Сколько электролита должно быть в аккумуляторе: Какой должен быть уровень электролита в аккумуляторе. Замеряем от пластин. Разберем автомобильный вариант

Содержание

Сколько электролита должно быть в аккумуляторе?

Как показывает практика далеко не каждый, кто интересуется вопросом, сколько электролита в аккумуляторе, знает, что вообще такое электролит и зачем он нужен, поэтому сейчас вы получите ответы на все озвученные вопросы. Итак, обо всем по порядку.

Что такое электролит и зачем он вообще нужен?

Если вы уже успели прочитать на нашем портале статью: «Какая кислота в аккумуляторе автомобиля», то общее представление об электролите вы уже имеете. Если нет – разъясняем.

Электролит – это раствор серной кислоты и простой дистиллированной воды. Им в нужной концентрации и объеме заполняют свинцово-кислотные аккумуляторные батареи для того, чтобы те благодаря химическим процессам происходящим с этим раствором могли хранить энергию. Отсюда, если концентрация или количество электролита в АКБ уменьшается, она перестает справляться в полной мере со своими обязанности и начинает нуждаться в замене или восстановлении. В последнем случае перед автомобилистами как раз и встает вопрос: сколько электролита должно быть в аккумуляторе.

Итак, сколько электролита должно быть в АКБ?

То, сколько электролита должна содержать аккумуляторная батарея автомобиля для максимально эффективной своей работы, напрямую определяется ее емкостью. Конечно, в зависимости от производителя возможна некоторая разбежка, но в целом объем электролита для аккумуляторов разной емкости будет следующим:

  • 55 А·ч – 2,5 л +/- 100 г;
  • 60 А·ч – 2,7-3 л;
  • 62 А·ч – около 3 л;
  • 65 А·ч – около 3,5 л;
  • 75 А·ч – 3,7-4 л;
  • 90 А·ч – 4,4-4,8 л;
  • 190 А·ч – порядка 10 л.

Но это лишь примерный литраж, он нужен больше для справки перед походом в магазин. В процессе же восстановления аккумулятора нужно ориентироваться не на него, а на особые метки, присутствующие на корпусе последнего. Теперь подробнее.

Какой должен быть уровень электролита в аккумуляторе?

Если в вашем аккумуляторе присутствует шкала с минимумом и максимумом, то вопрос, до какого уровня следует заливать электролит, решается очень просто – по верхнюю черту, то есть до отметки «MAX»,

Если же такой шкалы нет, возможно, в отверстиях вашего аккумулятора есть «язычки», тогда электролита в АКБ нужно заливать столько, чтобы они покрылись 5 мм слоем раствора (полностью в него погрузились).

Ну, а если нет ни того, ни другого, залейте в АКБ электролит в рекомендуемом выше объеме (его должно быть не под завязку, а чуть меньше), а затем для самоконтроля возьмите стеклянную трубочку, диаметром до 5 мм и опустите ее внутрь АКБ, пока она не упрется в предохранительный щиток. Закройте верхнее отверстие трубочки пальцем и выньте ее наружу. Если уровень оставшегося в ней электролита находится в пределах 10-15 мм вы все сделали правильно – уровень электролита в АКБ оптимален.

Важно!

Если вы заметили, что уровень электролита в автомобильном аккумуляторе со временем стал меньше необходимого, его восполнение следует осуществлять лишь дистиллированной водой с небольшой плюсовой температурой – 15-25˚С, подробнее в статье – «Как поднять плотность электролита в аккумуляторе». Электролит может использоваться лишь в отношении абсолютно пустых АКБ.

Видео.

Рекомендую прочитать:

Сколько доливать дистиллированной воды в аккумулятор

Если не следить за уровнем электролита — начинается преждевременное разрушение пластин аккумулятора. При этом перелить воду тоже нельзя — тогда падает емкость батареи, а зимой вообще появляется риск замерзания электролита.

Доливать дистиллированную воду нужно на уровень 1,5-2 сантиметра выше края пластин или на 0,5 см над специальным индикатором (“язычков”). Цель — после заливки воды и зарядки батареи добиться плотности электролита АКБ на уровне 1,27 г/см³.

А вы знаете правильный уровень электролита в аккумуляторе, как его определять, как поддерживать на нужном уровне, что доливать и как это делать? Нет — тогда читайте статью.

Содержание

Зачем поддерживать уровень электролита в аккумуляторе?

Поддерживать норму уровня электролита в аккумуляторе, а соответственно и количество дистиллированной воды, необходимо во всех обслуживаемых кислотных АКБ. Делают это по двум причинам.

Состав воды и серной кислоты у свинцово-кислотных батареях

Электролит свинцово-кислотных батарей состоит на 65% из воды и на 35% из серной кислоты. В процессе работы аккумулятора, при перезарядке, электролит может закипать. Этот процесс усиливается когда на улице или под капотом слишком высокая температура. Кислота нелетучая и практически не испаряется. А вот вода, при сильном электролизе, как раз таки испаряется особенно активно. В результате падает уровень электролита, нарушается пропорция воды и кислоты из-за чего растет его плотность.

Есть и другой фактор. В процессе работы (при разрядке) аккумулятора, во время химических реакций, кислота отдает свинцу свой радикал SO4 с образованием PbSO4 (сульфат свинца) который частично оседает на пластинах аккумулятора. И если выкипание было не особенно сильным (например, зимой), то уровень электролита еще в норме, а вот плотность снижается, потому что воды больше чем кислоты. Проблема решается зарядкой батареи — во время этого процесса частицы кислоты “отваливаются” от пластин и возвращаются в электролит.

Нормальная плотность электролита составляет 1,27-1,28 г/см³ (в северных регионах допускается 1,29 г/см3, а в южных 1,25 г/см3). Именно такой показатель соответствует формуле “65 на 35”. Когда вода выкипает, плотность и доля кислоты растет. Что будет, если это не исправить?

Во-первых, переизбыток кислоты в электролите приводит к ускоренному износу пластин аккумулятора. Во-вторых, если совсем не добавлять воду, в электролите остается одна кислота, которой не хватит даже для того, чтобы полностью покрыть пластины АКБ. В итоге они начнут просто осыпаться и разрушаться.

Поэтому очень важно поддерживать правильный уровень дистиллированной воды в аккумуляторе — таким образом вы возвращаете электролит в нормальное состояние и обеспечиваете эффективную работу батареи. Проверку этого параметра стоит делать приблизительно каждые 10-15 тысяч километров.

Иногда батареи, которые производитель декларирует как необслуживаемые, такими не являются. Просто пробки банок скрыты под наклейкой с этикеткой АКБ. Достаточно ее снять, открыть банки, долить воду до нормы и продлить жизнь своей батарее.

Если у вас действительно необслуживаемая батарея, у которой нет пробок, мы не рекомендуем вам сверлить в ней отверстия или проводить другие манипуляции для того, чтобы долить туда воду и продлить им жизнь. Необслуживаемые батареи выполнены по несколько иной технологии, которая не предусматривает сильного испарения воды и такая процедура в регламенте обслуживания не предусмотрена.

Нужно доливать воду или электролит?

В аккумуляторную батарею всегда доливается только дистиллированная вода , за исключением случаев с заменой электролита или поднятия в нем плотности, если было нарушено его соотношение.

Для периодического обслуживания АКБ всегда нужно доливать только дистиллированную воду. Потому что при нормальном функционировании аккумулятора из электролита выкипает только вода и его плотность растет. Устраняется проблема понижением плотности доливая воду.

Доливка электролита может понадобиться только если его плотность сильно снижена. А это означает, что с аккумулятором возникли проблемы. Например, произошла утечка жидкости через трещины. Тогда нужно запаять корпус и долить готовый электролит правильной плотности. Также снижение плотности может быть признаком сильной сульфатации пластин, но в таком случае доливка электролита будет просто не очень эффективным способом продлить ему жизнь.

Долго он уже все равно не прослужит, потому что процесс сульфатации практически необратим. Последний случай необходимости долива электролита — активный перезаряд батареи. Это тоже требует устранения самой причины, а не только следствия.

Как проверить уровень электролита в аккумуляторе?

Пример кислотной батареи со встроенным индикатором, показывающий уровень электролита

Узнать какой уровень электролита в аккумуляторе можно тремя способами. В двух случаях снимать АКБ с автомобиля не нужно. Ведь прежде чем замерять, следует присмотреться к самой аккумуляторной батарее.

Во-первых, некоторые обслуживаемые автомобильные кислотные батареи имеют специальный индикатор. Он показывает несколько её состояний: нормальное, низкий уровень электролита (нужно долить воду), низкая плотность электролита (требуется зарядить). Во-вторых, у некоторых батарей с белым или светлым корпусом есть отметки MIN и MAX. Такие АКБ позволяют оценить уровень электролита на глаз, благодаря относительной прозрачности корпуса.

Но чаще всего уровень электролита определяют методом визуального осмотра. Для этого батарею снимают с автомобиля, откручивают крышки с “банок” и смотрят внутрь. Нормальный или пониженный уровень можно определить двумя способами.

Какой уровень электролита в аккумуляторе нормальный

Как доливать дистиллированную воду, когда отсутствует отметка уровня

В некоторых АКБ есть специальные индикаторы-”язычки”. Они должны быть покрыты электролитом на 0,5 сантиметра, но не больше. Если же таковых нет, то ориентируйтесь по погруженности пластин в жидкости. Нормальный уровень электролита должен быть на 15-20 миллиметров выше края пластин. Если пластины не покрыты — это очень плохо, критически низкий уровень электролита следует немедленно восстановить. Но чтобы понять, что лить, воду или кислоту, и сколько нужно доливать, следует измерить точный уровень и плотность электролита!

Как и чем измерить

Чтобы определить сколько жидкости в аккумуляторе используют специальные стеклянные мерные трубки из еще советских “наборов аккумуляторщика”. Или можно взять корпус обычной прозрачной пластиковой ручки. Сделайте на одном краю отметку на уровне 2 сантиметра от края (насечкой или маркером). Вставляете трубку/ручку в банку, зажимаете верхний край, чтобы перекрыть воздух и поднимаете вверх. Теперь оцениваете визуально уровень жидкости — насколько он ниже 2 сантиметров.

Язычок, измеряющий уровень электролита

Проверка уровня электролита линейкой

Наглядный пример, как измерить электролит при помощи ручки

При осмотре вы можете заодно оценить состояние электролита. Он обязательно должен быть прозрачным. Если жидкость мутная или темная — значит в батарее начались разрушительные процессы и дальнейшие манипуляции не имеют смысла. АКБ нужно заменить.

Измерить плотность электролита можно как ареометром (используется чаще всего) так и рефрактометром. Приобрести его можно в большинстве магазинов автотоваров и он пригодится для оценки качества не только этой, но и других жидкостей автомобиля.

Чтобы измерения были точными проверять уровень электролита и плотность нужно только после полной зарядки батареи от зарядного устройства!

Сколько доливать воды в аккумулятор

Сколько заливать дистиллированной воды в аккумулятор будет зависеть от того, какая его емкость. Так как чем больше батарея, тем больше в ней электролита. Соответственно и ответ на вопрос “сколько дистиллированной воды в аккумуляторе” может быть разным. Более того, объем зависит от конструкции батареи и может отличаться для разных производителей. В таблице указаны средние показатели для АКБ разной емкости.

Емкость АКБ, АчСколько электролита должно быть (общий объем), лСколько воды должно быть в аккумуляторе, л
55 Ач2,5 л1,63 л
60 Ач2,7 — 3 л1,76 — 1,95 л
62 Ач≈ 3 л1,95 л
65 Ач≈ 3,5 л2,28 л
75 Ач3,7 — 4 л2,41 — 2,60 л
90 Ач4,4 — 4,8 л2,86 — 3,12 л

Сложность в том, что эти цифры не применимы на практике. Они могли бы пригодиться только если вы полностью сольете весь электролит, добавите воды и зальете обратно. Но так делать крайне не рекомендуется! Также такие данные могут пригодиться если уровень был не просто пониженный, а критически низкий — то есть практически одна кислота.

Рассмотрим такой случай на примере популярного аккумулятора 65 Ач, в котором должно быть 3,5 литра электролита. Если проверка плотности показала 1,4 г/см³, что означает полное отсутствие воды в составе, то вам нужно залить воды в количестве 65% от этого объема. 3,5 литра * 0,65 = 2,28 литра (приблизительно по 460 мл. в каждую банку). Если же там плотность 1,3 г/см³ и не хватает жидкости 1…1,5 см поверх пластин, то попросту доливаем воды до такого уровня. Это и будет ответом “сколько воды нужно залить в аккумулятор 65 Ач”.

Как правильно доливать дистиллированную воду в аккумулятор?

Вливаем шприцем дистиллированную воду, чтобы не перелить

Алгоритм действий выглядит так:

  1. Дать отстояться батарее на протяжении 6-8 часов в комнатной температуре.
  2. Очистите крышку АКБ и протрите ее содовым раствором, чтобы при откручивании пробок грязь не попала внутрь.
  3. Открутите пробки и проверьте уровень электролита, как описано выше. Проверку нужно делать на ровной поверхности, для точности измерений.
  4. Начните понемногу доливать дистиллированную воду до нужного уровня. Доливать и отбирать лишнее очень удобно ареометром. Также можно использовать шприц.
  5. Закрутите пробки и оставьте АКБ стоять на 6-8 часов — процесс смешивания воды и электролита требует времени.
  6. Зарядите аккумулятор. Зарядку нужно прекратить при наступлении бурного электролиза (после закипания электролита).
  7. Измерьте плотность электролита ареометром. Она должна быть на нормальном уровне 1,27-1,28 г/см3. Такую АКБ можно установить на автомобиль.

Выполняйте все операции в перчатках и хорошо проветриваемом помощении!

Почему нужно доливать только дистиллированную воду?

В аккумуляторе можно использовать исключительно дистиллированную воду. Потому что в любой другой воде неизбежно присутствуют примеси — хлор, кальций, магний, соли и другие вещества. Все посторонние примеси, которые попадут в АКБ, вступят в химические реакции и ускорят разрушение пластин! Поэтому нужно использовать исключительно дистиллированную воду, которая состоит только из водорода и кислорода и не имеет никаких лишних примесей.

В сети можно найти множество советов какую воду можно использовать вместо дистиллированной (талую, дождевую, конденсат с кондиционера и т.д) или сделать собственный дистиллят. Но использовать такую воду не рекомендуется. Добиться качества промышленной дистилляции все равно невозможно. Ее цена не настолько значительна чтобы на ней экономить. Недостаточно чистой водой можно угробить свой АКБ. Поэтому просто покупайте дистиллированную воду в тех точках продаж, которым можно доверять.

Перелил воды в аккумулятор — что делать?

При помощи ареометра, убирается лишняя вода

Если воды в аккумуляторе больше, чем нужно, это негативно скажется на его работе. Во-первых, плотность электролита будет снижена, а это означает, что его мощность уменьшится и он будет работать хуже. Во-вторых, таким образом снижается его стойкость к замерзанию. Аккумулятор с избытком воды в электролите может просто замерзнуть при температуре минус 15-20 градусов!

Если вы перелили воды, исправить ситуацию очень просто. Возьмите качественный ареометр, грушу или шприц, чтобы отобрать часть воды, не наклоняя аккумулятор. Отберите воду, чтобы она достигала необходимого уровня. Вы не снизите плотность, если сделаете это сразу, потому что перемешивание воды и электролита происходит очень медленно.

Спрашивайте в комментариях. Ответим обязательно!

Как проверить уровень электролита в аккумуляторе

Ни одна комплектация даже самого современного автомобиля не обходится без аккумуляторной батареи. Внутреннее пространство корпуса состоит из электродов или банок, как их ещё иначе называют, выполненных из пластин. Для протекания электрохимических процессов, на которых и основан принцип действия аккумулятора, электроды помещены в жидкую среду, именуемую электролитом.

Его роль в батареях свинцово-кислотного типа выполняет раствор концентрированной серной кислоты, которая служит неизменным компонентом с момента запуска их в производство. Кроме того, в состав электролитного раствора входит ещё дистиллированная вода, выполняющая функции растворителя химического реагента.

Дистилляция подразумевает полнейшую очистку воды от любых даже мельчайших примесей и включений. Почему нельзя использовать обычную воду хозяйственно-бытового назначения? Как известно, всякая жидкость из водопроводного крана или природного водоёма имеет в своём составе различные соединения солей, металлов и других компонентов. Следовательно, при разбавлении такой водой кислоты они тут же начнут вступать с ней во взаимодействие. Кроме того, такой ненадёжный электролитический раствор способен мгновенно привести в негодность пластины, сведя срок службы автомобильного источника тока практически к нулю.

Определение электролитической жидкости в аккумуляторной батарее

Существует два типа источников энергии, широко применяемых сегодня для автомобильной промышленности:

  • Необслуживаемые устройства – заключены в герметичный корпус, полностью предотвращающий доступ из вне. Они, как правило, вырабатывают свой ресурс и подлежат замене. Восстановить их работоспособность самостоятельно нельзя. Единственное, что может делать владелец такой АКБ, – осуществлять её зарядку по мере необходимости.
  • Обслуживаемые – требуют постоянного внимания и контроля. Необходимо регулярно следить за уровнем электролитного раствора, а также за его плотностью и состоянием пластин.

Как узнать уровень электролита

Электролитическая жидкость по мере хранения и эксплуатации способна изменять свой объём. Как можно проверить уровень электролита в аккумуляторной батарее? Существует несколько вариантов, каждый из которых может быть применён в конкретной ситуации:

  1. По специальным меткам, нанесённым на корпус. Некоторые источники энергии имеют на внешней поверхности корпуса в её верхней части две горизонтальные линии, параллельные друг другу. Нижняя обозначена «min» – показывает минимально возможный уровень электролитного раствора. Верхняя имеет надпись «max» – максимально допустимый предел жидкой среды.
  2. С помощью визуального осмотра. Он позволяет определить количество жидкого содержимого приблизительно. При отсутствии меток и других подручных средств достаточно просто открутить пробки на верхней крышке корпуса, установив при этом устройство на ровной горизонтальной поверхности. Заглянув внутрь, особенно при наличии хорошего освещения, можно понять по следующим критериям, достаточно раствора или нет:
    • пластины полностью скрыты жидкой средой, подтёки на внешней стороне корпуса отсутствуют – уровень в норме;
    • электроды видны (находятся вровень или выше поверхности жидкости) – требуется доливка.
  3. Путём выполнения несложных замеров. Уровень электролита в аккумуляторе можно проверить, используя:
    • Прибор ареометр. Он позволит узнать плотность жидкости в каждой банке, что даст возможность сделать вывод о её количестве. Опускаем его поочередно в каждое отверстие, набираем при помощи груши раствор и смотрим на показания. Если значение выше нормы, то уровень недостаточен.
    • Подручные средства: прозрачную трубочку от сока или такой же корпус шариковой ручки. В отверстие на месте открученной пробки опускаем трубку до тех пор, пока она не упрётся в верхний край банки. Конец, оставшийся на поверхности, зажимаем пальцем, таким образом перекрыв поступление в неё воздуха. Удерживая палец, вынимаем трубку и замеряем высоту столбика жидкости, оказавшейся внутри неё. При нормальном уровне электролита её величина должна находиться в диапазоне от 11 до 15 мм.

Низкий уровень электролита в аккумуляторе

Как определить, что в аккумуляторе низкий уровень электролита? Об этом весьма красноречиво свидетельствуют:

  • существенное повышение плотности;
  • появление пластин над поверхностью жидкой среды.

Причин этому может быть несколько:

  1. Испарение дистиллированной воды – это самый распространённый фактор уменьшения объёма в летнее время года. Как известно, слишком высокие температуры наружного воздуха провоцируют испарительные процессы. А при эксплуатации аккумуляторной батареи в этот период под капотом очень жарко.
  2. Выкипание жидкости вследствие неисправности температурного реле – регулятора.
  3. В результате разряда батареи на протекание электрохимических реакций расходуется часть кислоты.

Снижение уровня электролита ниже нормы в АКБ приводит к очень серьёзным последствиям:

  • во-первых, раствор повышенной концентрации способствует ускоренному разрушению материала пластин;
  • во-вторых, та часть поверхности электродов, что расположена выше границы жидкости, подвергается сульфатации.

В обоих случаях исход одинаков: быстрая утрата ёмкости и преждевременный выход из строя источника энергии. Значит, потребуется его замена. А где гарантия, что новая аккумуляторная батарея столь же быстро не утратит свою работоспособность?

Вариант один – научиться правильно эксплуатировать и обслуживать АКБ, а в первую очередь поддерживать в норме жидкую составляющую.

Какой должен быть уровень электролита в аккумуляторе? Норма – когда электролитный раствор на 1–1,5 сантиметра находится выше электродных пластин, полностью покрывая их при движении авто. Причём уровень электролита должен быть одинаков в каждой банке – это очень важно для надёжной работы батареи.

Сколько должно быть электролита в аккумуляторах разного объёма

Как известно, в зависимости от объёма двигателя подбирается источник питания. Будет ли одинаков объём электролита в аккумуляторе ёмкостью 60 А/ч и 35 А/ч? Конечно же, нет. Чем мощнее устройство, тем больше его габариты, а следовательно, большее внутреннее пространство корпуса АКБ нужно заполнить. Рассмотрим подробнее, сколько электролита и в каком аккумуляторе должно быть.

В самом популярном для легковых авто аккумуляторе ёмкостью 55 А/ч объём электролита составляет примерно 2,5 литра, что в общем-то совсем немного.

А вот на автобусах применяют батареи, ёмкостные характеристики которых в разы превосходят аналогичный параметр стандартных машин. Тогда сколько электролита требуется залить в аккумулятор, если его ёмкость равна 190 А/ч? Ориентировочно во столько же раз больше, во сколько раз отличаются их величины мощности.

На современных внедорожниках установлены источники энергии увеличенной мощности, ведь и двигатель у них большего объёма. Сколько вмещается электролита в аккумулятор ёмкостью 75 А/ч? Опять же, если взять за базовую величину самый востребованный, то, вычислив разницу в их ёмкости, несложно определить и нужный объём жидкости.

АКБ на 60 А/ч чаще встречаются в автомобилях иностранного производства. Сколько литров электролита должно быть в аккумуляторе ёмкостью 60 А/ч? Этот объём тоже невелик и в зависимости от его производителя находится в пределах от 2,7 до 3 литров.

Как-то привычно, что весь модельный ряд источников энергии кратен цифре пять. Но оказывается, есть модель, которая выбивается из установленной закономерности. Сколько нужно электролита, чтобы заполнить свободное пространство в аккумуляторе ёмкостью 62 А/ч, который используют на автомобилях ГАЗ? Это количество практически не отличается от 60-амперного устройства.

Теперь становится ясно, сколько электролита заливать в каждый аккумулятор – всё зависит от его параметров и габаритов.

Как скорректировать объём электролита

Уровень электролитной жидкости меняется в зависимости от условий и правил эксплуатации, температурного режима. Если её объём снизился, то его нужно нормализовать. Понять, что количество жидкости уменьшилось, можно, выполнив проверку уровня электролита в аккумуляторе.

Сколько доливать электролита

Количество жидкой среды в АКБ должно соответствовать норме. Нормальный уровень жидкости в батарее – это когда электроды полностью скрыты под её толщей и над ними ещё, как минимум, 10 мм. Другими словами, даже не зная, сколько электролита должно быть в аккумуляторе, можно просто залить его до уровня, соответствующего нормальному.

Например, мы знаем, сколько электролита должно находиться в аккумуляторе мощностью 55 А/ч. Это 2,5 литра. Такого объёма вполне достаточно, чтобы над пластинами его уровень составил не менее одного сантиметра, но и не более полутора.

Чем доливать электролит

Чем доливать электролит и какой уровень дистиллированной воды должен быть в аккумуляторе? Здесь всё будет зависеть от плотности оставшегося электролита. Если она высока, то доливаем до нормы дистиллированную воду. При низкой её величине добавки требует кислота.

Нельзя доливать электролитный раствор – АКБ легко вывести из строя. После добавления воды батарею необходимо зарядить.

Завершающий этап работы с АКБ

Уровень электролита в автомобильном аккумуляторе проверен и доведён до нормы. Осталось привести саму батарею в рабочее состояние:

  1. Тщательно протираем и вкручиваем на место пробки.
  2. Убираем все подтёки и капли с корпуса, используя ветошь и исключая контакт кожных покровов с электролитом.
  3. При попадании раствора на другие поверхности и одежду – смываем водой.
  4. Внимательно следим за источником энергии, своевременно освобождая его поверхность от расплескавшейся при эксплуатации авто жидкости.

Безопасность при работе с электролитом

Электролит представляет собой раствор концентрированной серной кислоты, способный вызвать ожоги на теле или причинить серьёзную травму при попадании в глаза. Поэтому при работе с ним обязательно применять меры предосторожности:

  1. При выполнении любых манипуляций с жидкой средой аккумуляторной батареи надевать прочные резиновые перчатки, не имеющие дефектов, и очки.
  2. Осуществлять зарядку устройства, доливку, замеры уровня или замену электролитного состава только в хорошо проветриваемом помещении или на свежем воздухе – кислотные пары опасны для вдыхания.
  3. Всегда держать рядом ёмкость с чистой водой, чтобы иметь возможность быстро промыть место случайного попадания кислоты на кожу.

Выводы

Уровень электролита в аккумуляторе – одна из важнейших его характеристик, во многом определяющая надёжность работы и жизненный цикл.

Какой уровень жидкости должен быть в аккумуляторе, известно – на 1,0–1,5 см выше верхнего края электродов. За этим нужно строго следить и не допускать «оголения» пластин, тогда и проблем с запуском двигателя не будет.

Уровень электролита и его плотность в каждой банке должны быть абсолютно одинаковы – это необходимо для стабильности его работы и равномерного эксплуатационного износа.

объем АКБ 55 и 60

Аккумулятор — это один из двух источников тока, которые питают энергией каждый автомобиль с двигателем внутреннего сгорания. Для его зарядки на машине установлен генератор. Эти элементы работают поочерёдно. Чтобы генератор надёжно работал, необходим электролит. В инструкции точно указано, сколько электролита в аккумуляторе. 60 а/ч — это показатель ёмкости. Автомобильная батарея с такой характеристикой может давать ток силой в три ампера в течение 20 часов. Полная маркировка этой батареи — 6 ст-60.

Накопитель электричества в автомобиле

Современные машины с бензиновым и дизельным двигателем комплектуются свинцово-кислотной аккумуляторной батареей, которая состоит из свинцовых электродов и электролита. Как правило, АКБ, предназначенная для легковых автомобилей, состоит из 6 элементов, соединённых последовательно. Каждое из звеньев имеет электродвижущую силу порядка 2,1 вольта.

Легко посчитать, что номинальное напряжение батареи составляет 12,6 вольта, количество электролита в аккумуляторе 60 составляет около трёх литров, АКБ 132 около десяти литров.

Основным параметром аккумулятора является его ёмкость, выраженная в ампер-часах (Ah) и пусковой ток амперах (А). Ёмкость зависит от режима разряда, в связи с этим внесена норма для расчёта 10 часов, т. е. батарея 55 Ah разрядится в течение 10 часов, при расходе тока 5,5 ампер, а объем электролита в аккумуляторе 55 примерно 2,5 литра.

Источник тока в машине обеспечивает электроэнергией электрические приборы, датчики, светильники во время стоянки (когда двигатель не работает) или при слишком малой частоте вращения коленчатого вала. Таким образом, понятно, что, когда заводится машина, стартер и система зажигания используют ток только от стационарного источника питания. Более того, именно он позволяет, например, прослушивать радио во время стоянки автомобиля. Во время езды её роль заканчивается, единственным источником тока является генератор.

Об аккумуляторах часто вспоминают во время зимы с наступлением сильных морозов, ибо он разочаровывает многих водителей, когда температура падает до нескольких градусов ниже нуля. Это происходит потому, что при морозах ёмкость накопителя резко уменьшается, вызывая проблемы с запуском двигателя. В экстремальных условиях может произойти замерзание кислотного раствора, что необратимо повредит аккумулятор.

Когда-то существовал обычай, что во время морозов и низких температур, водитель снимал с автомобиля аккумулятор во время стоянки и забирал его на ночь в тёплое помещение, а устанавливал только непосредственно перед поездкой.

В наше время, некоторые производители не рекомендуют самостоятельное вмешательство в батарею, ибо отключение может привести к повреждению электроники и стиранию памяти драйверов.

Функции электролита

Аккумуляторная батарея заполняется на 37% электролитом. Без сомнения, можно сделать вывод, что он необходим для нормального функционирования источника питания автомобиля. Поэтому у свинцово-кислотного раствора необходимо постоянно контролировать:

  • плотность;
  • уровень;
  • чистоту.

При падении уровня электролита может произойти открытие пластин, а это чревато сульфатацией, при этом они значительно потеряют свои свойства. Особенно это опасно при проблеме с зажиганием, продолжительном периоде простоя автомобиля, эксплуатации в зимний период. В долгосрочной перспективе это приведёт к рассыпанию пластин и необратимому повреждению аккумулятора.

Если есть доступ к специальным отверстиям, через которые можно долить дистиллированную воду, необходимо их открыть и проверить состояние пластин и уровень раствора. Если возникли проблемы необходимо привести в норму показатели электролита. Просто долить немного дистиллированной воды, чтобы слегка покрыть пластины.

Следует иметь в виду, что доступ к ним затруднён и возможен только через длинное и узкое отверстие. Теоретически можно приобрести шприц и попытаться восполнить недостаток, но лучше обратиться в специализированную мастерскую и провести полное обслуживание батареи.

Поддержка специалистов

Отсутствие доступа к банкам не означает, что аккумулятор нельзя обслужить. Мастера сервисного центра его протестируют и в случае надобности попытаются восстановить. Это не сложная операция, но, без сомнения, требует много времени и практики.

Не стоит недооценивать низкий уровень электролита в аккумуляторе, даже когда кажется, что он незначительно ниже нормы. Однако это в значительной степени влияет на работу аккумулятора, только профессионалы знают сколько нужно электролита в 60 аккумулятор, поэтому им можно доверить этот капризный узел автомобиля, какой часто приносит сюрпризы.

Каковы действия автовладельца, когда выяснилось, что аккумулятор требует зарядки. Для этого необходимо помнить о некоторых правилах:

  1. Во-первых, сначала отсоединить отрицательный, а затем положительный полюсы.
  2. Во-вторых, при демонтаже не наклонять батарею, чтобы уменьшить риск утечки электролита.
  3. Подключив аккумулятор к зарядному устройству, рекомендуется заряжать его в помещении с хорошей вентиляцией, потому что в процессе зарядки выделяется водород и кислород.

Как правило, он заряжается несколько часов, чтобы не было перезарядки лучше использовать выпрямитель, который автоматически отрегулирует процесс и время зарядки.

В автомагазинах продаются аккумуляторы, которые не требуют обслуживания. Выражение «отсутствие необходимости в обслуживании» означает, что в этом приборе меньше убыли электролита по сравнению с традиционным кислотным аккумулятором.

Но это не освобождает пользователя от ухода за ним и соблюдения основных правил его эксплуатации.

Часто неопытные владельцы легковых машин устанавливают на них аккумулятор ёмкостью выше, чем рекомендует производитель. Например, вместо рекомендованного 6 ст-55 устанавливают 6 ст-75, зная, сколько электролита в аккумуляторе 75, но не понимают, что он слишком большой и будет заведомо не полностью заряженный, поэтому износится быстрее, чем его меньший аналог.

Как обращаться с аккумулятором

Для того чтобы накопитель электрического тока служил долго необходимо соблюдать некоторые рекомендации от специалистов:

  1. Зимой, перед запуском двигателя выключить все ненужные электрические приборы (радио, свет, вентилятор).
  2. Не нагружать источник тока длительным вращением стартёра. Производить короткие, до пяти секунд интервалы и между отдельными пробами дать ему отдохнуть около половины минуты.
  3. Помнить о нажатии на сцепление во время этого действия, это существенным образом облегчит вращение коленчатого вала двигателя.
  4. При эксплуатации автомобиля в городском режиме, иногда стоит выполнить более длинную поездку, чтобы аккумулятор имел возможность полностью зарядиться.

Правильная зарядка

Это ненормально, когда машину невозможно запустить без помощи извне. Энергетический баланс транспортного средства должен быть постоянным. Зарядка батареи во время работы двигателя должна проводиться исправно, а генератор вырабатывать столько тока, сколько потребляет авто.

Однако на практике это не всегда так. Поэтому один и тот же аккумулятор на одной машине, работает без проблем даже 8 лет, а на другой уже второй зимний сезон часто подводит водителя. Это потому что аккумулятор, во-первых, не терпит постоянной неполной зарядки, а во-вторых, неэкономно используется ток, например, музыка, свет во время стоянки.

Ничто так не вредит батарее, как частые и длительные разрядки, заниженный заряд или перезаряд. Во всех этих случаях причиной может быть слишком слабый или слишком сильный ток зарядки. Это легко проверить в мастерской, и просто исправить. Берегите свой аккумулятор, для этого выполняйте рекомендации профессионалов:

  • Не приближаться с огнём во время зарядки, есть опасность вспышки выделяемого водорода.
  • Нельзя соединять полюса куском металла.
  • Оставлять автомобиль без подзарядки накопителя на период более двух месяцев рискованно.
  • Надёжно крепить батарею к кузову автомобиля.
  • Перегружать прибор, заряжая слишком большим током или напряжением запрещено.
  • Эксплуатировать слишком большим потреблением тока стартёром.

Нельзя надевать клемы на аккумулятор, ударяя сверху. Необходимо раскрутить винт, разогнуть отвёрткой посадочное место на кабеле, аккуратно надеть на электрод.

Выбор аккумуляторной батареи

Если источник энергии в машине разочаровывает все чаще и чаще, скорее всего, единственным выходом из ситуации является покупка нового. Консультанты сервиса по ремонту авто рекомендуют выбрать продукцию известных, авторитетных производителей, которые обеспечивают качество и простота в использовании, например, аккумулятор 6 ст-62, у него ёмкость 62 а/ч, а пусковой ток 550 а/ч, сколько электролита в аккумуляторе 62 указано в инструкции по эксплуатации от производителя.

Чаще всего на легковой автомобиль устанавливают накопительный прибор 6 ст-60, у него ёмкость 60 а/ч, сколько литров электролита в аккумуляторе 60, можно найти в паспорте изделия.

Первым этапом выбора является определение правильной технологии. В настоящее время на рынке существует три основных типа аккумуляторов. Батарея с жидким электролитом. Это традиционная конструкция, которая устанавливается на машины, водителями, совершающими поездки на длинные расстояния. Аккумуляторные батареи AGM. Эти батареи отлично служат водителям автомобилей с гибридным приводом, которые эксплуатируются интенсивно.

Гелевые источники постоянного тока отличаются применением силикагеля, который уплотняет электролит. Они находят применение там, где требуется длительное питание — например, в домах-фургонах, но не подходят для применения в качестве стартерных аккумуляторов.

Часто задаваемые вопросы

Какой минимально допустимый уровень электролита? Что делать если уровень электролита слишком низкий?
•    Уровень электролита над верхним краем пластин должен быть в пределах от 18 до 45 мм (в зависимости от модели АКБ). Минимально допустимый уровень электролита 10мм. Важно помнить, что при понижении уровня электролита в процессе эксплуатации, в батарею следует доливать исключительно дистиллированную воду, а не электролит.

Какова должна быть плотность электролита?
•    Плотность электролита должна быть в пределах (1,27÷1,30) г/см3 при 25˚С. При плотности электролита ниже 1,26 г/см3 при 25˚С, АКБ необходимо зарядить.

У меня на аккумуляторе маркировка вида 6X71D09UC, что она обозначает? Как определить дату производства АКБ?
•    Маркировка вида 6X71D09UC наносится для производственной логистики и не несет информации для владельца аккумулятора. Дата изготовления нанесена на верхнюю часть крышки, состоит из 6 цифр и одной буквы, расшифровывается следующим образом: первые две цифры это месяц, вторая группа цифр это год и третья это день изготовления, буква — шифр смены. Например, маркировка 01 15 02 Т будет читаться как 02 января 2015г. Места нанесения маркировки можно найти у нас на сайте: Маркировка аккумуляторов АКОМ

У вас на сайте написано, что гарантия на аккумулятор 3 года, а продавец поставил гарантию 1 год? Правильно ли он поступил?
•    Гарантийный срок на АКБ производства ЗАО «АКОМ» составляет от 12 до 48 месяцев при пробеге не более 50 000км – 100 000км (в зависимости от модели батареи), данная информация указана как на этикетках самой батареи, так и в инструкции по эксплуатации.
Обращаем Ваше внимание на то, что гарантийный срок всех АКБ производства ЗАО «АКОМ» начинается от даты изготовления. Также обратите внимание на пункт 6.2 инструкции по эксплуатации, где указаны случаи, при которых претензии не удовлетворяются.
В Вашем случае продавец поступил неправильно. В соответствии со ст.5 Закона РФ «О защите прав потребителей» гарантийный срок – период, в течение которого в случае обнаружения в товаре недостатка изготовитель (исполнитель, продавец, уполномоченная организация или уполномоченный индивидуальный предприниматель, импортер) обязаны удовлетворить требования потребителя, установленные статьями 18 и 29 Закона «О защите прав потребителей». В связи с этим продавец не имел права снижать срок гарантии, предоставляемый производителем.
Гарантийные обязательства выполняются в любом регионе РФ, при обращении к официальному представителю. При наличии производственного дефекта в приобретенной Вами батарее, гарантийные обязательства будут исполнены в полном объеме.

У меня вопрос по зарядке аккумулятора
•    Инструкция по заряду АКБ находится на нашем сайте: зарядка аккумулятора

Машина всю ночь простояла на морозе, с утра не завелась. Снял аккумулятор и обнаружил, что электролит замерз. Почему это случилось? Что теперь делать с АКБ?
•    Если электролит замёрз во всех банках одновременно, батарею необходимо поместить в помещение с температурой 25˚С не менее чем на 24 часа, после чего произвести заряд по инструкции. Данный случай не является гарантийным, т.к. замерзание электролита говорит о понижении его плотности – разряд АКБ не является дефектом завода изготовителя.
•    Если электролит замерз в одной из банок АКБ, необходимо также отогреть батарею в течение суток, далее провести контрольный заряд. Если под нагрузкой замерзшая банка начинает кипеть, то вероятнее всего в ней присутствует дефект в виде короткого замыкания. В этом случае батарея подлежит замене по гарантии.

Я купил новый автомобиль, в нем стоит ваш аккумулятор. К кому мне обращаться в случае возникновения проблем с ним?
•    В виду того, что аккумуляторная батарея была приобретена в составе автомобиля, все гарантийные обязательства перед Вами несет производитель в лице своего дилера, у которого был приобретен автомобиль.
Рекомендуем Вам ознакомиться с условиями предоставления гарантии на АКБ в сервисной книге. Если Ваш автомобиль находится в гарантийном периоде — обратитесь к дилеру для проведения диагностики АКБ и автомобиля.

ISL :: Статьи :: Как проверить уровень электролита.

Статьи

В данной статье мы поговорим об электролите: обсудим способы проверки уровня электролита в аккумуляторе, а так же познакомимся с электролитом от компании «И.С.Лаборатория».

 Начнём с того, что аккумуляторы бывают разные. На данный момент в большинстве автомобилей применяются,так называемые, «необслуживаемые  аккумуляторы». Данный вид аккумуляторов не требует никакой дополнительной работы с ним,кроме  периодической зарядки.

 На ряду с такими видами аккумуляторов есть и аккумуляторы «старого типа». Они состоят из шести «банок» , в каждой из которых есть пробка. Необходимо постоянно следить за тем,чтобы пластины аккумулятора были покрыты жидкостью — электролитом.  Проверить уровень электролита в таких аккумуляторах достаточно просто: пробка откручивается и в неё вставляется стеклянная трубка, после чего верхних конец трубки плотно закрывается и трубка вытаскивается. Электролита в ней должно быть 10-15мм — это норма, если показатели меньше — надо доливать. Выкипает вода, поэтому и доливается тоже вода, причем вода дистиллированная. Воду надо заливать до нижнего торца тубуса заливной горловины. Далее необходимо зарядить аккумулятор и заряжая довести плотность до 1,27м3, после зарядки аккумулятора  проверяется плотность электролита, в норме она составляет 1,27г/см3 и 1,29г/см3 в зимний период. Если плотность не соответствует норме, то  электролит разбавляется (если плотность большая — водой, если малая-электролитом плотностью 1,4 г/м3)
Представляем вашему вниманию электролит «Зверь» от компании «И.С.Лаборатория». Электролит «Зверь» — высококачественный продукт, используемый для заливки кислотных, стартерных и тяговых аккумуляторов. Электролит «Зверь»  содержит присадку DS-27, которая запатентована и является совместной разработкой ЗАО «И.С. Лаборатория» и НИИ «Особо чистых химических веществ и реактивов». Испытания электролита с данной присадкой проводились на крупнейших предприятиях, в том числе ВАЗ и  АЗЛК.  Результаты показали, что использование присадки DS-27 предотвращает сульфатацию пластин, увеличивая срок службы аккумуляторных батарей. Электролит выпускается плотностью 1,27 г/м3, 1,29г/м3, 1,42г/м3, также может быть изготовлен с любой плотностью по требованию заказчика.

Какой уровень электролита должен быть в аккумуляторе автомобиля 2021 года

В процессе эксплуатации любое транспортное средство нуждается в регулярном обслуживании. Каждый водитель должен иметь хотя бы минимальные навыки и умения, понимать в общих чертах, как работает автомобиль. Важно уметь проверять уровень масла, давление в шинах, контролировать состояние аккумуляторной батареи.

АКБ современного авто предназначено для запуска двигателя, функционирования его электрической части. Если она разрядится или выйдет из строя, то, например, автомобиль невозможно будет завести. Поэтому требуется четко представлять, как определить степень зарядки аккумулятора, то есть какой уровень жидкого электролита должен сохраняться в устройстве для корректной работы.

Что такое электролит и его роль в аккумуляторе

Для запуска двигателей современных авто применяют кислотные батареи, которые заполняются специальным раствором, проводящим электрический ток. Он состоит из серной кислоты, растворенной в чистой дистиллированной воде. Готовый электролит предлагают некоторые автомобильные магазины с плотностью 1,29 г/куб. см. Раньше предлагались готовые к эксплуатации аккумуляторы, а также сухозаряженные экземпляры, которые нужно подготавливать к работе определенным способом.

Для этого следует придерживаться такого алгоритма:

  • вначале АКБ требуется залить;
  • дать пропитаться пластинам на протяжении часа;
  • подзарядить ее током, не превышающим 1/10 емкости батареи;
  • напряжение на клеммах в процессе зарядки должно быть примерно 13,6-14,4 вольт.
В работе автомобильного аккумулятора электролитическая жидкость играет важную роль.

Внутри корпуса современной аккумуляторной батареи находятся свинцовые пластины разной полярности. На положительные решетки нанесен диоксид свинца, а на отрицательные – просто свинец в порошковом виде. Для повышения прочности и пластичности в их состав раньше включали сурьму. Для легирования решеток современных агрегатов используется кальций, серебро. Это значительно снижает расход воды в ходе эксплуатации.

В процессе работы аккумуляторной батареи при взаимодействии атомов пористого свинца пластин с раствором серной кислоты происходят химические реакции. При зарядке атомы свинца освобождаются от электронов серной кислоты. Плотность электролита повышается. Разрядку АКБ сопровождает связывание свинца и понижение плотности.

Устройство АКБ

Степень заряженности определяется по плотности электролита. В зависимости от окружающей температуры норма составляет 1,24-1,27 г/куб.см.

На сегодняшний день предлагаются обслуживаемые, малообслуживаемые и необслуживаемые АКБ. Доступ к электролиту есть только у первых двух разновидностей.

Читайте также

Зачем автолюбители добавляют пищевую соду в аккумулятор
Каждая деталь автомобиля, особенно аккумулятор, нуждается в регулярном и правильном обслуживании, что позволяет…

 

Какой уровень электролита должен быть в аккумуляторе


Современные стартерные батареи для автомобилей нередко изготавливаются в прозрачных корпусах, на внешней стороне которых нанесены риски минимального и максимального уровня жидкости. Это значительно облегчает контроль. Количество электролита может уменьшаться из-за испарения воды.

Важно! Важно помнить, что испаряется исключительно дистиллят, а кислоту пластины впитывают как губка. Корректировать объем жидкости нужно только с помощью дистиллированной воды.

Категорически не рекомендуется производить замену электролита, поскольку сделать это очень сложно. Во-первых, кислота находится внутри пластин. Во-вторых, в процессе эксплуатации пластины подвергаются большим нагрузкам, поэтому частично осыпаются. При переворачивании батареи существует высокая вероятность короткого замыкания.

Для проверки уровня жидкости используются стеклянные или пластиковые трубочки, которые входят в состав набора ареометра.

Читайте также

6 ошибок при смене масла в двигателе
Произвести ремонт собственного автомобиля несложно, особенно если разбираешься в этом деле. Но, к сожалению, водители…

 

Очистка батареи и открытие заливных отверстий

Перед открытием пробок следует очистить верхнюю часть АКБ от грязи и мусора. Для этих целей можно использовать тряпку, пропитанную средством для мытья окон. Очистить клеммы от ржавчины поможет раствор соды. После всех этих процедур аккумуляторную батарею нужно вытереть насухо. Лучшим вариантом будет поддержание батареи в чистом состоянии. При этом клеммы лучше покрывать защитной смазкой.

Чистка клемм АКБ

Конструкция крышек заливных отверстий в разных моделях аккумуляторов может отличаться. У некоторых из них все шесть пробок располагаются под одной общей планкой, которая легко снимается. У других требуется выкрутить каждую из них против часовой стрелки. Грязь под пробками следует удалить с помощью моющего средства, содержащего аммиак. Ни в коем случае нельзя использовать для очистки заливных отверстий соду.

Читайте также

Грубые ошибки при проверке и доливе антифриза
Антифриз необходим для предотвращения перегрева двигателя во время работы. Данное вещество, в отличие от воды,…

 

Определение уровня электролита

Нормальный уровень аккумуляторной жидкости – это 10-15 мм над пластинами. Если этот слой по каким-то причинам уменьшается, то нужно добавить дистиллированную воду. Лишнюю жидкость следует аккуратно удалить с помощью ареометра. Некоторые необслуживаемые модели АКБ оснащаются специальными индикаторами заряда, которые показывают и уровень электролита. В случае, когда «глазок» становится белым, батарею нужно менять.

Проверка плотности и уровня электролита в аккумуляторе

Для измерения уровня предназначены специальные стеклянные трубки. Если их нет, то можно использовать корпус прозрачной ручки, отрезав его зауженный конец. Чтобы провести измерения, нужно открутить пробки заливных отверстий и вставить в них поочередно вертикально трубку, зажать противоположный конец пальцем и вытянуть ее наружу.

Читайте также

Почему никогда нельзя заливать масло в фильтр перед установкой
Большинство автолюбителей устанавливают фильтр, предварительно наполнив его маслом. Это можно объяснить тем, что…

 

Причины изменения объема жидкости

На протяжении эксплуатации объем электролита АКБ снижается. Интенсивность испарения воды зависит от условий, при которых используется агрегат. При уменьшении количества аккумуляторной жидкости повышается концентрация кислоты непосредственно на пластинах. Это агрессивное вещество разъедает свинец, а его соли образуют осадок на решетках и дне. Происходит сульфатация, короткое замыкание, обрыв электрической цепи.

Уменьшение уровня жидкости аккумулятора происходит по следующим причинам:

  • эксплуатация летом при высоких температурах окружающего воздуха приводит к интенсивному испарению воды на фоне повышения плотности электролита;
  • механическое повреждение корпуса батареи приводит к вытеканию аккумуляторной жидкости;
  • при агрессивной езде по бездорожью, переворачивании аккумулятора происходят потери электролита. Только при таких случаях допускается подливать его, а не воду;
  • выход из строя автомобильного генератора, реле зарядки нередко приводит к перезаряду, гидролизу, который сопровождается кипением. При этом испаряется вода, повышается плотность аккумуляторной жидкости.

Таким образом, чтобы продлить срок службы стартерного аккумулятора, необходимо контролировать плотность, количество электролита, а также работу автомобильной системы зарядки.

Обратите внимание! Важно помнить, что объем жидкости повышается при зарядке и нагревании АКБ.

Разряженный агрегат категорически нельзя эксплуатировать на автомобиле, поскольку в таком случае сила проходящего через пластины тока значительно увеличивается. Это приводит к опаданию активной массы с аккумуляторных решеток, короблению пластин, испарению воды, выходу из строя рабочего агрегата.

Читайте также

Что делать, если машина не заводится: простой способ завести
Никто не застрахован от ситуаций, когда автомобиль может внезапно заглохнуть. Причем произойти это может где угодно –…

 

Что делать при низком уровне электролита

При работе и зарядке АКБ в определенных случаях происходит значительное снижение объема электролита, повышается концентрация кислоты. Это разрушает пластины, значительно снижает ресурс аккумулятора. Для решения этой проблемы следует использовать дистиллированную воду, которую нужно добавлять вовремя. Это позволяет предотвратить отрицательное воздействие кислоты на внутренние рабочие элементы батареи.

На заметку! Важно помнить, что электролит допускается доливать только при его потере, которая произошла вследствие вытекания.

При других ситуациях испаряется кислород, водород, а серная кислота остается внутри. Если после доливания воды и полноценной зарядки плотность не поднимается, то существует высокая вероятность накопления солей на пластинах. В результате кристаллизации агрегат выходит из строя. Его реанимация в некоторых случаях возможна, но при этом не требуется доливать какую-либо жидкость.

Принимая во внимание причины уменьшения объема жидкости, нужно находить конкретные решения, которые могут быть комплексными. Правильная эксплуатация аккумулятора, добавление дистиллированной воды, своевременная подзарядка оптимальным током увеличит его ресурс. Это обеспечит надежный легкий запуск исправного двигателя даже при низких температурах окружающего воздуха.

При обнаружении уменьшения уровня жидкости в АКБ нужно действовать по следующему алгоритму:

  • снять батарею с автомобиля;
  • поставить ее на ровную поверхность;
  • очистить верхнюю часть от грязи, мусора и открутить крышки заливных отверстий;
  • с помощью шприца или специальной спринцовки отобрать электролит из глубины каждой банки, проверить его на прозрачность;
  • при наличии взвеси темного цвета заменить АКБ;
  • долить воду до нормального уровня;
  • поставить аккумулятор на зарядку, выставив малый ток;
  • примерно через 3-4 часа проверить плотность с помощью ареометра.

Если она растет до значений 1,27-1,29 г/ куб.см, то проблема решена.

Читайте также

Зачем покупают старые аккумуляторы и сколько на этом зарабатывают
В настоящее время наиболее востребованными аккумуляторами считаются свинцово-кислотные, что обусловлено их…

 

Распространенные вопросы

Как проверить уровень в необслуживаемом аккумуляторе?

Если батарея оснащена индикатором зарядки, то можно ориентироваться по нему. Зачастую зеленый цвет означает нормальную плотность, красный или желтый – низкую плотность, белый – снижение количества жидкости. Кроме того, можно учитывать массу АКБ.

Сколько нужно заряжать аккумулятор после замены электролита?

Во-первых, менять электролит нельзя. Но если это произошло, то достаточно пары часов зарядки слабым током.

Как часто нужно проверять уровень?

Частота данной процедуры зависит от типа аккумулятора. Например, сурьмяные батареи характеризуются интенсивным расходом воды, поэтому их требуется контролировать каждые две недели. АКБ с кальциевым или серебряным легированием пластин практически не расходуют воду при исправной системе зарядки на автомобиле.

Правильная эксплуатация и обслуживание аккумулятора – это гарантия его безотказной работы на протяжении длительного срока. Нормальный уровень и плотность электролита является важным условием исправности батареи, поэтому данные параметры важно внимательно контролировать.

Когда аккумуляторной батарее нужен электролит

Добавление электролита в автомобильный аккумулятор — сложная задача, поэтому важно понимать, что такое электролит в аккумуляторе, для чего он нужен и почему он разряжается, прежде чем пытаться отремонтировать собственный аккумулятор.

Когда вы слышите об электролите в отношении автомобильных аккумуляторов, люди говорят о растворе воды и серной кислоты. Этот раствор заполняет элементы традиционных свинцово-кислотных автомобильных аккумуляторов, а взаимодействие между электролитом и свинцовыми пластинами позволяет аккумулятору накапливать и выделять энергию.

Вот почему вы, возможно, видели, как люди добавляли воду в батарею, когда уровень жидкости внутри казался низким. Сама вода — это не электролит, а жидкий раствор серной кислоты и воды внутри батареи.

субчеловек / E + / Getty

Химический состав электролита свинцово-кислотных аккумуляторов

Когда свинцово-кислотный аккумулятор полностью заряжен, электролит состоит из раствора, который состоит из серной кислоты на 40 процентов, а остальная часть состоит из обычной воды.

По мере разряда батареи положительная и отрицательная пластины постепенно превращаются в сульфат свинца. Электролит теряет большую часть своей серной кислоты во время этого процесса, и в конечном итоге он становится очень слабым раствором серной кислоты и воды.

Поскольку это обратимый химический процесс, зарядка автомобильного аккумулятора заставляет положительные пластины снова превращаться в оксид свинца, в то время как отрицательные пластины снова превращаются в чистый губчатый свинец, а электролит становится более сильным раствором серной кислоты и воды.

Этот процесс может происходить тысячи раз в течение срока службы автомобильного аккумулятора, хотя срок службы аккумулятора можно значительно сократить, если разрядить его ниже определенного порогового значения.

Добавление воды в электролит батареи

В нормальных условиях содержание серной кислоты в электролите аккумулятора не меняется. Он либо присутствует в водном растворе в виде электролита, либо абсорбируется свинцовыми пластинами.

В незапечатанные батареи необходимо время от времени добавлять воду.Некоторое количество воды теряется при нормальном использовании в результате процесса электролиза, а вода, содержащаяся в электролите, также имеет тенденцию к естественному испарению, особенно в жаркую погоду. Когда это произойдет, его необходимо заменить.

С другой стороны, серная кислота никуда не денется. Фактически, испарение — это фактически один из способов получения серной кислоты из электролита аккумулятора. Если вы возьмете раствор серной кислоты и воды и дадите ему испариться, у вас останется серная кислота.

Если вы добавите воду к электролиту в батарее до того, как произойдет повреждение, существующая серная кислота, либо в растворе, либо в виде сульфата свинца, будет гарантировать, что электролит по-прежнему будет состоять из примерно 25-40 процентов серной кислоты.

Добавление кислоты в электролит батареи

Обычно нет причин добавлять в аккумулятор дополнительную серную кислоту, но есть некоторые исключения. Например, батареи иногда отправляются сухими, и в этом случае серная кислота должна быть добавлена ​​в элементы перед использованием батареи.

Если аккумулятор когда-либо опрокидывается или электролит выливается по какой-либо другой причине, серную кислоту придется добавить обратно в систему, чтобы восполнить потерю. В этом случае вы можете использовать ареометр или рефрактометр для проверки прочности электролита.

Если аккумуляторная кислота попала вам в глаза или на кожу, промойте это место теплой водой в течение не менее 30 минут и обратитесь за медицинской помощью. Если вы пролили на одежду, осторожно снимите и утилизируйте одежду, стараясь не допустить, чтобы кислота коснулась вашей кожи.Небольшие разливы, не попадающие в глаза, кожу или одежду, можно нейтрализовать пищевой содой и смыть.

Использование водопроводной воды для заполнения электролита батареи

Последний кусок головоломки и, возможно, самый важный — это тип воды, используемой для доливки электролита в батарее. Хотя в некоторых случаях можно использовать водопроводную воду, большинство производителей аккумуляторов рекомендуют вместо нее дистиллированную или деионизированную воду. Причина в том, что водопроводная вода обычно содержит растворенные твердые вещества, которые могут повлиять на работу аккумулятора, особенно при работе с жесткой водой.

Если доступная водопроводная вода имеет особенно высокий уровень растворенных твердых веществ или вода жесткая, может потребоваться дистиллированная вода. Однако обработки доступной водопроводной воды с помощью подходящего фильтра часто бывает достаточно, чтобы сделать воду пригодной для использования в электролите батареи.

Спасибо, что сообщили нам об этом!

Расскажите, почему!

Другой Недостаточно подробностей Трудно понять

Новый аккумуляторный электролит может расширить ассортимент электромобилей

Марк Шварц

Новый электролит на основе лития, изобретенный учеными Стэнфордского университета, может проложить путь для следующего поколения электромобилей с батарейным питанием.

В исследовании, опубликованном 22 июня в журнале Nature Energy , исследователи из Стэнфорда демонстрируют, как их новая конструкция электролита повышает производительность литий-металлических батарей — многообещающей технологии для питания электромобилей, ноутбуков и других устройств.


Слева — обычный (прозрачный) электролит, а справа — новый электролит Стэнфордского образца №
. (Изображение предоставлено: Чжиао Юй)

«Большинство электромобилей работают на литий-ионных батареях, которые быстро приближаются к своему теоретическому пределу по плотности энергии», — сказал соавтор исследования И Цуй, профессор материаловедения и инженерии, а также фотоники из Национальной ускорительной лаборатории SLAC.«Наше исследование было сосредоточено на литий-металлических батареях, которые легче, чем литий-ионные, и потенциально могут обеспечивать больше энергии на единицу веса и объема».

Литий-ионные в сравнении с металлическим литием

Литий-ионные батареи

, используемые во всем, от смартфонов до электромобилей, имеют два электрода — положительно заряженный катод, содержащий литий, и отрицательно заряженный анод, обычно сделанный из графита. Раствор электролита позволяет ионам лития перемещаться между анодом и катодом, когда батарея используется и когда она заряжается.

Литий-металлический аккумулятор может содержать примерно в два раза больше электроэнергии на килограмм, чем современные литий-ионные аккумуляторы. Литий-металлические батареи делают это путем замены графитового анода металлическим литием, который может хранить значительно больше энергии.

«Литий-металлические батареи очень перспективны для электромобилей, где вес и объем имеют большое значение», — сказал соавтор исследования Женан Бао, K.K. Ли Профессор инженерной школы. «Но во время работы анод из металлического лития вступает в реакцию с жидким электролитом.Это вызывает рост микроструктур лития, называемых дендритами, на поверхности анода, что может привести к возгоранию батареи и ее выходу из строя ».

Исследователи потратили десятилетия, пытаясь решить проблему дендритов.

«Электролит был ахиллесовой пятой литий-металлических батарей», — сказал соавтор исследования Чжао Юй, аспирант по химии. «В нашем исследовании мы используем органическую химию для рационального проектирования и создания новых стабильных электролитов для этих батарей.”

Электролит новый

Для исследования Ю и его коллеги выяснили, могут ли они решить проблемы стабильности с помощью обычного, коммерчески доступного жидкого электролита.

«Мы предположили, что добавление атомов фтора к молекуле электролита сделает жидкость более стабильной», — сказал Ю. «Фтор — широко используемый элемент в электролитах литиевых батарей. Мы использовали его способность притягивать электроны, чтобы создать новую молекулу, которая позволяет аноду из металлического лития хорошо работать в электролите.”

В результате получилось новое синтетическое соединение, сокращенно FDMB, которое можно легко производить в больших объемах.

«Конструкции электролитов становятся очень экзотичными, — сказал Бао. «Некоторые из них оказались многообещающими, но их производство очень дорогое. Молекула FDMB, которую придумал Чжиао, легко производить в больших количествах и довольно дешево ».

«Невероятная производительность»

Команда Стэнфорда провела испытания нового электролита в литий-металлической батарее.

Результаты были впечатляющими.Экспериментальная батарея сохранила 90 процентов своего первоначального заряда после 420 циклов зарядки и разрядки. В лабораториях типичные литий-металлические батареи перестают работать примерно через 30 циклов.


Докторанты и ведущие авторы Хансен Ван (слева) и Чжиао Ю (справа) тестируют
экспериментальную ячейку в своей лаборатории. (Изображение предоставлено Hongxia Wang.)

Исследователи также измерили, насколько эффективно ионы лития переносятся между анодом и катодом во время зарядки и разрядки, это свойство известно как «кулоновская эффективность».”

«Если вы зарядите 1000 ионов лития, сколько вы получите обратно после разрядки?» — сказал Цуй. «В идеале вы хотите 1000 из 1000 для 100-процентного кулоновского КПД. Чтобы быть коммерчески жизнеспособным, элемент батареи должен иметь кулоновскую эффективность не менее 99,9%. В нашем исследовании мы получили 99,52 процента в половинных ячейках и 99,98 процентов в полных ячейках; невероятная производительность ».

Безанодный аккумулятор

Для потенциального использования в бытовой электронике команда Стэнфордского университета также провела испытания электролита FDMB в безанодных литий-металлических ячейках — коммерчески доступных батареях с катодами, которые поставляют литий на анод.

«Идея состоит в том, чтобы использовать литий только на катодной стороне, чтобы уменьшить вес», — сказал соавтор исследования Хансен Ван, аспирант в области материаловедения и инженерии. «Безанодная батарея проработала 100 циклов, прежде чем ее емкость упала до 80 процентов — не так хорошо, как эквивалентная литий-ионная батарея, которая может выдерживать от 500 до 1000 циклов, но все же одна из самых эффективных безанодных ячеек».

«Эти результаты показывают многообещающие результаты для широкого диапазона устройств», — добавил Бао. «Легкие безанодные батареи станут привлекательным элементом для дронов и многих других видов бытовой электроники.”

Аккумулятор 500

Министерство энергетики США (DOE) финансирует большой исследовательский консорциум под названием Battery500, чтобы сделать литий-металлические батареи жизнеспособными, что позволит производителям автомобилей создавать более легкие электромобили, способные преодолевать гораздо большие расстояния между зарядками. Это исследование было частично поддержано грантом консорциума, в который входят Стэнфорд и SLAC.

За счет улучшения анодов, электролитов и других компонентов Battery500 стремится почти в три раза увеличить количество электроэнергии, которое может выдавать литий-металлическая батарея, с примерно 180 ватт-часов на килограмм, когда программа стартовала в 2016 году, до 500 ватт-часов на килограмм.Более высокое отношение энергии к весу, или «удельная энергия», является ключом к решению проблемы запаса хода, которую часто испытывают потенциальные покупатели электромобилей.

«Безанодная батарея в нашей лаборатории показала около 325 ватт-часов на килограмм удельной энергии, приличное число», — сказал Цуй. «Нашим следующим шагом могла бы стать совместная работа с другими исследователями Battery500 над созданием ячеек, которые приблизятся к цели консорциума — 500 ватт-часов на килограмм».


Испытание на воспламеняемость обычного карбонатного электролита (слева) и нового электролита FDMB (справа), разработанное
в Стэнфорде.Обычный карбонатный электролит легко воспламеняется сразу после контакта с пламенем, но электролит
FDMB может выдерживать прямое пламя в течение как минимум трех секунд. (Кредит Чжиао Ю)

Помимо более длительного срока службы и лучшей стабильности, электролит FDMB также гораздо менее воспламеняем, чем обычные электролиты, как исследователи продемонстрировали во встроенном видео.

«Наше исследование в основном обеспечивает принцип конструкции, который люди могут применять для создания более качественных электролитов», — добавил Бао.«Мы только что показали один пример, но есть много других возможностей».

Другие соавторы Стэнфордского университета: Цзянь Цинь , доцент кафедры химического машиностроения; докторанты Сянь Конг, Кеченг Ван, Вэньсяо Хуанг, Снехашис Чоудхури и Чибуезе Аманчукву; аспиранты Уильям Хуанг, Ючи Цао, Дэвид Маканич, Ю Чжэн и Саманта Хунг; и студенты Ютинг Ма и Эдер Ломели. Синьчан Ван из Университета Сямэнь также является соавтором.Чжэнань Бао и И Цуй — старшие научные сотрудники Стэнфордского института энергетики Precourt . Цуй также является ведущим исследователем в Стэнфордском институте материаловедения и энергетики , совместной исследовательской программе SLAC / Стэнфорд.

Эта работа также была поддержана программой исследования материалов для аккумуляторов Департамента транспортных технологий Министерства энергетики США. Два соавтора поддерживаются Программой стипендий для аспирантов Национального научного фонда и стипендией Центра TomKat в области устойчивой энергетики в Стэнфорде.Средство, используемое в Стэнфорде, поддерживается Национальным научным фондом.

Как проверить уровень электролита в аккумуляторе

Отчасти современные аккумуляторы работают так эффективно, потому что в них используются «мокрые элементы». В аккумуляторной батарее с жидким электролитом есть смесь серной кислоты и дистиллированной воды (называемая электролитом), которая соединяет все электроды батареи, расположенные внутри каждой ячейки. Эта жидкость может вытекать, испаряться или иным образом теряться с течением времени.

Вы можете проверить и даже пополнить эти ячейки у себя дома с помощью нескольких простых инструментов. Это может быть сделано в рамках планового обслуживания или в ответ на снижение производительности самой батареи.

Часть 1 из 2: Осмотрите аккумулятор

Необходимые материалы

  • Гаечный ключ (только если вы собираетесь снимать зажимы с клемм аккумулятора)
  • Защитные очки или щит
  • Защитные перчатки
  • Тряпки
  • Пищевая сода
  • Вода дистиллированная
  • Шпатель или отвертка с плоским жалом
  • Чистящая щетка или зубная щетка
  • Маленький фонарик

Шаг 1: Наденьте предохранительное снаряжение .Перед тем, как начать какие-либо работы с автомобилем, наденьте соответствующие средства защиты.

Защитные очки и перчатки — это простые вещи, которые в дальнейшем могут избавить вас от многих проблем.

Шаг 2: Найдите аккумулятор . Аккумулятор прямоугольной формы с пластиковой внешней поверхностью.

Аккумулятор обычно находится в моторном отсеке. Есть исключения из этого правила, например, некоторые производители кладут аккумулятор в багажник или под задние сиденья.

  • Совет . Если вы не можете найти аккумулятор в автомобиле, обратитесь к руководству по эксплуатации автомобиля.

Часть 2 из 3: Откройте аккумулятор

Шаг 1. Снимите аккумулятор с автомобиля (опция) . Пока доступна верхняя часть аккумулятора, вы можете выполнять каждый шаг по проверке и доливке электролита, пока аккумулятор все еще находится в автомобиле.

Если доступ к батарее в ее текущем положении затруднен, возможно, потребуется ее извлечь. Если это касается вашего автомобиля, вот как вы можете легко извлечь аккумулятор:

Шаг 2: Ослабьте зажим отрицательного кабеля .Воспользуйтесь разводным ключом, торцевым ключом или просто обычным ключом (подходящего размера) и ослабьте болт на стороне отрицательного зажима, удерживающий кабель на клемме аккумулятора.

Шаг 3: Снимите другой кабель . Снимите зажим с клеммы, а затем повторите процесс, чтобы отсоединить положительный кабель от противоположной клеммы.

Шаг 4. Откройте фиксирующую скобу . Обычно есть кронштейн или корпус, фиксирующий аккумулятор на месте.Некоторые нужно открутить болтами, другие закрепить барашковыми гайками, которые можно ослабить вручную.

Шаг 5: Извлеките аккумулятор . Поднимите аккумулятор и выньте его из автомобиля. Имейте в виду, что батареи довольно тяжелые, поэтому будьте готовы к массе батареи.

Шаг 6: Очистите аккумулятор . Электролит, находящийся внутри батареи, ни в коем случае не должен быть загрязнен, так как это резко сократит срок службы батареи. Чтобы предотвратить это, необходимо очистить аккумулятор снаружи от грязи и коррозии.Вот простой способ очистить аккумулятор:

Сделайте простую смесь пищевой соды и воды. Возьмите около четверти стакана пищевой соды и добавляйте воду, пока смесь не станет густой, похожей на молочный коктейль.

Обмакните тряпку в смесь и слегка протрите батарею снаружи. Это нейтрализует коррозию и любую кислоту, которая может быть на батарее.

Используйте старую зубную щетку или чистящую щетку, чтобы нанести смесь на клеммы, протирая их до тех пор, пока клеммы не станут свободными от коррозии.

Возьмите влажную тряпку и сотрите с батареи остатки пищевой соды.

  • Наконечник : Если есть коррозия на клеммах батареи, то зажимы, которыми кабели батареи крепятся к клеммам, скорее всего, также будут иметь некоторую коррозию. Очистите зажимы аккумуляторной батареи той же смесью, если уровень коррозии низкий, или замените зажимы, если коррозия высока.

Шаг 7: Откройте крышки отсека аккумулятора . Средний автомобильный аккумулятор имеет шесть портов для элементов, каждый из которых содержит электрод и немного жидкости-электролита.Каждый из этих портов защищен пластиковыми крышками.

Эти крышки расположены на верхней части аккумулятора и имеют форму двух прямоугольных крышек или шести отдельных круглых крышек.

Прямоугольные крышки можно снять, поддев их шпателем или плоской отверткой. Круглые крышки откручиваются как колпачок, достаточно повернуть против часовой стрелки.

Используйте влажную тряпку, чтобы стереть грязь или сажу, находящуюся под крышками. Этот шаг так же важен, как и чистка всей батареи.

Шаг 8: Проверьте уровни электролита . Когда ячейки открыты, можно смотреть прямо в батарею, где расположены электроды.

Жидкость должна полностью покрывать все электроды, и уровень должен быть одинаковым в каждой ячейке.

  • Подсказка : Если камера плохо видна, используйте небольшой фонарик, чтобы осветить ее.

Если уровни электролита не равны или если электроды обнажены, вам необходимо заправить аккумулятор.

Часть 3 из 3: Долейте электролит в аккумулятор

Шаг 1. Проверьте необходимое количество дистиллированной воды . Для начала нужно знать, сколько жидкости добавить в каждую ячейку.

Сколько дистиллированной воды нужно добавить в элементы, зависит от состояния батареи:

  • В новой, полностью заряженной батарее уровни воды могут быть заполнены до дна заливной трубки.

  • В старую или умирающую батарею воду следует заливать ровно настолько, чтобы покрыть электроды.

Шаг 2: Заполните ячейки дистиллированной водой . Основываясь на оценке, сделанной на предыдущем шаге, заполните каждую ячейку соответствующим количеством дистиллированной воды.

Попытайтесь заполнить каждую ячейку до одного уровня. Использование бутылки, в которую можно налить небольшое количество воды, — это большая помощь, здесь точность является ключевым моментом.

Шаг 3. Установите на место крышки аккумуляторного отсека . Если ваша батарея имеет крышки портов с квадратными ячейками, совместите их с портами и защелкните крышки на месте.

Если порты круглые, поверните колпачки по часовой стрелке, чтобы закрепить их на батарее.

Шаг 4: Заведите машину . Теперь, когда весь процесс завершен, запустите двигатель, чтобы посмотреть, как работает аккумулятор. Если производительность по-прежнему ниже нормы, аккумулятор следует проверить и при необходимости заменить. Также необходимо проверить работоспособность системы зарядки на предмет каких-либо проблем.

Если аккумулятор вашего автомобиля не держит заряд или вы не хотите самостоятельно проверять уровень электролита в аккумуляторе, вызовите квалифицированного механика, например, из YourMechanic, для проверки и обслуживания аккумулятора.

DOE объясняет … Батарейки | Министерство энергетики

Аккумуляторы и аналогичные устройства принимают, хранят и отпускают электроэнергию по запросу. В батареях используется химия в форме химического потенциала для хранения энергии, как и во многих других повседневных источниках энергии. Например, бревна хранят энергию в своих химических связях, пока при горении энергия не преобразуется в тепло. Бензин — это запасенная химическая потенциальная энергия, пока она не преобразуется в механическую энергию в двигателе автомобиля. Точно так же, чтобы батареи работали, электричество должно быть преобразовано в форму химического потенциала, прежде чем оно может быть легко сохранено.Батареи состоят из двух электрических клемм, называемых катодом и анодом, разделенных химическим материалом, называемым электролитом. Чтобы принимать и высвобождать энергию, батарея подключается к внешней цепи. Электроны движутся по цепи, в то время как одновременно ионы (атомы или молекулы с электрическим зарядом) движутся через электролит. В перезаряжаемой батарее электроны и ионы могут двигаться в любом направлении через цепь и электролит. Когда электроны движутся от катода к аноду, они увеличивают химическую потенциальную энергию, заряжая таким образом аккумулятор; когда они движутся в другом направлении, они преобразуют эту химическую потенциальную энергию в электрическую цепь и разряжают батарею.Во время зарядки или разрядки противоположно заряженные ионы перемещаются внутри батареи через электролит, чтобы уравновесить заряд электронов, проходящих через внешнюю цепь, и создать устойчивую перезаряжаемую систему. После зарядки аккумулятор может быть отключен от цепи для хранения химической потенциальной энергии для последующего использования в качестве электричества.

Батареи были изобретены в 1800 году, но их химические процессы сложны. Ученые используют новые инструменты, чтобы лучше понять электрические и химические процессы в батареях, чтобы создать новое поколение высокоэффективных аккумуляторов электроэнергии.Например, они разрабатывают улучшенные материалы для анодов, катодов и электролитов в батареях. Ученые изучают процессы в аккумуляторных батареях, потому что они не полностью меняются, когда батарея заряжается и разряжается. Со временем отсутствие полной замены может изменить химический состав и структуру материалов батареи, что может снизить производительность и безопасность батареи.

Департамент науки и хранения электроэнергии Министерства энергетики

Исследования, проведенные при поддержке Департамента науки Министерства энергетики, Управления фундаментальных энергетических наук (BES), привели к значительным улучшениям в хранении электроэнергии.Но мы все еще далеки от комплексных решений для хранения энергии следующего поколения с использованием совершенно новых материалов, которые могут значительно увеличить количество энергии, которое может хранить батарея. Это хранилище имеет решающее значение для интеграции возобновляемых источников энергии в нашу систему электроснабжения. Поскольку усовершенствование аккумуляторных технологий имеет важное значение для повсеместного использования подключаемых к электросети электромобилей, хранение также является ключом к уменьшению нашей зависимости от нефти при транспортировке.

BES поддерживает исследования отдельных ученых и в многопрофильных центрах.Самый крупный центр — Объединенный центр исследований в области накопления энергии (JCESR), центр энергетических инноваций Министерства энергетики США. Этот центр изучает электрохимические материалы и явления на атомном и молекулярном уровне и использует компьютеры для разработки новых материалов. Эти новые знания позволят ученым разработать более безопасные накопители энергии, которые служат дольше, заряжаются быстрее и обладают большей емкостью. По мере того как ученые, поддерживаемые программой BES, достигают новых успехов в науке об аккумуляторах, эти достижения используются прикладными исследователями и промышленностью для продвижения приложений в области транспорта, электросетей, связи и безопасности.

Факты о накоплении электроэнергии

  • Нобелевская премия по химии 2019 года была присуждена совместно Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино «за разработку литий-ионных батарей».
  • Компания Electrolyte Genome в JCESR создала вычислительную базу данных, содержащую более 26 000 молекул, которую можно использовать для расчета основных свойств электролита для новых усовершенствованных батарей.

Ресурсы и связанные с ними термины

Научные термины могут сбивать с толку.DOE Explains предлагает простые объяснения ключевых слов и концепций фундаментальной науки. В нем также описывается, как эти концепции применяются к работе, которую проводит Управление науки Министерства энергетики США, поскольку это помогает Соединенным Штатам преуспевать в исследованиях по всему научному спектру.

Аккумуляторы | Бесплатный полнотекстовый | Концентрация присадки к электролиту для максимального хранения энергии в свинцово-кислотных аккумуляторах

1. Введение

Добавление химической добавки к электролиту свинцово-кислотной батареи может изменить удельную энергию, которую батарея может хранить.Этот факт известен с момента изобретения батареи и в настоящее время является предметом исследований, представляющим большой интерес для индустрии батарей. В этой статье представлен общий метод оценки влияния добавок электролита на энергоемкость свинцово-кислотной батареи и определения наилучшей концентрации добавки для использования. Рассматриваемая добавка к электролиту является довольно общей. Это может быть химическое соединение или смесь химикатов; суспензия или гель, используемый для иммобилизации электролита.Единственное ограничение заключается в том, что добавка — какой бы она ни была — должна находиться в химическом равновесии и иметь низкую реакционную способность по отношению к другим компонентам батареи.

Добавки также добавляются в электролит батареи по множеству других причин, таких как продление срока службы батареи, уменьшение коррозии электродов, улучшение проводимости, уменьшение выделения газа на электродах, защита от перезарядки или глубокой разрядки и т. Д. полезные в одних отношениях могут быть вредными в других.Таким образом, выбор и концентрация добавки всегда должны оцениваться с учетом побочных эффектов, которые она вызывает. Это, в частности, означает, что добавка, повышающая энергоемкость батареи, может оказаться нежизнеспособной, по крайней мере, при определенных концентрациях из-за других нежелательных эффектов, которые она вызывает.

Существуют сотни статей, книг и патентов, посвященных добавкам электролита и их влиянию на свинцово-кислотные батареи. Полный обзор литературы выходит за рамки настоящей статьи.Глава 3 книги Павлова [1] содержит сравнительно краткий обзор основной литературы по данной теме примерно до 2011 года. Она касается классических неорганических добавок (фосфорная кислота, борная кислота, лимонная кислота, сульфат стронция, сульфат натрия), углеродных суспензий, и эмульсии органических полимеров. В настоящее время большой потенциал ионных жидкостей как добавок к электролитам активно изучается [2] из-за способности этих солей расширять электрохимическое окно воды [3,4,5]. Кроме того, большой практический интерес представляет изучение добавок, которые производят гелеобразные электролиты, в связи с их применением в области электрического передвижения [6,7,8].Интересное исследование добавления добавки к гелеобразному электролиту было недавно представлено в [9].

Разнообразие доступных добавок делает невозможным выработку общих правил о наилучшей добавке и наилучшей концентрации для использования для данной цели. Следовательно, настоящая статья по необходимости должна быть достаточно ограниченной по объему. По этой причине, игнорируя другие эффекты, в данной статье основное внимание уделяется влиянию добавок на емкость аккумуляторов энергии. Представленный анализ дает общий способ оценить влияние любой добавки электролита на эту емкость.Это также показывает, как концентрация добавки, которая максимизирует эту емкость, может быть определена на основе небольшого количества основных экспериментальных данных. Конечно, положительная оценка добавки в отношении энергоемкости батареи не исключает необходимости выяснять, вызывает ли добавка нежелательные побочные эффекты и в какой степени. Однако при поиске лучших добавок для увеличения емкости аккумуляторов энергии результаты настоящей статьи могут помочь быстро отказаться от неэффективных добавок, что значительно упростит процесс выбора.

Центральным элементом анализа этой статьи является наблюдение, что при любой конечной температуре внутренняя энергия любой системы конечного объема должна быть конечной. Это следствие принципа сохранения энергии или первого закона термодинамики. При довольно широких предположениях, которым соответствует большинство природных систем и, в частности, растворы электролитов, это наблюдение вместе со вторым законом термодинамики подразумевает ограничение удельной свободной энергии, которую электролит может накапливать и подавать изотермически.Этот момент обсуждается в разделе 3. Подобный анализ ранее применялся в [10] для определения максимальной энергоемкости живой клетки — проблема, которая концептуально аналогична рассмотренной здесь. Настоящий подход приводит к определению предельная кривая батареи (Раздел 4). Эта кривая определяет предельную концентрацию компонентов электролита, при превышении которой батарея претерпевает необратимые изменения или повреждения, которые могут сократить срок службы батареи. В случае свинцово-кислотной батареи это повреждение проявляется в выделении O 2 на положительном электроде при избыточном заряде или в необратимом сульфировании отрицательного электрода при избыточном разряде.Указанная предельная кривая помогает не только определить значение максимального увеличения энергоемкости аккумулятора, которое может быть достигнуто при использовании данной добавки к электролиту, но также и определить значение концентрации добавки, которая обеспечивает это максимальное увеличение. . Это также приводит к установлению теоретических пределов заряда, в которых батарея может работать без необратимых изменений. Практический пример применения полученных результатов приведен в разделе 5.

2. Свободная энергия аккумуляторных электролитов с добавками

Свободная энергия раствора или смеси — это сумма свободных энергий его компонентов. Таким образом, если nh3O, nh3SO4 и n j (j = 1, 2,…, k) обозначают моль воды, моль серной кислоты и моль добавок, соответственно, свободная энергия Гиббса Pb -кислый электролит аккумуляторной батареи при давлении p и абсолютной температуре T определяется как:

G = G (nh3O, nh3SO4, n1, n2, …, nk, p, T) = nh3O μh3O + nh3SO4 μh3SO4 + ∑j = 1k nj μj + C

(1)

Здесь μh3O, μh3SO4 и μ j — парциальные молярные свободные энергии Гиббса или химические потенциалы воды, серной кислоты и добавок, соответственно, а C — произвольная константа.Химический потенциал любого компонента раствора или смеси всегда можно выразить в виде:

μ = μo (po, T) + V¯ Δp + R T lna

(2)

В этом уравнении μ o — химический потенциал рассматриваемого компонента в стандартном состоянии при давлении p o и температуре T, а V¯ — парциальный молярный объем того же компонента, R — универсальная газовая постоянная , Δp — p — p o и, наконец, a — активность или эффективная концентрация рассматриваемого компонента.

В дальнейшем мольное соотношение:

xh3O = nh3Onh3O + nh3SO4 + ∑j = 1k nj

(3)

принимается как мера концентрации растворителя, в то время как концентрации серной кислоты и добавок измеряются в молях (моль на кг H 2 O) и обозначаются bh3SO4 и b j соответственно. То есть:

bh3SO4 = nh3SO4mh3O = nh3SO4n h3O Mh3O

(4)

и:

bj = njmh3O = njn h3O Mh3O

(5)

где M H 2 O = 18.015 × 10 −3 кг · моль −1 — молярная масса воды. В этих обозначениях активности компонентов электролита можно выразить как:

ah3O = γh3O xh3O = γh3O nh3Onh3O + nh3SO4 + ∑j = 1k nj

(6)

ah3SO4 = γh3SO4 bh3SO4 = γh3SO4 nh3SO4mh3O = γh3SO4 nh3SO4n h3O Mh3O

(7)

и:

aj = γj bj = γj njmh3O = γj njn h3O Mh3O

(8)

где γh3O, γh3SO4 и γ j — соответствующие коэффициенты активности, которые, как правило, зависят от nh3O, nh3SO4 и n j , кроме T и p.Выражая μh3O, μh3SO4 и μ j в уравнении (2) и используя уравнения (6) — (8), мы можем записать уравнение (1) как:

G = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, T) + VΔp + R T [nh3Oln γh3O nh3Onh3O + nh3SO4 + j γ = 1k nj3SO4 + nh3SO4 Mh3O + ∑j = 1k njlnγj nj n h3O Mh3O] + C

(9)

При написании этого уравнения мы использовали следующее уравнение:

V = nh3O V¯h3O + nh3SO4 V¯h3SO4 + ∑j = 1k nj V¯j

(10)

которая связывает парциальные молярные объемы V¯h3O, V¯h3SO4 и V¯j компонентов электролита с объемом электролита, V.Свободная энергия Гельмгольца Ψ и свободная энергия Гиббса связаны друг с другом известным уравнением: Отсюда и из уравнения (9) получается свободная энергия Гельмгольца электролита:

Ψ = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, T) — poV + R T [nh3Oln γh3O nh3Onh3O + nh3SO4 + ∑jO4 = 1k nj3On + nh3SO4 Mh3O + ∑j = 1k njlnγj nj n h3O Mh3O] + C

(12)

Приведенные выше формулы являются стандартными. Однако, как видно из уравнения (7), введенный выше коэффициент активности γh3SO4 относится к общей концентрации серной кислоты.Этот коэффициент следует отличать от среднего коэффициента активности ионов серной кислоты, который может быть обозначен как γh3SO4 ± и обычно рассматривается в электрохимии (хотя и реже при работе с свинцово-кислотными батареями). Использование γh3SO4 вместо γh3SO4 ± упрощает следующие формулы, поскольку детали диссоциации серной кислоты на ионы не играют какой-либо явной роли в данном подходе. Связь между двумя коэффициентами активности:

γh3SO4 = 4 (bh3SO4) 2 · (γh3SO4 ±) 3

(13)

Это можно получить из уравнения (7), если ah3SO4 выразить как функцию от γh3SO4 ± в соответствии со стандартными формулами для ионных растворенных веществ (см.g., раздел 7.4 в [11],). И γh3SO4, и γh3SO4 ± зависят от bh3SO4, и их лучше всего определить из эксперимента. Важное упрощение уравнения (12) достигается введением следующего уравнения:

∑j = 1k nj lnγj njn h3O M h3O = nadd lnγadd naddn h3O M h3O

(14)

доказательство которого в несколько измененном виде дано в [10]. В этом уравнении мы устанавливаем:

nadd = ∑j = 1k nj

(15)

и:

γadd = M h3Onadd [∏j = 1k (γj njMh3O) nj] 1neq

(16)

где символ Π обозначает произведение последовательности, т.е.е.,:

∏i = 1kyi = y1⋅y2⋅ … ⋅yk

(17)

Переписав правую часть уравнения (12) в виде суммы двух частей и используя уравнение (14), свободную энергию Гельмгольца электролита можно в общем виде выразить как:

Ψ = Ψ ′ + Ψ ″

(18)

где функции Ψ ′ и Ψ ″ задаются формулами:

Ψ ′ = Ψ ′ (nh3O, nh3SO4, n1, n2, …, nk, po, T) = nh3O μh3Oo (po, T) + nh3SO4 μh3SO4o (po, T) + ∑j = 1s nj μjo (po, Т) + С

(19)

и:

Ψ ″ = Ψ ″ (nh3O, nh3SO4, nadd, p, T) = R T [nh3Oln γh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4ln γh3SO4 nh3SO4n h3O Mh3O4nh3SO4n h3O Mh3O + naddlnγ naddlnγ naddln γ

(20)

соответственно.Как обсуждается в следующем разделе, ″ — это часть, которая определяет допустимый диапазон электролита. Таким образом, что касается определения этого диапазона, уравнение (20) позволяет нам заменить все добавки электролита только одной фиктивной добавкой в ​​количестве n добавить и коэффициент активности γ добавить . Такую добавку будем называть эквивалентной добавкой. Уравнение (20) носит довольно общий характер. Это применимо к любой комбинации добавок, будь то жидкости, твердые суспензии, коллоиды или любые их смеси.Независимо от количества и типа добавок, значения n добавить и γ добавить можно экспериментально, используя тот факт, что, как обсуждается в следующем разделе, существует предел максимального количества свободной энергии, который любая конечная система может храниться в изотермических условиях. Подробности соответствующей экспериментальной процедуры приведены в Разделе 5.

3. Предел свободной энергии раствора электролита

При любой заданной конечной температуре количество нетепловой энергии, которую конечная система может хранить или поставлять, конечно.Это непосредственное следствие первого закона термодинамики. Это подразумевает ограничение максимальной энергии, которую может хранить система. Если рассматривать в свете второго закона термодинамики, предел максимальной энергии влечет за собой ограничение на состояния, которых система может достичь, не подвергаясь необратимым изменениям в ее основных свойствах. При довольно общих предположениях такое ограничение определяет область всех состояний, которых может достичь система, не претерпевая необратимых изменений своих свойств.Эта область является (термодинамически) допустимым диапазоном системы. Его границы — это предельная поверхность системы. Частный случай решений, о котором идет речь в данной статье, подробно обсуждается в [10]. Систематическое введение по этому вопросу, включая общие системы, дается в [12].

Из классической термодинамики мы знаем, что при постоянной температуре количество нетепловой энергии, которую система может хранить или отдавать, равно изменению свободной энергии Гельмгольца системы.Однако не вся свободная энергия системы подвержена термодинамическим ограничениям. Например, любая чисто механическая часть свободной энергии системы, например, потенциальная энергия, обусловленная весом системы, не ограничивается термодинамикой. Следовательно, при поиске допустимого диапазона системы следует пренебречь той частью свободной энергии системы, которая не ограничена термодинамикой.

В данном случае часть свободной энергии электролита, не ограниченная термодинамикой, равна Ψ ′.Это очевидно из уравнения (19), поскольку Ψ ‘равно сумме свободных энергий компонентов электролита в их стандартном состоянии. Таким образом, Ψ ‘зависит от количества этих компонентов (nh3O, nh3SO4, n1, n2, …, nk) независимо от того, находятся ли они в растворе или отделены друг от друга. Поскольку нет термодинамического предела количеству материала, которое может быть объединено в систему, нет термодинамического предела для значений, которые может принимать Ψ ′. Совершенно иная ситуация для Ψ ″.Как следует из уравнений (6) — (8) и (20), ″ зависит от концентрации вышеуказанных компонентов. Таким образом, это относится к энергии, которую эти компоненты имеют в результате их взаимного взаимодействия, когда они смешиваются вместе. Следовательно, любое термодинамическое ограничение энергии раствора электролита должно быть ограничением на Ψ ″, хотя полная свободная энергия раствора является суммой Ψ ″ плюс часть энергии Ψ ′, которую несет каждый компонент, независимо от присутствия. других компонентов.

На самом деле, можно проверить, что ″ — это лишь небольшая часть Ψ. Наибольшая часть общей свободной энергии, которую батарея может хранить или поставлять, связана с Ψ ′ и происходит за счет изменений в nh3O и nh3SO4, которые производятся химическими реакциями, происходящими в электролите. Как бы то ни было, ″ определяет допустимый диапазон электролита. Как следствие, ″ устанавливает предел полной свободной энергии батареи Ψ, поскольку он ограничивает диапазон изменения nh3O и nh3SO4.Подобная ситуация может также относиться к растворам, содержащим химически реагирующие компоненты. Например, в случае живой клетки часть свободной энергии цитозоля, которая определяет допустимый диапазон клетки, составляет лишь часть полной свободной энергии цитозоля [10]. В этом случае также небольшая часть общей свободной энергии цитозоля устанавливает предел для количества компонентов раствора, тем самым ограничивая энергию, которую живая клетка может хранить или выделять, и, следовательно, ее способность действовать.Чтобы сделать следующий анализ независимым от количества электролита, удобно ссылаться на молярную концентрацию ″ на кг растворителя. Эта концентрация энергии обозначается ψ ″ и получается делением обеих частей уравнения (20) на nh3OMh3O (т.е. на вес в килограммах воды, содержащейся в электролите):

ψ ″ = ψ ″ (nh3O, nh3SO4, nadd, p, T) = R T Mh3O [ln γh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O3 + naddnO3Mh3O3 + naddnO3Mh3O3 + naddnO3

(21)

где V¯ — объем электролита на моль растворителя:

В обоих приведенных выше уравнениях nh3O является переменной, поскольку количество молей воды в электролите изменяется по мере зарядки или разрядки аккумулятора.

Далее предполагается постоянная температура. Более того, зависимость свободной энергии от p будет игнорироваться, как это обычно делается в отсутствие газовых фаз, а также при работе при постоянном давлении или почти таком. Таким образом, если ψmax ″ — значение, которое ψ ″ достигает в термодинамическом пределе, упомянутом выше, следующее соотношение: применяется ко всем состояниям, которых может достичь электролит при рассматриваемой температуре. Вместе с уравнением (21) уравнение (23) определяет допустимый диапазон электролита в пространстве переменных nh3O, nh3SO4, nadd.Предельная поверхность электролита является границей этого диапазона:

Следовательно, она является эквипотенциальной для ψ ″ или Ψ ″ (одна и та же поверхность, однако, не является эквипотенциальной для полной свободной энергии системы или ее части Ψ ′, как уравнения (18) и (19) шоу).

Несмотря на то, что V¯ изменяется, при нормальной работе от батареи он претерпевает незначительные изменения (менее примерно 0,3%). Что касается настоящего анализа, то член p ° V¯ / Mh3O, который появляется в уравнении (21), можно рассматривать как константу.Как следствие, его вкладом в ψ ″ и ψmax ″ можно в хорошем приближении пренебречь при применении уравнений (23) и (24), потому что добавление или вычитание постоянного члена к обеим сторонам этих соотношений несущественно. Соответственно, при определении допустимого диапазона и предельной поверхности электролита или предельной кривой батареи мы впредь будем игнорировать член -p ° V¯ / Mh3O в крайней правой части уравнения (21). С этим условием допустимый диапазон электролита можно выразить как:

R T Mh3O [lnγh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O + naddnh3Olnγadd nadd n h3O Mh3O] ≤ψmax ″

(25)

В трехмерном пространстве (nh3O, nh3SO4, n добавить ) это соотношение определяет область всех состояний, которых может достичь электролит без необратимых изменений.Границей этой области является предельная поверхность электролита:

R T Mh3O [lnγh3O nh3O nh3O + nh3SO4 + nadd + nh3SO4nh3Oln γh3SO4 nh3SO4n h3O Mh3O + naddnh3Olnγadd nadd n h3O Mh3O] = ψmax ″

(26)

и он представляет собой поверхность в трехмерном пространстве, упомянутом выше.

4. Допустимый диапазон и предельная кривая батареи

Не все состояния допустимого диапазона из уравнения (25) могут быть доступны электролиту внутри батареи. При нормальных условиях эксплуатации аккумулятор не обменивается материалами с окружающей средой.В этих условиях общее количество молекул воды и серной кислоты внутри батареи остается постоянным. Это непосредственное следствие хорошо известной общей реакции, контролирующей работу батареи:

Pb (s) + PbO 2 (s) + 2H 2 SO 4 (водн.) ⇌ 2PbSO 4 (s) + 2H 2 O (л)

(27)

При разряде аккумулятора реакция идет слева направо. Это дает две молекулы воды на каждые две молекулы серной кислоты, которые потребляются.Зарядка аккумулятора вызывает реакцию в противоположном направлении, в результате чего на каждые две молекулы потребленной воды выделяются две молекулы серной кислоты. В обоих случаях сумма nh3O и nh3SO4 остается постоянной. Таким образом, в любой момент процесса зарядки или разрядки аккумулятора мы имеем:

n h3O + nh3SO4 = n ¯

(28)

где n¯ — постоянная. Значение этой константы зависит от подготовки батареи и может быть определено по значениям nh3O и nh3SO4 в любое время срока службы батареи.В частности, пусть nh3Oo и nh3SO4o будут значениями nh3O и nh3SO4 электролита, который должен быть введен в батарею. Они совпадают со значениями nh3O и nh3SO4 в электролите внутри батареи, когда батарея начинает работать после заполнения. Следовательно, должно выполняться следующее уравнение:

n¯ = nh3Oo + nh3SO4o

(29)

который фиксирует n¯. Уравнение (28) может использоваться для исключения переменной nh3O из уравнений (25) и (26). Это уменьшает количество независимых переменных, фигурирующих в этих уравнениях, тем самым дополнительно ограничивая диапазон состояний, которые может достигать электролит.Более точно, вводя уравнение (28) в уравнение (25), мы получаем допустимый диапазон заряда батареи:

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nadd + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O + naddn¯ − nh3SO4lnγadd nadd (n¯4) −nh3SO3

(30)

Это область плоскости (nh3SO4, n добавить ), которая содержит все состояния, которые электролит может достичь при нормальной работе батареи без необратимых изменений. Его граница — это предельная кривая батареи.Его можно получить, взяв знак равенства в уравнении (30):

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nadd + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O + naddn¯ − nh3SO4lnγadd nadd (n¯4) nh3SO

(31)

Эта кривая на плоскости (nh3SO4, n добавить ) ограничивает область всех состояний, которые электролит может обратимо достичь, когда он работает внутри батареи.

Уравнения (27) — (31) применимы к свинцово-кислотным аккумуляторам, содержащим нереагирующие добавки электролита, т.е.е. присадки, которые не вступают в химическую реакцию между собой или с другими компонентами батареи. В промышленных батареях обычно используются нереагирующие добавки. Как указывалось ранее, это единственные добавки, о которых мы говорим в данной статье. Те же уравнения также применимы, в частности, в отсутствие добавок электролита, и в этом случае n добавить = 0.

Типичная предельная кривая ψ ″ = ψmax ″ и, таким образом, перемещает состояние батареи вверх, т. Е. по линии AB на рисунке 1.Допустимый диапазон заряда батареи — это затененная область на кривой. Количество добавки в электролите остается постоянным во время заряда и разряда, поскольку добавка химически неактивна. Таким образом, зарядка или разрядка батареи в этом диапазоне смещает состояние батареи вверх и вниз по вертикальной линии, n добавить = константа в плоскости рисунка 1. Необратимые изменения происходят в электролите, если предельная кривая батареи превышено. Более конкретно, зарядка батареи увеличивает nh3SO4 и, таким образом, перемещает состояние батареи вверх, т.е.е., по линии AB на фиг.1, процесс обратим, пока состояние батареи остается в пределах сегмента AB. Однако при превышении точки A на положительном электроде происходит выделение кислорода, что делает процесс необратимым. Аналогичная ситуация возникает при разряде. В этом случае процесс разряда потребляет серную кислоту, и состояние батареи перемещается вниз по линии AB. Точка B на предельной кривой батареи — это предел обратимой разрядки. За пределами этой точки напряжение батареи становится ниже, чем напряжение, необходимое для поддержания реакции отрицательного электрода:

Pb + H 2 SO 4 ⇌ PbSO 4 + H 2

(32)

в химическом равновесии.Это заставляет реакцию необратимо идти вправо. Это явление происходит сравнительно быстро и известно как сульфатирование. Это приводит к образованию нерастворимых кристаллов PbSO 2 на отрицательном электроде с сопутствующим выделением водорода. Выделение кислорода и водорода в пределах допустимого диапазона связано с электрохимическими окнами воды. Читателю предлагается обратиться к соответствующей литературе для получения подробной информации о химических реакциях, которые регулируют электрохимическую стабильность воды в водных электролитах (см. E.g., ([13,14,15,16,17]). Ширина допустимого диапазона по вертикальной линии через n добавить обозначена как Δnh3SO4 на рисунке 1. Эта ширина представляет максимальное количество серной кислоты, которое на килограмм воды с растворителем, может обратимо реагировать в соответствии с уравнением (27). Таким образом, чем больше эта ширина, тем большее количество энергии аккумулятор может хранить и производить без ухудшения качества электролита. Максимальное значение Δnh3SO4 достигается при n add = nadd ∗ и обозначено как Δnh3SO4 ∗ на приведенном выше рисунке.Поскольку количество водного растворителя зависит от состояния заряда батареи, может быть удобно определять концентрацию добавки со ссылкой на фиксированное состояние заряда батареи. Это будет приниматься как гипотетическое состояние полного разряда, которого аккумулятор достигнет после того, как вся серная кислота в электролите будет израсходована в соответствии с уравнением (27). В этом состоянии количество воды в электролите будет n h3O = n¯, согласно уравнению (28). Поэтому, когда речь идет об этом гипотетическом состоянии, молярная концентрация добавки электролита, соответствующая nadd ∗, определяется как:

badd ∗ = nadd ∗ n¯ Mh3O

(33)

Это можно рассматривать как номинальную молярность добавки, которая требуется для получения максимальной емкости накопления энергии в батарее.

Пусть Δnh3SO4o будет значением Δnh3SO4, когда электролит аккумулятора не содержит добавок (см. Рисунок 1). Поскольку энергия, которую батарея может хранить или поставлять, пропорциональна молям серной кислоты, которые подчиняются уравнению (27), соотношение:

ηmax = Δnh3SO4 ∗ −Δnh3SO4oΔnh3SO4o

(34)

представляет собой наибольшее относительное увеличение максимальной емкости накопителя энергии, которое может быть получено от данной добавки к электролиту. Конечно, η max зависит от используемой добавки из-за зависимости от добавки кривой предельных значений батареи.

5. Экспериментальное определение предельной кривой

Чтобы определить предельную кривую для батареи, нам нужно знать значения ψmax ″ и γ , добавить , которые необходимо ввести в уравнение (31). Эти значения могут быть определены экспериментально следующим образом. Начнем с наблюдения, что уравнение (31) выполняется, в частности, когда электролит не содержит добавок. В этом случае n добавить = 0 и уравнение (31) сводится к:

R T Mh3O [ln γh3O (n¯ − nh3SO4) n¯ + nh3SO4n¯ − nh3SO4ln γh3SO4 nh3SO4 (n¯ − nh3SO4) Mh3O] = ψmax ″

(35)

Это уравнение применимо к пределу допустимого диапазона заряда батареи.Величина n¯, фигурирующая здесь, задается уравнением (29). Это зависит от подготовки батареи, но не от наличия добавок электролита. Таким образом, работая с батареей, лишенной электролитной добавки, мы увеличиваем состояние заряда батареи до тех пор, пока не достигнем предельной точки, за которой кислород начинает выделяться на положительном электроде в условиях разомкнутой цепи (точка A ° на рисунке 1). Появление этого необратимого явления свидетельствует о том, что состояние аккумулятора достигло предельной кривой.Мы определяем значение nh3SO4 на этом пределе и подставляем его в уравнение (35). Таким образом, мы можем вычислить ψmax ″. Как известно, концентрация серной кислоты и напряжение аккумулятора связаны друг с другом (см., Например, [18,19,20,21]). Следовательно, вместо определения предельного значения nh3SO4 мы можем определить максимальное напряжение холостого хода, при котором батарея сохраняет свой заряд, не производя кислорода на положительном электроде. Это напряжение значительно выше стандартного (1.229 В) электролиза воды [22] из-за перенапряжения, возникающего на электродах батареи. Степень перенапряжения зависит от свойств поверхности электродов и от наличия в электродах небольших количеств различных добавок, вводимых при их изготовлении. Как видно из уравнений (20) и (21), функции ″ и ψ ″ не зависят от свободной энергии электродов. Однако перенапряжение, создаваемое электродами, влияет на допустимый диапазон и предельную кривую батареи, поскольку оно влияет на предельное значение nh3SO4 и, следовательно, на значение ψmax ″.Это приводит к тому, что допустимый диапазон и предельная кривая для батареи зависят от свойств батареи в целом, а не просто от свойств ее электролита.

Процедура определения γ add аналогична процедуре определения ψmax ″. Однако в этом случае электролит аккумулятора должен содержать известное количество присадки. Мы снова заряжаем аккумулятор до предела, при котором кислород образуется на положительном электроде в условиях разомкнутой цепи. Мы определяем соответствующее значение nh3SO4 и вставляем его вместе с рассматриваемым значением n , добавляем в уравнение (31).Поскольку ψmax ″ уже определено, единственное неизвестное в этом уравнении — это γ добавить , которое, таким образом, может быть определено. Из-за наличия трансцендентных членов значение γ добавить лучше всего рассчитать графически или численно.

В качестве примера рассмотрим типичный автомобильный аккумулятор при комнатной температуре (T = 25 ° C = 298,15 K). Мы предполагаем, что на момент изготовления электролит в батарее содержит 1 кг воды с молярной концентрацией серной кислоты для bh3SO4o = 6 моль / кг.Это означает, что nh3Oo = 55,51 моль и nh3SO4o = 6 моль. Таким образом, n¯ = 55,51 + 6 = 61,51 моль, как следует из уравнения (29). Оставляя электролит свободным от добавок, мы заряжаем аккумулятор и обнаруживаем, что bh3SO4 = 7,25 моль / кг — это самая высокая концентрация серной кислоты, которую аккумулятор может поддерживать в условиях разомкнутой цепи без образования кислорода на своем положительном электроде (эта концентрация соответствует напряжению 2,16 В — или 12,96 В для шестиэлементной батареи — по литературным данным [19]).Как видно, заряд и разряд аккумулятора происходят при постоянном n¯. Следовательно, с учетом уравнения (28), мы находим, что указанное выше значение bh3SO4 = 7,25 моль / кг означает nh3SO4 = 7,10 моль и nh3O = 54,41 моль в электролите батареи. Путем введения в уравнение (35) значений γh3O и γh3SO4, соответствующих этому значению bh3SO4, доступных из литературы и приведенных в Приложении, и вспоминая, что R = 8,3143 Дж · К −1 · моль −1 и Mh3O = 18,015 × 10 −3 кг · моль −1 , мы вычисляем, что для рассматриваемой батареи ψmax ″ = −20.25 Дж · кг −1 .

Для определения γ добавляем , добавляем произвольное количество рассматриваемой добавки в электролит аккумулятора. Пусть, например, к n прибавляется = 5 моль. При эксплуатации модифицированной таким образом батареи мы обнаруживаем, что предел разомкнутой цепи для выделения кислорода на положительном электроде возникает, когда заряд батареи соответствует количеству серной кислоты, например, nh3SO4 = 6,74 моль. Подставляя это значение nh3SO4 в уравнение (35), мы вычисляем, что γ добавляет = 0.64, как можно проверить из того же уравнения, если мы установим n , добавим = 5 моль, n¯ = 61,51 моль и ψmax ″ = -20,25 Дж · кг −1 .

Наконец, вставив эти значения n¯, ψmax ″ и γ , добавьте в уравнение (35) и, используя выражения γh3O и γh3SO4, приведенные в Приложении, мы получим аналитическое выражение предельной кривой рассматриваемая батарея. Эта кривая представлена ​​на рисунке 2. Из того же рисунка мы находим, что Δnh3SO4o = 5,48 моль и Δnh3SO4 ∗ = 6.14 мол. Это означает, что η max = 0,12 согласно уравнению (34). Таким образом, добавка к электролиту, рассматриваемая в этом примере, может увеличить емкость аккумулятора до 12%. Количество добавки, необходимое для получения максимальной емкости накопления энергии, составляет nadd ∗ = 1,48 моль, как показано на рисунке. Соответствующая номинальная моляльность добавки равна badd ∗ = 1,34 моль / кг согласно уравнению (33).

Различные добавки могут по-разному влиять на аккумулятор. Например, для той же батареи, рассмотренной в приведенном выше примере, добавка с γ добавляет = 0.3 может увеличить емкость аккумулятора на 25%. Это можно легко проверить из уравнения (35), построив предельную кривую для γ , добавьте = 0,3 и те же значения n¯ и ψmax ″, указанные выше. В этом случае количество добавки, обеспечивающей максимальную накопительную способность, будет nadd ∗ = 3,23 моль, что означает badd ∗ = 2,91 моль / кг.

В приведенном выше анализе мы рассматривали γ add как константу, таким образом пренебрегая любой возможной зависимостью γ add от концентрации добавки.Это может быть приемлемо, если концентрация добавки умеренно низкая (как в случае многих приложений) или если мы ограничиваем наше внимание достаточно малой частью предельной кривой. Если требуется более высокая точность, описанная выше процедура для определения γ добавить может быть повторена несколько раз для стольких различных значений n добавить по мере необходимости. Значения γ добавить , полученные таким образом, затем могут быть использованы для определения функции γ добавить (n добавить ), которая может быть заменена на γ добавить в уравнение (35), если приближение γ добавить = const.оказывается неадекватным.

Вместо того, чтобы заряжать аккумулятор до предела выделения кислорода, представленного точкой A ° на рисунке 1, мы могли бы — в принципе — определить ψmax ″, разрядив аккумулятор без добавок до точки B ° на том же рисунке. Это точка предельной поверхности батареи, на которой начинается сульфатирование отрицательного электрода. Как только концентрация серной кислоты, соответствующая этому нижнему пределу, определена, кривая предела может быть определена, как описано выше.Обе процедуры должны обеспечивать одинаковое значение ψmax ″, потому что и A °, и B ° принадлежат одной и той же кривой ψ ″ = ψmax ″. Однако ссылка на предел выделения кислорода кажется более практичной, поскольку сульфатирование — довольно медленное явление.

6. Выводы

Известно, что на энергоемкость свинцово-кислотного аккумулятора может влиять присутствие добавок в его электролите. Понятие эквивалентной добавки, определенное в этой статье, помогает проанализировать влияние химически инертных добавок и смесей таких добавок на энергоемкость батареи.Это может быть применено для определения всей области концентраций электролита, называемой допустимым диапазоном батареи, в пределах которой не происходит необратимых изменений в батарее во время заряда или разряда. Граница этой области — граничная кривая батареи. Он соответствует концентрации серной кислоты и, следовательно, диапазону напряжений холостого хода, которые нельзя превышать без необратимых изменений в батарее. Граничная кривая батареи может быть построена из нескольких экспериментов, в которых батарея заряжается (или разряжается) при различных концентрациях добавок.Это дает полезную информацию об эффективности добавки для увеличения энергоемкости батареи и о наилучшей концентрации добавки, которую можно использовать для этой цели. Практические последствия выбора лучшей добавки очевидны. Однако следует иметь в виду, что добавка может также вызывать нежелательные побочные эффекты, которые не рассматриваются в настоящей работе и требуют адекватного изучения, прежде чем любое улучшение энергоемкости батареи в результате добавки может рассматриваться как практическое.

Подготовка к испытаниям ASE — Свинцово-кислотные батареи

1. Аккумулятор электролит представляет собой смесь воды и:

2. Таблички разряженного аккумулятора есть?

3. Что из следующего верно для автомобильного аккумулятора на 12 В?

4.Правильное соотношение воды и серной кислоты в электролите аккумулятора приблизительно:

5. Удельный вес от 1,170 до 1,190 при 80 ° F указывает на то, что что уровень заряда аккумулятора примерно равен:

6.Каждая ячейка полностью заряженной шестиячеечной батареи дает:

7. Емкость аккумулятора определяется его:

8. Коррозия батареи может быть очищена с помощью:

9.Чтобы проверить разряд батареи, вы должны подключить амперметр. между:

10. Для правильного и точного проведения испытаний под большой нагрузкой на аккумуляторах аккумулятор должен быть не ниже:

11.При выполнении теста емкости аккумулятора (при большой нагрузке) на Аккумулятор 12 вольт, напряжение не должно опускаться ниже

12. При испытании батареи под большой нагрузкой батарея разряжается на:

13.Уровень заряда герметичной батареи необходимо оценить. исходя из его напряжения холостого хода. Полностью заряженный аккумулятор который простоял несколько часов, будет иметь разомкнутую цепь напряжение не менее:

14. Батарея 400-CCA проходит нагрузочные испытания.Правильная нагрузка будет быть:

15. Какие показания на ДВОМ при выполнении обрыва цепи испытание напряжения на АКБ при 50% заряда:

12.0 вольт.
12,2 вольт.
12,4 вольт.
12,6 вольт

16. Аккумулятор, который длительное время недозарядился, будет стать:

17.Чтобы определить, заряжена ли аккумуляторная батарея с вентиляционными крышками или выписан, техник будет использовать:

18. Что нужно делать с аккумулятором, который показал следующие значения удельного веса электролита при 80 градусах f:

Ячейка 1: 1.270
Ячейка 2: 1.260
Ячейка 3: 1.245
Ячейка 4: 1.190
Ячейка 5: 1.250
Ячейка 6: 1.260

нагрузочный тест батареи.
зарядите аккумулятор.
заменить аккумулятор.
выполните 3-минутный тест заряда.

19. Тестер, который быстро разряжает аккумулятор для определения его вместимость:

20. Что нужно делать с аккумулятором, который показал следующие значения удельного веса электролита при 80 градусах F.

Ячейка 1: 1.265
Ячейка 2: 1.250
Ячейка 3: 1.245
Ячейка 4: 1.260
Ячейка 5: 1.245
Ячейка 6: 1.250

нагрузочный тест батареи.
зарядите аккумулятор.
заменить аккумулятор.
выполните 3-минутный тест заряда.

21. Необслуживаемая аккумуляторная батарея имеет напряжение холостого хода 12,6 вольт и испытание на нагрузку (емкость) 8,9 вольт. Который из следующего необходимо сделать:

22.Какой тест выполняется на иллюстрации ниже:

Испытание под тяжелой нагрузкой.
Стартовый тест на рисование.
Падение напряжения на кабеле аккумулятора.
Проверка выходной мощности системы зарядки.

23. При использовании тестера аккумуляторов Midtronics, показанного ниже. Чтобы правильно проверить аккумулятор на состояние заряда:

должно быть заряжено не менее 50%.
должно указывать на напряжение холостого хода не менее 5,5 вольт.
должно указывать на то, что напряжение холостого хода не менее 9,6 вольт.
должно быть не менее 75% заряда.

24. Тестер аккумуляторов Midtronics будет:

25.Аккумулятор многократно сильно разряжается перед он перезаряжается. Техник А говорит, что этот глубокий цикл сокращает срок службы батареи. Техник B говорит, что это будет не влияет на время автономной работы. Кто прав?

26. Проверяется аккумулятор переменного тока Delco со встроенным ареометром.Техник A говорит, что ТЕМНО-ЗЕЛЕНЫЙ глаз указывает на аккумулятор. достаточно заряжен для дальнейшего тестирования. Техник Б говорит, что ЧИСТЫЙ глазок ареометра означает, что аккумулятор должен быть заменены.

Верх страницы

Техническая сторона — Уход и питание герметичных свинцово-кислотных аккумуляторов

У меня разрядился аккумулятор, что случилось?

Избыточный заряд аккумуляторов сокращает срок их службы.Как только материал пластины полностью восстановлен (аккумулятор заряжен), продолжение зарядки может привести к в избыточной выработке газа и уменьшении мощности. Когда свинцово-кислотный аккумулятор полностью заряжен, продолжающаяся зарядка вызывает разрушение электролита вниз и образуют водород и кислород. Это «кипение» что мы видим при зарядке автомобильного аккумулятора с высокой скоростью около окончание перезарядки по времени. В этот момент происходят две плохие вещи: (1) В аккумуляторе образуется взрывоопасная газовая смесь, а в случае герметичный свинцово-кислотный аккумулятор , тепло и давление нарастают.Если давление становится достаточно большим, герметичные односторонние клапаны на батарее откроет и сбросит избыточное давление газа и, возможно, жидкий электролит. (2) В незапечатанной влажной батарее электролит испаряется или преобразуется к водороду и кислороду и теряется, но может быть заменен. В , не требующий обслуживания или герметичный аккумулятор электролит утерян и не подлежит замене. Во всех свинцово-кислотных аккумуляторах потеря электролита означает потерю емкости. и срок службы.

Предупреждение: ВСЕ свинцово-кислотные батареи могут выделять водород и кислородные газы! Никогда не заряжайте свинцово-кислотные батареи в закрытых или закрытых помещениях. контейнер. Всегда свинцово-кислотные аккумуляторы заряжать при соответствующей вентиляции и избегайте замыкания или разрыва соединений на батарее, чтобы избежать электрического разряд (искры, дуги или короткое замыкание). Подключите зарядное устройство к аккумулятору перед включением или подключением зарядного устройства. Еще одно предостережение для разряженные свинцово-кислотные аккумуляторы: помните, что электролит в этот момент в основном вода и замерзает при более высокой температуре (от 15 до 20 градусов F.), чем полностью заряженный аккумулятор.

Свинцово-кислотные аккумуляторы могут пострадать от состояния, называемого сульфатацией.Вести сульфат обычно образуется при разряде аккумулятора и повторно превращается как он перезаряжается (помните Battery Chemistry 101?). Если батарея осталась длительное время в разряженном или частично заряженном состоянии или никогда не полностью заряженный, сульфат свинца может затвердеть и сопротивляться обратному преобразованию для диоксида свинца и губчатого свинца. Это приводит к потере емкости, которая может быть или не быть обратимым. Убедитесь, что аккумулятор полностью заряжен. на большинстве циклов.

Герметичные свинцово-кислотные батареи обычно не переносят повторных глубоких погружений. разряды.Аккумулятор на 12 В не должен разряжаться ниже 10,5 до 10,7 В (1,75 В на элемент X 6 элементов). Если аккумулятор полностью разряжен разряжены, все реактивные материалы превращаются, и это может очень трудно обратить вспять химическую реакцию. Некоторые батареи предназначены с дисбалансом размера пластины и / или катализатором, чтобы помочь контролировать газообразование и помощь в подзарядке глубокого цикла.

Закороченные ячейки вызваны физическим контактом между пластинами, обычно вызванные отказом сепаратора, тепловым искажением или вибрацией и ударами.Открытым ячейки могут быть вызваны потерей электролита, вибрацией или ударом что приводит к поломке соединителя ячейки. Эти проблемы редко можно устранить.

Как и в случае никель-кадмиевых батарей, полное использование емкости батареи и полная зарядка — лучший способ сохранить полный запас энергии. если ты подозреваю, что емкость аккумулятора уменьшилась, заряд / разряд / заряд цикл с текущим мониторингом должен быть выполнен. Этот тест лучше всего выполнять техником по ремонту, использующим оборудование, которое профилирует аккумулятор при зарядке и разрядка.Тестовое оборудование может показать точное количество заряда и ток разряда. При подключении к компьютеру создается график кривые заряда и разряда с привязкой тока и напряжения ко времени. Результат сравнивается с профилем для новой батареи и позволяет чтобы решить, заменять ли аккумулятор.

В этих двух столбцах мы рассказали вам об основах аккумуляторных батарей. Представленные нами знания — это лишь небольшая часть информации. доступны и, как и все предметы, предоставлены для интерпретации и личного опыт.

Если у вас есть вопросы или вы хотите обсудить эту тему далее, свяжитесь с нами по адресу The Technical Side 1562 Linda Way, Sparks, NV 89431, по факсу (702) 359 6693 или по электронной почте hcrook@ingenuityinc.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *