Принцип работы датчика давления: Датчики давления компании Smartec

Содержание

Датчики давления компании Smartec

Датчики давления компании Smartec

Принцип работы

 

Датчики давления основаны на принципе изгиба мембраны, вызванном давлением жидкости или газа. На мембрану нанесен очень тонкий проводящий экранированный слой, который повторяет изгибы мембраны. Этот прогиб можно измерить двумя разными способами:

  • Проводящий (и резистивный) слой на мембране и опорный слой в корпусе датчика образуют конденсатор, деформация его обкладок вызывает изменение  емкости, которое может быть измерено
  • Сопротивление проводящих слоев изменяется при изгибе мембраны. Специальная механическая компоновка из четырех резистивных структур образовывает устойчивый мост Уитстона, сопоставимый с классическими тензометрическими датчиками

На практике широко используются оба способа измерения давления. Линейка датчиков давления Smartec основана на резистивной структуре, экранированной на мембране.

 

Принцип действия датчика давления

Емкостное измерение на основе тензометрического резистора на изгибающейся мембране

 

Изгиб мембраны (а также слоя) очень мал (

В общем случае экранированные резисторы также чувствительны к температуре, что приводит к необходимости компенсации температурных эффектов.

 

Типы датчиков давления

 

Мембрана изогнется, если есть разница давления с обеих её сторон. Существует три типа датчиков: относительного давления, абсолютного давления и дифференциального давления. У каждого типа есть конкретная областью применения.

Вкратце:

  • Датчик относительного давления измеряет разность давления среды и атмосферного давления, поэтому одна сторона мембраны всегда сообщается с атмосферой
  • Датчик абсолютного давления измеряет разность давления среды и вакуума, поэтому в подмембранном объеме создается вакуум
  • Дифференциальный датчик давления измеряет разность между двумя приложенными давлениями

 

 

Датчик относительного давления

 

На рисунке показана схема датчика относительного давления. С одной стороны  мембраны находятся жидкость или газ под давлением, которое должно быть измерено, а с другой давление на мембрану равно атмосферному. Это означает, что измеренное давление соотносится с атмосферным. Такое отверстие, соединяющее подмембранный объем с атмосферой, обычно называют вентиляционным.

 

Принцип работы датчика относительного давления

 

Единственным интерфейсом между «внешним миром» и находящейся под давлением средой является мембрана. Если эта мембрана повреждена (например, из-за ударного давления), сторона под давлением непосредственно соединяется с вентиляционным отверстием, начинается выброс газа или жидкости, что может привести к опасной ситуации. Для измерения давления опасных газов этот тип датчика не используется, вместо этого применяют датчики абсолютного типа.

Все датчики относительного давления имеют вентиляционное отверстие, которое соединяет одну сторону мембраны с атмосферой. Если это отверстие закрыто или забито из-за загрязнения, могут возникнуть ошибки считывания. Если этот тип датчиков установлен в прочный корпус, вентиляционное отверстие должно всегда оставаться открытым.

Типичное применение датчиков такого типа – измерение давления в шинах.

 

Датчики абсолютного давления

 

Данный тип не имеет вентиляционного отверстия, а в подмембранном объеме создан вакуум. На рисунке показан принцип датчика абсолютного давления.

 

Принцип работы датчика абсолютного давления

 

Очень сложно создать такую «камеру» с абсолютным вакуумом (фактически она и не существует). Однако давление в вакуумной контрольной камере датчиков Smartec очень низкое (25.10

-3 торр или 5.10-4 PSI).

Для предотвращения возмущающих эффектов от различий в температурах в «почти» вакуумной камере, вакуум должен быть высоким. При нагревании давление в вакуумной камере будет увеличиваться.

Такие датчики подходят для использования во взрывоопасных зонах. Корпус может быть полностью закрыт и установлен, например, в резервуар под давлением. На случай образования трещин в мембране (например, из-за ударного давления), к среде подключена только вакуумная камера. При повреждении датчика не возникнет опасной ситуации. Особым типом датчика абсолютного давления является барометрический датчик. Этот датчик можно рассматривать как абсолютный с ограниченным диапазоном. В принципе, этот диапазон составляет от примерно 1 до 0 Бар. Но для большего разрешения барометрические датчики рассчитаны на диапазон 1 — 0.8 Бар и обычно используются для измерения атмосферного давления.

Данный тип датчиков используется, например, для измерения давления в газобаллонном оборудовании топливных систем автомобилей.

 

Датчики дифференциального давления

 

Дифференциальный датчик имеет входы на каждую сторону мембраны, один для положительного давления, а другой для отрицательного. Изгиб мембраны связан с разницей давлений на каждой стороне. На рисунке показан принцип работы датчика дифференциального давления.

 

Принцип работы датчика дифференциального давления.

 

 

Типы выходного сигнала

 

Только датчики Smartec с мостовым выходом необходимо компенсировать пользователю. В другие версии с аналоговым и цифровым выходом компенсация встраивается на производстве. Температурная компенсация управляется с помощью встроенного сигнального процессора, поэтому нет необходимости встраивать в решение внешнюю компенсацию.

 

Мостовой выходной сигнал

 

Выход моста Уитстона имеет определенное значение в случае отсутствия давления или в случае отсутствия разницы в давлении по обеим сторонам мембраны. Это значение называется смещением (offset). Диапазон давлений (от минимального до максимального), который может использоваться датчиком, называется рабочим.

Мост Уитстона не только чувствителен к изгибу мембраны, но и к изменениям температуры. Это означает, что для точного измерения необходимо компенсировать температурные эффекты для смещения и сдвига рабочего диапазона (при наличии давления). Поэтому указывается изменение смещения на изменение температуры, а также температурные коэффициенты рабочего диапазона. Если требуется более низкая точность, выходное напряжение моста может использоваться без компенсации.

 

Аналоговый выходной сигнал

 

Датчики давления Smartec с аналоговым выходом имеют встроенную термокомпенсацию. Это означает, что датчики с аналоговым выходом очень точны и  имеют стабильное смещение. Из-за обработки сигнала внутри устройства происходит некоторая задержка между физическим изменением давления и изменением выходного сигнала. Обычно эта задержка находится в диапазоне от 1 до 2 мс.

В аналоговой версии датчика дифференциального давления требуется дополнительное определение в месте, где давление на оба порта одинаковое. Разность давлений равна нулю. В этом конкретном случае выходное напряжение (смещение) может находиться в «среднем» (halfway Gnd и Vcc), или выходное напряжение смещения может быть равно нулю (уровень GND). Первая вариант называется дифференциальным, а второй называется единичным. Это означает, что дифференциальное давление может быть измерено только в одном направлении.

 

Цифровой выходной сигнал

 

Разрешение датчиков данного типа – 14 бит. В терминах передачи данных это означает, что есть два слова по 8 бит каждое. Верхние два бита наивысшего байта данных не используются и всегда равны нулю. Необходимо помнить, что точность датчиков ограничена физической структурой элемента и оцифровка (14 бит), никогда не сможет улучшить аналоговую точность датчика.

 

Важные понятия

 

Абсолютное давление — это давление относительно вакуума.

Атмосферное давление – это внешнее давление относительно абсолютного вакуума. Такое давление зависит от географического положения, высоты и погодных условий. Также называется барометрическим давлением.

Относительное давление – это давление относительно атмосферного давления.

Дифференциальное давление – разность давлений между двумя точками.

Смещение – разница между выходным сигналом при текущем и нулевом значении давления.

Линия наилучшего соответствия – математически полученная прямая линия лучше всего подходящая для мультиизмерения определенных уровней давления. Из каждой точки давления выходное значение усредняется. Прямая берется по минимальной квадратичной ошибке.

Нулевое смещение (рабочая точка)

 – это выходное значение при давлении 0 psi (вакуум) для датчика абсолютного давления, для относительных нулевое смещение – это выходное значение, когда измеряемое давление равно атмосферному, а для дифференциальных датчиков, когда давления с обоих портов равны между собой.

Рабочий диапазон – это разность между максимальным и минимальным значением давления.

Точность — отклонение между лучшей прямой линией и кривой полученной на основе реальных тестов. В точность также включены все погрешности. Выражается в процентах от полной шкалы (FSO).

Ратиометрический сигнал —  означает, что выход датчика (аналог) связан с напряжением питания. Это означает, что если Vcc падает на 10% выходное напряжение также падает на 10%.

Время отклика – время необходимое для установления величины равной 95% от реальной.

 

Промышленные датчики давления: принцип работы, устройство

В современной промышленности не обойтись без точных приборов измерения, которые служат для учета расхода различных жидкостей, а также газа, газовых смесей и пара. Помимо расходомеров с разными принципами действия, широко применяются электронные датчики давления. Они являются неотъемлемой частью измерительных комплексов, а также входят в состав теплосчетчиков, используются в системах автоматизированного контроля технологических процессов. Данные приборы востребованы в энергетике, пищевой промышленности, нефтяной и газовых отраслях и других сферах производства.


Это устройство для измерения и преобразования давления среды — жидкости, газа или пара. Полученное значение выводится на дисплей или передается в виде аналогового или цифрового выходного сигнала.
Принцип работы зависит от типа измеряемого давления, которое может быть абсолютным, избыточным и дифференциальным.

Типы датчиков давления

Так, в пищевом и химическом производстве широкое применение получил интеллектуальный датчик абсолютного давления, осуществляющий измерение относительно абсолютного вакуума. Отметим, что именно такое измерение применяется в узлах учета газа, пара и тепловой энергии для приведения расхода к стандартным условиям.

Решать задачи учета расхода измеряемой среды позволяет датчик дифференциального давления. Принцип его работы заключается в измерении разности давлений между двумя полостями – плюсовой и минусовой. Могут применяться для учета расхода, при помощи сужающих устройств. Сужающее устройство в трубопроводе представляет собой местное сопротивление, при прохождении через которое изменяется характер течения потока. Непосредственно перед сужающим устройством давление среды возрастает, а после него – снижается. Чем больше разница на входе и выходе сужающего устройства, тем больше расход среды, протекающей по трубе.

Кроме того, такой датчик позволяет производить учет объема жидкости не только в трубе, но и в емкости при помощи измерения давления столба жидкости на плюсовую мембрану и, при необходимости, измерения минусовой полостью давления под куполом емкости, для исключения влияния насыщенных паров. Такой метод называют гидростатическим.

В системах автоматического контроля, регулирования и управления технологическими процессами не обойтись без такого прибора, как датчик избыточного давления. Он может использоваться в составе водяных систем теплоснабжения, а также входить в комплектацию узлов коммерческого и технологического учета жидкостей, газа и пара.



Продуктовая линейка «ЭМИС-БАР»

В конце 2018 года в продуктовой линейке компании «ЭМИС» появились интеллектуальные «ЭМИС» — БАР». Они способны осуществлять непрерывное измерение абсолютного, избыточного, дифференциального и гидростатического давления, определять разрежение жидких и газообразных сред, насыщенного и перегретого пара.

Несколько вариантов исполнения позволяет сделать оптимальный выбор, в зависимости от поставленных задач и условий эксплуатации, в том числе при работе на низкотемпературных, высокотемпературных и агрессивных средах.

Стоит отметить, что у заказчика имеется возможность выбора материалов изготовления разделительной мембраны и корпуса электронного блока, типа, материала и размера фланца, типа и материала кронштейна. Также на выбор представлены несколько вариантов длины погружной части разделительной мембраны плюсовой полости.
Остановимся более подробно на технических характеристиках и модификациях.

Устройство прибора


  • 1. Корпус;
  • 2. Крышки корпуса, передняя крышка чаще всего служит экраном дисплея;
  • 3. RFI- и EMI-фильтры– служат для гашения электромагнитных и радиопомех;
  • 4. Электронный блок – модуль процессора;
  • 5. Модуль дисплея – может отсутствовать;
  • 6. Приемник давления – имеет различный внешний вид, в зависимости от типа;
  • 7. Фланцы и метизы – для фланцевого исполнения;
  • 8. Клеммная колодка;
  • 9. Кнопки настройки.

В качестве сенсора используется монокристаллическая кремниевая мембрана с расположенными на ней пьезорезисторами. При этом мембрана, подложка и резистор выполнены из одного материала – кремния. Для защиты сенсора возможно исполнение с разделительной мембраной и заполняющей жидкостью.

Устройство сенсорного модуля

Сенсорный модуль состоит из:

  • штуцера;
  • разделительной мембраны;
  • сенсора;
  • камеры;
Сигнал с сенсора по гермовводам передается в модуль электроники.
Имеется внутреннее программное обеспечение с возможностью самодиагностики. Настройка основных параметров может осуществляться с помощью кнопок ввода, расположенных на устройстве. Также настройка всех параметров возможна через протокол HART. При этом цифровой HART-сигнал накладывается на аналоговый, не оказывая влияния на его постоянную составляющую.


Функции меню:

  • настройка шкалы измерения с подачей опорного давления;
  • настройка времени демпфирования;
  • настройка шкалы измерения без подачи опорного давления;
  • установка нуля;
  • установка фиксированного значения тока выходного сигнала;
  • установка аварийных значений тока;
  • блокировка управления с кнопок;
  • функция корнеизвлечения для преобразователей дифференциального давления;
  • выбор единиц измерения.

Приборы «ЭМИС» — БАР» внесены в Госреестр средств измерения (№2219), имеют сертификат соответствия ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах», всю необходимую разрешительную документацию, а также дополнительные сертификаты:

  • Сертификат соответствия ТР ТС 032/2013 «О безопасности оборудования, работающего под избыточным давлением».
  • Декларация о соответствии ТР ТС 032/2013 «О безопасности машин и оборудования».
  • Декларация о соответствии ТР ТС 020/2011 «Электромагнитная совместимость технических средств».
  • Сертификат соответствия «Применение в средах, содержащих сероводород».
  • Экспертное заключение по результатам санитарно-эпидемиологической экспертизы.
  • Право интеллектуальной собственности разработчика защищено патентом РФ № 186107.

Выпускаются с возможностью фланцевого и штуцерного соединения. На выбор заказчика есть несколько материалов мембраны, полости камеры и корпуса электронного блока, а также типа заполняющей жидкости.

    Имеют несколько вариантов исполнения:
  • с фланцевым присоединением
  • со штуцерным присоединением
  • с открытой мембраной
  • с выносной разделительной мембраной

Данные спецификации представлены с фланцевым креплением и с выносными разделительными мембранами. Модели 186,187, 188 являются преобразователями разрежения.


Спецификация 163 – с плоской мембраной, 164 – с погружной мембраной. Они применяются для точного определения уровня жидкости в различных емкостях и резервуарах.

Преимущества

Каждый из представленных приборов обладает высокой точностью измерений на уровне лучших мировых образцов. При специальном заказе основная приведенная погрешность составляет 0,04%. Также они отличаются долговременной стабильностью — не более 0,1% в течение 5 лет (или 0,02% в течение года).
Их ключевыми особенностями являются широкий диапазон измерения (от -0,5 до 69 МПа), способность работать в условиях перегрузки до 105 МПа и расширенная самодиагностика.

Имеется возможность настройки (в том числе калибровки нуля) с кнопок непосредственно во взрывоопасной зоне, без нарушения взрывозащиты корпуса, а также обеспечена работа с фирменным программным обеспечением «ЭМИС» — Интегратор». Межповерочный интервал составляет 5 лет.

В 2018 году, в целях проведения ОПИ, «ЭМИС-БАР» были поставлены на объект УРМЦ «Газпром – Трансгаз – Екатеринбург». В своем отзыве заказчик отмечает, что за время опытно-промышленных испытаний они показали себя надёжным средством измерения, отвечающим всем техническим требованиям и в полной мере обеспечивающим заявленные метрологические и технико-эксплуатационные параметры. Приборы показали высокую стабильность при различных температурных режимах и в разных погодных условиях, высокую визуализацию, интуитивность и практическое удобство дисплея.

Также положительные характеристики ИД «ЭМИС-БАР» получили по результатам работы на «Березниковском содовом заводе», где измеряемой средой стала фильтровая жидкость карбоколонны. «Интерфейс настройки прибора интуитивный и понятный. Материал корпуса соответствует заявленному в паспорте. Несмотря на наличие в фильтровой жидкости агрессивных примесей, отложений и коррозии на сенсоре не было. Метрологические характеристики после 6 месяцев работы соответствуют заявленным. Диапазон напряжения питания может быть от 12 до 36 вольт, при этом влияния на работу прибора данный разбег по питанию не оказывает», — отмечает в отзыве заказчик.

Стоит отметить, что измерители «ЭМИС» — БАР» являются частью комплексов учета энергоносителей и теплосчетчиков. Сейчас комплексы можно приобрести с расширенной гарантией до 3 лет, по Вашему запросу.

На рисунке комплекс учета «ЭМИС»-Эско 2210»


Необходимо добавить, что с появлением в продуктовой линейке «ЭМИС» датчиков давления, для заказчиков открылись возможности унификации применяемого оборудования и получения дополнительных выгод при комплексной покупке средств измерения нашей торговой марки!

Если у Вас существует потребность в приобретении продукции, на нашем сайте Вы можете оставить заявку или заполнить опросный лист и отправить его на адрес [email protected].

Задать вопрос инженерам по работе производимых приборов

Принцип работы датчика давления воды

Датчик давления

— это устройство, у которого физические параметры изменяются в зависимости от давления измеряемой среды, это могут быть газы, жидкости, пар. При изменении измеряемой среды, в которой находиться датчик давления, меняется и его выходные унифицированный пневматический, электрический сигналы или цифровой код.

Принципы использования датчика давления

Устройство состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода.

Основным отличием каждого датчика давления является точность регистрации давления (Диапазоны измерения от 0 … 6 бар до 0 … 60 бар), которая зависит от принципа преобразования давления в электрический сигнал: пьезорезистивный, тензометрический, емкостной, индуктивный, резонансный, ионизационный.

Методы преобразования давления в электрический сигнал
  • тензометрический

Чувствительные элементы датчиков базируются на принципе измерения деформации тензорезисторов, припаянных к титановой мембране, которая деформируется под действием давления.

  • пьезорезистивный

Основаны на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую временную и температурную стабильности. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления.

Резонансный метод — это волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

  • ионизационный

Ионизационный метод — регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Регистрация сигналов датчиков давления

Сигналы с датчиков давления являются медленноменяющимися. Это значит, что их спектр лежит в области сверхнизких частот. Для того чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи

Какие отличия датчика давления от манометра?

Манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

Нужен датчик давления?

Для подбора необходимого датчика давления для работы с частотным преобразователем или другим устройством обратитесь по телефону электротехнической компании ЭНЕРГОПУСК: (495) 775-24-55.

Датчики давления

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Датчики давления. Виды и работа. Как выбрать и применение

Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

Классификация и принцип работы

Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

Датчик давления состоит из:

  • Первоначальный преобразователь вместе с чувствительным элементом.
  • Корпус датчика, имеющий разные конструкции.
  • Электрическая схема.
Волоконно-оптические

Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

Оптоэлектронные датчики давления

Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры. Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений. Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно. Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране. Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

Магнитные

Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

Емкостные

Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде. На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение. Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

Ртутные

Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

Пьезоэлектрические

Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом. В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации. При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

Пьезорезонансные датчики давления

В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала. На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами. Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов. Давления для измерения поступает через штуцер 12.

Резистивные датчики давления

Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации. Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению. В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги. Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм2. Они более подходят для замера давления, веса, силы нажатия.

Как выбрать
  • Тип давления. Важно определить, что вы будете измерять. Есть несколько типов давления: барометрическое, избыточное, вакуумное, относительное, абсолютное.
  • Интервал разбега давления.
  • Класс защиты датчика. Для разных условий работы определены свои степени защиты от пыли и влаги.
  • Термокомпенсация. Эффекты температуры: например, расширение предметов, создают значительные помехи на результат измерения датчика. Если температура всегда изменяется в среде, то нужна термокомпенсация. Про границы температур тоже нельзя забывать.
  • Вид материала. Свойства материала играют значительную роль для агрессивных условий.
  • Тип сигнала выхода. Бывают цифровой вид и аналоговый. Нужно также учесть интервалы выхода сигнала, количество проводов.
Похожие темы:

Как правильно выбрать преобразователь давления – статьи от компании «Измеркон»

Давление, эта важнейшая после температуры физическая величина, является определяющей во многих технологических процессах.

Преобразователи давления предназначены для измерений и непрерывного преобразования давления в унифицированный выходной сигнал постоянного тока, напряжения или в цифровой сигнал.

Используются датчики в регуляторах и других устройствах автоматики в системах автоматического контроля, регулирования и управления технологическими процессами в системах водообработки, отопления, вентиляции и кондиционирования; гидравлических системах, холодильной технике, расходомерах и счетчиках; дизельных двигателях; тормозных системах; уровнемерах, в испытательных стендах и т.д.

Индустриальные измерения и контрольно-измерительная аппаратура применяются во всех областях промышленности — от атомной до пищевой и фармакологической; соответственно, везде нужны и преобразователи давления и преобразователи уровня.

Принцип действия датчиков основан на упругой деформации чувствительного элемента (сенсора), на который нанесены полупроводниковые тензорезисторы, включенные по схеме моста Уинстона. Измеряемое давление подводится через штуцер в рабочую полость датчика и вызывает деформацию диафрагмы. Это приводит к изменению геометрии резисторов, находящихся с ней в тесной механической связи и изменению их сопротивления. Происходит преобразование приложенного давления (механический вход) в изменение сопротивления (электрический выход).

Мы предлагаем следующий алгоритм, чтобы правильно подобрать датчик для Вашего применения:

1. Тип измеряемого давления

Преобразователи давления измеряют разность двух давлений, воздействующих на измерительную мембрану (чувствительный элемент) датчика. Одно из этих давлений — измеряемое, второе — опорное, то есть то давление, относительно которого происходит отсчет измеряемого. В зависимости от вида опорного давления все датчики разделяются на следующие виды:

Практически все наши преобразователи давления имеют модификации для измерения как абсолютного так и избыточного (в том числе разряжения) давлений. Подробнее Вы можете ознакомиться в разделе продукция/преобразователи давления.

Преобразователи абсолютного давления
Предназначены для измерения величины абсолютного давления жидких и газообразных сред. Опорное давление — вакуум. Воздух из внутренней полости чувствительного элемента датчика откачан. Например, барометр –частный случай датчика абсолютного давления.

Минимальный доступный у нас для заказа диапазон абсолютного давления с погрешностью 0,1%ВПИ — это 0…50мбар (0…5кПа). Описание на датчик 41X Вы можете увидеть здесь.

Преобразователи избыточного (относительного) давления
Предназначены для измерения величины избыточного давления жидких и газообразных сред. Опорное давление — атмосферное; таким образом, одна сторона мембраны соединена с атмосферой.

Преобразователи дифференциального (разности, перепада) давления
Предназначены для измерения разности давления среды и используются для измерения расхода жидкостей, газа, пара, уровня жидкости. Давление подается на обе стороны мембраны, а выходной сигнал зависит от разности давлений.

В нашей линейке предствалены датчики

  • PD-33X — отличительной особенностью является высокая точность измерения перепада давления, а также возможность исполнения для значений опорного давления до 600бар. При этом измеряемый перепад может составлять всего 0…0,2 бар
  • PRD-33X — эти датчики уникальны способностью выдерживать перегрузки по давления и с положительной и с отрицательной стороны. При диапазоне измерений 0…0,350мбар перегрузка может составлять 35 бар!
  • PD-39X — эти датчики давления имеют особенную конструкцию с двумя сенсорами абсолютного давления. Это обеспечивает повышенную надежность и стойкость к перегрузкам, однако применимы данные датчики только в условиях, когда перепад давления одного порядка с опорным давлением в линии.
  • PD-41X — это сверхчувствительные датчики для измерения перепада давления. минимальный диапазон — это 0…0,5кПа. Это идеальное решения для измерения малых скоростей потока. Дифференциальный преобразователь PD-41X подходит только для неагрессивных газов.

Преобразователи гидростатического давления (преобразователи уровня)
Предназначены для преобразования гидростатического давления контролируемой среды в сигнал постоянного тока. Измеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости. Изменение атмосферного давления компенсируется при помощи капиллярной (дыхательной трубки)

Преобразователи вакууметрического давления (разряжения)
Предназначены для измерения величины вакуумметрического давления жидких и газообразных сред. Опорное давление в этих датчиках также атмосферное. Однако, в отличие от датчиков избыточного давления, измеряемое давление меньше атмосферного, т.е. существует разрежение относительно атмосферы.

Преобразователи избыточного давления-разряжения
Представляют собой сочетание датчиков избыточного и вакуумметрического давлений, т.е. измеряют как давление, так и разрежение, например -1…6 бар. У нас Вы можете заказать абсолютно любой такой диапазон в пределах максимального диапазона измерений конкретного датчика.

2. Среда использования датчика

Для надежной работы датчиков необходимо выбирать материалы элементов, контактирующих с измеряемой средой (мембран, фланцев, кабеля и уплотнительных колец) химически стойкими к этим средам. Например, для различных сред эксплуатации материалом мембран сенсоров может быть нержавеющая сталь, титан, титановый сплав, хастеллой, керамика, Kynar и др. Материал кабеля особенно актуален для погружных гидростатических датчиков давления. Для питьевой воды идеально подойдет полиэтиленовый PE кабель, для не агрессивных промышленных сред полиуретановый PUR. Если же Вы собираетесь использовать датчик в топливе или агрессивной жидкости, то оптимальным решением будет термопластичный эластомер (Hytrel) или тефлон (PTFE). Все эти материалы мы используем и предлагаем в своих модификациях датчиков Келлер.

3. Климатическое исполнение

Преобразователи давления также отличаются по климатическому исполнению. Следует обращать внимание на климатические условия (температура окружающей среды, влажность, прямое попадание воды и солнечных лучей) в месте установки датчика. Они должны соответствовать тем, на которые он рассчитан. Причем очень важно различать две температуры, которые могут оказывать влияние на наш датчик: температура окружающей среды и температура измеряемой среды. Наши преобразователи давления могут работать в условиях окружающей и измеряемой среды от -55 до 150С. Специальные исполнения преобразователей давления способны работать при температурах среды до +300С.

4. Выходной сигнал

Рассмотрим основные типы:

  • Аналоговый выходной сигнал. На выходе из датчика мы имеем непрерывный линейный сигнал по току или по напряжению, который мы можем регистрировать самыми простыми приборами, даже обычным бытовым тестером. 4…20 mA — это самый распространенный выходной сигнал для датчиков во всем мире, также популярными аналоговыми сигналами являются 0…10В, 0,5…4,5В и другие.
  • Цифровой выходной сигнал. На сегодняшний день существует огромное множество различных цифровых сигналов и отдельно останавливаться на них мы не будем. Пожалуй, самым широко используемым является интерфейс RS485 протокол MODBUS. Это открытый протокол, который позволяет объединить в систему до 128 устройств с максимальным расстоянием между ними 1300м.
  • Ратиометрический выходной сигнал. Этот сигнал используется пока достаточно редко, особенно в нашей стране, но с каждым днем он набирает все большую популярность. Особенностью ратиометрического выходного сигнала является зависимость значения сигнала от напряжения питания. Т.е. мы можем говорить, что этот сигнал является безразмерным и представляет собой ничто иное как процентное отношение сигнала питания. Обычно, про датчик с ратиометрическим выходным сигналом говорят 0,5…4,5В ратиометрический (ratiometric), на самом же деле 0,5…4,5В мы имеем только при условии стабильного напряжения питания 5В, поэтому правильно с физической точки зрения говорить: 0,5В/5В…4,5В/5В. Если же напряжение питания изменится, то пропорционально ему изменится и выходной сигнал.

Тип выходного сигнала прежде всего зависит от уже имеющегося оборудования и стоящей перед Вами задачи. Для этого необходимо изучить входы, которые имеют используемые контроллеры, приборы, машины или регуляторы. Все перечисленные сигналы мы используем в наших датчиках давления, а также и многие другие.

Для автономных приборов мы бы посоветовали использовать датчики с цифровым интерфейсом I2C с данными датчиками Вы можете ознакомиться здесь. Если же Вам не удобно работать с цифровым выходом, то лучше использовать датчики с минимальным напряжением питания например 3,5V — это датчики 33X или 5V — это датчики 21Y.

5. Точность измерений

Преобразователи давления имеют различные метрологические характеристики (классы точности) – обычно от 0,05% до 0,5%. Особо точные датчики используются на важных объектах в различных отраслях промышленности. Опционально датчики серии 33x могут иметь основную погрешность до 0,01% ВПИ (доступно только для диапазонов >10 бар).

На рисунке представлен датчик без температурной компенсации и с температурной компенсацией осуществляемой по специальным алгоритмам микропроцессором в преобразователях давления Келлер.

Особое внимание следует уделять стабильности датчиков давления. Ведь даже очень точный датчик спустя нескольких часов работы при температурных циклах в широком диапазоне начинает давать дополнительную погрешность более 0,5%ВПИ. Что говорить, если эти циклы будут продолжаться месяцами и даже годами!

Некоторые виды датчиков давления имеют взрывозащищенное исполнение. Эти модели могут успешно использоваться для определения давления на взрывоопасных объектах с присутствием взрывчатых и легко воспламеняющихся газов и жидкостей. В линейке Келлер представлены как преобразователи с искробезопасной цепью, так и преобразователи со взрывонепроницаемой оболочкой.

Преобразователи давления относятся к измерительной технике и должны проходить обязательные сертификационные испытания. После этого они утверждаются и вносятся в Госреестр средств измерений.

Надеемся, что данный материал поможет Вам лучше ориентироваться при выборе преобразователей давления.

Вы также можете подобрать решение, которое будет актуально именно для Вашей задачи с помощью наших специалистов. Заявку на подбор можно отправить любым удобным Вам способом: через форму обратной связи, по электронной почте [email protected] или же по телефону 8 (800) 777 18 50. 

Датчики давления: устройство и принцип работы

Иногда многим людям может потребоваться измерить давление. Для этого необходимо использовать датчики давления. Их принцип работы основан на преобразовании давления в механическое перемещение.

Кроме, механических систем, для измерения давления также могут использоваться механические и тепловые системы.

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину. Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины. Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Важно знать! Механические датчики расхода разделяются на датчики переменного и постоянного перепада. Также могут быть датчики со сливным отверстием.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода. Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Датчики уровня

В последнее время наиболее распространенными устройствами считаются поплавковые датчики. Поплавковый датчик будет состоять из: поплавка, промежуточного и выходного органа. Поплавок – это орган, который позволяет воспринимать уровень жидкости. Преобразующий орган позволяет механическое воздействие выходному органу.

Датчики уровня могут быть основаны на измерении веса и гидростатического давления, а также на использовании электрических свойств жидкости.

Отечественная промышленность старается выпускать датчики давления разнообразного типа. Теперь вы точно знаете, принцип работы датчиков давления, расхода и уровня. Надеемся, что эта информация была полезной и интересной.

Читайте также: электромагнитное реле.

Электронный датчик давления

просмотров 4 498 Google+

Применяемость электронных датчиков.

Электронный датчик давления, как и аналоговый датчик, служит для преобразования давления жидкости или газа в электрический сигал. На сайте рассматривались резисторные датчики давления, применяемые с аналоговыми приборами. Но с развитием электроники на автомобилях широко начали применяться электронные панели приборов, для роботы которых необходимы датчики с другим принципом действия и большей точности. Это  привело к разработке ионизационных, тензометрических, ёмкостных, резонансных, пьезорезистивных и ионецонных датчиков. Все эти датчики имеют свои преимущества и недостатки.

Tензометрические и пьезорезистивные датчики.

В автомобилях широко стали применяться тензометрические и пьезорезистивные. Главным преимуществом этих датчиков  является их низкая стоимость,  достаточная точность, хотя показания тензометрических датчиков и зависит от перепада температуры, но на автомобильном двигателе это большого значения не имеет.

Tензорезисторный датчик давления

Рассмотрим как устроен тензометрический электронный датчик давления. Его конструкция почти такая же, как и резисторного датчика старого образца. Корпус, поделён на две части мембранной, с одной стороны к которой подходит среда, давление которой замеряется. На другой стороне мембраны припаяна сапфировая подложка, на которой собственно и располагаются кремниевые или металлические тензорезисторы, сформированные в эпитаксиальной плёнке, соединённые в мостовую схему. Принцип работы такого датчика основан на разбалансировке моста при пригибании мембраны под воздействием измеряемой среды. Чем больше прогибается мембрана, тем вше степень разбалансирования моста. Кристаллы монокремня обладают большой упругостью, что способствует устойчивости показаний при любом давлении. Но тензорезисторы чувствительны к изменению температуры. Поэтому при разработке датчиков  приходится добавлять цепи термокомпенсации. Собственный выходной сигнал с датчика очень мал, примерно 100 мВ, поэтому в конструкции используется усилитель.

Пьезорезистивный датчик.

Последнее время большое распространение получают пьезорезистивный электронный датчик давления. Это обусловлено большей их стабильностью и высокой температурно-временной стабильностью по сравнению с тензометрическими датчиками. Выполнение пьезорезистивных датчиков возможно двух типов. Для работы в агрессивной и неагрессивной среде. Отличие  исполнения в передаче давления на чувствительный элемент. При работе  в неагрессивной среде воздействие производится непосредственно на чувствительный элемент, либо чувствительный элемент заливается силиконовым гелем, который передаёт воздействие давления. Для агрессивных сред используются датчики с мембраной из нержавеющей стали. Полость между мембраной и чувствительным элементом заполняют кремнийорганической жидкостью. Чувствительный элемент датчика представляет собой мембрану из монокристаллического кремния с диффузионными пьезорезисторами на диэлектрическом основании.

Пьезоризисторы, как и в тензорезисторном датчике давления соединены в мост Уинстона. Принцип  работы датчиков так же идентичен работе датчиков. Подключение в пьезоризисторном датчике так же возможно по аналогии с датчиком Холла. Это упрощает конструкцию, так как нет необходимости в согласовании элементов между собой. В этом случае при прогибании мембраны будет изменяться изменение напряжения. Давление прикладывается перпендикулярно напряжению и под его воздействием в резисторе образуется электрическое поле прямо пропорциональное приложенному давлению, значение которого  снимается.

admin 04/08/2015 «Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» «Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях»

Принцип работы датчика давления

Каков принцип работы датчика давления? Датчик давления работает путем преобразования давления в аналоговый электрический сигнал.

Спрос на приборы для измерения давления увеличился в эпоху пара. Когда технологии измерения давления были впервые произведены, они были механическими и использовали манометры с трубкой Бурдона для перемещения иглы и визуальной индикации давления.В настоящее время мы измеряем давление электронным способом с помощью датчиков давления и реле давления.

Статическое давление

Давление можно определить как силу на единицу площади, которую жидкость оказывает на окружающую среду. Основная физика статического давления (P) рассчитывается как сила (F), деленная на площадь (A).

P = F / A

Сила может создаваться жидкостями, газами, парами или твердыми телами.

Наиболее часто используемые единицы давления:

  1. Па — [Паскаль] в 1 Па = 1 (Н / м²)
  2. бар — [бар] в 1 баре = 105 ‘ƒð‘ Ž
  3. psi: (фунт (сила) на квадратный дюйм)

Принцип действия датчика давления

Преобразователи давления

имеют чувствительный элемент постоянной площади и реагируют на силу, приложенную к этой области, давлением жидкости.Приложенная сила будет отклонять диафрагму внутри датчика давления. Прогиб внутренней диафрагмы измеряется и преобразуется в электрический выходной сигнал. Это позволяет контролировать давление с помощью микропроцессоров, программируемых контроллеров и компьютеров вместе с аналогичными электронными приборами.

Большинство датчиков давления предназначены для получения линейного выходного сигнала с приложенным давлением.

Для чего используются датчики давления?

Датчики давления

используются в различных отраслях промышленности, включая автомобильную промышленность, биомедицинское приборостроение, авиацию и морскую промышленность, и это лишь некоторые из них.

Датчики давления от Variohm

Мы можем предложить датчики давления в виде датчиков давления , реле давления, комбинированных датчиков давления и температуры, датчиков давления для монтажа на печатной плате и датчиков давления для опасных зон . Наши комбинированные преобразователи давления и температуры особенно хорошо подходят для приложений, где пространство ограничено.

Наши датчики давления имеют прочную модульную конструкцию, корпус из нержавеющей стали и приварной корпус к порту давления.Они доступны в миниатюрном формате, начиная с диаметра 12 мм.

Для получения дополнительной информации о принципе работы датчиков давления или для получения дополнительной информации о любом из наших датчиков давления, пожалуйста, свяжитесь с нами 01327 351004 или [email protected]

Датчик давления

| Как это работает

Что такое датчик давления? Какие существуют типы датчиков давления и датчиков давления и как они работают при измерении давления?

Датчик давления

: определение, принцип работы и типы.Ознакомьтесь с функциями и возможностями различных датчиков измерения давления в этом подробном руководстве.

Преобразователи давления

производятся в США компанией FUTEK Advanced Sensor Technology (FUTEK), ведущим производителем сенсоров, с использованием одной из самых передовых технологий в сенсорной индустрии: тензометрических датчиков с металлической фольгой. Датчик давления определяется как датчик, который преобразует входное механическое давление в электрический выходной сигнал (определение датчика давления).Существует несколько типов датчиков давления в зависимости от размера, емкости, метода измерения, технологии измерения и требований к выходу.

Посетите наш магазин датчиков давления. Доступно более 60+ типов датчиков!

Что такое датчик давления?

Для чего нужен датчик давления? Датчик давления — это преобразователь или прибор, который преобразует входное механическое давление в газах или жидкостях в электрический выходной сигнал. Датчик давления состоит из чувствительного к давлению элемента, который может измерять, обнаруживать или контролировать прикладываемое давление, и электронных компонентов для преобразования информации в электрический выходной сигнал.

Давление определяется как величина силы (оказываемой жидкостью или газом), приложенной к единице «площади» (P = F / A), и общепринятыми единицами измерения давления являются Паскаль (Па), Бар (бар), Н / мм2 или psi (фунтов на квадратный дюйм). В датчиках давления часто используется пьезорезистивная технология, поскольку пьезорезистивный элемент изменяет свое электрическое сопротивление пропорционально испытываемой деформации (давлению).

Как работает датчик давления?

Чтобы понять, как работает промышленный датчик давления и как измерять давление, во-первых, необходимо понять физику и материаловедение, лежащие в основе принципа работы датчика давления и пьезорезистивного эффекта , который измеряется тензодатчиком (иногда называемый тензодатчиком ).Тензорезистор из металлической фольги — это датчик, электрическое сопротивление которого зависит от приложенного давления. Другими словами, он преобразует силу, давление, растяжение, сжатие, крутящий момент и вес (также известные как датчики веса) в изменение электрического сопротивления, которое затем можно измерить.

Тензодатчики — это электрические проводники, плотно прикрепленные к пленке зигзагообразно. Когда эту пленку натягивают, она вместе с проводниками растягивается и удлиняется. Когда его толкают, он сокращается и становится короче.Это изменение формы вызывает изменение сопротивления в электрических проводниках. Деформация, приложенная к датчику давления, может быть определена на основе этого принципа, поскольку сопротивление тензодатчика увеличивается с приложенной деформацией и уменьшается с уменьшением.

Рис. 1. Тензорезистор из металлической фольги. Источник: ScienceDirect

Посетите наш магазин датчиков давления. Доступно более 60+ типов датчиков!

Конструктивно датчик тензометрического датчика давления состоит из металлического корпуса (также называемого изгибом), к которому прикреплены тензодатчики из металлической фольги .Корпус этих датчиков измерения давления обычно изготавливается из алюминия или нержавеющей стали, что придает датчику две важные характеристики: (1) обеспечивает прочность, чтобы выдерживать высокие давления, и (2) обладает эластичностью, позволяющей минимально деформироваться и возвращаться к своей первоначальной форме, когда давление снимается.

Датчик давления преобразует давление в электрический сигнал. В промышленных датчиках давления FUTEK используется пьезорезистивный эффект, который заключается в тензодатчиках из металлической фольги, установленных на диафрагме.При изменении давления диафрагма меняет форму, вызывая изменение сопротивления тензодатчиков, что позволяет измерять изменения давления электрически. Наши датчики давления, естественно, вырабатывают электрический сигнал в милливольтах, который изменяется пропорционально давлению и напряжению возбуждения датчика (мВ / В — милливольт на вольт). Однако мы предлагаем датчики давления с внутренними аналоговыми усилителями. Датчики давления со встроенными усилителями генерируют сигналы либо с переменным напряжением, т.е.е. ± 10 В или переменный ток (т. Е. Выход датчика давления 4-20 мА). Однако, если вашему приложению требуется усилитель с цифровым датчиком давления или USB-датчиком давления, обратитесь к нашим приборам датчиков давления и странице магазина усилителей.

Тензодатчики расположены в так называемой схеме усилителя на мосту Уитстона (см. Анимированную схему ниже). Это означает, что четыре тензодатчика соединены между собой как контурная петля, и измерительная сетка измеряемого давления выровнена соответствующим образом.

Тензометрические мостовые усилители обеспечивают регулируемое напряжение возбуждения и преобразуют выходной сигнал мВ / В в другую форму сигнала, более полезную для пользователя. Сигнал, генерируемый тензометрическим мостом, является сигналом низкой мощности и может не работать с другими компонентами системы, такими как ПЛК, модули сбора данных (DAQ) или компьютеры. Таким образом, функции формирователя сигнала датчика давления включают в себя напряжение возбуждения, фильтрацию или ослабление шума, усиление сигнала и преобразование выходного сигнала.

Кроме того, изменение выходного сигнала усилителя откалибровано так, чтобы быть пропорциональным давлению, приложенному к изгибу, которое можно рассчитать с помощью уравнения цепи датчика давления.

Рис. 2: Цепь датчика измерения давления.

Посетите наш магазин датчиков давления. Поговорите с инженером сегодня!

Как измерить давление? Какие бывают типы датчиков давления и методы измерения?

Датчики давления

можно классифицировать по типу измеряемого ими давления, а также по технологии измерения давления, с которой работает датчик.В связи с этим существует три метода измерения давления: дифференциальное, абсолютное и манометрическое.

Преобразователь перепада давления: Дифференциальное давление — это измерение разницы давления между двумя значениями давления или двумя точками давления в системе , таким образом, измеряется то, насколько эти две точки отличаются друг от друга, а не их величина относительно атмосферного давления. или к другому эталонному давлению, например абсолютному вакууму. Это отличается от датчика статического или абсолютного давления, который будет измерять давление, используя только один порт, и обычно датчики дифференциального давления комплектуются двумя портами, к которым могут быть присоединены трубы и подключены к системе в двух различных точках давления, откуда может возникнуть перепад давления. быть измеренным и рассчитанным.

Этот метод измерения давления обычно используется для измерения расхода жидкости или газа в трубах или каналах.

Рис. 3: Как работает датчик дифференциального давления? Измерение уровня в резервуаре с помощью датчика измерения перепада давления.

Датчик абсолютного или вакуумного давления: Этот датчик измеряет абсолютное давление , , которое определяется как давление, измеренное относительно абсолютного герметичного вакуума .Датчики абсолютного давления используются в приложениях, где требуется постоянное опорное значение . Эти приложения требуют привязки к фиксированному давлению, поскольку их нельзя просто привязать к окружающему давлению окружающей среды. Например, этот метод используется в высокопроизводительных промышленных приложениях, таких как мониторинг вакуумных насосов, измерение давления жидкости, промышленная упаковка, управление производственными процессами, а также аэрокосмический и авиационный контроль. Когда дело доходит до измерения давления воздуха, особенно для таких приложений, как барометрические измерения погоды или высотомеры, предпочтительным устройством является датчик абсолютного давления.

Посетите наш магазин датчиков давления. Обратитесь к нашему специалисту по применению сегодня!

Избыточное или относительное давление Преобразователь : Избыточное давление — это просто частный случай перепада давления с давлениями, измеряемыми дифференциально, но всегда относительно местного давления окружающей среды . В этом же отношении абсолютное давление также можно рассматривать как дифференциальное давление, когда измеренное давление сравнивается с абсолютным вакуумом.Изменения атмосферного давления из-за погодных условий или высоты непосредственно влияют на выходной сигнал датчика избыточного давления. Манометрическое давление выше, чем давление окружающей среды, называется положительным давлением. Если измеренное давление ниже атмосферного, оно называется отрицательным или вакуумметрическим давлением.

Рис. 4: Измерение давления с помощью датчика давления в водяной насосной системе

Типы технологий измерения давления или принципы работы

Существует множество технологий определения давления, или принципов измерения, способных преобразовывать давление в измеримый и стандартизированный электрический сигнал.В этой статье основное внимание будет уделено типам коллекторов силы, которые используют датчик силы (то есть диафрагму) для измерения деформации (или отклонения) из-за приложенной силы по площади (давления).

Резистивный или пьезорезистивный эффект: Резистивные датчики измерения давления используют изменение электрического сопротивления тензодатчика, прикрепленного к диафрагме (также известной как элемент изгиба), которая подвергается воздействию среды под давлением.

Тензодатчики часто состоят из металлического резистивного элемента на гибкой основе, прикрепленной к диафрагме (т.е.е. тензорезистор из металлической фольги) или нанесенный непосредственно с использованием тонкопленочных технологий.

Обычно тензодатчики подключаются по схеме моста Уитстона, чтобы максимизировать выходной сигнал датчика и снизить чувствительность к ошибкам. Это наиболее часто используемая сенсорная технология для измерения давления общего назначения.

Видео на YouTube: Миниатюрный датчик давления (PFT510) | Преобразователь давления с мембраной, устанавливаемой заподлицо.

Посетите наш магазин датчиков давления.Доступно более 60+ датчиков!

Емкостный: Емкостные датчики давления используют диафрагму, которая отклоняется под действием приложенного давления, чтобы создать переменный конденсатор для определения деформации из-за приложенного давления. При приложении давления внешнее давление сжимает диафрагму, и значение емкости уменьшается. Когда давление сбрасывается, диафрагма возвращается к своей первоначальной форме, и за ней следует емкость. В обычных технологиях используются металлические, керамические и кремниевые диафрагмы.Емкость можно откалибровать для получения точных показаний давления.

Емкостные датчики, которые отображают изменение емкости при отклонении одной пластины под действием приложенного давления, могут быть высокочувствительными и выдерживать большие перегрузки. Однако ограничения на материалы, а также требования к соединению и герметизации могут ограничивать области применения.

Пьезоэлектрический эффект: Пьезоэлектрические датчики давления используют свойство пьезоэлектрических материалов, таких как керамика или металлизированный кварц, генерировать электрический потенциал на поверхности, когда материал подвергается механическому напряжению и создается деформация.Величина заряда пропорциональна приложенному давлению, а полярность определяется направлением давления. Электрический потенциал накапливается и быстро рассеивается при изменении давления, что позволяет измерять быстро изменяющиеся динамические давления.

Каковы основные области применения датчиков давления?

На странице приложений датчиков давления

FUTEK представлено несколько промышленных приложений датчиков давления. Одно из распространенных приложений — измерение давления в гидравлической системе крана.

Стандарты измерения давления

Давление обычно измеряется в единицах силы на единицу площади поверхности (P = F / A). В физической науке символ давления — p, а единица измерения давления в системе СИ — паскаль (символ: Па). Один паскаль — это сила в один Ньютон на квадратный метр, действующая перпендикулярно поверхности. Другими обычно используемыми единицами измерения давления для определения уровня давления являются фунты на квадратный дюйм (фунты на квадратный дюйм) и бар. Использование единиц давления имеет региональные и прикладные предпочтения: фунты на квадратный дюйм обычно используются в Соединенных Штатах, а бар — предпочтительная единица измерения в Европе.

Паскаль Бар Стандартная атмосфера Фунтов на квадратный дюйм
(Па) (бар) (атм) (фунт / дюйм2 или фунт-сила / дюйм 2 )
1 Па 1 10 −5 бар 9,8692 × 10 −6 атм 1,45 x 10 −4
1 бар 100 000 1 0.98692 14,5038
1 атм 1013,25 1.01325 1 14,6959
1 фунт / кв. Дюйм или фунт-сила / дюйм 2 6 894,76 0,06894 0,06804 1

Почему так важна калибровка датчика давления?

Калибровка датчика давления

— это регулировка или набор корректировок, которые выполняются на датчике , или приборе (усилителе), чтобы убедиться, что датчик работает как точно или, насколько это возможно, без ошибок.

Каждый датчик подвержен ошибкам измерения . Эти структурные погрешности представляют собой просто алгебраическую разницу между значением, которое отображается на выходе датчика , и фактическим значением измеряемой переменной или известными эталонными давлениями. Ошибки измерения могут быть вызваны многими факторами:

Смещение нуля (или баланс нуля датчика давления): Смещение означает, что выходной сигнал датчика при нулевом давлении (истинный ноль) выше или ниже идеального выходного сигнала.Кроме того, стабильность нуля относится к степени, в которой преобразователь поддерживает баланс нуля при постоянных условиях окружающей среды и других переменных.

Линейность (или нелинейность): Некоторые датчики имеют полностью линейную характеристическую кривую, что означает, что выходная чувствительность (крутизна) изменяется с разной скоростью во всем диапазоне измерения. Некоторые из них достаточно линейны в желаемом диапазоне и не отклоняются от прямой линии (теоретически), но некоторые датчики требуют более сложных вычислений для линеаризации выходного сигнала.Таким образом, нелинейность датчика давления — это максимальное отклонение фактической калибровочной кривой от идеальной прямой линии, проведенной между выходами без давления и номинальным давлением, выраженное в процентах от номинального выхода.

Гистерезис: Максимальная разница между показаниями на выходе датчика для одного и того же приложенного давления; одно показание получается путем увеличения давления от нуля, а другое — за счет уменьшения давления от номинального выхода. Обычно он измеряется при половине номинальной мощности и выражается в процентах от номинальной мощности.Чтобы свести к минимуму ползучесть, измерения следует проводить как можно быстрее.

Повторяемость (или неповторяемость): Максимальная разница между показаниями на выходе датчика для повторяющихся входов при одинаковом давлении и условиях окружающей среды. Это означает способность датчика поддерживать постоянный выходной сигнал при многократном приложении одинакового давления.

Температурный сдвиг диапазона и нуля: Изменение выходного сигнала и нулевого баланса, соответственно, из-за изменения температуры преобразователя.

Рис. 5: Калибровочная кривая датчика давления.

Каждый датчик давления имеет «характеристическую кривую» или «калибровочную кривую», которая определяет реакцию датчика на входной сигнал. Во время регулярной калибровки с использованием калибровочной машины датчика мы проверяем смещение нуля датчика и линейность, сравнивая выходной сигнал датчика с эталонными весами и регулируя реакцию датчика на идеальный линейный выходной сигнал. Оборудование для калибровки датчика давления также проверяет гистерезис, повторяемость и температурный сдвиг, когда заказчики запрашивают его для некоторых критических приложений измерения давления.

Для получения дополнительной информации о калибровке, пожалуйста, обратитесь к нашей странице часто задаваемых вопросов о калибровке сенсора.

Если у вас есть дополнительные вопросы о терминах и определениях калибровки, обратитесь к нашему Глоссарию терминов калибровки датчиков.

Хотите знать, какие услуги по калибровке мы предлагаем для вашего датчика и / или системы?

Свяжитесь с нами, чтобы узнать больше!

Как часто следует калибровать датчик давления?

Поскольку датчик тензометрического датчика давления подвержен постоянному использованию, старению, дрейфу выходного сигнала, перегрузкам и неправильному обращению, FUTEK настоятельно рекомендует ежегодно проводить повторную калибровку.Частая повторная калибровка помогает подтвердить, сохраняла ли датчик свою точность с течением времени, и предоставляет сертификат калибровки весоизмерительной ячейки, чтобы показать, что датчик по-прежнему соответствует спецификациям.

Однако, когда датчик используется в критических приложениях и суровых условиях, датчики давления могут потребовать еще более частой калибровки. Пожалуйста, проконсультируйтесь о соответствующих интервалах калибровки с нашей группой технической поддержки, которая поможет вам оценить наиболее экономичный интервал обслуживания калибровки для вашего датчика.

Датчики давления

| Руководство разработчика

Датчики MEMS

Легко представить пьезорезистивный или емкостной датчик давления в виде большого устройства, такого как электронный компонент со сквозным отверстием или модуль, готовый ввинчиваться в стенку резервуара, но это не всегда так.

Пьезо или емкостный механизм измерения давления также может быть изготовлен на кремнии в виде устройства MEMS (Micro Electro Mechanical System) и упакован в виде компактного устройства для поверхностного монтажа, размер которого обычно составляет всего около 2-3 мм на каждую сторону.

Устройства

MEMS, которые включают в себя не только датчики давления, но также датчики движения или положения и кремниевые микрофоны, чрезвычайно малы, стабильны и экономичны, обеспечивая расширенные функциональные возможности для оборудования с ограниченным пространством и стоимостью, такого как мобильные телефоны и конечные точки IoT.

MEMS-устройства изготовлены из кремния с использованием процессов легирования и травления. Эти процессы выполняются в масштабе чипа, в результате чего получается крошечное устройство, которое можно объединить с электроникой формирования сигнала.Электронная схема может содержать простое усиление для получения аналогового выходного сигнала, а также может включать аналого-цифровое преобразование для генерации цифрового выходного сигнала.

Аналоговый выход может быть полезен, если сигнал датчика должен обрабатываться полностью в аналоговой области, или если разработчик хочет использовать АЦП с особенно высоким разрешением или точностью, или если микроконтроллер системы-хоста содержит подходящий интегрированный АЦП на -чип. Цифровой датчик может быть спроектирован без необходимости использования внешних компонентов преобразования, что позволяет сэкономить общее количество компонентов.

Возможно, самый простой тип датчика для визуализации — это датчик атмосферного давления. Они могут использоваться для измерения обычного атмосферного давления и используются в ряде приложений, включая определение контекста или внутреннюю навигацию в смартфонах. Обычно это крошечный датчик MEMS.

Обнаружение изменений атмосферного давления позволяет устройству теоретически рассчитать свою высоту над уровнем моря, например, на дороге (для помощи в спутниковой навигации и точного расчета в случае потери спутникового сигнала) или определить, какой уровень здания, в котором находится пользователь, например, на многоэтажной автостоянке, в офисном здании, многоквартирном доме или торговом центре.

Рекомендации по проектированию

Понимание типов широко используемых датчиков, их принципов работы и режимов использования (абсолютный, манометрический или дифференциальный) может помочь инженерам принять первоначальное решение при выборе наиболее подходящего датчика для конкретного применения.

Используемые материалы и тип конструкции могут иметь важное влияние на такие аспекты, как диапазон измерения, ограничивающие факторы, такие как максимальное выдерживаемое давление, которому может подвергаться датчик, время его стабилизации после пайки и долговременная стабильность в предполагаемых условиях. применение.

Понимание электрических выходных свойств и схем, необходимых для правильного взаимодействия с главной электронной системой — обычно это система управления на базе микроконтроллера или микропроцессора — может помочь оценить, как выбор датчика давления повлияет на вероятные проблемы электронной интеграции.

Это введение лишь поверхностное описание технологии датчиков давления. В главе 1.2 будут рассмотрены различные типы чувствительных элементов, которые используются в датчиках давления, как они работают, а также их преимущества и недостатки.Если вы ищете более подробную информацию о чем-либо, обсуждаемом здесь, вы можете ознакомиться с последующими главами этого руководства ниже. Кроме того, если у вас мало времени, полное руководство доступно в виде загружаемого PDF-файла здесь.

Для получения дополнительной информации о других наших сенсорных технологиях посетите нашу страницу сенсоров.

Как работает датчик давления?

Omega — надежный источник датчиков давления и тензодатчиков, обеспечивающих получение высококачественных данных по множеству процессов.Чтобы датчики давления и тензодатчики предоставляли информацию, которую ищут наши клиенты, давление или сила этого процесса должны достигать чувствительного элемента. Чувствительный элемент реагирует на силу или давление процесса, создавая выходной сигнал, который может интерпретироваться устройством считывания или устройством сбора данных. Таким образом, чувствительный элемент является сердцем преобразователя или тензодатчика.

Теория системы измерения давления

Система измерения давления состоит из чувствительного элемента с прикрепленными к нему четырьмя тензодатчиками.Тензодатчики сконфигурированы в виде моста Уитстона, где все 4 резистора (обозначенные R1 — R4 на рисунке 2) равны и изменяются на равную величину пропорционально при приложении напряжения. Чем больше сила или напряжение (вход), тем больше выход. Устройство моста Уитстона требует 4 провода для подключения, положительного и отрицательного возбуждения, а также положительного и отрицательного выхода датчика.

Типичный датчик давления работает, создавая выходной сигнал тензометрического датчика, когда возникает отклонение диафрагмы.В зависимости от технологии тензодатчика выходная мощность может варьироваться от 1 до 3 милливольт на вольт (мВ / В) до 10–30 мВ / В. Чтобы рассчитать выходную мощность в полном масштабе, вам нужно умножить выходную мощность датчика на напряжение, используемое для питания устройства. Например, для датчика 3 мВ / В, если мы использовали 10 В постоянного тока в качестве напряжения возбуждения, мы ожидали бы получить 3 мВ / В x 10 В = 30 мВ на полной шкале.

Рисунок 1.
Рисунок 2.
Рисунок 3.
Типичная реакция диафрагмы при приложении давления.

Примеры

Хорошим примером того, как работает датчик давления, является датчик давления PX4600. Давление технологического процесса, которое пытается измерить заказчик, будет подводиться к элементу диафрагмы через порт доступа. Давление вызовет отклонение диафрагмы, нагружая мост Уитстона на другой стороне диафрагмы и создавая выходной сигнал мВ / В. Затем этот милливольтный сигнал считывается устройством, способным принимать милливольтный сигнал, или передается в усилитель или формирователь сигнала для дальнейшей обработки сигнала.

PX409-USBH имеет разъем USB на конце кабеля для прямого ввода в портативный компьютер. Бортовая электроника преобразует сигнал в удобный, простой в использовании протокол связи. Воспользуйтесь нашим бесплатным программным обеспечением, которое доступно на нашем веб-сайте. Устройство можно подключить к ноутбуку, который будет отображать и собирать данные, одновременно обеспечивая питание самого датчика.

Рисунок 6.
DPG409 Цифровой манометр DPGM409 использует цифровой выход в версиях с беспроводным передатчиком.Это позволяет получать показания с удаленной прямой видимости без необходимости прокладывать сигнальный провод. Беспроводной приемник будет принимать этот сигнал и отображать или записывать данные.

Категории датчиков

Рис. 7. без усиления
Большинство тензодатчиков имеют выходной сигнал без усиления. Неусиленные выходы распространены среди устройств, которые слишком малы для оснащения электроникой формирования сигнала, или в тех случаях, когда окружающая среда слишком экстремальна, чтобы электроника могла выжить.

Это относится к продуктам PX1004, PX1005 и PX1009, которые не имеют усиления из-за очень высоких и очень низких рабочих температур, в которых они предназначены для работы. Датчики без усиления имеют довольно короткую дальность передачи, обычно не более 6,1–9,1 м (20–30 футов). Это потому, что сила сигнала очень мала. Это также делает их восприимчивыми к электромагнитному шуму из окружающей среды.

Если вы хотите узнать больше об измерении давления высокотемпературных сред, прочтите эту статью.

Рис. 8. с усилением
Датчики с усилением используют внутреннюю электронику преобразования сигнала для создания более сильного сигнала. Это делает их менее восприимчивыми к окружающему шуму и позволяет преодолевать большие расстояния до своих приемных устройств. Датчики с внутренними усилителями имеют меньший диапазон рабочих температур из-за температурных ограничений электроники формирования сигнала внутри датчика.

Датчики с токовым выходом могут посылать усиленный сигнал до 304 единиц.8 м (1000 футов) и по-прежнему обеспечивают высокую точность. Как правило, датчики на выходе по напряжению могут поддерживать точность до 30,5 м (100 футов).

Цифровой
Третий тип датчика, классифицируемый по выходу, — это датчик цифрового выхода. Этот тип выхода может обеспечить самый низкий уровень шума и самые большие доступные расстояния передачи. Доступно несколько стилей связи, например DPGM409 и PX409-USBH или устройства RS485.

Соображения по точности

Рисунок 9.
Стандартная калибровка по 5 точкам.

Общий диапазон ошибок
Это максимальное отклонение диапазона для любого выхода с учетом всех определенных источников ошибок, таких как вибрация, температура или влажность. Выражается в процентах от номинальной мощности.

Рис. 10.
Статическая точность
Объединенные эффекты линейности, гистерезиса и повторяемости. Статическая точность выражается как ±% от диапазона и относится к BSL. Диапазон статической погрешности является хорошим показателем точности, которую можно ожидать от датчика давления или тензодатчика при постоянной температуре.

BSL (Лучшая прямая линия)
BSL — максимальное отклонение ошибки от базовой линии, разделенное пополам. Чтобы определить эту линию, выходы от нуля и полной шкалы используются для создания линии. Остальные точки данных измеряются на основе расстояния от этой линии. Лучшая прямая линия — это линия, которая имеет тот же уклон, что и базовая линия терминала, но смещена так, чтобы ошибки равномерно разделялись по обе стороны от BSL. Лучшая прямая линия используется для описания характеристик линейности.

Нелинейность
Это максимальное отклонение калибровочной кривой от прямой линии, проведенной между выходами без нагрузки и номинальными выходами. Он выражается в процентах от номинальной мощности и измеряется только при увеличении нагрузки давления.

Гистерезис
Гистерезис — это максимальная разница между выходными показаниями для одного и того же приложенного давления при приближении с противоположных направлений. Он определяется путем сравнения выходных данных для значения давления, сначала полученного при приближении от более низкого давления, а затем при приближении от более высокого давления.Чем ближе два показания, тем меньше гистерезис. Эту ошибку сложно исправить.

Повторяемость
Максимальная разница между выходными показаниями для повторяющихся нагрузок давлением при одинаковой нагрузке и условиях окружающей среды называется повторяемостью. Чем ближе эти показания, тем выше воспроизводимость. Эту ошибку исправить нельзя.

Датчик давления

: типы, принцип работы

— Реклама —

Датчик давления, часто называемый датчиком давления, представляет собой датчик, который преобразует давление в аналоговый электрический сигнал.Несмотря на многочисленные типы датчиков давления, одним из наиболее распространенных является тензометрический базовый датчик.

Преобразование давления в электрический сигнал достигается за счет физической деформации тензодатчиков, которые прикреплены к диафрагме датчика давления и подключены к мосту Уитстона. Давление, подаваемое на датчик давления, вызывает отклонение диафрагмы, что вызывает деформацию датчиков. Деформация вызовет изменение электрического сопротивления, пропорциональное давлению.

Принцип работы преобразователя давления

Наиболее популярные конструкции преобразователя давления содержат коллектор силы, такой как эластичная диафрагма, и преобразовательный элемент, в котором используется зависимый резистивный, индуктивный или емкостной метод для создания электрического сигнала. Тип используемого электрического устройства определяет компоненты, используемые для изготовления датчика давления.

В датчиках давления используются тензодатчики для измерения действующей на них силы.Тензодатчики выдерживают деформацию, и эта деформация вызывает изменение генерируемого им напряжения. Измерение давления основано на степени изменения обнаруженного напряжения.

Существуют также исключительные преобразователи давления, в которых используются емкостные или пьезоэлектрические датчики, а не тензодатчики. Они предпочтительны в зависимости от диапазона, рабочей среды и точности, ожидаемой от датчика давления. Чтобы узнать больше о том, как работает датчик давления, щелкните здесь.

Датчик давления преобразует давление в аналоговый электрический сигнал (Ссылка: omega.com )

Как работает датчик статического давления?

Датчики статического давления оценивают давление застойной жидкости, которые являются наиболее распространенными инструментами контроля давления.

Когда жидкость оказывает давление на датчик давления, тензодатчик (или датчик) деформируется. Эта деформация происходит при изменении напряжения.Величие вариаций согласуется с силой давления. Как только давление сбрасывается, тензодатчик возвращается к своей исходной конфигурации.

Пьезоэлектрические преобразователи давления являются иллюстрацией преобразователей динамического давления или нестатических преобразователей. Они не могут измерить статическое давление; в качестве альтернативы они измеряют колебания давления в режиме реального времени.

Пьезорезистивный датчик давления Датчик давления

В обычном пьезорезистивном датчике давления датчик давления использует датчики напряжения, прикрепленные к гибкой диафрагме, так что любое изменение давления вызывает небольшую деформацию или деформацию в веществе диафрагмы.Деформация изменяет сопротивление тензодатчиков, которое обычно регулируется как мост Уитстона, обеспечивая удобное преобразование измерения давления в практический электрический сигнал.

Схема тензометрического датчика давления (Ссылка: Instrumentationtools.com )
Емкостной датчик давления

Датчик давления с переменной емкостью имеет диафрагму и другой электрод, прикрепленный к негерметичной поверхности с зазором определенного расстояния в пределах диафрагма и электрод.Изменение давления увеличивает или уменьшает зазор, что приводит к изменению емкости. Это изменение емкости затем преобразуется в правильный сигнал.

Схема емкостного датчика давления (Ссылка: Instrumentationtools.com )

Типы давления

Для измерения давления определены три эталона давления. Хотя существуют и другие типы, такие как герметичные манометры или вакуумметры, все они могут быть разделены на эти три класса: абсолютное давление, манометрическое давление и дифференциальное давление.

Абсолютное давление

Абсолютное давление измеряет давление относительно полного вакуума, используя абсолютный ноль в качестве точки отсчета. Датчик барометрического давления — яркий тому пример. Они также включают герметичный манометр, где сигнал был смещен, чтобы соответствовать манометрическому давлению во время строительства.

Манометрическое давление

Манометрическое давление измеряет давление относительно атмосферного. Датчик давления в шинах является примером оборудования для измерения манометрического давления.Он также включает в себя датчики вакуума, чьи сигналы инвертируются, чтобы их сигнал был положительным, когда определяемое давление находится под атмосферным давлением.

Дифференциальное давление

Преобразователь перепада давления измеряет разницу между двумя давлениями на каждой стороне датчика. Датчик давления жидкости — очевидный пример, в котором измеряются уровни жидкости над и под жидкостью.

Различные типы давлений (Ссылка: blog.wika.com )

Типы выходных сигналов давления

Преобразователь давления генерирует электрический выходной сигнал, сравнимый с давлением, приложенным к электрическому источнику и источнику давления. Это может быть ток, напряжение или частота. Доступны четыре различных выходных параметра, их краткое описание и наилучшие условия использования приведены ниже.

Цифровой датчик давления

Цифровой сигнал более универсален, чем аналоговые сигналы; обычно их называют интеллектуальными устройствами, поскольку они предлагают большую функциональность, чем другие типы датчиков.

Интеллектуальные датчики могут регулярно отображать свое местоположение, регистрировать данные, информацию о калибровке, обнаруживать аномальные события или активировать сигналы тревоги. При определении цифрового выхода, поскольку доступно множество протоколов связи, важно выбрать протокол, совместимый с вашей системой. В зависимости от протокола дальность передачи может превышать милю. Датчики этого типа подходят для интеллектуального зондирования и применения на больших расстояниях передачи.

Милливольтный выход Датчик давления (логометрический)

В этом типе выходного сигнала фактический выходной сигнал прямо пропорционален входному возбуждению или мощности датчика давления.Если возбуждение будет чередоваться, результат тоже будет разным. Из-за его зависимости от уровня возбуждения для преобразователей милливольт рекомендуется использовать контролируемые источники питания.

Датчик не должен находиться в электрически зашумленном состоянии, так как выходной сигнал очень слабый. Однако эти устройства могут легко работать в более суровых условиях, чем другие типы выходов, из-за отсутствия на выходе преобразования сигнала и компактной конструкции. Их можно использовать на малых расстояниях, когда существует минимальный электрический шум или требуется более надежный датчик давления для работы в суровых условиях.

Напряжение Преобразователь давления

В датчиках давления этого типа выходной сигнал обычно составляет 0-5 или 0-10 В постоянного тока, и он обеспечивает более высокий выходной сигнал по сравнению с преобразователем милливольт из-за состояния его интегрального сигнала.

Независимо от модели, выходной сигнал преобразователя обычно не является прямой функцией входного сигнала. Это означает, что неуправляемых источников питания часто бывает достаточно, если они находятся в пределах определенного диапазона мощности. Они имеют выходной сигнал более высокого уровня и, следовательно, не так чувствительны к электрическому шуму, как преобразователи милливольт.Их можно использовать в промышленных условиях с относительно высоким уровнем шума.

мА Выход Преобразователь давления

мА является наиболее популярным выходным сигналом. Сигнал может отличаться от 0 до 4 мА и до 20 мА и создается как двухпроводное устройство, в котором линии электропитания подают напряжение на датчик, а датчик регулирует ток в цепи, формируя сигнал.

Эта конфигурация представляет сигнал, более устойчивый к электрическому сопротивлению, и позволяет использовать длинные кабели, превышающие 1000 футов.Они используются в средах с высоким уровнем электрического вмешательства или там, где требуются большие дальности передачи.

Чтобы узнать больше о типах датчиков давления, посетите здесь!

Выбор подходящего датчика давления

Вы все еще должны выбрать, какой тип датчика давления или датчика давления вам нужен?

Как упоминалось ранее, существуют различные типы датчиков давления для множества применений. У каждого датчика давления есть несколько аспектов, которые будут влиять на его работу и области применения, для которых датчик давления работает лучше всего.При выборе датчика давления необходимо учитывать эти шесть критериев:

Применение и тип измерения

Стандартный тип измерения давления включает: абсолютное, манометрическое, вакуумное, дифференциальное, двунаправленное и герметичное. Приложение ограничивает наиболее подходящий тип измерения.

Диапазон давления

По-видимому, наиболее важным решением при выборе датчика давления является диапазон входного сигнала.При выборе подходящего датчика давления в зависимости от диапазона измерения давления необходимо учитывать два противоречивых соображения:

  • Необходимо учитывать точность прибора и его защиту от избыточного давления. С точки зрения точности, диапазон датчика должен быть достаточно низким, т. Е. Стандартное рабочее давление около среднего диапазона. Таким образом, эта ошибка, обычно в процентах от полной шкалы, сводится к минимуму.
  • С другой стороны, всегда следует допускать последствия повреждения из-за избыточного давления из-за дефектной конструкции, ошибок эксплуатации или невозможности изолировать прибор во время испытаний под давлением и запуска.Следовательно, важно определить требуемый диапазон и требуемую степень защиты от избыточного давления.

Технологическая среда

Технологическая жидкость — еще один важный фактор при выборе подходящего преобразователя. Эти материалы, которые часто рассматриваются как «смачиваемые части», следует выбирать так, чтобы они соответствовали измеряемой жидкости. Для помещений с чистым и сухим воздухом разрешены практически любые материалы. Однако для условий использования морской воды следует соблюдать сплавы с высоким содержанием никеля, такие как сплав 718 INCONEL® (UNS N07718).Другие популярные материалы включают нержавеющую сталь 316 и нержавеющую сталь 17-4. Также, если нужна сантехника, это стоит учитывать.

Диапазон температур и среда установки

Очень высокие колебания температуры или вибрации ограничивают правильную работу преобразователей. Для экстремальных температур предпочтительна тонкопленочная технология. Экстремальные температуры также вызывают ошибки на выходе преобразователя.

Среды с высокой вибрацией поддерживают меньшие не усиленные преобразователи.Корпус преобразователя следует выбирать в соответствии как с классификацией электрических зон, так и с условиями коррозии конкретной установки.

Необходимо учитывать защиту от коррозии, как при разбрызгивании агрессивных жидкостей, так и при воздействии коррозионных газов за пределами корпуса.

Обычно это достигается размещением их внутри продуваемых или взрывозащищенных домов или в искробезопасных конструкциях. Если требуется компактный размер, лучшим выбором будет датчик без усиления.

Точность

Манометры бывают различной точности. Точность типичных датчиков давления может отличаться от 0,5% до 0,05% от полной шкалы. Требуется более высокая точность, когда важно считывать значения давления на небольшой глубине для критических требований.

Выход

Существуют различные типы выходов для датчиков давления, которые обсуждались ранее. В общем, очень важно учитывать ограничения и преимущества каждого вывода, чтобы определить лучший тип вывода для конкретного приложения.

Приложения для датчиков давления

Далее будут упомянуты некоторые основные области применения датчиков давления:

  • Эти преобразователи подходят для любых приложений, работающих с жидкостями, где требуется точное определение силы с высоким разрешением.
  • Эти преобразователи используются там, где требуется измерение силы с объединенным цифровым дисплеем.
  • Эти преобразователи используются в насосах с обратной связью для проверки рабочих характеристик насоса.
  • Эти преобразователи используются в качестве реле давления с электронным переключением.
  • Эти преобразователи подходят для приложений с замкнутым контуром, таких как электронная компенсация давления, которые вычисляют силу до и после сопоставимого дозирующего крана для точного измерения падения давления.

Преобразователи давления предназначены для использования в промышленности. Однако из-за неправильной подгонки возникает ряд проблем. При устранении этой проблемы устройство должно быть установлено в правильном месте.Если датчик препятствует работе во время работы, определите передаваемый ампер, если только не будет исходное напряжение без давления от датчика, а также укажите полную мощность при давлении. Если сигнал не изменяется, мы можем понять, что устройство не реагирует на давление. В некоторых штатах проблемы датчика можно решить путем ремонта, повторной калибровки; в противном случае этот преобразователь можно заменить.

Преимущества и недостатки датчика давления

Вот некоторые плюсы и минусы использования датчиков давления:

Преимущества :

1) Они экономичны, надежны и быстро реагируют.

2) Они обладают превосходной точностью, отличной стабильностью, регулируемым выходом и соответствующей линейностью.

3) Они представляют собой высокочувствительные измерительные приборы с быстрым откликом и небольшими размерами.

Недостаток:

1) У них средняя точность, подверженная дрейфу или нестабильности.

2) Они задержали реакцию на удары и вибрацию.

3) Они работают в узком диапазоне температур, с умеренной точностью и вялым откликом.

4) Они относительно чувствительны к условиям окружающей среды.

— Объявление —

Электронные датчики давления Принцип | Контрольно-измерительные инструменты

Электронные датчики / датчики давления Принцип

Большинство электронных датчиков давления включают в себя различные элементы, такие как первичный датчик давления, и он используется для изменения измеряемой электрической величины для создания пропорционально изменяемого электронного сигнала.

Поскольку форма энергии передается от механической к электрической природе, эти устройства часто классифицируются как преобразователи.

Как правило, электрические датчики давления более точны и имеют гораздо меньшее время отклика. Отчасти это связано с точностью их электронной схемы, а отчасти с чрезвычайно малым перемещением, которое требуется упругим элементам для получения необходимого электрического изменения.

Уменьшенный ход почти исключает дрейф, трение и гистерезис, характерные для сильфонов, диафрагм и элементов Бурдона, которые требуют относительно больших перемещений.

Емкостной датчик давления

Емкостной датчик давления работает по принципу, согласно которому, если чувствительная диафрагма между двумя пластинами конденсатора деформируется из-за перепада давления, между ним и двумя пластинами возникает дисбаланс емкости.

Этот дисбаланс обнаруживается в цепи емкостного моста и преобразуется в выходной ток постоянного тока от 4 до 20 мА.

Это показано на рисунке, где движение гибкой диафрагмы относительно неподвижной пластины определяется изменением емкости. Вторичная изолирующая диафрагма используется для защиты чувствительной диафрагмы.

В конденсаторах другого типа используются полые концентрические металлические цилиндры. Емкость этого типа, как и у плоской пластины, пропорциональна площади.

Этот принцип можно применить к измерению перепада давления, как показано на рисунке. Давление, действующее на изолирующие диафрагмы, создает аналогичные давления в силиконовом масле, заполняющем пространство между ними.

Чистая сила, пропорциональная разнице между двумя давлениями, действует на металлическую чувствительную диафрагму и отклоняет ее в одну или другую сторону, в зависимости от того, какое входное давление больше.

Каждая пластина образует конденсатор с чувствительной диафрагмой, которая электрически соединена с преобразователем в металлическом корпусе.

Чувствительная диафрагма и конденсатор, таким образом, образуют дифференциальный разделительный конденсатор. Когда два входных давления равны, диафрагма расположена по центру и емкости равны.

Разница в двух входных давлениях вызывает смещение чувствительной диафрагмы и воспринимается как разница между двумя емкостями.

Тензометрический датчик давления

Деформация определяется как деформация или изменение формы материала в результате приложенных сил.

Тензодатчик — это устройство, которое использует изменение электрического сопротивления провода при деформации для измерения давления.

Тензодатчик преобразует механическое движение в электрический сигнал, когда длина провода изменяется за счет растяжения или сжатия, изменяя диаметр провода и, следовательно, изменяя электрическое сопротивление.

Изменение сопротивления — это мера давления, вызывающего механическую деформацию. Это измеряется мостовой схемой Уитстона, предпочтительно с нулевым балансом, так что тензодатчик не пропускает ток.

Измерительное устройство в сборе включает в себя чувствительный элемент (трубку Бурдона, сильфон или диафрагму), тензодатчик, прикрепленный к элементу, стабильный источник питания и считывающее устройство.

Элемент тензодатчика и типовой преобразователь показаны на рисунке ниже

Пьезоэлектрический датчик давления

Пьезоэлектричество определяется как создание электрического потенциала из-за давления на определенные кристаллические вещества, такие как кварц, соль Рошеля, турмалин, титанат бария, дегидрофосфат аммония и другие керамические кристаллы.

Этот пьезоэлектрический эффект используется для измерения давления, силы или ускорения. Основной интерес здесь заключается в его использовании в качестве датчика давления.

Кварц — наиболее часто используемый кристалл, создающий пьезоэлектрический эффект. Были разработаны синтетические кристаллы, которые производят такой же эффект и, как правило, имеют более высокую чувствительность, чем природные кристаллы.

Природа пьезоэлектрического устройства заключается в создании электрического потенциала при его деформации или напряжении.В статическом состоянии его потенциал падает, что приводит к ошибке.

Эта характеристика несколько ограничивает его использование. В качестве устройства давления он наиболее полезен там, где часто происходят колебания давления.

Он особенно подходит для измерения переходных процессов давления в баллистике, в двигателях внутреннего сгорания или в реакционных процессах, где давление изменяется быстро.

Основными преимуществами пьезоэлектрических устройств являются линейная зависимость между изменением давления и выходным напряжением и их высокочастотная характеристика (до 106 Гц для кварца).

Неоспоримым преимуществом пьезоэлектрического устройства является его чувствительность к колебаниям температуры. Воспроизводимые результаты не достигаются, если температуры не поддерживаются в жестких пределах.

Кредиты: N Asyiddin

Принцип работы датчика перепада давления

Другая распространенная конструкция электрического датчика давления работает по принципу дифференциальной емкости. В этой конструкции чувствительный элемент представляет собой тугую металлическую диафрагму, расположенную на равном расстоянии между двумя неподвижными металлическими поверхностями, состоящую из трех пластин для дополнительной пары конденсаторов.Электроизолирующая заполняющая жидкость (обычно жидкий силиконовый компаунд) передает движение от изолирующей диафрагмы к чувствительной диафрагме, а также служит эффективным диэлектриком для двух конденсаторов:

Любая разница давлений в ячейке заставляет диафрагму изгибаться в направлении наименьшего давления. Чувствительная диафрагма представляет собой пружинный элемент прецизионного изготовления, а это означает, что ее перемещение является предсказуемой функцией приложенной силы. Приложенная сила в этом случае может быть только функцией перепада давления, действующего на площадь поверхности диафрагмы в соответствии со стандартным уравнением сила-давление-площадь F = PA.

В этом случае у нас есть две силы, вызванные двумя давлениями жидкости, работающими друг против друга, поэтому наше уравнение сила-давление-площадь можно переписать, чтобы описать результирующую силу как функцию от перепада давления (P1 — P2) и площади диафрагмы: F = (P1 — P2) А. Поскольку площадь диафрагмы постоянна, а сила предсказуемо связана со смещением диафрагмы, все, что нам сейчас нужно, чтобы сделать вывод о перепаде давления, — это точно измерить смещение диафрагмы.

Вторичная функция диафрагмы как одной пластины из двух конденсаторов обеспечивает удобный метод измерения смещения.Поскольку емкость между проводниками обратно пропорциональна расстоянию, разделяющему их, емкость на стороне низкого давления увеличится, а емкость на стороне высокого давления уменьшится:

Схема емкостного детектора, подключенная к этой ячейке, использует высокочастотный сигнал возбуждения переменного тока для измерения разницы в емкости между двумя половинами, преобразуя это в сигнал постоянного тока, который в конечном итоге становится сигналом, выводимым прибором, представляющим давление.

Эти датчики давления отличаются высокой точностью, стабильностью и прочностью. Интересная особенность этой конструкции — использование двух изолирующих диафрагм для передачи давления технологической жидкости на одну чувствительную диафрагму через внутреннюю «заполняющую жидкость» — это то, что твердая рама ограничивает движение двух изолирующих диафрагм так, что ни одна из них не может заставить чувствительная диафрагма превышает предел упругости.

Как показано на рисунке, изолирующая диафрагма с более высоким давлением подталкивается к металлической раме, передавая свое движение чувствительной диафрагме через заполняющую жидкость.Если к этой стороне приложить слишком большое давление, изолирующая диафрагма просто «сплющится» о твердый каркас капсулы и перестанет двигаться. Это положительно ограничивает движение изолирующей диафрагмы, так что она не может больше воздействовать на чувствительную диафрагму, даже если приложено дополнительное давление технологической жидкости. Такое использование изолирующих диафрагм и заполняющей жидкости для передачи движения чувствительной диафрагме, которая также используется в других типах датчиков перепада давления, дает современным приборам дифференциального давления превосходную устойчивость к повреждениям из-за избыточного давления.

Следует отметить, что использование жидкой заполняющей жидкости является ключом к этой конструкции, устойчивой к избыточному давлению. Чтобы чувствительная диафрагма точно преобразовывала приложенное давление в пропорциональную емкость, она не должна контактировать с окружающим ее проводящим металлическим каркасом. Однако, чтобы какая-либо мембрана была защищена от избыточного давления, она должна контактировать с твердым упором обратного хода, чтобы ограничить дальнейший ход. Таким образом, необходимость в бесконтактном (емкостном) и контакте (защита от избыточного давления) исключают друг друга, что делает практически невозможным выполнение обеих функций с помощью одной чувствительной диафрагмы.Использование заполняющей жидкости для передачи давления от изолирующей диафрагмы к чувствительной диафрагме позволяет нам отделить функцию емкостного измерения (чувствительная диафрагма) от функции защиты от избыточного давления (изолирующие диафрагмы), так что каждая диафрагма может быть оптимизирована для отдельной цели.

Классическим примером прибора для измерения давления, основанного на датчике дифференциальной емкости, является датчик дифференциального давления Rosemount модели 1151, показанный в собранном виде на следующей фотографии:

Открутив четыре болта с преобразователя, мы можем снять два фланца с капсулы давления, открывая изолирующие диафрагмы для общего обзора:

На фотографии крупным планом показана конструкция одной из изолирующих диафрагм, которая, в отличие от чувствительной диафрагмы, спроектирована как очень гибкая.Концентрические гофры в металле диафрагмы позволяют ей легко изгибаться под действием приложенного давления, передавая давление технологической жидкости через силиконовую заполняющую жидкость на тугую чувствительную диафрагму внутри ячейки дифференциальной емкости:

Внутри того же дифференциального емкостного датчика (обнаруженного путем разрезания датчика Rosemount модели 1151 пополам с помощью отрезной пилы) показаны изолирующие диафрагмы, чувствительная диафрагма и порты, соединяющие их вместе:

Здесь левая изолирующая диафрагма лучше видна, чем правая изолирующая диафрагма.На этой фотографии отчетливо виден небольшой зазор между левой изолирующей диафрагмой и внутренней металлической рамой по сравнению с просторной камерой, в которой находится чувствительная диафрагма.

Напомним, что эти внутренние пространства обычно заняты заполняющей жидкостью, предназначенной для передачи давления от изолирующих диафрагм на чувствительную диафрагму. Как упоминалось ранее, твердая металлическая рама ограничивает ход каждой изолирующей диафрагмы таким образом, что изолирующая диафрагма с более высоким давлением «опускается» на металлический каркас до того, как чувствительная диафрагма может быть вытолкнута за пределы своего предела упругости.Таким образом, чувствительная диафрагма защищена от повреждения из-за избыточного давления, поскольку изолирующие диафрагмы просто не могут двигаться дальше.

Датчик дифференциальной емкости по своей сути измеряет разницу в давлении, приложенном между двумя его сторонами. В соответствии с этой функциональностью, этот прибор для измерения давления имеет два порта с резьбой, в которые может подаваться давление жидкости. В следующем разделе этой главы будет подробно рассказано об использовании датчиков дифференциального давления.Вся электронная схема, необходимая для преобразования дифференциальной емкости датчика в электронный сигнал, представляющий давление, размещена в синей структуре над капсулой и фланцами. Более современная реализация принципа измерения дифференциального емкостного давления — датчик перепада давления Rosemount модели 3051:

Как и все устройства дифференциального давления, этот прибор имеет два порта, через которые давление жидкости может подаваться на датчик.Датчик, в свою очередь, реагирует только на разницу давления между портами.

Конструкция дифференциального емкостного датчика в этом конкретном приборе давления более сложна, поскольку плоскость чувствительной диафрагмы перпендикулярна плоскости двух изолирующих диафрагм. Эта «компланарная» конструкция более компактна, чем датчик старого типа, и, что более важно, она изолирует чувствительную диафрагму от напряжения болта фланца.

Обратите особое внимание на то, что узел датчика не встроен в прочный металлический каркас, как это было в случае с оригинальной конструкцией Rosemount.Вместо этого датчик в сборе относительно изолирован от корпуса и соединен только двумя капиллярными трубками, соединяющими его с изолирующими диафрагмами. Таким образом, напряжения внутри металлической рамы, создаваемые фланцевыми болтами, практически не влияют на датчик.

Вырезанная модель преобразователя DP Rosemount модели 3051S («супермодуль») показывает, как все это выглядит в реальной жизни:

Давление технологической жидкости, приложенное к изолирующей диафрагме (ам), передается для заполнения жидкости внутри капиллярных трубок, передавая давление на туго натянутую диафрагму внутри дифференциального емкостного датчика.Как и в классической конструкции Rosemount модели 1151, мы видим, что заполняющая жидкость выполняет несколько функций:

  • Наполняющая жидкость защищает чувствительную чувствительную диафрагму от контакта с нечистыми или агрессивными технологическими жидкостями
  • Наполняющая жидкость позволяет изолирующим мембранам обеспечивать защиту чувствительной мембраны от избыточного давления
  • Заполняющая жидкость обеспечивает среду с постоянной диэлектрической проницаемостью для функционирования цепи дифференциальной емкости

Преобразователи давления Rosemount серии «супермодуль» имеют ту же компланарную конструкцию, что и более ранние модели 3051, но добавляют новую конструктивную особенность: включение электроники в модуль из нержавеющей стали, а не в окрашенный в синий цвет верхний корпус.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *