заслонки. TPS считывает угол поворота дроссельной заслонки и передает электрический сигнал на PCM. PCM использует этот сигнал в реальном времени, чтобы помочь рассчитать или изменить ширину импульса топливной форсунки, контролируя воздушно-топливную смесь.Если PCM подозревает, что есть какая-либо проблема с датчиком TPS, он установит код DTC и загорится индикатор Check Engine.


Датчик положения коленчатого вала

Датчик положения коленчатого вала выполняет две функции: он контролирует обороты двигателя и помогает компьютеру определять относительное положение коленчатого вала, чтобы PCM мог контролировать время зажигания и подачу топлива в надлежащей последовательности. На некоторых двигателях дополнительный датчик положения распределительного вала используется для обеспечения дополнительного ввода в PCM информации о фазах газораспределения.


Датчик скорости автомобиля (VSS)

Датчик скорости автомобиля (VSS) информирует PCM о скорости движения автомобиля. Это необходимо для управления такими функциями, как блокировка гидротрансформатора. PCM также использует сигнал VSS, чтобы определить, когда автомобиль готов к запуску многих непостоянных диагностических мониторов. Если PCM подозревает, что есть какая-либо проблема с датчиком VSS, он установит код DTC и загорится индикатор Check Engine.


Датчик давления в топливном баке

Датчик давления в топливном баке является частью узла подачи топливного насоса и установлен на верхней части топливного бака или внутри бака. Датчик давления в топливном баке измеряет положительное и отрицательное давление в топливном баке. Датчик считывает давление в топливном баке в первую очередь во время мониторинга системы EVAP. PCM использует показания давления для обнаружения утечек испарения. Когда показания датчика указывают на утечку или если сам датчик выходит из строя, PCM устанавливает код DTC и включает индикатор Check Engine.


Соленоид продувки адсорбера

Клапан продувки адсорбера или соленоид продувки представляет собой клапан с электрическим приводом, который позволяет вакууму двигателя вытягивать пары бензина из адсорбера EVAP. PCM подает питание на соленоид продувки при нормальных условиях движения, а также управляет клапаном во время мониторинга системы EVAP. PCM может обнаруживать любые электрические проблемы с соленоидом, когда двигатель работает через процесс, известный как непрерывный мониторинг компонентов.PCM может оценить способность клапана удерживать и выпускать вакуум во время мониторинга системы EVAP. В любом случае, если PCM обнаруживает проблему, PCM устанавливает код DTC и включает индикатор Check Engine.


Соленоид EGR

На большинстве автомобилей, оборудованных OBD ​​II, клапаном рециркуляции ОГ управляет PCM. Если в двигателе есть клапан рециркуляции отработавших газов с вакуумным приводом, PCM управляет соленоидом в вакуумной линии, чтобы открыть и закрыть клапан. PCM может включать и выключать соленоид, чтобы изменять скорость потока EGR.Увеличение времени активации соленоида дольше удерживает клапан открытым и увеличивает скорость потока.


Двигатель регулировки холостого хода

Скорость холостого хода на двигателях с впрыском топлива контролируется PCM через контур обхода воздуха холостого хода на корпусе дроссельной заслонки. Двигатель управления холостым ходом — это небольшой электродвигатель или соленоид, который используется для открытия и закрытия байпасного отверстия. Чем больше отверстие, тем больший объем воздуха может пройти в обход дроссельных заслонок и тем выше скорость холостого хода.PCM контролирует холостой ход всякий раз, когда двигатель работает, компенсируя нагрузки двигателя и колебания температуры двигателя. Если PCM не может достичь желаемых оборотов холостого хода или есть электрическая проблема с электродвигателем управления холостым ходом, PCM устанавливает код DTC и включает световой индикатор Check Engine.


Насос обнаружения утечек

Некоторые производители автомобилей используют насос для обнаружения утечек в качестве источника давления для проведения испытания системы EVAP положительным давлением во время мониторинга системы EVAP.LDP представляет собой диафрагменный насос с соленоидами и обратными клапанами, которые нагнетают воздух в топливный бак и угольный баллон. PCM контролирует работу LDP во время мониторинга системы EVAP. Как только система EVAP находится под давлением, PCM может измерить падение давления в системе.

PCM может обнаруживать любые электрические проблемы с насосом обнаружения утечек всякий раз, когда двигатель работает в процессе, известном как непрерывный мониторинг компонентов. PCM может оценивать способность LDP создавать и удерживать давление во время мониторинга системы EVAP.В любом случае, если PCM обнаруживает проблему, PCM устанавливает код DTC и включает индикатор Check Engine.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *