С какого года на уаз ставят инжектор: С какого года на уаз ставят инжектор

Содержание

С какого года инжектор на «Ниве» заставил уйти в прошлое предыдущую модель? Плюсы и минусы такой машины по сравнению с карбюраторной версией

  • 20 Ноября, 2020
  • Автомобили
  • Татьяна Родина

«Нива» является, наверное, самым известным советским и российским внедорожником. Этот автомобиль был представлен еще в 70-х годах прошлого века и производят его до сих пор. В настоящее время новые «Нивы» выпускаются с инжекторными двигателями. Тем не менее на рынке подержанных машин встречается и много моделей с карбюратором. Рассмотрим, с какого года пошли «Нивы» с инжектором.

Хронология изменений

Прежде чем выяснять, с какого года выпускается инжекторная «Нива», рассмотрим этапы ее модернизации. Вместе с 1,6-литровым двигателем на «Ниву» устанавливали стандартную четырехступенчатую коробку передач. Чтобы увеличить тяговые качества, изначально применяли главные пары с числом 4,44. Но вскоре их заменили на 4,3, а с середины 80-х, чтобы увеличить экономичность, решено было остановиться на 4,1. В таком виде «Нива» существовала до 1994 года, а потом произошла самая серьезная ее модернизация за все время.

В 1994 году выпустили множество переходных модификаций, имеющих различные индексы, но все же в качестве базовой остановились на версии ВАЗ-21213 с карбюраторным мотором 1,7 литра (именно эта модель представлена в основном сейчас на рынке подержанных автомобилей).

Еще через год появляется модель с инжектором ВАЗ-21214 и две «вытянутые» на 0,5 м машины 2129 и 2130. Таким образом, ответом на вопрос, с какого года инжектор на «Ниве», будет 1995 год.

Технические характеристики «Нивы» с карбюратором

В самом начале производства двигателем для «Нивы» стал тот, который устанавливали на классические «Жигули». Мотор оставался тем же, но был увеличен объем камеры сгорания.

Первый советский внедорожник получил мотор 2121, рабочий объем которого составлял 1580 кубических сантиметров. Этот двигатель мог развить мощность до 80 лошадиных сил. Автомобиль разгонялся с 0 до 100 километров в час за 21 секунду, но расход топлива был неприлично большим. В паспортных данных эта цифра составляла 13,1 литра, но реальность говорила о том, что она сильно занижена.

Через несколько лет машину начали укомплектовывать более современным мотором. Новый двигатель носил индекс 21213. Его рабочий объем составлял 1690 кубических сантиметров, а мощность — 83 лошадиные силы. Разгон до 100 километров в час уменьшился до 18 секунд.

«Нива» с инжектором

В 2005 году новшества коснулись всех моделей ВАЗ. Это касается и ответа на вопрос, с какого года «Нива» с инжектором появилась во всех автосалонах страны.

Автомобиль начали укомплектовывать двигателем с индексом 21214. Будучи бензиновым агрегатом с объемом в 1690 кубических сантиметров, он мог похвастаться той же мощностью и скоростью разгона, как и его предыдущий карбюраторный собрат. Но расход топлива удалось снизить на 1,5 литра.

В настоящее время завод выпускает «Ниву» с мотором 21214-28. Двигатель подходит под стандарт «Евро-4», с рабочим объемом в 1774 кубических сантиметра и мощностью 92 лошадиные силы. Разгон до 100 километров в час происходит за 17 секунд, а расход составляет менее 10 литров топлива.

Карбюратор или инжектор

Какого периода «Ниву» можно рассматривать для покупки? Таким вопросом задаются многие автолюбители. Здесь важно знать, с какого года инжектор на «Ниве» стал основным для автопроизводителя.

Первую версию принято считать более устаревшей. Карбюраторный мотор устроен просто, но многие жалуются на его ненадежность. Его механизмы важно периодически разбирать и чистить, а также регулировать.

Плюсами карбюраторной версии являются возможность самостоятельного ремонта и использования любого топлива и дешевизна в обслуживании. Но недостатков у нее больше. Это и становится основной причиной, почему те, кто думает о покупке данного автомобиля на вторичном рынке, интересуются, с какого года инжектор на «Ниве» заменил карбюратор.

Модели с карбюраторным мотором демонстрируют низкую надежность и меньшую производительность, сильно зависят от температуры окружающей среды, при этом не являясь экономными при расходе топлива.

Поэтому, казалось бы, эта простая и ремонтопригодная версия вряд ли понравится современному водителю.

Плюсы

С какого года «Нивы» 2121 с инжектором можно рассматривать для покупки? С 2005-го. Они обладают рядом преимуществ:

  • имеют стабильную работу двигателя;
  • обладают большей производительностью и резвостью;
  • позволяют забыть о плавающих оборотах, которые были настоящей «болезнью» у карбюраторных версий;
  • обладают меньшим расходом топлива;
  • не зависят от капризов погоды;
  • более надежны в эксплуатации.

Недостатки «Нивы» 4х4 с инжектором

С какого года началось производство более надежных моделей, вы уже знаете, но есть ли у них недостатки? Их, на самом деле, совсем немного:

  • Из-за того, что более новая система может похвастаться большим количеством электроники, автовладельцы иногда сталкиваются с неисправными контрольными датчиками.
  • Если расход топлива увеличился, нужно обратить внимание на датчик расхода воздуха.
  • Если двигатель не выдерживает нормальных оборотов на холостых, причиной могут быть неполадки в регуляторе холостого хода.
  • Если мотор просто не заводится, вероятно, отошли контакты от датчика положения коленчатого вала.

Но даже здесь есть положительный момент. Если вы желаете определиться, с какого года «Нива» с инжектором вам подходит, то выбирайте модели конца 90-х годов. В таком случае с подобными проблемами вам придется сталкиваться не слишком часто, а диагностируются они достаточно просто.

Таким образом, инжектор более надежен и практичен. С ним вы сможете избежать проблем и головной боли. Об этом говорят бесчисленные отзывы автовладельцев. И если вы все еще думаете, что лучше — карбюратор или инжектор, и с какого года производства «Нива» является более надежной, то обратитесь к их мнениям.

Они считают, что в инжекторной версии легче запустить двигатель, а расход топлива меньше. Кроме этого, подобные «Нивы» не такие старые, не требуют регулярного ремонта и серьезных затрат на обслуживание.

В настоящее время выпускаются исключительно инжекторные версии «Нивы», которые носят название LADA 4×4, 3-дверная.

Похожие статьи

Автомобили

Как снять ШРУС на «Ниве-Шевроле» и заменить

Автомобили

Винтовая блокировка на «Ниву»: принцип работы

Автомобили

Как разбавить масло 1 к 50: приготовление топливной смеси для бензопилы

Автомобили

Какой прицеп можно буксировать с категорией С? Разрешенная максимальная масса прицепа

Автомобили

Какой бензин для «Нивы-Шевроле»: 92 или 95? Какой бензин лучше заливать в «Ниву-Шевроле»

Автомобили

Какие амортизаторы лучше поставить на «Ниву-Шевроле»: виды, стоимость, бренды

Как запустить Doom на УАЗ Буханке 2022 / Хабр

Intro

Прошедший 2022 год сильно повлиял на отечественных автопроизводителей. Появились антикризисные комплектации (а остальные исчезли). Произошли откаты на старые экологические нормы, вплоть до евро-2. Кто-то прогнозировал возврат к карбюраторным двигателям, чего, к счастью, не случилось. Люди в шапочках из фольги особенно рады, что из отечественных машин исчезла система ЭРА-Глонасс. Глупцы, она стала ненужной, потому что всех уже чипировали через вакцину.

Мы же c @andrey239 и всей командой RusEFI продолжали пилить свой ЭБУ* с преферансом, барышнями, открытым программным кодом и открытыми аппаратными реализациями.

ЭБУ

Электронный Блок Управления. В этом тексте подразумевается ЭБУ Двигателя Внутреннего Сгорания (ДВС). Хотя современные ЭБУ ДВС помимо самого ДВС управляют еще и кучей оборудования, так или иначе связанного с ДВС, начиная от генератора и заканчивая топливным насосом. Поэтому современный ЭБУ это устроство немного сложнее трамблера и карбюратора.

А оно поедет?

Кстати, да, на нем можно запустить ДВС. Даже V12. Нет, не взорвется. Да, есть те, кто ездят на нем. На повседнев. Конечно же только по частным дорогам.

А так как мы делаем “инженерный онлайн ЭБУ”..

инженерный и онлайн, о чем это?

Тут надо немного отвлечься и пояснить что есть “инженерный” и что есть “онлайн”. Когда-то давно ЭБУ было нельзя перешивать. Т.е. совсем. В них стоял проц с однократно-программируемой ПЗУ. “А как же патчи и хотфиксы?” спросите вы. Для этих целей рядом с процом иногда было место под внешнюю ПЗУ, запаяв которую, можно было обновить прошивку. 

Вот, кстати, ЭБУ от моей любимой тестовой лошадки — Subaru SVX. Частично разобранный, чтобы найти, где у ней там неонка и немного пореверсить. В правом верхнем углу видно место для ПЗУ с патченной прошивкой.

ЭБУ Subaru SVX начала 1990х

Понятно, что место под ПЗУ сделано не для тюнеров, а для исправления потенциальных косяков. Но этим механизмом очень быстро начали пользоваться энтузиасты.

Поставив на это место кроватку и подкидывая в нее ПЗУ (с УФ стиранием, ламповые) в прошлом веке можно было модернизировать прошивку. Обычно это ограничивалось редактированием таблиц по которым работает ЭБУ: «навалить угла», «насыпать буста», «забеднить» или наоборот «залить». Это был уже “инженерный” блок, но еще не онлайн.

Hidden text

навалить угла — увеличить Угол Опрежения Зажигания. Да, смесь в цилиндре обычно поджигается до достижения поршнем Верхней Мертвой Точки, т.е. сжимается уже горящая смесь. Настройка УОЗ и состава смеси — главные методы получения дополнительных лошадиных сил на атмосферных моторах

насыпать буста — добавить давления наддува, актуально только для турбированных/компрессорных машин. Это основной метод поиска скрытых резервов на наддувных ДВС.

забеднить и залить — соответственно обеднить или обогатить смесь на определенных режимах. Бензин с воздухом в разных соотношениях горит (а иногда и не горит) с разной скоростью и КПД.

Потом к этому начали прикручивать “онлайн” — вместо ПЗУ ставили RAM, содержимое которой можно было менять на лету. Так же из этой памяти можно было читать интересующие тюнера параметры.

Сейчас паять ничего не надо. Прошить современный ЭБУ можно через диагностический разъем, благо там уже флеш память. На многие штатные ЭБУ есть патчи, позволяющие на время настройки переместить часть калибровочных данных в RAM с менять их на лету без необходимости при каждой правке перешивать флеш.

Так вот, мы тоже делаем  и “инженерный” и “онлайн”. И с удобством для пользователя. Поэтому у нас для микроконтроллера, который этим всем рулит, специфичные требования, часто идущие вразрез с automotive требованиями. Тот же USB для связи с компом, интерфейс SD карты для записи логов.

Так же мы (команда RusEFI) любим GCC и не любим архитектуры с коммерческими/закрытыми компиляторами. Равно как не любим и микроконтроллеры с закрытой/NDA документацией.

Ну и больше половины нашей прошивки — это всякие плюшки связанные с настройкой ЭБУ, а не его прямыми обязанностями по управлению ДВС. Та же поддержка файловой системы для SD, драйвера интерфейса USB, протокола для связи с TunerStudio, куча осмысленных текстовых (!) сообщений об ошибках и параноидальные проверки.

Это уже не говоря про модный Lua для написания всяческих расширений. Например для отправки специальных CAN сообщений, чтобы осчастливить блок АБС, ЭБУ АКПП или контроллер климата.

Т.е. нам и памяти надо больше, чем есть в классических ЭБУ.

Поэтому все мечты о портировании RusEFI на какой-либо штатный ЭБУ разбивались если не об отсутствие документации или адекватного компилятора, то об отсутствие достаточных ресурсов микроконтроллера.

Так было до конца 2022 года. Пока мы не решили портануть DOOM RusEFI на УАЗ Буханку (в девичестве УАЗ 2206). Согласен, очень неожиданно…

Российские производители автоэлектроники внедряют чипы общего назначения

До 2022 года на конвейеры отечественных автопроизводителей шли блоки управления на базе специализированных микроконтроллеров. Например от Infineon или STMicroelectronics — в таких чипах больше специализированной автомобильной периферии, полная документация на такие чипы не всегда доступна и банально бесплатного компилятора часто нет.

Во второй половине 2022 года два (оба?) российских производителя электронных блоков управления двигателем внутреннего сгорания начали поставлять на конвейеры решения на базе микроконтроллеров общего назначения с ядром ARM Cortex-M4. Это очень заинтересовало нас и мы начали охоту на эти блоки.

Первым (и пока единственным) у нас на столе оказался блок от компании СОАТЭ. СОАТЭ поставляет на конвейер УАЗа блок управления S105. На ранних серийных номерах в них использовался stm32f407, на более поздних мы видим Geehy apm32f407. Насколько нам известно, apm32f407 это функциональный аналог stm32f407. А stm32f407 это тот микроконтроллер, с которого начинался RusEFI!

ЭБУ УАЗ 2022 года

Картинка честно утащена с форума, где дядьки-УАЗоводы столкнулись с новым шайтаном, который по непонятным причинам окирпичился. Спасибо этим дядькам, без них мы бы не узнали об этих блоках.

Блок явно разработан с акцентом на доступные компоненты: дискретные MOSFET с внешней схемой ограничения тока, VR вход на компараторе, вместо специализированной микросхемы и так далее.

Geehy, кстати, первым в окрестностях анонсировал версию APM32A407 с автомобильной сертификацией AEC-Q100, хотя вероятно это всего лишь полная отбраковка по температуре. Мы очень надеемся, что внутри и он выглядит как stm32f407.

Второй интересный блок это М74.9 от ИТЭЛМА. В 2022 его начали ставить на две модели Нивы и он сделан на базе at32f435. at32f435 от Artery это вроде как тоже аналог другого микроконтроллера от STM — stm32f435 (не сильно отличается от stm32f407) и на нем мы тоже умеем RusEFI.

Новый ЭБУ Нивы

Удивительным образом рядом с микроконтроллером-клоном-аналогом от китайцев мы видим  высоко-интегрированный специализированный автомобильный чип L9779 от одного из крупнейших производителей микроэлектроники STMicroelectronics. В этом плане ИТЭЛМА явно пошла другим путём и рискнула использовать чип, заменить который, случись чего, просто так не получится. Кстати, на краю ПП запаян разъём очень похожий на JTAG/SWD.

Про этот блок мы узнали от специалиста по турбированию Нив. Кто ездил на Нивах, тот понимает, почему машина прямо с завода поехала на установку турбины.

В канун нового года мы написали письмо Дедушке Морозу, запостили пару статей на Drive2 и накидали сообщений на тематических форумах, что мол, мы хорошо себя вели, документировали код, всегда тестировали изменения перед мержем и теперь очень хотим один из этих блоков. А лучше оба два.

Реверс

Блок S105 Дедушка Мороз доставил мне 28 декабря. Видимо Дедушка гоняет на УАЗ буханке. А уже 5 января мы запустили на этом блоке RusEFI и радостно помигали светодиодами, подключенными на выходы форсунок

Hidden text

Особо внимательные могут спросить «а фигли светодиоды всегда горят и только яркость меняется?». А это артефакт от схемы диагностики выхода — в ЭБУ по этим выходам помимо силовых полевиков стоят еще высокоомные делители и сигнал с них идет на процессор. Проц следит, чтобы при выключенном выходе на нем было напряжение аккумулятора (через достаточно низкое сопротивление форсунки). А при включенном выходе на нем должно быть около нуля вольт. Так он определяет обрыв цепи, неисправность выходного транзистора и с некоторыми извращениями, возможно, так же замыкание на +12В или землю.

Так вот сопротивления этого делителя оказалось достаточно для создания тока от которого светодиоды начинали тускло светить.

Пока это очень раннее демо, оно не дружит со штатным бутлоадером (я его пока тупо снес), общается только по CAN, не умеет K-line и так далее, но оно работает!

Это, конечно, не так впечатляет как Linux на калькуляторе или doom на тесте на беременность, но для нас это большой шаг в сторону пользователей. Поэтому хочется поделиться краткой историей этого реверса. Тем более, что реверс, зачастую, прекрасная возможность повысить свой скил. А реверс инженеринг железа — прекрасная возможность попробовать себя в embedded программировании без смс и регистрации, т.е. не тратясь на разработку своего железа. В ходе этого реверса паяльник пришлось брать в руки один раз. Но обо всем по порядку.

Минимальный (и достаточный) набор аппаратного хакера в 2022

именно так, тестер, цветные ручки и листы А4 (пока выступают фоном)
1. Визуальный осмотр

Разглядываем, списываем все маркировки, качаем даташиты.

На этом этапе по маркировке не удалось определить только два одинаковых чипа в soic-8. Но по их расположению, наличию больших конденсаторов в обвязке, да и просто методом исключения, стало понятно что это LDO.

Понятно, что разглядывать каждый резистор сейчас не стоит. Равно как и всякие мелкие sot-23 и тому подобные компоненты. Их назначение, в большинстве случаев, станет очевидно, когда разберетесь с «большими» компонентами.

На этом этапе желательно распечатать распиновки всех «больших» микросхем. Прямо на этих распечатках будем отмечать, что и куда идет.

2. Поиск документации

В случае ЭБУ — это схемы электропроводки соответствующих машин. По схемам удалось выяснить куда ему подавать питание. Это знание лучше подтвердить тестером. Ну и подавать питание в первый раз стоит от лабораторного блока питания с разумным ограничением по току (в моем случае 50..100 мА).

3. Берем в руки тестер

Мне не терпелось проверить свое предположение о том, что добрые разработчики вывели на незапаянную гребенку отладочный интерфейс SWD. Распиновка проца известна, где у него SWD тоже. Делов на 5 минут.

Удача! В рядок идут SWDIO, GND, SWCLK, VDD (3.3). И еще пара сигналов, которые меня пока не интересуют.

4. Цепляем отладчик

Следующим этапом надо было проверить, а есть ли возможность подцепиться к процессору отладчиком. Если отладка заблокирована фьюзами, это усложнит работу. Вероятно, пришлось бы пересаживать на плату другой, не заблокированный, процессор. Или танцевать с режимами загрузки и пытаться стереть проц и фьюзы через rom загрузчик. Честно говоря, даже не знаю, есть ли такая возможность на STM32, или они безвозратно блокируются.

Вот тут единственнный раз пригодился паяльник. На отсутствующее место была запаяна гребёнка контактов. В качестве SWD отладчика я используют STlink, встроенный в stm32f4discovery. Неубиваемая штука. Цепляем 4 проводка, подаем питание на ЭБУ. запускаем openOCD, снова удача:

$ openocd -f interface/stlink.cfg -f target/stm32f4x.cfg
....
Info : Target voltage: 2.905487
Info : stm32f4x.cpu: Cortex-M4 r0p1 processor detected
Info : stm32f4x.cpu: target has 6 breakpoints, 4 watchpoints
....

Трясущимися руками цепляемя телнетом и пробуем слить прошивку. Третья удача подряд — прошивка оказалась не залоченной. Прошивка пригодится нам на следующих этапах, когда мы захотим разобраться с бутлоадером — негоже пользователей заставлять вскрывать ЭБУ и паять SWD.

Кстати, беглый просмотр полученного бинаря hexdump’ом показал, что бутлоадер занимает аж 64К в начале флеша. В RusEFI мы используем OpenBLT и для него зарезервировано 16Кб.

5. Уроки рисования

Теперь, когда понятно, что прошить железку можно, начинается нудная часть — срисовывание схемы. Тут есть пара советов:

Если на плате нет шелкографии (а зачем она на серийном устройстве?) — пронумеруйте все большие компоненты. Кто-то делает фото и расставляет обозначения на фото. Я беру лист А4, на нем схематично разрисовываю большие компоненты и нумерую их. Точность не нужна, главное примерно соблюсти взаимное расположение. Чтобы через неделю можно было соотнести рисунок и плату.

Поиск одинаковых паттернов. В ЭБУ куча силовых выходов и куча аналоговых входов. Эти блоки выполнены однотипно. Все различия в номиналах всяких там делителей напряжения, подтяжках и так далее. Достаточно срисовать по одному такому блоку, выяснить каким концом он идет на разъем, а каким к процессору и можно начинать прозванивать.

Вот схема управления и диагностики катушки зажигания. Таких блоков на плате 2 (еще 2 опционально).

6. Прозваниваем

Я использую древний тестер в режиме прозвонки диодов и пищалки. При этом на диоды (и другие pn переходы) он не пищит. Тут не стоит опасаться что-то сжечь. Во всяком случае в устройствах типа этого.

С процом сейчас повезло, он не BGA, поэтому ставим один щуп на интересующую нас цепь, а второй скользим по ножкам проца, без особого усилия. Моему тестеру хватает контакта на долю секунды чтобы пискнуть (есть задумчивые тестеры — ими прозванивать неудобно). После того как услышали писк — возвращаемся и начинаем считать ноги от ближайшего угла.

На этом этапе надо иметь распечатку с пинаутом проца. На ней уже должны быть вычеркнуты все ножки питания, кварцы и тому подобные пины с однозначной функцией. Каждый найденный сигнал отмечаем на этом пинауте и параллельно вписываем в таблицу. На пинауте я использую разные цвета для разных типов цепей: выходы, входы, интерфейсы. Параллельно вычеркиваем или другим образом помечаем все вызвоненные компоненты на общем плане. Задача — вычеркнуть/пометить как можно больше компонентов на общем плане. На пинауте процессора этого не факт что можно достичь — могут быть неиспользуемые ноги. Но их тоже желательно найти — вдруг потом захочется добавить светодиод или консоль или еще что.

Если у вас BGA процессор — этап усложняется. Если устройств много и не жалко уничтожить одно — сдувайте проц и прозванивайте. Если жалко — придется писать тестовую прошивку, которая будет ставить интересующие нас ноги в нужное положение или постоянно дергать их туда сюда, а по плате уже тыкаться щупом осциллографа.

На выходе получаем Такой «набор документации».

Тут не до аккуратности т.к. в одной руке один щуп, в другой второй, третьей рукой вы придерживаете плату и ногой записываете результаты.

7. Анализируем штатную прошивку

Этап не всегда доступен. Прошивку может быть невозможно слить, она может быть уничтожена в процессе «разлочки» проца и так далее. Но если уж повезло, то тут кто на что горазд. Можно расковырять ее дизассемблером (аж передернуло, как вспомнил ночи за IDA и состояние измененного сознания под утро).

В моем случае устройство достаточно простое, поэтому я с помощью дебагера с рабочей железки дампнул регионы памяти с настройками GPIO и сравнил с таблицей что получил на этапе прозвонки. Сильных расхождений не выявил и успокоился. Паралельно разобрался, что для полного открытия полевиков (а им для этого не хватает 3.3В) проц ставит соответствующие ноги с режим Open-Drain, а на плате присутствуют подтяжки к +5В.

К ковырянию в штатной прошивке еще придется возвращаться, когда буду изучать бутлоадер и тогда я так легко уже не отделаюсь.

8. Льем свой код

К этому этапу я накопил достаточно данных, чтобы поправить нашу прошивку под железо и попытаться запустить.

С чем столкнулся (мнение выжившего, бла-бла-бла, в следующий раз будут совершенно новые грабли):

  • В этом ЭБУ процу не доложили кварцев, хотя места под оба кварца (HSE, LSE) есть, надо переключить настройки PLL на использование внутреннего генератора.

  • Проц управляет вторым LDO, который делает 5В для нескольких потребителей, в числе которых CAN трансивер. Это я не вызвонил. Штатная прошивка, похоже, не включает этот источник пока не будет какой-то внешней активности — например, сигнала зажигания. Так что те настройки GPIO, что я дампнул с рабочей прошивки мне тут не помогли. Потратил некоторое время тупо не понимая почему сигнал не проходит через CAN трансивер, пока не догадался встать щупом ему на ножку питания.

  • Ну и кучка мелких нюансов, связанных с нашим кодом, который еще ни разу не запускали на проце настолько стесненном в объемах flash памяти.

Вместо заключения

А дальше надо это попробовать на реальной машине. Как показывает опыт — сразу всплывает куча неожиданных нюансов.

Надо разбираться с загрузчиком. Ведь пользователь не будет вскрывать блок ради подключения SWD и прошивки. И, вероятно, часть пользователей захочет вернуться на родную прошивку.

Надо из родной прошивки выковырить все таблицы по которым управляется двигатель, конвертировать их в наш формат и сделать «консерву», чтобы машина могла передвигаться на нашей прошивке «из коробки» не хуже, чем на оригинальной.

И куча других веселых активностей. Об этом расскажу в следующей статье.

А еще

Теперь очень хочется сделать то же самое на М74.9 от ИТЭЛМА. Там прикольная микросхема L9779. Мы ее рассматривали как альтернативу нашей любимой TLE8888, которую мы ставим на MicroRusEFI

Но пока вариантов купить такой ЭБУ не представилось. Видимо кто-то из нас все же сломал прод в том году.

Hidden text

Может нас здесь прочитает кто-то из ИТЭЛМА или может быть кто-то уже списал свою новую Ниву?

Надеюсь, кому-то эта статья покажется интересной. Возможно, кто-то даже встанет из-за компа и пойдет разбирать какую-то железку, устройство которой его всегда интересовало.

Может кто-то захочет влиться в нашу дружную команду и помочь нам с разработкой. Или у кого-то есть идеи как это все монетизировать. Ведь как говорится «Выбери себе работу по душе, и тебе не придётся работать ни одного дня в своей жизни. Кушать ты тоже будешь редко».

Понимаю, что статья получилась сумбурная и без подробностей, поэтому с удовольствием отвечу (в меру своей компетенции) на вопросы в комментариях.

Terminator X — Holley

Автономное управление двигателем по бюджетной цене. Подключи и работай с большинством отечественных двигателей V8!

Terminator X и X Max Особенности и преимущества

  • Автоматическое управление двигателем V8
  • Электронное управление дроссельной заслонкой (только для Terminator X Max)
  • Управление коробкой передач (только для Terminator X Max)
  • Оригинальный Bosch LSU 4.9 Широкополосное управление (не работает с кислородными датчиками LSU 4.2)
  • Бортовые диагностические светодиоды для: питания ЭБУ — работы двигателя — широкополосного состояния — калибровки TPS — сигнала коленчатого вала — сигнала кулачка. Позволяет с первого взгляда определить любые критические проблемы с двигателем
  • Встроенный датчик абсолютного давления на 1 бар, переходники для вакуумных шлангов в комплекте (1/8 – ¼ и 3/16) – или для форсированных применений можно отключить внутренний датчик абсолютного давления и использовать внешний датчик абсолютного давления, жгут проводов поставляется с разъемом прекращено, что делает установку несложной.
  • 4 входа – 12 В, Земля, 5 В и Частота, для таких вещей, как дополнительные датчики давления или триггеры активации для активации закиси азота или трансмиссионного тормоза (входы давления топлива и масла предварительно подключены)
  • 4 выхода – Земля, ШИМ-, для аксессуаров, таких как; вентиляторы, управление наддувом, управление закисью, комплект IAC и многое другое
  • Управление наддувом — наддув в зависимости от времени, наддув в сравнении с передачей, наддув в зависимости от оборотов, наддув в зависимости от скорости, защита наддува
  • Non-Progressive, Rich/Lean Safetys и Target Closed Loop AFR
  • Расширенные таблицы – 4x одномерные таблицы, 1x 1D на таблицу передач, 4x 2D-таблицы, 1x 2D на таблицу передач
  • Встроенная регистрация данных на 3,5-дюймовую портативную SD-карту
  • Бесплатное программное обеспечение для настройки EFI для полного контроля вашей электростанции Terminator X

Диагностические светодиоды

  • 8 встроенных многоцветных диагностических светодиодов позволяют быстро определить различные потенциальные системные проблемы, такие как сбой автоматической настройки TPS. — неисправные датчики коленвала или кулачка, или потенциальные проблемы с кислородным датчиком!
  • 1. Питание ECU — зеленый = ВКЛ.
  • 2. Двигатель работает — зеленый = работает — желтый = нет оборотов
  • 3. Состояние широкополосного доступа — синий = слишком жарко, слишком холодно, медленный прогрев или не откалиброван, зеленый = OK! , красный = сбой датчика, желтый = нагрев датчика, не горит = датчик отключен.
  • 4. Калибровка TPS — зеленый — калибровка, красный = ошибка калибровки, голубой = ошибка калибровки педали DBW, фиолетовый = ошибка калибровки DBW TB.
  • 5. Не определено — использование в будущем!
  • 6. Сигнал кривошипа — зеленый = обнаружен зуб, ниже кривошипа для работы на оборотах (400 об/мин), синий = обнаружен зазор, ниже кривошипа для работы на оборотах (400 об/мин), красный = обнаружена ошибка кривошипа, выключено — синхронизировано правильно.
  • 7. Сигнал кулачка — зеленый = обнаружен зуб, ниже кривошипа для работы на оборотах (400 об/мин), синий = обнаружен зазор, ниже кривошипа для работы на оборотах (400 об/мин), красный = обнаружена ошибка кулачка, выключено — синхронизировано правильно.
  • 8. Не определено — Будущее использование!

Краткий обзор устранения неполадок!

Как идентифицировать датчики коленчатого вала GM LS с 24 или 58 зубьями

  1. Правильная идентификация датчика имеет решающее значение при выборе любой системы LS EFI — датчики 24x работают при 12 В, тогда как датчики 58x работают при 5 В.

Идентификационная таблица форсунок

  • Компания GM использовала три различных типа разъемов форсунок на двигателях LS. Слева — Bosch (EV1), в центре — USCAR (EV6) и справа — Multec 2, которые использовались в двигателях ранних грузовиков LS.

Нужна помощь в определении форсунок?

Соединения Terminator X ECU

  • J1A — разъем главного жгута — этот разъем в первую очередь является «входным» разъемом. Он содержит все входы датчиков и управление широкополосным датчиком кислорода.
  • J1B — разъем основного жгута — второй разъем — это разъем «J1B» (26-контактный). Этот разъем является «выходным» разъемом. Имеет 8 выходов инжектора и выходы для других устройств.
  • Датчик MAP — используется в приложениях N/A, подключается непосредственно к левому вакуумному отверстию коллектора на впускном коллекторе.
  • Основное питание — подключается к основному жгуту питания, эти два провода ДОЛЖНЫ быть подключены непосредственно к клеммам аккумулятора.

Terminator X Max ECU Соединения

  • J1A — разъем основного жгута — этот разъем в первую очередь является «входным» разъемом. Он содержит все входы датчиков и управление широкополосным датчиком кислорода.
  • J1B — разъем основного жгута — второй разъем — это разъем «J1B» (26-контактный). Этот разъем является «выходным» разъемом. Имеет 8 выходов инжектора и выходы для других устройств.
  • Датчик MAP — используется в приложениях N/A, подключается непосредственно к правому вакуумному отверстию коллектора на впускном коллекторе.
  • Основное питание — подключается к основному жгуту питания, эти два провода ДОЛЖНЫ быть подключены непосредственно к клеммам аккумулятора.
  • J3 — Точка подключения жгута проводов Drive-By-Wire.
  • J4 — Точка подключения жгута трансмиссии.

Ручной регулятор наддува!

  • Система Terminator X интегрирует функции управления наддувом в портативное устройство, позволяя вам легко изменять синхронизацию и смещение AFR без использования ноутбука!
  • Для продвинутых пользователей программное обеспечение Terminator X содержит надежную систему контроля наддува с функциями управления куполом, наддувом по времени/передаче/об/мин/скорости и встроенными функциями безопасности наддува.

Управление наддувом в ваших руках Советы

Управление питанием из бутылочки!

  • Если закись азота является вашим выбором для увеличения мощности, система Terminator X даст вам контроль над закисью азота!
  • С помощью портативного устройства вы можете установить минимальные/максимальные обороты для активации закиси азота, время замедления или опережения, установить целевую AFR и даже построить собственные прогрессивные кривые как для процентного содержания закиси азота, так и для опережения зажигания.

Закись азота Управление стало проще!

Фильтр

Доступность

  • В складе

Категории

  • High Impedance Injectors

  • Terminator X и X Max Ford KITS

  • Terminator X и X Max Ford KITS

  • Terminator X и X Max Ford KITS

  • Terminator X и X Max Ford KITS

    1108
  • Terminator X и X Max Ford KITS

    1108
  • 9

    x и X Max Ford KIT Комплекты прямого впрыска Terminator X и X Max Gen V LT

  • Комплекты Terminator X и X Max LS

  • Terminator X и X Max Stealth 4 барреля

  • Terminator X and X Max Universal Kits

  • Terminator X Service Parts

  • Terminator X Software

  • Terminator X Stealth 4500

Brand

  • ACCEL
  • Holley
  • Holley EFI
  • Holley Sniper EFI
  • Sniper

Тип зажигания

  • GM LS 24x
  • GM LS 58x
  • Универсальный инжектор
    • Jetronic / Minitimer (BOSCH)
    • Multec 2
    • USCAR (EV6)

    Тип продукта

    • Кабельный шкаф
    • CAN BULE OUTPOR
    • ECU
    • EFI Software
    • EFI
    • 70007
    • 70007 70007 70007 70007 70007 70007 70007 70007 70007 70007 70007 70007 EFI
    • EFI System
    • ECU
    • EFI.
    • Топливный журнал
    • Ручной программатор
    • Ремни безопасности
    • Кислородный датчик
    • Коннектор
    • Terminator Stealth 2×4
    • Terminator Stealth Kit
    • Terminator X Ford MPFI Kit
    • Терминатор X Gen III Hemi Kit
    • Терминатор X LS EFI
    • Терминатор X MAX LS EFI
    • Терминатор x Universal MPFI Kit
    • Throttle Body
    • Transmision Harness
    • 77
    • Throttle Body
    • Transmision Harness
    • 777
    • Throttle Body
    • Transdersion Harness
    • 7779.

    ?

    Сопротивление кривошипа

    • 24x
    • 58x

    Опции Terminator LS

    • Топливо, искра
    • Топливо, искра, Drive-by-Wire
    • Топливо, искра, Drive-by-Wire, трансмиссия
    • Топливо, искра, трансмиссия
    • По умолчанию
    • В наличии
    • Название продукта
    • Цена (от низкой до высокой)
    • Новые

    Элементы 1–237 из 237 Элементы

    Сортировка

    • По умолчанию
    • В наличии
    • Название продукта
    • Цена (от низкой к высокой)
    • Цена (от высокой к низкой)
    • Новейший

    Техническая поддержка

    • Документы технической поддержки

      Просмотрите нашу техническую документацию и файлы для загрузки, чтобы получить информацию о Terminator EFI.

    • Технические видеоролики

      Смотрите обучающие видеоролики по Holley EFI.

    • Часто задаваемые вопросы

      Будьте уверены и посетите наш раздел часто задаваемых вопросов для быстрых ответов.

    • Сертифицированные дилеры Holley EFI

      Вам нужен специальный комплект, созданный для вашего приложения? Вам нужна система, установленная и настроенная? Нажмите здесь, чтобы найти сертифицированного дилера Holley EFI в вашем регионе! (Все сертифицированные дилеры EFI проходят обучение на заводе-изготовителе.)

    Представляем обновления программного обеспечения Holley EFI V6

    Подробное знакомство с системой Holley’s Terminator X Stealth 4500 EFI

    Terminator X 4500 Stealth помогает этому маленькому блоку Dual-Quad EFI со скоростью вращения 10 400 об/мин выдавать 1081 л.с. VVT и SRV Control

    Как установить ЭБУ Holley Terminator X Max на двигатель Ford Coyote

    Как отправить по электронной почте журналы данных и глобальные файлы для Holley EFI и Terminator X

    Как настроить входы и выходы на Terminator X EFI

    Terminator X для Ford. Часть 2. Установка MSD Pro 600 и Cam Sync на компактный блок Ford

    Terminator X EFI для Ford. Часть 1. Установка датчиков и проводки реле Установите Terminator X EFI на любой двигатель LS

    Подробнее