Датчик температуры цифровой – Цифровые датчики температуры | 2 Схемы

Содержание

Цифровые датчики температуры | 2 Схемы

Для измерения температуры различных сред — воздуха, жидкостей, твёрдых веществ, современная электроника использует специальные цифровые датчики, представляющие из себя готовые модули, подключаемые не только к Arduino, но и любой аналогичной микроконтроллерной платформе. Про их ассортимент на известных китайских (и не только) площадках, а также возможности каждого из модулей, мы сейчас и узнаем.

Датчик температуры KY-001 с интерфейсом 1-Wire

Этот датчик служит для точного измерения температуры. Связь с датчиком осуществляется по интерфейсу 1-Wire [1-2], что позволяет подключить к плате Arduino несколько подобных устройств, используя один вывод микроконтроллера [3-4]. Основой модуля является микросхема ds18b20 [5].

Размер модуля 24 х 15 х 10 мм, масса 1,3 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

На плате имеется красный светодиод, который загорается, когда совершается обмен информации.

Потребляемый ток 0,6 мА при обмене информации и 20 мкА в ждущем режиме.

Подключение данного типа датчиков к Arduino хорошо описано во многих источниках [6-8]. В данном случае снова проявляются основные достоинства Arduino – универсальность и наличие огромного количества справочной информации. Для работы с датчиком потребуется библиотека OneWire Library [9]. Загрузив программу из [8] (в первом варианте программы есть ошибка – в заголовке кода нет подключения библиотеки #include <OneWire.h>) можно наблюдать в мониторе последовательного порта следующую информацию.

Так же автор тестировал код из [7], тут все заработало сразу, в мониторе последовательного порта можно прочитать информацию о типе подключенного датчика и собственно данные о температуре.

В целом очень полезный датчик, дающий возможность познакомиться на практике с интерфейсом 1-Wire. Корректные данные о температуре датчик выдает сразу, пользователю не нужно производить калибровку.

Модуль датчика температуры KY-013

Модуль представляет собой делитель напряжения, в одно из плеч которого включен терморезистор. Сопротивление датчика меняется при изменении температуры, второе плечо делителя образует резистор сопротивлением 10 кОм [10]. Подключение датчика аналогично фоторезистору [11].

Размер модуля 30 х 15 мм, масса 1 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

При изменении температуры происходит изменение сопротивления терморезистора, что приводит к изменению уровня напряжения на сигнальном выводе модуля. Если загрузить в Arduino программу AnalogInput2, то в мониторе последовательного порта среды разработки Arduino IDE можно наблюдать, как меняются показания, снимаемые с аналогового входа платы Arduino. На иллюстрации изменение показаний обусловлено нагревом терморезистора подушечками пальцев.

В общем, это один из простейших аналоговых датчиков, наряду с фоторезистором и потенциометром это датчик с которого обычно начинается изучение работы со встроенным АЦП.

Модуль датчика влажности и температуры KY-015 [12-13]

Модуль позволяет измерять температуру и влажность, передача информации осуществляется по интерфейсу 1-Wire [1-2].

Размер модуля 27 х 15 х 8 мм, масса 2,2 г. Для подключения служит стандартный трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

В ждущем режиме модуль потребляет около 60 мкА, и до 3 мА при обмене данными.

Для работы датчику необходима специальная библиотека [14], для проверки работоспособности датчика был использован код, взятый из следующего источника [15]. После загрузки можно наблюдать в мониторе последовательного порта данные о температуре и влажности. Изменения показаний датчика обусловлены тем, что автор поднес его ко рту.

Следует иметь в виду, что показания датчика влажности при быстром понижении влажности становятся корректными с задержкой, достигающей 2 мин. В целом этот модуль так и просится в состав простой метеостанции или системы умного дома.

Модуль датчика температуры KY-028 [16-17]

Этот датчик предназначен для грубого измерения температуры и обнаружения превышения заданного температурного порога.

Датчик имеет габариты 45 х 15 х 13 мм, массу 2,7 г, в печатной плате модуля предусмотрено крепежное отверстие диаметром 3 мм. Чувствительным элементом датчика является терморезистор. Индикация питания осуществляется светодиодом L1.

При срабатывании датчика загорается светодиод L2.

На плате датчика расположено четыре контакта. «A0» — аналоговый выход, выходное напряжение на котором меняется при изменении сопротивления терморезистора. Если в память Arduino UNO загрузить программу AnalogInput2, то можно наблюдать следующее изменение показаний датчика при его прижатии к коже человека.

Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, если температура не превышает заданного порога, при срабатывании датчика низкий уровень меняется на высокий. Регулировать положение порога срабатывания датчика можно подстроечным резистором. В дежурном режиме датчик потребляет около 4 мА, при срабатывании ток возрастает до 6 мА

Модуль можно легко настроить на срабатывание от тепла тела (используется программа LED_with_button).

В целом данная часть набора оставляет весьма приятное впечатление. Во всяком случае, ни один из датчиков температуры не является просто радиоэлементом без какой-либо обвязки, непонятно зачем приделанным к плате.

Литература

1) http://cxem.net/comp/comp53.php
2) http://cxem.net/comp/comp54.php
3) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi-ds18b20
4) http://www.zi-zi.ru/module/module-ky001
5) http://cxem.net/ckfinder/userfiles/comments/43118_ds18b20-rus.pdf
6) http://mypractic.ru/urok-26-podklyuchenie-termodatchikov-ds18b20-k-arduino-biblioteka-onewire-tochnyj-arduino-termometr-registrator.html

7) http://arduino-diy.com/arduino-tsifrovoy-datchik-temperatury-DS18B20
8) http://it-chainik.ru/podklyuchenie-datchika-temperatury-ds18b20-k-arduino/
9) https://www.pjrc.com/teensy/td_libs_OneWire.html
10) http://www.zi-zi.ru/module/module-ky013
11) http://robocraft.ru/blog/arduino/68.html
12) http://arduino-kit.ru/catalog/id/modul-datchika-vlajnosti-i-temperaturyi
13) http://www.zi-zi.ru/module/module-ky015
14) https://drive.google.com/file/d/0B-DqglGyhA7eVlAyYkhUaXYwWGc/view
15) http://роботехника18.рф/датчик-температуры-и-влажности/
16) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi_
17) http://www.zi-zi.ru/module/modul-ky-028

Все файлы (прошивки и документация) в едином архиве. Материал подготовил специально для сайта 2 Схемы — Denev.

2shemi.ru

Цифровой датчик температуры и влажности: принцип работы

Датчики температуры в настоящее время используются повсеместно. Это и системы отопления и климат-контроля. Холодильники, чайники, компьютеры – везде используются различные виды датчиков температур. Это всё только в бытовом применении. В промышленном использовании их сфера применения куда шире.

Методы измерений температур

Физические тела благодаря своим свойствам зависят от температуры, и если знать, как влияет температура на тот или иной материал. Выбор метода и материала для измерений определяется диапазоном измеряемых температур, требований к условиям работы, чувствительности и точности измерения.

 Загрузка …

Существует два варианта измерений: контактные и бесконтактные.

Бесконтактные – осуществляют измерения на основе теплового излучения тел. Такой метод позволяет проводить измерения, находясь на удалении. Помимо этого они применяются для измерения высочайших температур, при которых контактные датчики работать не смогут. Однако к проблемам таких измерителей относят низкую точность измерения низких температур. Нередко и вовсе становиться невозможно, измерить такие температуры.

Контактные – проводят измерения, основываясь на принципе теплового равновесия между измеряемым объектом и чувствительным элементом измерительного прибора. К таким относятся термопары, терморезисторы и др.

Термопары обладают очень высоким диапазоном измеряемой температуры, практически от самого абсолютного нуля до показателей достигающих отметки в три тысячи градусов Цельсия. Однако в виду особого свойства работы термопары (она измеряет разницу между двумя спаями) для измерения второго спая придется придумать иной способ замера.

Проблемы с точностью измерений термопары создает и используемые материал, наличие в нем примесей и способ обработки. Всё это может влиять на термоэдс прибора в целом.

Терморезисторы использует проволочный и полупроводниковый метод измерения. В зависимости от изменения сопротивления металла во время нахождения в определенной температурной среде. Иными словами от изменений температуры окружающей среды, изменяется число сопротивляемости измерительного элемента.

К минусам терморезисторов относят не очень высокую точность и подверженность к износу измерительного материала вызывающее еще большее падение точности со временем.

Существуют датчики в виде микросхем. Они имеют встроенной к чувствительному элементу структурой формирования исходящего сигнала. Такие датчики бывают аналоговые и цифровые. Подключение таких аппаратов к микроконтроллерам является очень простым. Аналоговые подключаются к ADC, а цифровые с любой популярный интерфейс (чаще IC).

Подобные устройства обладают неплохой точностью и малой ценой. Их использование удобно в большинстве случаев и имеет свою нишу, где используют только их. Однако есть и недостатки такие как – зависимость от питания, большое количество выводов требует большого количества проводников. Питающий их ток снижает точность измерений. Область температур сильно ограничена вышеназванными условиями, и рассчитана на температуры не ниже -55 и не выше 125 градусов Цельсия.

Цифровые технологии измерений

Цифровые датчики являются на текущий момент самым оптимальным решением для работы с микроконтроллерами, если нет каких-то специфических условий. В отличии от аналоговых, цифровые могут работать в длинной проводной линии и их сигнал более устойчив к помехам.

Рабочий интерфейс позволяет подключать одновременно несколько цифровых датчиков на линию, осуществляя покрытие большой территории датчиками, и считывая градиент изменения температур на площади. Цифровые измерители способны работать даже с самыми примитивными интерфейсами.

Аналого-цифровые измерители могут иметь достаточно долгое время преобразования сигнала от измерительного элемента в цифру (до 1 секунды в высоком разрешении), но точность при этом остается весьма высокой (погрешность около +- 0.5 градусов Цельсия при измерении в районе комнатных температур).

В заключении следует перечислить все преимущества цифры:

  • отличные показатели точности;
  • высокая повторяемость характеристик;
  • линейность;
  • устойчивость перед лицом внешних помех;
  • низкая цена;
  • подключение нескольких измерителей к одной рабочей шине;
  • проста в эксплуатации.

Основные модели

  1. DS18B20.

Бюджетная модель, обладающая хорошей точностью. Для подключения использует 1-Wire, что позволяет подключать измерители по трехпроводной линии.

  1. LM75A.

Имеет фиксированное время преобразования. Обладает возможностью подключать до 8 устройств на шину. Обладает точностью до 0.125 градуса Цельсия.

  1. STTS75.

Также как и LM75A имеет возможность подключить до 8 устройств, при этом обладает большей скоростью работы, чем DS18B20, таким образом, собирая всё лучшее от всех моделей.

Гигрометры

Цифровой датчик температуры – это далеко не весь потенциал цифры. В таком датчике также может быть совмещен и измеритель влажности воздуха. А благодаря возможности программировать цифровое устройство, аппарат становиться и своего рода реле для климатических установок и вентиляций.

Требования к гигрометру всегда одни: точность, чувствительность, легкий монтаж и заменимость. Второстепенным, но немаловажным будет стоимость гигрометра, на которую также обращает внимание среднестатистический покупатель.

Виды гигрометров:

Они представлены в виде конденсатора с воздушным зазором. Когда изменяется число водяного пара, изменяется и емкость конденсатора. Прибор достаточно точен для измерения влажности в бытовых условиях, хотя и не удовлетворит специфических требований по особо точным измерениям низкой влажности. Среднее отклонение у таких устройств 2% при разбросе измеряемой влажности в 5-95%.

Полезная информация
1Резистивные

Принцип работы основан на измерении влажности гигроскопической среды. В датчике находится подложка, на которую при помощи фоторезистора наложили пару электродов и накрыли проводящим полимером.

Срабатывает система каждые 10-30 секунд. Устройство не требовательно к настройке и легко заменяется. Исправная работа устройства обеспечивается до 5 лет при условии отсутствия в воздухе высокого содержания вредных химических примесей.

  • Теплопроводящие.

Такие чаще всего используются в бытовых приборах. Суть их работы в связанных между собой в одном мосту нескольких термисторов. Один из термисторов изолирован, в то время как другой открыт, разнится между ними и преобразуется в необходимый результат.

Цифровой измеритель в отличии от аналогов собрать самостоятельно намного сложнее, он требует настройки от специалиста. Его преимуществом является выносной дисплей с элементами программирования датчика. Такими как установка таймеров измерения, срабатывание на движение (при оборудовании его еще и датчиком движения), и в целом цифровой датчик является своего рода конструктором который можно собрать в нечто намного большее, чем просто гигрометр. Или же расширять его возможности постепенно по мере необходимости. Из минусов помимо проблем с первоначальной настройкой – отсутствие вентиляции при выключенном электричестве.

Области применения цифровых датчиков

Как уже стало ясно, цифровые измерители сейчас набирают всё большую популярность и используются практически во всех сферах, как более простые, дешевые и гибкие датчики. Устройства на основе цифры чаще всего используют в овощехранилищах и подвалах. Благодаря их тесной работе с программатором ими легко управлять. Настраивать необходимую температуру и поддерживать ее при помощи функций реле, которые также может обеспечивать датчик при дополнительных настройках.

Цифра полностью автоматизирует любое измерение и регулирование температуры или влажности. Она же используется повсеместно в компьютерных технологиях, обеспечивая работу внутренних систем охлаждения и выдавая показания датчиком пользователю машины.

Не смотря на то, что цифра обладает возможностью подстраиваться под желания пользователя, она тяжело работает в уникальных условиях. Слишком требовательна к какому-то климатическому минимуму, при котором будет исправно работать. Тем не менее, наиболее распространенной сейчас является именно она за счет возможности повсеместного бытового применения.

Обладая минимальными понятиями в электронике и программировании, вы можете собрать свои аппараты под ваши требования на базе плат Arduino и использовать их, так как сами хотите.

Всю необходимую защиту от влаги или иных воздействий среды могут обеспечить герметичные корпусы или иные элементы защиты основной микросхемы, сами же измерительные элементы не так критичны к среде.

Современные производители цифровых датчиков активно контактируют с покупателями и стараются потакать их всевозможным желаниям. Развивая отрасль цифры с всё более неожиданных ракурсов.

Цифра легко интегрируется практически с любой техникой. Есть возможность соединить работу датчика и вентилятора или системы включения света, или угол поворота камеры наблюдения. Цифровые датчики благодаря своей гибкости и «пронырливости» способны заменять собой многие менее продвинутые компоненты и существенно экономить ресурсы и деньги в бытовых условиях.

Датчик температуры для Лада Гранта

alertok.ru

Цифровой датчик температуры LMT01 / Деталька / Сообщество EasyElectronics.ru

Решил написать заметку про
убийцу
вариант замены всеми полюбившегося датчика ds18b20.
Все мы знаем ds18b20 — это цифровой датчик температуры, который позволяет делать замеры с достаточно высокой точностью и обмениваться данными с окружающим миром по протоколу 1 wire. И все хорошо в этом датчике, да вот только протокол 1 wire не всегда реализован в железе МК и как часто это бывает, приходится городить свой трехколесный или же пользоваться сторонними либами. При этом больше всего обидно, когда нам нужно сделать устройство, которое питается от батарейки и должно работать миллисекунды, а потом засыпать на часы, а для банального замера температуры приходится общаться с датчиком, тратить на это клоки МК, ждать и «засорять» флеш и RAM кодом, который можно было бы использовать более оптимально.
Читатель может возразить — так можно поставить термопару или другой аналоговый прибор и замерять через АЦП — и будет прав, но при этом возрастает количество элементов на схеме и плате, а так же всегда есть шанс ошибиться при монтаже и т.д.
И вот на помощь нам пришла компания Texas instruments которая разработала цифровой датчик LMT01, который по своим характеристикам не уступает народному ds18b20, а в некоторых случаях его даже превосходит (даташит).
Но самое главное — у датчика всего две ноги, они же служат ему питанием и коммуникацией с внешним миром. А коммуникация у него проста как двери — подаем на него питание и через мгновение датчик начинает дрыгать ногой. Сколько раз дрыгнул — столько и насчитал единиц температуры! Один «дрыг» = 0.0625°С. т.е. нам нужно всего-то подключить одну ногу к МК, подать в нужный момент на него питание и посчитать сколько раз датчик дёрнет за нашу ногу. Как считать — думаю что тут уже каждый сам для себя придумает. Самый простой способ — прерывание на ноге. Способ посложнее — подсчет таймером. Согласитесь — просто до неприличия. Даже примеры коды приводить смысла нет.
Длинна проводников, которыми он может быть подключен к МК может достигать двух метров, тут конечно не сравнить с шиной 1 wire но это не сильно критический минус.

Единственный критический минус, который может оттолкнуть — это пока его цена. Колеблется она начиная от 1,5 вечнозеленых президентов и на китайских барахолках он пока не доступен. Но, видимо китайцы скоро наделают его клонов.
Как оказалось на терраэлектронике этот датчик дешевле далласа.

Ну и для тех кому лень лезть в даташит немного характеристик:

Основные характеристики:
Корпус: TO-92/LPG(2)
Тип датчика: Цифровой
Диапазон измеряемых температур: -50…150 С
Точность измерения ±: 0,5 С
Разрешение: 0,0625 С

UPD:
Для сравнения с ds18b20:
Только включил и через 54мс получаем температуру, ничего не нужно отправлять, инициализировать и конфигурировать.
Время получения данных о температуре максимум 50мс. при 150 C, минимум 0мс при -50С.
Итого суммарное время получения макс. 104мс.
В далласе при двуногом подключении нужно выдерживать интервалы из даташита, для 12 бит это уже 750мс. + время на отправку команд для измерения и чтение данных.
Ну и разница в потреблении питания миллиамперы у далласа против микроампер у LMT01.
Так же, для некоторых специфических задач можно получать непрерывное измерение температуры со интервалом 104мс если не отключать датчик…

Минусы:
одна нога — один датчик.
не везде цена адекватная, но как писал выше — есть дешевле далласа.
короткий провод до датчика — не более 2 м. по даташиту.
протокол не совсем протокол, скорее тупое получение данных.

Простая схемка подключения. В ДШ есть и другие.

we.easyelectronics.ru

Датчики температуры. Виды и работа. Как выбрать и применение

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Виды и принцип действия
Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых, она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых, другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

Параметры выбора датчика температуры
  • Диапазон рабочей температуры.
  • Возможность погружения датчика в объект измерения или среду. Если это невозможно, то лучше выбрать пирометр или термометр.
  • Условия проведения замеров. Если нужно измерять в агрессивной среде, то надо выбирать датчик в коррозионностойком корпусе, или бесконтактного типа. Также следует определить наличие давления, влажности и т.д.
  • Время работы датчика до калибровки или замены. Многие датчики не могут долго и стабильно работать (термисторы).
  • Величина сигнала выхода. Существуют датчики температуры, выдающие сигнал по току, или в градусах.
  • Технические данные: погрешность, разрешение, напряжение, время сработки. Для полупроводников важен тип корпуса.
Похожие темы:

electrosam.ru

Цифровой индикатор температуры двигателя: зачем нужен дополнительный датчик

Как известно, температура охлаждающей жидкости, а также давление и температура моторного масла являются важными показателями, которые позволяют водителю контролировать работу и следить за состоянием ДВС.

Если говорить о моторном масле, такие решения больше нужны для форсированных моторов, которые работают в режимах больших нагрузок (постоянная езда на высоких оборотах, турбонаддув на изначально атмосферном двигателе и т.д.).

Что касается температуры охлаждающей жидкости, за ней нужно постоянно следить на любом силовом агрегате, а точная информация позволит избежать перегрева двигателя. При этом важно учитывать, что штатный датчик на многих автомобилях дает весьма посредственное представление о степени нагрева ОЖ.

Также некоторые модели прямо с завода и вовсе лишены указателя температуры двигателя на приборной панели. В подобных случаях (когда указателя нет или он показывает только усредненные значения) водители обычно устанавливают сторонний датчик температуры двигателя (цифровой аналог дает более точные данные сравнительно со штатным решением). Давайте рассмотрим это устройство более подробно.

Читайте в этой статье

Индикатор температуры двигателя: особенности

Начнем с распространенной ситуации. Допустим, в автомобиле имеется штатный стрелочный указатель температуры, однако на таких приборах шкала зачастую может не иметь калибровок, а стрелка рабочей температуры двигателя в среднем положении отображает реальную картину только условно.

При этом в процессе эксплуатации водитель замечает, что если середина на шкале является нормой, то в различных ситуациях стрелка может заметно подниматься и выше (например, в пробках). Казалось бы, происходит перегрев мотора.

Естественно, движение на автомобиле сразу прекращается, владелец спешит заглушить двигатель и открыть капот. Однако при осмотре агрегата следов утечки ОЖ нет. Далее производится повторный запуск и выясняется, что вентилятор радиатора даже не включается, хотя устройство работоспособно.

При ощупывании верхний патрубок радиатора имеет приемлемую температуру, нигде не «давит» антифриз, нижний патрубок может быть и вовсе холодным и т.д. Дальнейшая проверка уровня ОЖ и состояния самого тосола/антифриза также показывает, что жидкость системы охлаждения в норме, нормально работает внутрисалонный отопитель (печка), в системе нет воздушных пробок, помпа также исправна.

Еще бывает так, что если дать двигателю полностью остыть, затем завести мотор и прогревать силовой агрегат до рабочих температур, этот процесс может занять много времени (судя по указателю на панели приборов). При этом можно заметить, что хотя стрелка только немного поднялась, а вентилятор радиатора уже срабатывает, нижний патрубок радиатора теплый и т.д.

Если учесть, что с вентилятором и системой охлаждения все в порядке, тогда описанные выше признаки указывают на большую погрешность или проблемы именно с указателем температуры двигателя. Вполне очевидно, что в подобной ситуации становится сложно понять, когда мотор выходит на рабочие температуры, перегревается ли ДВС, сколько необходимо прогревать двигатель перед поездкой и т.д.

На начальном этапе многие водители начинают искать причину. Некоторые сразу:

В одних случаях проблему удается решить, тогда как в других добиться корректной работы штатного указателя температуры все равно не удается.  Дело в том, что нередко виновником являются управляющие электронные модули, дающие определенный сбой.

Менять такие модули дорого и нецелесообразно. В этой ситуации качественным решением является цифровой индикатор температуры двигателя. Такой электронный датчик имеет вполне приемлемую стоимость (в среднем, от 15 до 55 у.е.), относительно легко подключается и устанавливается. Диапазон измеряемых температур также весьма широк (в среднем, от -65 до +240).

Отметим, что на разных типах ДВС особенности монтажа могут несколько отличаться.

  1. Запитывается устройство обычно от замка зажигания.
  2. Цифровая панель устанавливается в удобном месте в салоне автомобиля.
  3. Что касается самого датчика, для точных показаний его необходимо погружать в охлаждающую жидкость.

Другими словами, устройство нужно вкрутить в блок или врезать в патрубок. Чтобы это сделать, одни водители заменяют штатный датчик температуры, попросту вкручивая вместо него новый. Однако на автомобилях с ЭБУ по ряду причин так делать нельзя.

Дело в том, что контроллер получает показания о температуре ОЖ. В этом случае нужно отдельно реализовывать монтаж датчика цифрового индикатора, так как убирать стандартный температурный датчик из системы настоятельно не рекомендуется.

Подведем итоги

Теперь несколько слов о практической эксплуатации. Если датчик установлен правильно, тогда погрешность его показаний будет минимальной (не более 1 градуса по Цельсию).  Наличие данного устройства в автомобиле позволяет постоянно следить за температурой двигателя и ОЖ.

Рекомендуем также прочитать статью о том, что такое автомобильный датчик Холла. Из этой статьи вы узнаете о назначении, принципах работы и основных неисправностях, к которым приводят сбои в работе или выход из строя указанного датчика.

При этом стоит отметить, что по индикатору можно также проверять работу термостата и заявленную температуру термостатирования. Если просто, например, термостат должен открываться при температуре 85 градусов.

Двигатель сначала прогревается до средних температур, затем можно взяться за патрубок радиатора. Когда он станет горячим, это укажет на открытие термостата. При этом на индикаторе также должна быть отображена заявленная температура открытия термостата, то есть все те же 85 градусов (с поправкой на погрешность). Также среди плюсов следует выделить возможность точного мониторинга температуры не только горячего, но и холодного мотора.

Напоследок отметим, что наиболее ответственным моментом при установке можно считать монтаж самого датчика на двигателе. Устройство обязательно должно быть герметичным. Также повышенные требования выдвигаются и к надежности его крепления. Важно избежать даже малейших утечек антифриза из системы охлаждения, которые могут происходить именно в месте установки цифрового датчика температуры мотора.

Читайте также

krutimotor.ru

Цифровые датчики температуры повышенной точности серии TSic

Цифровые датчики температуры повышенной точности серии TSic

Интегральные датчики температуры производства швейцарской компании IST выпускаются под брендом TSic. Ранее бренд TSic принадлежал ныне несуществующей немецкой компании ZMD.

Каждый датчик состоит из источника опорного напряжения с пропорциональным температуре выходом, прецизионного АЦП, DSP-процессора и энергонезависимой памяти, хранящей калибровочные таблицы. Главным отличем серии TSic является высокая точность измерений. Датчики TSic поставляются с заводской калибровкой.

 

* К артикулу датчиков TSic 5xx добавляется буква «F». Это обозначение относится только к производственному процессу, датчики TSic 5xxF и TSic 5xx обладают идентичными характеристиками.

 

 

 

 

Помимо стандартных корпусов TO92 и SOP-8 (см. рисунок), датчики выпускаются в нестандартных исполнениях.

 

 
 
Серия TSic 2xx

Датчики TSic 201, TSic 203 и TSic 206 имеют рабочий диапазон температур -50 .. +150°C и обеспечивают на нём следующую точность: 

  • ±0.5°C на диапазоне от +10 до +90°C
  • ±1.0°C на диапазонах от -20 до +10°C и от +90 до +110°C
  • ±2.0°C на диапазонах от -50 до -20°C и от +110 до +150°C

 

 

наличие и цены на образцы TSic 2xx

 
Серия TSic 3xx

Датчики TSic 301, TSic 303 и TSic 306 имеют рабочий диапазон температур -50 .. +150°C и обеспечивают на нём следующую точность:

  • ±0.3°C на диапазоне от +10 до +90°C
  • ±0.6°C на диапазонах от -20 до +10°C и от +90 до +110°C
  • ±1.2°C на диапазонах от -50 до -20°C и от +110 до +150°C

 

 

наличие и цены на образцы TSic 3xx

 

Серия TSic 5xxF

Датчики TSic 501F, TSic 503F и TSic 506F имеют рабочий диапазон температур -10 .. +60°C и обеспечивают на нём следующую точность: 

  • ±0.1°C на диапазоне от +5 до +45°C
  • ±0.2°C на диапазонах от -10 до +5°C и от +45 до +60°C

 

 

наличие и цены на образцы TSic 5xxF

 

Серия TSic 7xx

В данной серии представлен единственный датчик — TSic 716 с цифровым выходом. Датчик имеет рабочий диапазон температур -10 .. +60°C и обеспечивают на нём следующую точность:

  • ±0.07°C на диапазоне от +25 до +45°C
  • ±0.2°C на диапазонах от -10 до +25°C и от +45 до +60°C

 

 

наличие и цены на образцы TSic 716

 

На рисунках выше показаны стандартные границы диапазонов температур, на которых обеспечивается минимальная погрешность измерений. По запросу выпускаются датчики TSic со «сдвинутым» диапазоном — например, стандартные микросхемы TSic 716 обеспечивают точность ±0,07 °C на диапазоне от +25 до +45 °C, однако могут быть произведены датчики с точностью ±0,07 °C в диапазоне температур от −10 до +10 °C, от +3 до +23 °C, от +30 до +50 °C и так далее. 

Датчики с нестандартным диапазоном повышенной точности доступны под заказ.

 

ПОДКЛЮЧЕНИЕ ДАТЧИКА И ВЫХОДНОЙ СИГНАЛ

Для подключения любой модели датчика TSic используется три линии — питание (от 3.0 до 5.5 В), сигнал и GND. В зависимости от модели датчика, с сингальной линии снимается аналоговый, ратиометрический или цифровой (11 или 14 бит) сигнал.

 

Аналоговый сигнал (от 0 до 1 В)

Датчики с аналоговым выходом обозначаются как TSic 201, TSic 301 и TSic 501F. Для вычисления значения температуры используется следующая формула:

 

Ратиометрический сигнал (от 10 до 90% Vпит) ​

Датчики с ратиометрическим выходным сигналом (от 10 до 90% Vпит) обозначаются как TSic 203, TSic 303 и TSic 503F. Для вычисления значения температуры используется следующая формула:

 

Цифровой сигнал

Датчики с цифровым выходом используют для обмена информации с микроконтроллером однопроводной интерфейс. В посылке с данными содержится 11 или 14 значащих разрядов.

Таким образом, для датчиков TSic 206, TSic 306 и TSic 506F используется следующая формула для вычисления температуры: 

Для 14-разрядного датчика TSic 716 используется другая формула:

Подробное описание работы с однопроводным интерфейсом датчиков TSic 206, TSic 306, TSic 506F и TSic 716 на русском языке доступно в статье, посвященной датчикам данной серии.

 

 

Приведем расшифровку использованных обозначений:

  • Tвых — искомое значение температуры, °C
  • Vвых — выходное напряжение датчика, В
  • Vпит — напряжение питания датчика, В
  • выходное значение — цифровой сигнал на выходе микросхемы
  • Tверх — верхняя граница рабочего температурного диапазона, °C
    Tверх = +150°C для TSic 20x и TSic 30x, Tверх = +60°C для TSic 50xF и TSic 716
  • Tниж — нижняя граница рабочего температурного диапазона, °C
    Tниж = -50°C для TSic 20x и TSic 30x, Tниж = -10°C для TSic 50xF и TSic 716

 

 

 

СТОИМОСТЬ

Цены, действующие на штучные образцы со склада, указаны на сайте.

Вы можете рассчитывать на значительные скидки при заказе оптовых партий — уже при заказе 100 датчиков цена элемента снизится на 20%.

 

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Наиболее полные сведения о датчиках TSic доступны на сайте производителя и в Application Note.

Также рекомендуется к прочтению статья о датчиках TSic из корпоративного блога компании ЭФО. Помимо прочего, в статье рассмотрен пример реализации опроса датчика с цифровым интерфесом, приведен исходный код примера программы для микроконтроллера.

 

 

 

 

efo-sensor.ru

Цифровые датчики температуры | Аналоговые устройства

1LTC2986Digital Temperature Measurement SystemDiode, RTD, Thermistor, Thermocouple0.1240.1Serial SPI2.855.25$16.56 (LTC2986CLX#PBF)
2LTC2984Digital Temperature Measurement SystemDiode, RTD, Thermistor, Thermocouple0.1240.1Serial SPI2.855.25$21.43 (LTC2984CLX#PBF)
3LTC2983Digital Temperature Measurement SystemDiode, RTD, Thermistor, Thermocouple0.1240.1Serial SPI2.855.25$19.49 (LTC2983CLX#PBF)
4ADT7420Temperature SensorInternal Temp Sensor0.50.25160.0078Digital, Serial I2C2.75.5$3.10 (ADT7420UCPZ-R2)
5ADT7320Temperature SensorInternal Temp Sensor0.50.25160.0078Digital, Serial SPI2.75.5$3.10 (ADT7320UCPZ-RL7)
6ADT7312Temperature SensorInternal Temp Sensor1.51160.0078Digital, Serial SPI2.75.5$75.00 (ADT7312WCZ-PT7)
7LTC2991Current Monitor, Temperature Monitor, Voltage MonitorDiode1.51141.5Serial SPI35.5$4.50 (LTC2991CMS#PBF)
8ADT7311Temperature SensorInternal Temp Sensor10.5160.0078Digital, Serial SPI2.75.5$1.72 (ADT7311WTRZ)
9LTC2990Current Monitor, Temperature Monitor, Voltage MonitorDiode, Internal Temp Sensor1.50.5141.5Serial SPI35.5$2.25 (LTC2990CMS#PBF)
10ADT7410Temperature SensorInternal Temp Sensor10.5160.0078Digital, Serial I2C, Serial SPI2.75.5$1.36 (ADT7410TRZ)
11ADT7310Temperature SensorInternal Temp Sensor10.5160.0078Digital, Serial SPI2.75.5$1.36 (ADT7310TRZ)
12ADT7408Temperature SensorInternal Temp Sensor40.5120.0625Digital, Serial I2C, Serial SPI33.6$0.90 (ADT7408CCPZ-REEL7)
13ADT75Temperature SensorInternal Temp Sensor31120.0625Digital, Serial I2C, Serial SPI35.5$0.66 (ADT75ARMZ)
14ADT7302Temperature SensorInternal Temp Sensor21130.03125Digital, Serial SPI2.75.25$0.80 (ADT7302ARMZ)
15ADT7301Temperature SensorInternal Temp Sensor11130.03125Digital, Serial SPI2.75.25$1.25 (ADT7301ARMZ)
16ADT7470PWM Output Fan ControlInternal Temp SensorDigital, Serial I2C35.5$2.25 (ADT7470ARQZ)
17TMP06Temperature SensorInternal Temp Sensor50.2120.025Digital, PWM35.5$0.83 (TMP06AKSZ-500RL7)
18TMP05Temperature SensorInternal Temp Sensor50.2120.025Digital, PWM35.5$0.72 (TMP05AKSZ-500RL7)
19ADT7517Temperature SensorInternal Temp Sensor73100.25Analog, Digital, Serial I2C, Serial SPI2.75.5
20ADT7516Temperature SensorInternal Temp Sensor50.5100.25Analog, Digital, Serial I2C, Serial SPI2.75.5$4.68 (ADT7516ARQZ)
21ADT7411Temperature SensorInternal Temp Sensor50.5100.25Digital, Serial I2C2.75.5$2.29 (ADT7411ARQZ)
22ADT7318Temperature SensorInternal Temp Sensor50.510Digital, Serial I2C, Serial SPI2.75.5
23ADT7317Temperature SensorInternal Temp Sensor50.510Digital, Serial I2C, Serial SPI2.75.5
24ADT7316Temperature SensorInternal Temp Sensor50.510Digital, Serial I2C, Serial SPI2.75.5$4.68 (ADT7316ARQZ-REEL7)
25AD7314Temperature SensorInternal Temp Sensor21100.25Digital, Serial SPI2.655.5$1.01 (AD7314ARMZ)
26AD7415Temperature SensorInternal Temp Sensor30.5100.25Digital, Serial I2C2.75.5$1.07 (AD7415ARTZ-0500RL7)
27AD7414Temperature SensorInternal Temp Sensor20.5100.25Digital, Serial I2C2.75.5$1.07 (AD7414ARMZ-0)
28AD7814Temperature SensorInternal Temp Sensor3.52100.25Digital, Serial SPI2.75.5$1.10 (AD7814ARTZ-500RL7)
29AD7418Temperature SensorInternal Temp Sensor21100.25Digital, Serial I2C2.75.5$3.01 (AD7418ARMZ)
30AD7417Temperature SensorInternal Temp Sensor21100.25Digital, Serial I2C2.75.5$3.29 (AD7417ARUZ)
31AD7416Temperature SensorInternal Temp Sensor21100.25Digital, Serial I2C2.75.5$1.10 (AD7416ARMZ)
32TMP04Temperature SensorInternal Temp Sensor51.5160.3Digital, PWM4.57$3.88 (TMP04FSZ)
33TMP03Temperature SensorInternal Temp Sensor51.5160.3Digital, PWM4.57$3.88 (TMP03FT9Z)
34LTC1392Temperature SensorInternal Temp Sensor42104Serial SPI$3.95 (LTC1392CN8#PBF)

www.analog.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *