Принцип работы инжектора, фото, видео, типы инжектора
Принцип работы инжектора в последнее время интересует многих автолюбителей. И это не удивительно, ведь в последние годы инжекторные автомобили существенно потеснили карбюраторные, а в ближайшем будущем вообще полностью их заменят.
Хотя многие автомобилисты со стажем со скептицизмом относятся к системам принудительного впрыска топлива, обосновывая свою позицию сложностью конструкции, дороговизной в обслуживании и ремонте.
Но для этих людей все же можно найти оправдание, ведь когда все время ездишь на карбюраторном отечественном автомобиле, то про карбюратор знаешь по сути все.
Поэтому ремонт и обслуживание топливной системы у таких людей не вызывает проблем, а вот что делать с инжекторной топливной системой многие еще не знают.
Хотя если захотеть понять принцип работы инжектора, то все на много проще, чем кажется. Как говорится, было бы желание.
Однако желания мало, чтобы понять принцип работы инжектора, необходима соответствующая информация, которая помогла бы быстро разобраться в этом вопросе.
Система TCCS
Возьмем, к примеру, систему принудительного впрыска топлива от фирмы Toyota. Называется она TCCS — Toyota Computer Control System. Данная система является одной из передовой и самой надежной на данное время и поэтому заслуживает особого к себе внимания. Однако она дорогая и сложная в обслуживании.
Принцип работы инжектора
Принцип же работы инжектора других топливных систем аналогичный и основывается он на следующих процессах.
Воздух под давлением поступает в двигатель. Но предварительно поток воздуха анализируется специальным датчиком, который вычисляет объем воздуха в данный момент времени.
Эти данные передаются на компьютер, который анализирует не только данные с датчика расхода воздуха, но и другие данные по работе двигателя, такие как частота вращения коленвала двигателя, температура двигателя и воздуха и т.д.
После того как вся полученная информация обработана, компьютер определяет количество топливо, которое является оптимальным для данного объема воздуха и при этом было получено максимальное КПД (коэффициент полезного действия) от двигателя.
После обработки всей информации на форсунки подается электрически разряд определенной продолжительности. Форсунки открываются на необходимый период времени и впрыскивают заданную дозу топлива во впускной коллектор.
Принцип работы инжекторного ДВС с прямым впрыском.
Вот и весь основной принцип работы инжектора. Конечно же все это происходит очень быстро буквально за долю секунды.
Сложная составляющая
Основой и самой сложной составляющей, казалось бы, не сложного процесса, является специальная программа, которая прописана в компьютере.
Сложность ее заключается в том, что в ней должны быть учитаны и прописаны все внутренние и внешние условия работы двигателя и его систем. А это не так просто и сделать.
В остальном же, если рассматривать механическую сторону всей этой системы, то принцип работы инжектора не так уж и сложен.
Про что уже и говорилось выше.
Устройство системы принудительного впрыска топлива
Из чего же состоит система принудительного впрыска топлива.
Как мы уже говорили, это:
- Специальная программа, прописанная для каждой марки автомобиля;
- Клапан холостых оборотов;
- Топливный перепускной клапан;
- Форсунки;
- Различные датчики (в том числе и датчик кислорода, он же лямда-зонд).
Типы инжекторов
Так же хотелось бы отметить тот факт, что системы принудительного впрыска топлива встречаются двух типов.
Первый тип
Первый предназначен для стран Европы, Японии, США, в общем, для развитых стран, где существуют строгие экологические нормы на выброс токсических веществ в атмосферу, и называется он тип инжектора с обратной связью. В таких системах уже предусмотрены и лямбда-зонд и каталитический нейтрализатор.
Второй
Другой тип не имеет обратной связи, и такое оборудование в нем не предусмотрено.
Соответственно такие автомобили дешевле. И выпускаются такие автомобили для стран, где не очень жесткие экологические нормы и законы.
Вкратце, не углубляясь в сложные технологические процессы, мы рассмотрели принцип работы инжектора автомобиля.
Конечно, он в некоторой мере сложнее, чем у карбюратора, но сложность эта оправдана более экономичным расходом топлива, и более высоким КПД работы двигателя в разных режимах работы. Да и время диктует свое.
Когда-то, и инжектор будет заменен более совершенной, но в тоже время еще сложной системой. Новые технологии, от этого не куда не денешься.
7 мифов о чистке инжектора.
Как устроен инжектор и принцип его работы
Содержание:
- Определение понятия
- История создания
- Типы форсунок
- Устройство системы
- Принципы работы
- Преимущества и недостатки
- Заключение
Карбюраторные автомобили давно сменили более мощные инжекторные.
Но принцип работы этой системы пока знают не все водители. Устройство инжектора не сложное, достаточно разобраться в его деталях и их функционировании.
Определение понятия
Начинающим водителям сначала нужно разобраться в том, что такое инжектор в автомобиле. И только после этого следует узнать о принципах его работы. Инжектор – это система или отдельная форсунка, установленная на мотор. Он необходим для распределения топлива – впрыскивает его в цилиндры или впускной коллектор. Именно в этом и заключается его отличие от карбюратора.
В зависимости от места установки системы инжекторы делятся на несколько видов. Но любой из них может обеспечить точечную подачу топлива в автомобильный мотор или его положение в камере сгорания, где затем образуется топливно-воздушная смесь.
Не имеет значения, на каком топливе ездит автомобиль. Инжектор справляется как с бензином, так и с дизелем.
История создания
Впервые инжектор был установлен в 1951 году компанией Бош на купе Голиаф 700 Спорт.
А через три года Мерседес начали ставить систему на свои машины. Первые опыты использования инжектора оказались успешными.
Но на самом деле такая установка применялась еще раньше – в 30-х годах, но только на боевой авиации. Первые устройства назвать идеальными сложно, так как они мало увеличивали мощность мотора. А об экономии топлива или охране окружающей среды в то время практически не заботились.
В 1940-х об инжекторах из-за небольшого КПД забыли на время, так как появились реактивные двигатели. Не считая усилий компаний Мерседес и Бош, активно использовать систему начали только в 80-х. Тогда производители автомобилей внедряли устройство в свои машины.
В то время уже значительно внимание уделялось снижению количества выбрасываемых в атмосферу газов. Из-за этого требования многие инженеры решили восстановить и модернизировать старые модели форсунок. Они быстро поняли, как работает инжектор, разобрались с его устройством и внедрили его в массовое производство. Результаты не заставили себя долго ждать – большинство современных машин работают именно на такой системе.
Типы форсунок
Существует всего два вида форсунок – электронные и механические. Первый вариант более простой. В механическом инжекторе топливо идет сразу к форсункам, с помощью блока управления оно дозируется и отправляется в камеру сгорания. Именно такой инжектор устанавливают на современных автомобилях. Он дает возможность часто пользоваться машиной.
В механической форсунке нет электронного блока управления. Дозировкой топлива занимаются распределительные клапаны. Они подготавливают очередную порцию в зависимости от уровня открытости системы. Таким было устройство инжектора, произведенного в 30-х годах. Но механические системы встречаются и сегодня – они установлены на старых автомобилях.
Стоит более детально рассмотреть электронные форсунки. Они делятся на подвиды:
электромагнитные;
электрогидравлические;
пьезоэлектрические.
Электромагнитные форсунки используются в бензиновых двигателях. У них простая конструкция, основные детали – электромагнитный клапан с иглой и сопло.
Блок управления позволяет контролировать работу инжектора, а также обеспечивает напряжение на обмотке клапана в подходящий момент.
Электрогидравлические форсунки подходят для дизельных двигателей. Это клапаны с камерами управлениями и двумя типами дросселей – впускными и сливными. Устройство инжектора этого вида основано на давлении топлива в каждый момент работы автомобиля. Блок управления у таких форсунок электронный. Он посылает сигналы клапану, тогда инжектор приходит в действие.
Пьезоэлектрическая форсунка подходит только для определенного вида дизельных двигателей – с впрыскивающей системой Common Rail. Но у такого инжектора есть свои преимущества: скорость реакции, которая гарантирует несколько подач топливной жидкости за полный цикл.
Принцип работы пьезоэлектрической форсунки основывается на гидравлике. Поршень толкателя срабатывает благодаря увеличению длины пьезоэлементов, на которые воздействует сигнал блока управления. Дозу топлива определяет длительность этого воздействия и давление жидкости в топливной раме.
Устройство системы
Устройство инжектора простое, хотя работа системы довольно сложная. Основные элементы:
ЭБУ;
форсунки;
регуляторы давления;
электрический бензонасос.
Электронный блок управления предназначен для контроля работы системы. С его помощью водитель может обеспечить беспрерывное функционирование инжектора. Форсунки – немаловажная деталь системы. Именно форсунки дозируют топливо и передают его в камеру сгорания. Рекомендуется через каждые 30 000 км, проезженных на автомобиле, чистить их от остатков бензина или дизеля. Регуляторы давления стабилизируют работу инжектора. С их помощью топливо выталкивается через форсунки в камеру сгорания.
А электрический бензонасос подает бензин в двигатель. Он служит связующим звеном между мотором и бензобаком, которые расположены в разных концах машины. Для механических инжекторов на старых автомобилях использовались механические бензонасосы. У них меньше КПД и более короткий эксплуатационный срок.
В устройство инжектора также входят датчики. Они показывают температуру нагрева и количество масла, напряжение в двигателе.
В зависимости от типа инжектора меняется и его строение. Электромагнитная форсунка состоит из якоря и сопла, иглы, уплотнения, пружины, обмотки возбуждения и электромагнитного разъема, а также сетчатого фильтра. Эти детали объединены в единую систему под общим корпусом.
Электрогидравлический инжектор не имеет сетчатый фильтр. Но в нем есть другие детали: камера управления, штуцер подвода бензина, сливной дроссель, поршень. Именно они и обеспечивают дозированную подачу топлива в камеру сгорания.
В пьезоэлектрической форсунке есть все эти составляющие, но присутствуют и дополнительные детали. К ним относятся: нагнетательный канал, переключательный клапан. Они и обеспечивают стабильную работу системы.
Независимо от типа инжектора его функционирование не изменяется. Оно основано на одних и тех же принципах действия.
Принципы работы
Основные принципы работы инжектора состоят из нескольких этапов.
Они тесно связаны между собой, хотя имеются и промежуточные действия. Всего этапов четыре:
1. Измерение массы воздуха.
2. Передача показателей в ЭБУ.
3. Расчет количества топлива.
4. Воздействие заряда на форсунки.
Сначала специальный датчик измеряет массу воздуха, который поступает в инжектор. Затем эти показатели система передает в блок управления. Сюда же доходит информация и от других датчиков, которые измеряют температуру, скорость движения коленного вала. После этого система подсчитывает количество топлива, необходимого для работы двигателя. И на последнем этапе инжектор воздействует длительными электрическими зарядами на форсунки, из-за чего они открываются и выливают бензин в коллектор из магистралей.
Самая сложная работа проходит в блоке управления, поэтому его называют мозгом системы. Это мини-компьютер с программой, которая получает данные и моментально их анализирует, быстро реагирует на все изменения в системе.
Для стабильной работы инжектора понадобится еще две детали – кислородный датчик и каталитический нейтрализатор.
Первый способен передать ЭБУ информацию о состоянии топлива и уровне токсичности выхлопных газов. А второй используется для уничтожения недогоревших частиц.
Преимущества и недостатки
У каждого устройства есть свои недостатки, не стал исключением и инжектор. Но преимуществ у него все же намного больше. Основные сильные стороны:
экономия топлива;
увеличение мощности автомобиля;
снижение токсичности выхлопов;
защита машины от угона;
устранение ручной регулировки топливной подачи.
Карбюраторы не экономили топливо, а расходовали большое количество. Инжектор позволяет сократить расходы, при этом рабочие обороты снижаются, а мощность двигателя увеличивается. Запуск мотора стал более простым – с этой системой он превратился в автоматизированный. Система обеспечивает поддержку оборотов на холостом ходу.
Управление мотором расширилось, хотя исчезла необходимость регулировать впрыски топлива вручную. Снизилась токсичность газов, которые образуются при сгорании бензина и выходят через выхлопную трубу.
Работа инжектора больше не зависит от атмосферного давления, поэтому авто можно использовать в горах и других местностях, где воздух разрежен.
Но важно учесть и некоторые недостатки системы:
требования к качеству топлива;
особенная диагностика;
высокое давление внутри инжектора.
Придется использовать только качественное топливо, так как в противном случае форсунки системы будут постоянно забиваться несгоревшими остатками. Диагностику и ремонт смогут провести специалисты в СТО, самостоятельно разобраться в электронном инжекторе сложно.
Система очень чувствительна к перепадам напряжения, она зависит от электропитания. Внутри нее топливо постоянно находится под высоким давлением. Из-за этого во время аварий автомобиль может легко загореться и взорваться. На большинстве современных машин во избежание таких ситуаций устанавливают контроллер.
Заключение
Инжектор нельзя назвать очень простым устройством. Но он позволяет использовать автомобиль на более высокой мощности и при этом меньше загрязнять окружающую среду.
А отремонтировать его не проблемно – этим занимаются на каждом СТО. Да и определить неисправность легко: буду происходить сбои при запуске двигателя. Начинающим и опытным водителям следует задуматься о покупке современной машины именно с электронным инжектором.
Выбрать инструктора:
- Автоинструктор Юлия
- Автоинструктор Марина
- Автоинструктор Игорь
- Автоинструктор Екатерина
- Автоинструктор Ася
- Автоинструктор Светлана
- Автоинструктор Юрий
- Автоинструктор Оксана
- Автоинструктор Дмитрий
- Автоинструктор Светлана
Отзывы:
Все отзывы
КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИПЫ РАБОТЫ
Впрыск топлива – это подача топлива в двигатель внутреннего сгорания, чаще всего в автомобильный двигатель, с помощью форсунки.
Система впрыска топлива лежит в основе дизельного двигателя. Создавая давление и впрыскивая топливо, система нагнетает его в воздух, сжатый до высокого давления в камере сгорания.
Топливная форсунка представляет собой механическое устройство с электронным управлением, которое отвечает за распыление (впрыск) необходимого количества топлива в двигатель, чтобы создать подходящую воздушно-топливную смесь для оптимального сгорания.
Электронный блок управления (ECU в системе управления двигателем) определяет точное количество и конкретное время необходимой дозы бензина (бензина) для каждого цикла, собирая информацию с различных датчиков двигателя. Таким образом, ЭБУ посылает командный электрический сигнал правильной продолжительности и времени на катушку топливной форсунки. Таким образом, открывается форсунка, и бензин проходит через нее в двигатель.
На одну клемму катушки форсунки напрямую подается 12 вольт, которые контролируются ЭБУ, а другая клемма катушки форсунки разомкнута.
Когда ЭБУ определяет точное количество топлива и время его впрыска, он активирует соответствующую форсунку, переключая другую клемму на массу (массу, т.е. отрицательный полюс).
ФУНКЦИИ
Система впрыска дизельного топлива выполняет четыре основные функции:
1. Подача топлива
Элементы насоса, такие как цилиндр и плунжер, встроены в корпус ТНВД. Топливо сжимается до высокого давления, когда кулачок поднимает поршень, и затем направляется в форсунку.
2. Регулировка количества топлива
В дизельных двигателях подача воздуха практически постоянна, независимо от частоты вращения и нагрузки. Если количество впрыскиваемого топлива изменяется в зависимости от частоты вращения двигателя, а момент впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.
3. Регулировка момента впрыска
Задержка воспламенения – это период времени между моментом впрыска, воспламенения и сгорания топлива и моментом достижения максимального давления сгорания.
Поскольку этот период времени практически не зависит от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, что позволяет достичь оптимального сгорания.
4. Распыление топлива
Когда топливо сжимается ТНВД, а затем распыляется из форсунки, оно тщательно смешивается с воздухом, что улучшает воспламенение. Результат — полное сгорание.
КОМПОНЕНТЫ
Задачей системы впрыска топлива является дозирование, распыление и распределение топлива по воздушной массе в цилиндре. В то же время он должен поддерживать требуемое соотношение воздух-топливо в соответствии с нагрузкой и частотой вращения двигателя.
Система впрыска топлива состоит из:
- ТНВД — нагнетает топливо до высокого давления
- Трубка высокого давления — подает топливо к форсунке
- Форсунка — впрыскивает топливо в цилиндр
- питательный насос — всасывает топливо из топливного бака
- топливный фильтр — фильтрует топливо
ТИПЫ ТОПЛИВНЫХ ИНЖЕКТОРОВ
1.
Верхняя подача — топливо поступает сверху и выходит снизу.
2. Боковая подача – топливо поступает сбоку через штуцер форсунки внутри топливной рампы.
3. Форсунки корпуса дроссельной заслонки – (TBI) Расположены непосредственно в корпусе дроссельной заслонки.
ТИПЫ СИСТЕМ ВПРЫСКА ТОПЛИВА
1. Одноточечный или дроссельный впрыск топлива
Также известный как однопортовый, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который чистый воздух сначала поступает в двигатель. TBFI работает, добавляя правильное количество топлива в воздух, прежде чем оно будет распределено по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнут проблемы с инжектором, вам нужно будет заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.
С технической точки зрения системы дроссельной заслонки очень надежны и требуют меньше обслуживания.
При этом впрыск в корпус дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно старые, поэтому техническое обслуживание будет более проблематичным, чем с более новым автомобилем с меньшим пробегом.
Еще одним недостатком TBFI является его неточность. Если вы отпустите педаль акселератора, в воздушной смеси, подаваемой в ваши цилиндры, все еще будет много топлива. Это может привести к небольшой задержке перед замедлением, а в некоторых автомобилях это может привести к выбросу несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI далеко не так экономичны, как современные системы.
2. Многоточечный впрыск
Многоточечный впрыск просто перемещает форсунки дальше вниз к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется к каждому цилиндру. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.
Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свое распыление топлива.
Каждая форсунка меньше и точнее, что обеспечивает экономию топлива. Минус в том, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаточное топливо между периодами впуска, или у вас может быть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.
Многопортовые системы отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с педали газа, эта конструкция снижает либо экономию топлива, либо производительность.
3. Последовательный впрыск
Системы последовательной подачи топлива очень похожи на многоточечные системы. При этом есть одно ключевое отличие. Последовательная подача топлива — это раз. Вместо одновременного срабатывания всех форсунок топливо подается одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан откроется, чтобы всосать его. Такая конструкция позволяет улучшить экономию топлива и производительность.
Поскольку топливо остается в порту только в течение короткого промежутка времени, последовательные форсунки обычно служат дольше и остаются чище, чем другие системы. Из-за этих преимуществ последовательные системы впрыска топлива сегодня являются наиболее распространенным типом впрыска топлива в автомобилях.
Единственным недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через несколько секунд после открытия форсунки. Если он грязный, засоренный или не отвечает, вашему двигателю будет не хватать топлива. Форсунки должны поддерживать свою максимальную производительность, иначе ваш автомобиль начнет работать с перебоями.
4. Прямой впрыск
Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямой впрыск. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят, чтобы вы поверили, что непосредственный впрыск — это новейшее и лучшее изобретение.
Что касаемо характеристик бензиновых автомобилей, то они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, а дизельные автомобили почти все имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.
В дизельных двигателях непосредственный впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с техническим обслуживанием сведены к минимуму.
В бензиновых двигателях непосредственный впрыск встречается почти исключительно в автомобилях с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно обслуживать вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение длительного времени, когда им пренебрегают, производительность быстро снизится.
МЕТОДЫ ВПРЫСКА ТОПЛИВА
Существует два метода впрыска топлива в системе воспламенения от сжатия
1.
Впрыск воздушной струей
2. Впрыск безвоздушного или твердого топлива
1. Впрыск воздушной струей
Первоначально этот метод использовался в крупных стационарных и судовые двигатели. Но сейчас это устарело. В этом методе воздух сначала сжимается до очень высокого давления. Затем поток этого воздуха впрыскивается вместе с топливом в цилиндры. Скорость впрыска топлива регулируется изменением давления воздуха. Воздух под высоким давлением требует многоступенчатого компрессора, чтобы держать баллоны с воздухом заряженными. Топливо воспламеняется от высокой температуры воздуха, вызванной высокой степенью сжатия. Компрессор потребляет около 10% мощности, развиваемой двигателем, что снижает полезную мощность двигателя. 92. Этот метод используется для всех типов малых и больших дизельных двигателей. Ее можно разделить на две системы
1. Индивидуальная насосная система: в этой системе каждый цилиндр имеет свой индивидуальный насос высокого давления и измерительный блок.
2. Система Common Rail: в этой системе топливо нагнетается многоцилиндровым насосом в систему Common Rail, давление в магистрали регулируется предохранительным клапаном. Отмеренное количество топлива подается в каждый цилиндр из общей топливной рампы.
Это все о системе впрыска топлива. Если у вас есть какие-либо вопросы относительно этой статьи, задайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт, чтобы получать больше информативных статей. Спасибо, что прочитали это.
ПРИНЦИПЫ РАБОТЫ
Форсунки управляются блоком управления двигателем (ECU). Во-первых, ECU получает информацию о состоянии двигателя и требованиях, используя различные внутренние датчики. После определения состояния и требований двигателя топливо забирается из топливного бака, транспортируется по топливопроводам, а затем нагнетается топливными насосами. Надлежащее давление проверяется регулятором давления топлива.
Во многих случаях топливо также распределяется с помощью топливной рампы для подачи в разные цилиндры двигателя. Наконец, форсункам приказано впрыскивать необходимое топливо для сгорания.
Точная требуемая топливно-воздушная смесь зависит от двигателя, используемого топлива и текущих требований двигателя (мощность, расход топлива, уровень выбросов выхлопных газов и т. д.)
Промышленный паровой инжектор | Принцип Бернулли
Перейти к содержимому На чем основан принцип работы паровых инжекторов?Принцип, объясняющий работу паровых форсунок, был установлен Даниэлем Бернулли в его книге Hydrodynamica , опубликовано в 1738 году.
Оно объясняет так называемое уравнение Бернулли, описывающее поведение жидкости, движущейся вдоль линии тока.
Схема принципа Бернулли
Источник: Википедия
По сути, теорема объясняет, что жидкость без вязкости и трения, циркулирующая по замкнутому каналу, имеет постоянную энергию на всем своем пути.
Бернулли также пришел к выводу, что давление указанной жидкости уменьшается с увеличением скорости. Следует отметить, что этот принцип применим только при изоэнтропических течениях. В термодинамике изоэнтропический процесс — это процесс, при котором энтропия жидкости или газа остается постоянной. То есть когда эффекты необратимых или неадиабатических процессов малы и ими можно пренебречь (турбулентность, тепловое излучение…).
Принцип Бернулли вытекает из принципа сохранения энергии: при постоянном потоке сумма всех форм энергии жидкости вдоль линии потока одинакова во всех точках этой линии. Для этого сумма кинетической энергии, потенциальной энергии и внутренней энергии должна оставаться постоянной.
Таким образом, уравнение Бернулли выражается следующим образом:0124 В= скорость жидкости в рассматриваемой точке р = плотность жидкости Р= давление по линии тока г= ускорение свободного падения г= превышение рассматриваемой точки от опорного уровня
Посетите наш блог
Объяснение принципа… давайте взглянем на наши паровые и жидкостные форсунки, предназначенные для широкого спектра применений В Valfonta мы специализируемся на разработке и производстве пара и жидкости форсунки для различных применений, систем и установок.
Этот компонент был разработан для повышения температуры любой жидкости, всасывая ее и смешивая с паром, тем самым обеспечивая постоянную рециркуляцию по всему баку.
Мы всегда рекомендуем устанавливать его горизонтально на дне бака, чтобы обеспечить эффективную рециркуляцию и распределение.
Если необходимо установить 2 или более форсунок, они также должны быть установлены по центру. Однако важно подчеркнуть необходимость минимальных расстояний между стеной и первой форсункой, а также между форсунками.
Не имеет движущихся частей, что помогает снизить уровень шума и вибраций. Однако в случае чрезмерного шума проверьте, не заблокированы ли всасывающие и нагнетательные порты и не слишком ли велико давление пара.
Наконец, следует отметить, что мы производим наши форсунки из нержавеющей стали 316, чтобы обеспечить им долгий срок службы. Соединения представляют собой гайки BSP.
Струйный нагреватель: модель 280 Valfonta Струйные нагреватели используются для повышения температуры жидкостей, протекающих по трубе.
Как они работают, можно объяснить очень просто. Они впрыскивают пар через верхний фланец, и он циркулирует через небольшие угловые отверстия в форсунке. Это создает струи пара, которые выталкивают жидкость в область низкого давления и создают турбулентность. Таким образом, жидкость и пар смешиваются однородно, что обеспечивает повышение начальной температуры.
Что касается материалов, корпус изготовлен из бронзы и нержавеющей стали, а сопло из бронзы, нержавеющей стали и монеля.
Универсальность этого нагревателя означает, что он подходит для целого ряда различных применений: нагрев воды для промывки бочек, баков, барабанов, установка в трубы, которые могут покрыться инеем, на пивоваренных заводах, сахарных заводах, химчистках и химических заводах…
Не стесняйтесь обращаться к нам за помощью в приобретении парового инжектора: разумные цены и индивидуальная, высококачественная консультация Если вы хотите запросить дополнительную информацию или спросить нас о том, как работают наши промышленные паровые инжекторы, их установке или применении, не стесняйтесь обращаться к нам, заполнив форму ниже или отправив электронное письмо на адрес valfonta@valfonta.
