особенности, преимущества и недостатки моторов
Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.
История создания роторного двигателя
Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.
На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.
После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.
Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.
Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.
Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.
Феликс Ванкель и его первый роторный двигатель
Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.
РПД в СССР
А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.
Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.
Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.
ВАЗ с роторным двигателем (ГАИ)
РПД на Западе
На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.
Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.
Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.
Особенности роторного мотора
В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.
У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.
Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.
Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.
Достоинства и недостатки роторных двигателей
Преимущества
-
Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.
-
Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами. Поршневый в два раза больше.
-
Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.
-
Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины
на дороге. -
Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.
Недостатки
-
Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.
-
Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.
-
Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.
-
Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.
-
Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.
-
Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.
Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.
Рассказываем как устроен и работает роторный двигатель
« Что такое балансировка колес Диагностика неисправностей и замена шаровых опор »
Возврат к списку статей
Прошлое роторных двигателей, в том числе советское, очень интересно. А есть ли у этого оборотистого малого будущее?
Феликс был бы доволен
Сегодня обычный двигатель внутреннего сгорания только немцы, да и то лишь иногда, величают мотором Отто. А Феликсу Ванкелю наряду с Рудольфом Дизелем повезло куда больше: в рассказах о роторно-поршневых моторах обязательно хоть раз упоминается его фамилия.
Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7. Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7.Материалы по теме
Правда, злые языки говорили, что Ванкель так и не получил автомобильных прав. Но в историю-то автомобильную он вошел, да и история эта еще не кончилась.
Конструкция роторного двигателя описана множество раз, в том числе в журнале «За рулем» (см., например, ЗР, 2001, № 7). Вкратце: такой мотор — воплощенное торжество геометрии. Блок цилиндров — это статор, который имеет хитрую внутреннюю поверхность, представляющую собой эпитрохоиду. Ротор со специальными уплотнениями движется внутри, выполняя функции поршня и шатуна. В одной камере две свечи — основная и дожигательная. Газообмен происходит через впускные и выпускные окна. Такие секции можно компоновать практически в любых количествах.
Роторный двигатель примерно в полтора раза компактнее и легче аналогичного по характеристикам поршневого. Но есть у него и существенные недостатки. Для смазки уплотнений на роторе масло поступает в топливо. А это означает дополнительный расход масла и сложности с экологией. Для роторного двигателя характерен повышенный расход бензина и относительно низкий ресурс из-за износа тех самых коварных уплотнений. Над решением этих вопросов конструкторы работают много лет, и не без успеха.
NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры. NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры. | Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно. Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно. | Роторный Citroen M35 — купе на основе массовой модели Ami. Роторный Citroen M35 — купе на основе массовой модели Ami. |
Материалы по теме
Пьедестал почета
Первый патент Ванкель получил еще в 1930‑е годы. Изобретением заинтересовалась фирма BMW, но до дела не дошло. В 1950‑х инженер построил-таки несколько небольших моторов с прицелом на автомобили и легкие самолеты и, что не менее важно, сумел заразить своим энтузиазмом компанию NSU.
Осенью 1963 года на выставке во Франкфурте представили компактный родстер NSU Wankel Spider, снаряженный односекционным «ротором» с приведенным объемом 0,5 л (для роторного двигателя приведенный объем вдвое больше геометрического). Двигатель развивал 50 л.с. при 6000 об/мин (позже — даже 54 л.с.). Для сравнения: мотор 408‑го Москвича выдавал ту же мощность с 1,4 л рабочего объема. Максималка 152 км/ч тоже была очень высокой для родстера такого класса. Но… У немцев еще много лет была в ходу шутка: мол, в объявлениях о продаже подержанных спайдеров пишут: «Продаю NSU Wankel Spider и четырнадцать запасных двигателей». Помимо низкого ресурса мотор славился расходом масла и топлива, шокирующим расчетливых немцев. До 1967 года покупателей нашли всего 2375 спайдеров.
NSU Ro 80 в 1968‑м стал автомобилем года, но родную фирму окончательно погубил. NSU Ro 80 в 1968‑м стал автомобилем года, но родную фирму окончательно погубил. |
Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.
Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.
Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.
Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.
Содержание статьи:
Строение и принцип работы роторного двигателя
Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.
Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.
РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.
Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:
- сжатие смеси;
- топливный впрыск;
- поступление кислорода;
- зажигание смеси;
- отдача сгоревших элементов в выпуск.
Одним словом, шесть в одном, если хотите.
Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.
Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.
Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.
Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.
Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.
Принцип работы роторного двигателя
Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!
Роторный двигатель в разрезе Ротор роторного двигателя Камера роторного двигателяРотор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.
Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:
- Впуск
- Сжатие
- Сгорание
- Выпуск
Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.
Выходной вал роторного двигателяВыходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.
Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Строение роторного двигателя
Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.
Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.
Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.
В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.
Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.
Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.
Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.
Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.
Преимущества роторного двигателя
Меньше движущихся частей
Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.
Мягкость
Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.
Неспешность
В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.
Малые габариты + высокая мощность
Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.
Недостатки роторных моторов
Самые главные проблемы при производстве роторных двигателей:
- Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
- Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
- Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
- Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км
Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.
Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.
Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.
Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.
Разные конструкции и разработки роторных двигателей
Двигатель Ванкеля
Двигатель Желтышева
Двигатель Зуева
С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.
История возникновения агрегата
Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, – спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.
После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле».
Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже.
В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.
Устройство и принцип работы
Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых.
В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.
Фазы работы
Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:
- Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
- Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
- Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
- Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.
Недостатки и преимущества
Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС.
Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.
Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов.
Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия.
Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.
Сложность производства деталей
Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.
Перегревы и высокие нагрузки
Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.
В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.Ресурс
Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.
После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.Расход масла
Также роторный двигатель очень требователен к обслуживанию.
Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.Разновидности
На данный момент существует пять разновидностей данных типов агрегатов:
- Роторные моторы с возвратно-вращательными движениями вала.
- С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.
- Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
- С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому – двигатель Ванкеля.
- РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.
Роторный двигатель (ВАЗ-21018-2108)
История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля.
Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» – модели 2101 – за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.
Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй – порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.
Моторы для авиации, «восьмерок» и «девяток»
В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.
Характеристики РПД ВАЗ-414
Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества:
- Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд.
- Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров).
- Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил.
- Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах.
- Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.
Сегодняшняя ситуация с РПД на Волжском автозаводе
Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения.
Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.
Роторный двигатель достоинства и недостатки
Роторный двигатель достоинства и недостатки
В этой статье Вы узнаете достоинства и недостатки роторных двигателей. Кроме того рассмотрим автомобили на которые устанавливался роторный двигатель.
Первый кто придумал роторный двигатель внутреннего сгорания это Феликс Ванкель. Именно поэтому нередко этот двигатель ассоциируется с ним и носит его имя. Первый роторный двигатель заработал в уже 1958 году. Но большинство автопроизводителей так и не решились устанавливать роторный двигатель на свои автомобили.
Единственный кто решился на массовое производство автомобилей с роторным двигателем это Mazda. Один из таких автомобилей RX 8. Советские инженеры тоже создали некоторое ограниченное количество автомобилей с роторным двигателем. Но об этом немного позже.
Вероятней всего от роторных двигателей отказались из-за низкого ресурса. Ресурс роторного двигателя в силу конструкции редко превышает 100 тысяч.км.
Устройство
Принцип работы роторного двигателя схож с поршневым двигателем. Также работа двигателя состоит из 4 тактов. Впуск, сжатие, воспламенение и выпуск. Но есть серьезные отличия у роторного двигателя отсутствует ГРМ, поршни, шатуны, коленвал. Так как в них необходимости.
Цилиндр в роторном двигателе выполнен в овальной форме. Роль поршня выполняет ротор который, имеет треугольную форму. Он же выполняет и роль ГРМ так как в зависимости от момента вращения, то открывает впускное окно для подачи воздуха, то закрывает. Также присутствует выпускное окно через которое выводятся выхлопные газы. Топливо в роторном одно секционном двигателе воспламеняется двумя свечами зажигания.
Достоинства
1) Более высокий КПД в районе 40 %. Это происходит за счёт того, что за одно вращение происходит 3 цикла работы.
2) Более простая конструкция за счёт отсутствия многих деталей которые присуще поршневому двигателю.
3) Более лёгкий вес.
4) Роторный двигатель высок оборотистый его можно раскручивать более 10 000 об/мин. Редко какой поршневой двигатель сможет похвастаться такими высокими оборотами.
5) Более мягкая работа и отсутствие вибраций, так как ротор постоянно движется в одном направлении.
К сожалению роторный двигатель не лишён недостатков.
Недостатки
1) Автомобили с роторным двигателем расходуют больше топлива чем его поршневые собратья.
2) Роторный двигатель менее экологичен.
3) Трудоемкий ремонт. Зачастую ротор приходится менять целиком.
4) Низкий ресурс около 100 тыс.км
Некоторые автомобили с роторным двигателем
1) Mazda RX 8
Компания Mazda одна из немногих кто живо занимался усовершенствованием роторного двигателя вплоть до 21 века. Им удалось достичь немалого прогресса. Двигатель с мизерным объемом 1,3 литра выдавал 215 л.с. Был и еще более мощный вариант с 231 л.с таким же объемом. Это харизматичное заднеприводное купе стало представителем автомобилей с роторным двигателем. К сожалению продажи начали падать поэтому в Августе 2011 года производство автомобилей Mazda RX-8 были вынуждены закрыть.
2) Ваз 2109-90
В России был создан образец с роторным двигателем характеристики которого на тот момент были впечатляющими. Этот двигатель устанавливался на полицейские автомобили. Роторный двигатель на ваз 2109 выдавал 140 л.с благодаря этому мотору разгон до 100 км/ч занимал всего 8 секунд, а максимальная скорость составляла 200 км/ч. Из-за высокой стоимости агрегата и его невысокой надежности автомобили не прижились. Были и более мощные образцы, но их ресурс оставлял желать лучшего. Тем не менее этот автомобиль отлично выполнял роль догонялки и мог обогнать любой советский автомобиль, даже многие не спортивные иномарки.
3)Mercedes C111
Mercedes C111 показался публике в Женеве в 1970 году. На этот автомобиль устанавливался трех-секционный роторный двигатель объемом 1,8 литра, который имел 280 л.с. При этом разгон до первой сотни занимал всего 5 сек. Максимальная скорость 275 км/ч.
4)Ваз 21019 Аркан
С виду ваз 21011, но внутри располагался ваз-411 это двух-секционный роторный двигатель который выдавал мощность 120 л.с. Максимальная скорость такого автомобиля была 160 км/ч. На практике скорее всего больше. Несомненно в советское время укрыться от такого автомобиля было не просто.
Итог
Роторный двигатель очень хорош для гонок так как он высок оборотистый и обладает хорошей мощность при этом обладает более легким весом и занимает меньше места под капотом. Для гонок ресурс двигателя не является самым важным показателем. Если увеличить ресурс, экономичность и экологичность роторного двигателя, то он будет устанавливаться на автомобили гораздо чаще.
dr]ems украина отслеживаниеЧто такое роторный двигатель и как он работает
Безраздельное властвование в автомобилестроении поршневых ДВС, характеризующихся наличием механизма обратно-поступательного движения поршня, отнюдь не связано с техническим совершенством их устройства. Более того, такие силовые агрегаты обладают большим количеством конструкционных недостатков, которые в принципе непреодолимы. И никакие ухищрения, основанные на достижениях технического прогресса последних десятилетий, не способны искоренить эти недостатки.
Но поскольку техническую мысль невозможно ни замедлить, ни тем более остановить, ведущие инженеры и целые конструкторские бюро на протяжении последних ста лет усиленно работали над поиском достойной альтернативы ПДВС.
Следует отметить, что в этом направлении уже достигнуты немалые успехи, даже если не принимать во внимание силовые агрегаты с реактивной тягой. В частности, в сфере двигателей, у которых момент движения передается на вал вращения, классический поршневой мотор уже достаточно давно в разных областях применения начал сдавать свои позиции.
Так, в среде стационарных установок вне конкуренции находится электромотор, в авиастроении предпочтение отдают газотурбинным силовым агрегатам, паровые турбины эффективно используется в судостроении и в энергетических силовых установках типа электростанций.
Отметим, что все указанные разновидности моторов относятся к категории роторных машин, поскольку у всех их основной рабочий орган — вращательный, без наличия возвратно-поступательных компонентов. Если рассматривать такую конструкцию с точки зрения термодинамики и классической механики, то она оказывается наиболее эффективной, передающий момент движения с минимальными потерями.
Что такое роторная силовая установка
Роторный двигатель внутреннего сгорания представляет собой разновидность тепловых моторов, у которых в общем элементом является ротор. Принципиальное отличие от поршневых ДВС заключается в том, что такие агрегаты не нуждаются в конструктивных элементах, занимающихся преобразованием возвратно-поступательного движения во вращение основного вала.
Теоретически такой агрегат должен обладать более высоким КПД. Но на практике реализация таких схем оказалось технически достаточно сложной, несмотря на отсутствие такой промежуточной системы, как коленвал. Выяснилось, что роторный мотор обладает некоторыми недостатками, которые настолько существенны, что из-за них этот тип двигателей конкретно в автомобилестроении так и не получил массового распространения. Почему так произошло, мы расскажем чуть позже.
Если обратиться к истории, то 1 роторный двигатель был продемонстрирован инженерами Ванкелем и Фройде в 1957 году. Именно тогда немецкие изобретатели сумели воплотить в жизнь свои задумки. Презентация нового типа автомобильных двигателей оказалась настолько успешной, что многие автопроизводители мирового масштаба серьёзно заинтересовались этой разработкой. Достаточно назвать такие бренды, как Citroen, General Motors, Mercedes-Benz. Но после многолетних исследовательских и испытательных работ все они признали бесперспективность роторных силовых агрегатов. Но не японский автоконцерн Mazda. Инженеры этой компании всё же сумели вывести в серию роторные двигатели, которые выпускались автоконцерном достаточно долго.
Следует отметить, что даже АвтоВАЗ на протяжении ряда лет оснащал ограниченные серии своих моделей роторными двигателями. Правда, такие машины не поступали в розничную сеть — ими комплектовались автопарки силовых органов (МВД и КГБ).
Поскольку роторный силовой агрегат относится к категории ДВС, принцип его работы, как и поршневого аналога, заключается в преобразовании тепловой энергии сгорания горючего в энергию вращения. Разумеется, такое преобразование осуществляется принципиально иным, более простым способом. Дело в том, что в роторном моторе основной рабочий орган — это ротор, который жестко связан с приводным валом. В классическом двигателе внутреннего сгорания движущей силой является поршень, двигающийся поступательно вверх-вниз. Для преобразования такого движения во вращательное требуется использование достаточно сложного механизма — кривошипно-шатунного, составной частью которого является коленчатый вал.
Именно в этом и заключается разница между роторным двигателем и обычным поршневым ДВС.
Классификация роторных двигателей
Было бы наивным предполагать, что усилия армии инженеров были сосредоточены исключительно на конструирование альтернативы поршневому мотору. Ещё в шестидесятых годах прошлого столетия были продемонстрированы разработки роторных силовых агрегатов с концептуально разными схемами реализации.
На сегодня можно перечислить следующие виды роторных моторов:
- двигатели с разнонаправленным движением рабочих элементов. Их отличительной особенностью является не вращательное, а возвратно-поступательное движение (качание по эллипсоидной дуге вокруг продольно оси). В таких моторах процесс сгорания ТВС, сопровождающийся фазами сжатия/расширения отработанных газов, реализуется в полостях между жёстко укреплёнными лопатками статора, что и определяет замысловатую траекторию движения ротора, отличающуюся от вращения вокруг оси. Таким образом, конструктивно это действительно роторный агрегат, но по принципу передачи движения он является промежуточным решением между поршневым и вращательным способами передачи момента движения на приводной вал. Более того, некоторые склонны причислять такие моторы к поршневым ДВС, ведь у них существует и своеобразный аналог кривошипного механизма, преобразующий колебания ротора во вращательное движение. Такое усложнение конструкции оказалось не слишком оправданным, так что РДВС данного типа не получили сколь-нибудь заметного распространения. К тому же у этой конструкции имеется очень серьёзный недостаток – относительно высокая вероятность столкновений лопастей, что во время работы двигателя грозит очень серьёзными неприятностями;
- роторные моторы с однонаправленным движением рабочих элементов. У этой разновидности силовых агрегатов имеется два ротора, заключённых в единый корпус. Они вращаются со сдвигом по временной фазе, как бы догоняя во время работы мотора друг друга. Такой тип вращения ротора принято называть пульсирующе-вращательным. Здесь рабочие такты сгорания ТВС происходят в кавернах, образующихся между лопастями смежных роторов на фазах их максимального сближения/удаления. Схема рабочая, но характеризующаяся существенным недостатком: оба головных вала вращаются рывками, равномерное движение отсутствует. Для выравнивания импульсного момента требуется использовать очень сложные устройства и механизмы, позволяющие преобразовывать знакопеременные нагрузки с целью выравнивания скоростей обеих валов. Отметим, что, как и в предыдущей разновидности роторных агрегатов, здесь также не исключены ударные столкновения параллельных лопастей в фазе их сближения;
- роторные моторы с уплотнительными заслонками. Эта разновидность двигателей оказалась более удачной и широко применяется и в настоящее время, преимущественно в пневматических силовых агрегатах. Но в этом случае в качестве движущей силы выступает уже не горючее, а сжатый воздух. Здесь лопасти ротора выступают в качестве заслонок, а сам вал также движется не прямолинейно, совершая качающиеся либо возвратно-поступательные движения. Как правило, лопасти в таких моторах закреплены на шарнирах, что позволяет им в нужный момент отклоняться. К сожалению, создать такой же эффективный мотор для ДВС так и не удалось, поскольку здесь для реализации задуманного необходимо обеспечить гораздо боле герметичную схему, чем при использовании пневматики. Оказалось, что в условиях больших значений рабочего давления и температур хорошо получается что-либо одно: или обеспечение надлежащей герметичности, либо обеспечение требуемой подвижности роторных лопастей. Добиться приемлемых показателей одновременно не получается. К тому же имеются объективные сложности, касающиеся обеспечения непрерывного движения лопастей. Это можно сделать, используя отдельный специализированный привод, или с помощью комбинации действия пружин и центробежной силы вращения. Оба варианта реализовать чрезвычайно сложно, поэтому в автомобилестроении данная разновидность роторных моторов так и не смогла оказать достойную конкуренцию классическим ДВС;
- двигатели роторного типа с подвижными уплотнительными заслонками. Схожесть с моторами предыдущего типа очевидна. Разница заключается в том, что здесь лопатки, являющиеся также заслонками, не являются частью ротора – они прикреплены к внутренней стенке корпуса, в нужный момент выдвигаясь внутрь. У ротора также имеются лопасти, но довольно экзотической формы. Именно на них и приходится основная часть нагрузки в виде давления отработанных газов. Задача роторных лопаток – отсекать в определённые моменты лопасти-заслонки от камеры сгорания. Технически всё это реализовать тоже очень непросто, и перечень недостатков такой конструкции схож с предыдущим;
- моторы с простым вращательным движением роторного вала. В силу простоты конструкции такие агрегаты можно назвать самыми совершенными и очень перспективными. Здесь просто отсутствуют механизмы, совершающие любые виды движения, кроме вращательного. Неудивительно, что достижение скоростей вращения порядка десятков тысяч об/мин для них – не проблема. Отметим, что первые подобные двигатели были сконструированы ещё в конце XIX, продемонстрировав более высокие эксплуатационные характеристики, чем тогдашние поршневые двигатели. Отметим, что в то время основной движущей силой был пар, а не бензин. Но со временем поршневые силовые установки перевели на углеводородное топливо, а вот с роторными аналогами случилась загвоздка;
- роторные силовые агрегаты с планетарным механизмом вращения. Это – так называемые двигатели Ванкеля, немецкого инженера-конструктора, впервые предложившего такой мотор. Именно они и легли в основу всех попыток создать конкурентоспособный ДВС на роторной тяге. В дальнейшем мы будем вести речь именно об этой разновидности роторных силовых агрегатов.
Итак, пришла пора ознакомиться с устройством и принципом работы роторно-поршневых двигателей.
Конструкция роторного двигателя
Поскольку РПД и классический поршневой мотор являются двигателями внутреннего сгорания, было бы логичным предположить, что и система впрыска ТВС, а также система зажигания у них схожи. Так оно и есть, но строение самих силовых агрегатов кардинально разное.
Устройство роторного двигателя включает следующие основные конструктивные элементы:
- собственно ротор;
- статор, в роли которого выступает корпус мотора;
- приводной (выходной) вал.
Здесь используется классическая компоновка: вращающийся ротор находится внутри статора. Геометрия ротора предполагает наличие трёх выпуклостей, которые, по существу, являются аналогами поршня. Углубление в этих выпуклостях способствует повышению скорости вращения за счёт формирования завихрений отработанных газов. Каждая выпуклость комплектуется двумя кольцами, внутри которых формируются полости, представляющие собой камеры сгорания.
Одной из самых важных элементов ротора считается расположенное примерно посередине вала зубчатое колесо. Оно входит в зацепление с шестерней, располагаемой напротив на корпусе мотора. Эта зубчатая пара и является той компонентой, которая формирует направление и, разумеется, траекторию движения самого ротора.
Корпус РДВС выполнен в виде овала, что резко контрастирует с внешностью традиционного поршневого двигателя. Сделано это для того, чтобы все вершины ротора (напомним, их всего три) постоянно контактировали со стенками статора. Посредством такой экзотической геометрии достигается формирование в любой момент времени трёх камер сгорания, полностью герметичных и целиком изолированных от влияния соседний полостей. Впускная система также необычна: вместо клапанного механизма используются специальные порты впуска/выпуска, первый из которых непосредственно ведёт к дросселю, второй – к выхлопной системе, тоже напрямую, без каких-либо промежуточных конструктивных элементов.
Выходной вал ротора абсолютно не похож на коленвал поршневого ДВС. Да, на нём присутствуют эксцентрики в виде выступов специальной формы, расположенных на валу с определённым смещением относительно осевой линии. Но они служат для сопряжения с роторами (их у двигателя бывает несколько). Каждый отдельный ротор, вращаясь, воздействует на свой кулачковый эксцентрик, усиливая крутящий момент выходного вала.
Вот так необычно устроен роторный двигатель. Следует упомянуть ещё об одной его конструктивной особенности: он собирается в заводских условиях послойно. Наиболее распространены двухроторные силовые агрегаты, у которых имеется пять таких слоёв. В качестве крепёжных элементов используются болтовые соединения, располагаемые по кругу каждой секции.
Система охлаждения роторных силовых агрегатов устроена таким образом, что ОЖ доставляется во все активные элементы конструкции. Подшипники с сальниками расположены в противоположных крайних секциях, во внутренних сегментах установлены роторы. В центральных сегментах расположены впускные порты, выпускные же размещены с обоих краёв корпуса.
Принцип работы
Принцип действия роторного двигателя, как и его конструкция, радикальным образом отличается от поршневого автомобильного аналога. Именно ротор, вращаясь, передает крутящий момент на трансмиссию и, в конечном итоге, – на колёса. Сгорание топливно-воздушной смеси происходит не в цилиндрах, а полостях, образуемых сторонами ротора, представляющего собой равнобедренный треугольник с немного выпуклыми сторонами. Он изготавливается только из высококачественной легированной стали.
Корпус, играющий роль статора – вторая важная компонента роторного силового агрегата. В разрезе он имеет вид продолговатого овала, между стенками которого и сторонами ротора формируются динамические камеры сгорания и происходят все стандартные фазы сгорания ТВС: впрыск смеси, сжатие, воспламенение, выпуск отработанных газов.
Поскольку ось, на которой расположен ротор, расположена не по центру, вращением это назвать сложно. Да и сама геометрия внешних сторон корпуса и ротора далека от симметрии. Однако именно это позволяет в каждый момент времени формировать три полости, в каждой из которых в конкретный момент времени происходит один из четырёх вышеназванных циклов.
Опишем схематически, как работает роторный двигатель, на примере одной отдельно взятой стороны ротора.
На фазе впуска в начинающую расширяться полость всасывается топливная смесь, причём происходит это самотёком, за счёт создаваемого в полости разрежения. В этой же фазе происходит и смешивание ТВС. За счет силы инерции (ведь таких полостей в двигателе три, и одна из оставшихся как раз и толкает ротор в нужном направлении) полость смещается, точки максимального объема и затем начиная опять сжиматься. Максимум этого процесса приходится на нижнюю мёртвую точку, в которой смесь сжимается до такой степени, что готова отдать всю энергию. Именно в этот момент и происходит воспламенение ТВС свечой зажигания, после чего в результате сгорания и резкого расширения продуктов горения струя газов, пытаясь вырваться наружу, толкает ротор, пока он опять не подойдёт к верхней точке траектории. А здесь уже газам есть куда выйти через выпускной клапан. Таким образом, цикл завершается, а весь процесс происходить непрерывно. Важно понять, что в каждый момент времени в каждой из камер происходит один из процессов, аналогичных вышеописанным.
Другими словами, один полный оборот выходного вала соответствует трём тактам работы мотора.
Если учесть, что современные роторные двигатели оснащаются двумя или тремя роторами, для каждого из которых имеется свой статор, то бишь корпус, то картина получается впечатляющая. К слову, в настоящее время производством таких автомобильных силовых агрегатов занимается только автоконцерн Mazda.
Как видим, конструкции и принцип работы роторного двигателя достаточно прост, дополнительных узлов и механизмов требуется минимум, не в пример меньше, чем у поршневого собрата. Это позволяет при сравнимых габаритах обеспечить намного большую производительность. Так, по выходной мощности двухроторный мотор сопоставим с шестицилиндровым поршневым силовым агрегатом, трёхроторный выдает столько же лошадиных сил, как двенадцатицилиндровый поршневой двигатель.
Следует отметить, что повышенная производительность – далеко не единственный конёк этого типа моторов, но есть у него, разумеется, и ряд недостатков, которые и не позволяют (надеемся – пока) сделать его массовым продуктом. Но об этом – в следующей главе.
Преимущества и недостатки РДВС
С момента своей презентации роторно-поршневой силовой агрегат постоянно был в центре внимания специалистов, а многие солидные автопроизводители начали инвестировать в исследования, посвящённые разработке этого типа мотора, громадные суммы. И неспроста: конструкция такого агрегата на порядок проще классического двигателя. Собственно говоря, основными в нём являются две детали: корпус и ротор. Куда уж проще!
Перечислим преимущества, которые сулит использование роторного привода:
- простота конструкции – фактор, способствующий достижению практически идеальной сбалансированности двигателя: минимум деталей позволил свести вибрационные процессы, характерные для ПДВС, практически на нет;
- даже не слишком удачные реализации роторного силового агрегата позволяли получать великолепную динамику без увеличения нагрузки на сам мотор. Это наглядно демонстрируют и последние модели Мазда. К примеру, RX-8 с роторным двигателем разгоняется до сотни примерно за такое же время, но без перехода на самую высокую передачу, просто за счёт высоких оборотов;
- хотя несколько роторов требуют относительно большого объема для размещения, за счёт отсутствия множества дополнительных узлов и агрегатов такой двигатель получается заметно компактнее поршневого, и намного легче. Для конструкторов это идеальный вариант, предоставляющий возможность выполнить идеальную межосевую развесовку. А это, кстати, фактор, существенно улучшающий устойчивость транспортного средства во время выполнения скоростных манёвров;
- минимизация узлов существенно упрощает обслуживание такого агрегата, увеличивается его надёжность и безотказность;
- наконец, роторный ДВС характеризуется отменной удельной мощностью, недостижимой для своих классических собратьев.
Вы спросите, почему же при таком количестве впечатляющих достоинств роторные моторы не вытеснили поршневые?
Всё очень просто: минусы роторного двигателя перевешивают плюсы, а современное автомобилестроение – это, прежде всего, целесообразность. Даже если речь идёт об экологичных машинах, учтите, что их производство в значительной степени субсидируется на государственном уровне. О роторных установках этого не скажешь.
Так в чём же заключаются их недостатки? Судите сами:
- главным, и самым существенным минусом этого типа двигателей считается очень высокий расход горючего, особенно на невысоких скоростях и низких оборотах. Типичный показатель – 20 и более литров на 100 километров. При нынешнем уровне цен на топливо это, конечно неприемлемо. Особенно если сравнивать с аналогичными по мощности бензиновыми ДВС, у которых расход постоянно снижается и уже частично преодолел знаковую отметку в 5 л/100 км.;
- отсутствие симметрии – другой существенный недостаток таких двигателей. Чтобы идеально скомпоновать ротор и статор, чтобы прохождение эпитрохоидальной кривой было максимально правильным, требуется использование дорогостоящего специализированного и высокоточного оборудования. Без него добиться геометрически безупречной подгонки деталей невозможно. Разумеется, это тоже влияет на стоимость машины, и отнюдь не в сторону снижения;
- поскольку камера сгорания у роторных агрегатов имеет не круглое, а линзовидное сечение, это негативным образом сказывается на тепловых характеристиках мотора. Другими словами, при сгорании значительная часть энергии из-за специфической формы ротора и статора расходуется не на проталкивание ротора, а на его нагрев. Так что борьба с перегревом – очередное слабое место двигателей данного типа;
- производителям так и не удалось справиться с проблемой быстрого износа уплотнителей, устанавливаемых между форсунками. Значительные перепады давления, характерные для камер сгорания, разрушают уплотнители, и в результате после 100, максимум 150 тысяч км пробега роторному двигателю требуется капремонт. А это – большая проблема, и даже не из-за высокой стоимости: таких специалистов и автосервисов нужно ещё поискать;
- наконец, РДВС расход моторного масла гораздо выше: на каждые 1000 километров расходуется примерно 600 мл смазывающей жидкости, и это при новом и неизношенном моторе. Поэтому процедура замены масла производится намного чаще (каждые 5 тысяч километров), что, безусловно, увеличивает стоимость владения таким автомобилем. Но критично не это: если вы забыли вовремя долить/сменить ММ, поломки мотора не заставят себя долго ждать. Так что с точки зрения техобслуживания роторный двигатель, несмотря на свою простоту, не позволит автовладельцу расслабиться.
Разумеется, инженеры Мазда работают над устранением этих проблем, но у главной из них, снижения расхода топлива, похоже, приемлемого решения нет и не предвидится.
На каких авто можно встретить роторный силовой агрегат
Если обратиться к истории, то первым мелкосерийным авто с мотором Ванкеля стал NSU Spider. Его начали выпускать в 1964 году. При развиваемой мощности 54 л.с. этот автомобиль разгонялся до 145-150 км/час. Для первенца, согласитесь, очень неплохие результаты!
Через три года была презентована стендовая модификация NSU Ro-80 – презентабельного четырёхдверного седана, однако до крупносерийного производства дело не дошло. Но именно эта модель подтолкнула многих автопроизводителей к приобретению лицензии на дизельный РДВС (можно упомянуть Citroen, Toyota, GM и, конечно же, Mazda).
К сожалению, попытки создать действительно конкурентный автомобиль не увенчались успехом. О причинах мы уже упоминали: из-за огромного объёма камеры сгорания идеального смешивания ТВС не происходит, в результате даже двухсвечный разряд не позволял эффективно сжигать топливную смесь. А значит, расход топлива возрастает, а выхлоп становится более грязным.
Именно в это время мир накрыл топливный кризис, и компания NSU, практически целиком перешедшая на роторные двигатели, вынуждена была свернуть разработки и в результате была поглощена автоконцерном Volkswagen, где двигатели Ванкеля посчитали бесперспективными.
У Mercedes-Benz, купившей лицензию, дела пошли не лучше – было сконструировано всего две модели с роторным агрегатом. С111 первого поколения при 280 «лошадях» развивала 259 км/час, разгоняясь до сотни ровно за пять секунд. У второго поколения показатели существенно улучшились: 350, 300 и 4.8 соответственно. После этого данное направление было закрыто.
Chevrolet отметился тоже двумя роторными машинами: Corvette оснащался двухсекционным (267 л.с.) и четырёхсекционным (390 л.с.) силовым агрегатом, но дальше прототипа дело не пошло. Citroen сумел довести до серии GS Birotor (108 л.с.), однако впоследствии все машины были отозваны и утилизированы (за исключением порядка 200 экземпляров, обладатели которых не захотели расставаться с уникальными авто). Так что вероятность повстречать эту модель на европейских трассах не равна нулю и сегодня.
Дольше всех держалась Mazda, на протяжении 1967-1972 годов концерн выпустил 1519 автомобилей с роторным двигателем. Примерно в то же время был запущено в серию Luce R130 в форме купе. Дальше – больше: с 1970 года РДВС устанавливали практически на все модели, включая среднегабаритный автобус Parkway Rotary 26. Он весил всего 2.83 тонны и разгонялся до 120 км/час.
В 70-х годах роторные моторы (нелицензированные) начали производить и в СССР. В качестве прототипа взяли классический мотор от Ro-80.
Занимались доводкой автовазовцы, сумевшие в 1976 году довести до ума СА Ваз-311. Но до серии пришлось ждать ещё 6 лет, когда появилась модель Ваз-21018 , оснащаемая роторным мотором мощностью 70 «лошадей». Впрочем, обкатку не прошёл ни один автомобиль, так что эксперимент закончился установкой штатных поршневых моторов. Но в 1983 году ситуация была исправлена, однако модели Ваз-411/413 в розницу не попали: их поставляли исключительно в силовые структуры.
На данный момент Mazda осталась единственной компанией, которая продолжает заниматься данным направлением.
Возможен ли самостоятельный ремонт роторного мотора
Ответ, безусловно, будет скорее отрицательный. И дело не в том, что таких автомобилей в мире очень мало – их конструкция настолько уникальна, что что-либо менять внутри самому не представляется возможным.
Конечно, с заменой свечей дела обстоят не так плохо, однако не для первых моделей. У них свечи оказались спрятанными в стационарный вал (подвижными были не только ротор, но и корпус двигателя). Со временем конструкторы перешли к более простому варианту, а свечи начали устанавливать на стенки неподвижного статора, напротив портов впрыска/выпуска.
Большинство других ремонтных работ самостоятельно произвести практически нереально.
Отметим, что классический мотор Ванкеля имеет примерно на 40% меньше комплектующих, чем поршневой двигатель, но это детали, не имеющие аналогов.
Что ещё можно сделать своими руками? Например, поменять вкладыши приводного вала. Эту операцию выполняют, когда они стерлись настолько, что местами проступает медь. Для этого нужно демонтировать шестерни, поменять вкладыши и напрессовать зубчатые колёса на штатное место. Одновременно можно проверить состояние сальников и при необходимости установить новые.
Если при выполнении ремонтных работ демонтаж пружин маслосъемных колец, следует запомнить, где какие стоят, поскольку по форме передние не совпадают с задними. При необходимости можно выполнить замену торцевых пластин, которые тоже не совместимы друг с другом и имеют соответствующую маркировку.
При замене угловых уплотнителей начинать нужно с передней части ротора. Рекомендуется использовать смазку зелёного цвета от Castrol – это поможет зафиксировать уплотнители, пока вы будете заниматься сборкой остальных деталей. Тыльные угловые уплотнители меняются уже после установки приводного вала. При установке прокладок не забудьте смазать их подходящим герметиком. Апексы следует устанавливать в уплотнители после того, как поместите ротор в корпусе. Последнее, что нужно сделать – смазать прокладки тыловой и фронтальной крышек статора перед их установкой.
Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.
Принцип работы
Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов.
Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала.
Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 — впускное окно; 2 выпускное окно; 3 — корпус; 4 — камера сгорания; 5 – неподвижная шестерня; 6 — ротор; 7 – зубчатое колесо; 8 — вал; 9 – свеча зажигания
Достоинства РПД
Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.
Недостатки РПД
Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания.
Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач.
В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.
Практическое применение в автопромышленности
Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80.
Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».
Практическое применение в мотопромышленности
В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов — Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 — спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.
Любопытные факты
1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД — на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.
Статья в журнале «За рулем» №2, 1960
Статья в журнале об РПД польского инженера Рожицкого, «За рулем» №12, 1961
Статья в журнале «За рулем» №12, 1965
Статья в журнале «За рулем» №12, 1970
Более плавное движение может быть достигнуто с помощью синусоидальной коммутации, когда ток возбуждения представляет собой не прямоугольную волну, а синусоидальный сигнал, сдвинутый по фазе на 120 ° между каждой обмоткой двигателя. Можно интерполировать сигналы положения от датчиков Холла, чтобы предоставить более подробную информацию о положении ротора и избежать пульсаций крутящего момента, но для достижения наилучших результатов дополнительный датчик положения позволяет контроллеру точно контролировать ток в каждой обмотке.В этом сценарии датчики Холла являются избыточными или могут использоваться для определения фаз соответственно. Описанная операция доступна для трехфазных контроллеров движения PI-C-891, контроллеров SMC Hydra, а также всех контроллеров движения ACS. .Этого можно избежать с помощью полевого управления, также называемого векторным управлением, где вектор тока контролируется во вращающейся системе координат ротора, что приводит к повышенной скорости и точности позиционирования. Этот тип операции доступен с трехфазным контроллером движения PI C-891, а также со всеми контроллерами движения ACS.
Крутящие двигатели — это синхронные вращающиеся двигатели с постоянными магнитами, обеспечивающие плавное движение, высокий пиковый и непрерывный крутящий момент и высокую эффективность.Они используются в тех случаях, когда нагрузка напрямую связана с ротором, без дополнительных компонентов, таких как коробки передач. Моментный двигатель аналогичен линейному двигателю, изогнутому в круг, или низкопрофильному двигателю BLDC с большим диаметром (рис. 11а). В приложениях точного позиционирования, вращающие двигатели часто используются на поворотных ступенях, непосредственно приводя платформу (поворотный стол) без люфта или люфта.
Большие радиальные размеры позволяют использовать полые валы и большие отверстия, что является преимуществом для проведения лазерных лучей или кабелей.Из-за конструкции двигателя редукторы не обязаны усиливать выходной крутящий момент, устраняя люфт и люфт, что приводит к повышению жесткости, точности позиционирования и повторяемости. Принцип прямого привода также обеспечивает высокую динамику, важную для быстрого ускорения и отклика ступеньки / настройки.
Поворотные Приводы
Серия DGII — это линейка интегрированного продукта, который объединяет полый поворотный стол с шаговым двигателем с замкнутым контуром AlphaStep. Поворотный привод оснащен внутренним механизмом снижения скорости, что делает возможным движение с высокой мощностью.
Поворотные приводы достигают как высокой мощности, так и высокой жесткости благодаря использованию поперечного роликоподшипника на полом выходном столе.
Узнайте больше о нашем семействе продуктов AlphaStep
Поворотные приводыобеспечивают упрощенную конструкцию, позволяющую сократить затраты времени и средств на проектирование и установку необходимых деталей.
- 60 мм (2,36 дюйма) до 200 мм (7,87 дюйма). Размеры рамы
- Вертикальный или горизонтальный тип крепления двигателя
- Варианты электромагнитного тормоза
- AC или DC Драйверы ввода
Подробнее …
полых поворотных привода
Серия DGII — это линейка продуктов, сочетающих полый поворотный стол с высокой жесткостью, шаговый двигатель с замкнутым контуром AlphaStep и блок привода.Он сохраняет простоту использования шагового двигателя, а также позволяет с высокой точностью позиционировать большие инерционные нагрузки.
- Интегрированный привод и шаговый двигатель облегчают проектирование
- Вертикальный или горизонтальный тип крепления двигателя
- Стол с полым выходом большого диаметра
- AC или DC Вход
Драйверы
Драйверы шаговых двигателей преобразуют импульсные сигналы от контроллера в движение двигателя для достижения точного позиционирования.
- AC или DC Вход
- Типы драйверов:
- Импульсный вход
- Импульсный вход с интерфейсом RS-485
- Встроенный контроллер
- совместимые с EtherNet / IP ™ и EtherCAT версии
EtherNet / IP ™ является товарным знаком ODVA
Контроллеры / Сетевые шлюзы
Контроллеры и сетевые шлюзыдля использования с системами управления движением.
- Контроллеры
- для использования с драйверами импульсного ввода
- Сетевые преобразователи / шлюзы (связь RS-485)
- EtherCat
- CC-Link
- MECHATROLINK
Поворотные приводы
Полые поворотные приводы
В редукторном механизме используются точные зубчатые передачи, а также запатентованный механизм регулировки, который устраняет люфт.Точность повторного позиционирования в одном направлении составляет ± 15 с, в то время как потерянное движение в операции позиционирования в двух направлениях составляет 2 минуты дуги. Эти характеристики делают серию DGII идеальным выбором для приложений, в которых необходимо точное позиционирование.
Примеры применения
Гибридная система управления
Продукты AlphaStep — это гибридные двигатели на основе шаговых двигателей с уникальной гибридной системой управления, сочетающей в себе преимущества «управления с разомкнутым контуром» и «управления с замкнутым контуром».
Положение двигателя всегда контролируется, и затем водитель автоматически переключается между двумя типами управления в зависимости от ситуации.
Нормально работает в режиме разомкнутого контура для той же простоты использования, что и шаговый двигатель
High Response
Благодаря высокой чувствительности шагового двигателя возможно короткое перемещение на короткое время. Двигатели могут выполнять команды без задержки.
Удержание стоп-позиции без охоты
Во время позиционирования двигатель останавливается с собственной силой удержания без охоты. Благодаря этому он идеально подходит для применений, где низкая жесткость механизма требует отсутствия вибрации при остановке.
Без тюнинга
Поскольку он обычно работает с управлением с разомкнутым контуром, позиционирование все еще возможно без регулировки усиления, даже когда нагрузка колеблется из-за использования ременного механизма, кулачкового или цепного привода и т. Д.
Переключение в режим управления с обратной связью во время перегрузки для более надежной работы, например, серводвигателя
продолжает работу даже при внезапных колебаниях нагрузки и внезапном ускорении
Он работает синхронно с командами, использующими управление без обратной связи в нормальных условиях. В состоянии перегрузки он немедленно переключается на управление с обратной связью, чтобы исправить положение.
Выходной сигнал тревоги в случае неисправности
Если перегрузка применяется постоянно, выдается сигнал тревоги.Когда позиционирование завершено и сигнал END выводится. Это обеспечивает тот же уровень надежности, что и серводвигатель.
,
PR01 могут использоваться для реализации любой комбинации линейных и вращательных движений. Компактный корпус содержит как электромагнитный линейный привод, так и вращающийся прямой привод, каждый из которых управляется сервоприводом. Это означает, что контроллер верхнего уровня может реализовывать высокодинамичные линейно-вращательные последовательности движения, которые могут быть запрограммированы как синхронные или полностью независимые друг от друга.
В зависимости от требований пользователь может выбирать из различных размеров, которые создают максимальный крутящий момент в диапазоне от 1,5 до 8,9 Нм. Длина хода до 300 мм обеспечивает достаточную гибкость при бетонировании. В дополнение к стандартной версии, семейство продуктов включает в себя варианты с коробками передач, полыми валами и компонентами из нержавеющей стали.
- Линейно-поворотный прямой привод
- Программируемые силы нажатия и моменты
- С редуктором или полым валом
- Синхронные линейные и вращательные движения
- Доступно в версии из нержавеющей стали
- Простое внедрение систем закрытия и завинчивания
Два независимых движения только с одним компонентом
В качестве инновационного элемента дизайна линейно-поворотные двигатели могут использоваться для выполнения сложных задач, таких как заправка, закрытие, перемещение, укладка, выравнивание и многие другие с помощью всего лишь одного компонента.
В частности, многоосевые закрывающие системыможно сделать компактными и эффективными с помощью линейно-поворотных двигателей LinMot.
С этой технологией двигателя линейные и вращательные движения могут быть впервые отделены от движения карусели. Теперь можно реализовать любую комбинацию линейных и вращательных движений. Профили движения, скорости, обороты и усилия прессования или моменты затяжки могут задаваться произвольно и независимо друг от друга. Во время мониторинга процесса положение крышки в конце процесса закрытия может быть считано, чтобы обнаружить смещенную посадку.
Эти инновационные многоосевые системы укупорки позволяют производить несложные изменения продукта одним щелчком мыши. Пользователь получает все критические параметры обратной связи на постоянной основе, так что количество простоев из-за неисправностей значительно сокращается. По сравнению с механическими системами закрытия, решение LinMot с линейно-роторными двигателями требует до 60% меньше времени для процесса закрытия.
Стандарт
Стандартная версия линейно-поворотного двигателя предоставляет пользователю широкий спектр доступных длин хода, сил прессования и крутящих моментов.
- Линейный прямой привод
- Прямой поворотный привод
- Независимые линейные и вращательные движения
- Встроенные датчики положения
- Интегрированный контроль температуры
- Программируемые профили движения и положения
- Программируемая сила прессования
- Программируемый крутящий момент
Вариант коробки передач
Линейно-поворотный двигатель с редуктором обеспечивает точное динамическое позиционирование даже для нагрузок с высоким моментом инерции.Сбор и размещение грузов вне оси вращения является классическим применением для этого типа двигателя. Динамическое и свободно программируемое движение небольших столиков с одновременным вращением и вертикальным перемещением также может быть легко реализовано с помощью этого нового элемента дизайна.
- Независимые линейные и вращательные движения
- Для движений с высокими нагрузками
- Для применений с высоким крутящим моментом
- Доступны три передаточных числа
- С направляющими для поперечных нагрузок
Вариант с полым валом
Полый вал имеет центральное сквозное отверстие на своей продольной оси.Это позволяет расширить область применения линейно-поворотного двигателя. Сжатый воздух, вакуум или другие среды могут быть пропущены через двигатель.
- Версия с полым валом
- Внутренний диаметр 2,5 / 4,0 мм
- Простая подача сжатого воздуха
- Модернизируемый для вакуумного захвата
- Может комбинироваться с пневматическим или электрическим захватом
INOX вариант
В дополнение к стандартным линейно-поворотным двигателям серия PR01-84 включает варианты из хромистой стали.Передний фланец и круговая ось выполнены из хромистой стали. Поворотная ось изолирована от статора. Это означает, что линейно-ротационная технология также может быть оптимально использована в пищевой и химической промышленности.
- Концевые части и вал из нержавеющей стали EN 1.4404 / AISI 316
- Гигиенический дизайн
- Устойчив к чистящим средствам
- Оптимально для использования с пищевыми продуктами
- Оптимально для использования в химической промышленности
- со сменным рукавным подшипником
Отчет о применении
Отчет о применении
Твист закрытия
,полых поворотных приводов
1-800-GO-VEXTA (468-3982)
Полые поворотные приводы с закрытым контуром серии AZ, абсолютные энкодеры
Серия DGII — это линейка продуктов, сочетающих полый поворотный стол высокой жесткости с абсолютным энкодером AlphaStep серии AZ с замкнутым контуром шагового двигателя и блоком привода. Он сохраняет простоту использования шагового двигателя, а также позволяет с высокой точностью позиционировать большие инерционные нагрузки.
- Встроенный привод и шаговый двигатель облегчают проектирование
- Вертикальный или горизонтальный тип двигателя
- Простая настройка и возврат домой без использования датчиков
- Стол с полым выходом большого диаметра
- AC или DC Вход
Полые поворотные приводы серии AR с замкнутым контуром
Серия DGII — это линейка продуктов, которые сочетают в себе полый поворотный стол с высокой жесткостью, шаговый двигатель с замкнутым контуром и замкнутым контуром серии AR от AlphaStep.Он сохраняет простоту использования шагового двигателя, а также позволяет с высокой точностью позиционировать большие инерционные нагрузки.
- Встроенный привод и шаговый двигатель облегчают проектирование
- Стол с полым выходом большого диаметра
- AC или DC Вход
Сравнение поворотных приводов
Серия продуктов | AZ серии Абсолютный энкодер Поворотные приводы | Серия AR Поворотные приводы |
|
| |
Особенности | AlphaStep Closed Loop, Абсолютный механический энкодер | AlphaStep с обратной связью, высокоэффективный |
Размеры рамы | 2.36 дюймов (60 мм) | 2,36 дюйма (60 мм) |
Входная мощность драйвера | AC или DC Вход | AC или DC Вход |
Доступные опции | Электромагнитный тормоз Вертикальное или горизонтальное крепление двигателя | Электромагнитный тормоз с одним или двумя валами |
Инерция | от 20 до 5012.7 унций 2 | от 23,7 до 5012,7 унций 2 |
3700 x 10 -7 до 916400 x 10 -7 кг · м 2 | 4324 x 10 -7 до 916400 x 10 -7 кг · м 2 | |
Допустимый крутящий момент | 7,9 до 440 фунтов | 7.От 9 до 440 фунтов |
от 0,9 до 50 Н · м | от 0,9 до 50 Н · м | |
Максимальная скорость | 200 об / мин (60, 85 и 130 мм) 110 об / мин (200 мм) | 200 об / мин (60, 85 и 130 мм) 110 об / мин (200 мм) |
Узнать больше | AZ серии Абсолютный энкодер Поворотные приводы | Серия AR Поворотные приводы |
,