Получение индивидуальной модели авиационного двигателя
Библиографическое описание:Кишалов, А. Е. Получение индивидуальной модели авиационного двигателя / А. Е. Кишалов, Д. А. Ахмедзянов. — Текст : непосредственный // Молодой ученый. — 2009. — № 11 (11). — С. 33-36. — URL: https://moluch.ru/archive/11/822/ (дата обращения: 16.02.2023).
В процессе проектирования, доводки, отладки авиационных газотурбинных двигателей при помощи имитационных моделей (например, в системе DVIGwp [2] или DVIG_OTLADKA [3], разработанных на кафедре авиационных двигателей УГАТУ) возникает необходимость получения индивидуальной модели каждого конкретного двигателя.
В системе DVIG_OTLADKA модель двигателя представляет собой взаимосвязанный набор структурных элементов (СЭ) двигателя (входное устройство, КНД, КВД, ОКС и т.д.). Для каждого из типов двигателя может быть создана своя топологическая модель со своим набором СЭ [2]. Топологическая модель ТРДДФсм совместно с модулем автоматики представлена на рисунке 1. Чтобы получения индивидуальную имитационную модель (ИМ) данного двигателя на одном из режимов необходимо знать (и получить в модели) параметры на входе и выходе из каждого СЭ на этом режиме. Чтобы получить ИМ двигателя на другом режиме, необходимо настроить характеристики СЭ модели (компрессоров, турбин, камеры сгорания и т.д.) таким образом, чтобы параметры на входе и выходе из каждого элемента совпадали с аналогичными параметрами двигателя на том же режиме. Чтобы получить ИМ двигателя на неустановившихся режимах работы, необходимо знать динамические поправки (инерционность роторов и др.) и свойства автоматики (инерционность подачи топлива в ОКС, ФКС, инерционность створок РС, инерционность срабатывания автоматики, инерционность датчиков и т.д.).
При испытаниях двигателя производится снятие некоторых параметров двигателя на нескольких установившихся режимах, снятие характеристик некоторых узлов и различные переходные процессы (МГ-М, М-ПФ и т.
д.). Эти параметры используются для получения индивидуальной модели двигателя. Идентификация математических моделей ГТД по результатам испытаний двигателя проводится с использованием различных методов: метод нелинейной оптимизации; метод наименьших квадратов; метод максимального правдоподобия; метод группового учета аргументов. Используемый в данной работе метод идентификации близок к методу наименьших квадратов. Исходя из данного метода, необходимо выбрать варьируемые параметры, сформировать невязки (составить систему уравнений, условий расчёта) и осуществить процедуру сведения невязок (решить систему уравнений, условий расчёта). За счет уточнения значений коэффициентов, характеризующих элементы газовоздушного тракта, минимизируются невязки между одноименными параметрами, полученными расчетом по математической модели и экспериментальным путем.в системе DVIG_OTLADKA,
где 1 – внешние условия; 2 – входное устройство; 3 – КНД; 4 – отбор газа; 5 – КВД; 6 – отбор газа 2; 7 – камера сгорания; 8 – ВВТ; 9 – отбор мощности; 10 – отбор мощности 2; 11 – отбор газа 2; 12 – ТВД; 13 – ТНД; 14 – смеситель; 15 – ФКС; 16 – РС; 17 – «Регулятор», автоматика двигателя; 18 – общие результаты.
Методика получения индивидуальной модели двигателя
Непосредственно измеренные в процессе испытаний данные (например, на режиме М) передаются в СИМ DVIG_OTLADKA при помощи специально структурированного файла обмена. Все эти данные можно разделить на два вида: входные для СЭ (например, параметры окружающей атмосферы, расход воздуха, частоты вращения роторов, степень повышения давления компрессоров и т.д.) и выходные для СЭ и всей модели двигателя (тяга, удельный расход топлива, температура газов за турбиной низкого давления и т.д.). Входные данные напрямую присваиваются на вход соответствующих СЭ (например, расход воздуха – входное устройство, частота вращения – компрессора и т.д.). Выходные параметры приходится подбирать за счёт изменения других входных для СЭ параметров — варьируемых (КПД компрессоров, коэффициент полноты сгорания ОКС, коэффициент восстановления полного давления ОКС и ФКС) [1].
Схема методики идентификация ИМ двигателя в СИМ DVIG_OTLADKA состоит из четырёх этапов и приведена на рисунке 2.
Рис.2. Схема реализации идентификации двигателя и его автоматики
На первом этапе данные с испытаний на режиме М передаются на вход СЭ (; ; ; ; ; ; ; ; ; ; ; – по удельному расходу топлива) в модель двигателя, настроенного на среднестатистические параметры двигателя (рисунок 1). При этом должны выполняться условия моделирования, приведённые в таблице 1. В них варьируемые параметры подбираются таким образом, чтобы поддерживаемые параметры всегда были равны 1. Поддерживаемые параметры – специально введённые параметры, равные отношению самой выходной величине, к величине, пришедшей из файла обмена. Точность расчёта каждого поддерживаемого параметра устанавливается отдельно в условиях расчёта.
Кроме перечисленных в таблице 1, внутри СЭ выполняются алгоритмы подбора следующих величин: ; ; ; ; ; ; ; ; ; ; ; ; ; . При этом внутри СЭ поддерживаются: ; ; . В случае превышения (или занижения) варьируемыми величинами определённых значений (установленных для каждого СЭ), система выдаёт сообщение об ошибке. Дальнейшую идентификацию следует проводить при других (варьируемых) значениях следующих величин: ; ; ; ; (так как они не входят в число параметров, которые подбираются автоматически в ходе идентификации, они названы «свободными»). Значения всех варьируемых параметров записывается в специальный файл, из которого эти значения присваиваются на вход соответствующих СЭ на втором этапе. Второй этап рассчитывается без условия расчёта. Он необходим для того, чтобы соответствующие СЭ получили подобранные на этапе I варьируемые данные. После успешного окончания второго этапа – получаем индивидуальную ИМ двигателя на режиме М [3].
На третьем этапе должны выполняться условия моделирования, приведённые в таблице 2. Значения всех варьируемых параметров (так же как и в первом этапе) записывается в специальный файл, из которого эти значения присваиваются на вход соответствующих СЭ на четвёртом этапе. После успешного окончания четвёртого этапа – получаем индивидуальную ИМ двигателя на режимах М и ПФ.
Таблица 1 Условия идентификации на этапе I
|
Таблица 2 Условия идентификации на этапе III
|
При желании (и при наличии необходимой информации) можно таким же образом получить идентифицированную модель на других режимах (например, МФ).
Одновременно с получением индивидуальной модели СЭ двигателя происходит и частичная идентификация автоматики. СЭ «Регулятор» получает необходимую для регулирования информацию: , , , , , , ,, .
Дальнейшую настройку автоматики необходимо выполнять по различным переходным режимам (например, М-ПФ). Изменяя настройки автоматики таким образом, чтобы переходный процесс в ИМ совпадал с переходным процессом двигателя («ручной» этап идентификации). Произведя данные манипуляции – получаем «полную», «динамическую» модель двигателя и его автоматики на исследуемых режимах.
В случае, если на этапе I варьируемые величины всё таки не входят в поле допустимых значений и изменением «свободных» величин не удаётся добиться идентификации модели, следует проанализировать все результаты испытаний и принять решение о погрешности экспериментальных замеров некоторых параметров двигателя.
Подобным методом были идентифицированы ИМ двигателей. Из них 76% были идентифицированы в «автоматическом» режиме, а 20% были идентифицированы при помощи изменения (в поле допуска) «свободных» параметров, 4% двигателей данным методом идентифицировать не удалось (варьируемые величины выходят из поля допустимых значений). Погрешность ИМ относительно соответствующих параметров двигателя весьма незначительна и составляет сотые доли процента. Наибольшая погрешность идентификации – при расчёте площади критического сечения РС на режиме ПФ составила 3,25%. Возрастание погрешности при расчёте площади критического сечения РС на режиме ПФ связано с изменением коэффициента расхода сопла (при переходе на форсированные режимы), что в свою очередь вызвано повышением неравномерности потока, изменением «утечек» потока через створки сопла.
Внедрив данную методику получение индивидуальной модели двигателя в серийное производство с последующей компьютерной отладкой автоматики, можно существенно сократить время отладки двигателя и уменьшить затраты.
Список литературы
1. Ахмедзянов Д.А., Кишалов А.Е., Кривошеев И.А., Власова Е.С. Использование имитационного моделирования для оптимизации отладки форсажного контура ТРДДФ при приемо-сдаточных испытаниях. Вестник УГАТУ, Уфа, 2006.- т.7 №3. – С.136-141.
2. Ахмедзянов, Д.А. Моделирование совместной работы авиационных ГТД и элементов топливной автоматики на переходных режимах в компьютерной среде DVIGw / Д.А. Ахмедзянов, Х.С. Гумеров, И.А. Кривошеев // Изв. вузов, сер. “Авиационная техника”. — 2002. — №1. — С. 43-46.
3. Ахмедзянов Д.А., Кишалов А.Е. Информационная технология отладки динамических процессов в авиационных ГТД при приемно-сдаточных испытаниях. Известия вузов. Авиационная техника, Казань. – 2007. — №3. – С.26-31.
Работа выполнена при финансовой поддержке РФФИ.
Основные термины (генерируются автоматически): параметр, двигатель, режим, режим М, этап, входное устройство, индивидуальная модель двигателя, модель двигателя, отбор газа, топологическая модель.
Как определить модель двигателя
Автор: Сочи Авто Ремонт
Рубрика: Двигатель
В процессе замены агрегатов и узлов транспортного средства часто необходимо определить, какую модель имеет силовой агрегат. Используя эти данные, осуществляется подбор необходимых запасных частей или заказывается новый двигатель для автомобиля. Как определить модель двигателя по цифрам сейчас объясним.
Как определить модель двигателя
Идентификация автомобильного мотора начинается с его номера, обычно, наносимого на специальной площадке, расположенной на блоке с цилиндрами слева на двигателе. Маркировка имеет 2 части – описательную, включающую 6 символов и указательную – включающую восемь знаков.
Первый из знаков, имеющих вид латинской цифры или буквы является годом выпуска силового агрегата. К примеру, девятка обозначает 2009 год, буква А это 2010 год, В 2011 год.
Три первых цифры, составляющие описательную часть показывают индекс, который имеет базовая модель, четвертым символом показан индекс модификации. Если индекса модификации нет, то обычно ставится “0”.
Пятым символом обозначают климатическое исполнение, а буква, расположенная на последнем месте может обозначать (А) сцепление диафрагмы или (Р) клапан рециркуляции. На машинах марки ВАЗ номер и модель силового агрегата выбиваются сзади торца блока с цилиндрами.
Как определить модель двигателя ГАЗ. На автомобилях производимых Горьковским автомобильным заводом (ГАЗ) применяется немного другое расположение номеров мотора. Они выбиты слева внизу на блоке цилиндров. На двигателях Toyota первой цифрой обозначают порядковый номер серии, второй серия к которой относится двигатель. Например, моторы 4S-FE и 3S-FE обладая аналогичной конструкцией, отличаются размером рабочего объема.
Буквой G обычно обозначается бензиновой двигатель, имеющий электронный впрыск и имеющего чаржер или турбонаддув, буквой F обозначают цилиндры, имеющие 4 клапана, 2 распредвала и отдельный привод. Т показывает наличие в моторе 1 или 2 турбин, а буква Z – суперчарджера (4А-GZE, например), Е – электронного впрыска, S – непосредственного впрыска, а буквой Х – обозначается гибридный мотор.
В маркировке двигателей Nissan содержится больше данных. Как определить модель двигателя Ниссан. Двумя первыми буквами показывается серия, двумя последующими – объем. Для получения объема в кубических сантиметрах, следует произвести умножение этого показателя на 100.
Двигатели, имеющие 4 клапана в цилиндре маркируют буквой D, регулировку фазы газораспределения буквой V, а многоточечный электронный впрыск символом Е. На карбюраторных двигателях стоит буква S, если используется одна турбина – Т, две турбины – ТТ.
Как определить модель двигателя Mitsubishi. Маркировка моторов Mitsubishi предоставляет данные о количестве цилиндров. На тип используемого двигателя указывают буквы А и G (ДВС), а также D (дизель). Обозначение дизельных моторов может иметь дополнение в виде буквы М, которая свидетельствует о том, что установлен топливный насос повышенного давления, имеющий электронное управление. Последующими двумя цифрами обозначается серия, а буквой Т – турбина.
Понравилась статья? Поделись с друзьями в соц.сетях!
Определение модели двигателя | Law Insider
означает категорию двигателей, не различающихся по основным характеристикам двигателя.
означает двигатель внутреннего сгорания с рабочими характеристиками, в значительной степени схожими с теоретическим циклом сгорания дизельного топлива. Регулирование мощности путем управления подачей топлива вместо дроссельной заслонки характерно для двигателя с воспламенением от сжатия.
означает (a) каждый из двух двигателей [Производитель и модель двигателя] (общий производитель и модель [Общий производитель и модель]), перечисленных по серийному номеру производителя и далее описанных в Приложении А к Дополнению к договору, первоначально выполненные и поставленные в соответствии с Соглашением, независимо от того, устанавливается ли он время от времени на планере или на любом другом планере или на любом другом воздушном судне, и (b) любой сменный двигатель, который может время от времени заменяться двигателем в соответствии с Разделом 7. 04 или 7.05 Договора; в каждом случае вместе с любыми и всеми связанными частями, но за исключением элементов, устанавливаемых или включаемых в состав или присоединяемых к любому такому двигателю время от времени, которые исключаются из определения частей. В тот момент, когда замененный двигатель будет заменен таким образом, а двигатель, для которого произведена замена, будет освобожден от залогового права по Соглашению, такой замененный двигатель перестанет быть двигателем по Соглашению.
означает любую машину, которая может получать поддержку в атмосфере за счет реакции воздуха, отличной от реакции воздуха на земную поверхность;
означает полный ремонт Воздушного судна, Двигателя, ВСУ, Шасси, модуля или Детали, в зависимости от обстоятельств, при котором такое оборудование было полностью разобрано; очищенный; тщательно осмотрен; и возвращен к наивысшему стандарту, указанному в применимом руководстве производителя.
означает беспилотный летательный аппарат и связанные с ним элементы, включая каналы связи и компоненты, управляющие беспилотным летательным аппаратом, которые необходимы командиру для безопасной и эффективной работы в национальной системе воздушного пространства.
означает в отношении любого Программного обеспечения документ, в котором излагаются технические характеристики такого Программного обеспечения и который включен в Техническое задание.
означает технические спецификации, изложенные в Приложении 1 к Соглашению, которым должны соответствовать STB, CAS и SMS.
означает первоначальный график, подготовленный Подрядчиком для информирования и принятия Заказчиком, который отражает деятельность Подрядчика и Субподрядчиков (включая действия по координации и проверке, требуемые в Контрактных документах, которые должны выполняться A/E и ODR), продолжительность и последовательность работы, относящейся ко всему Проекту, в объеме, требуемом Контрактной документацией. Расписание четко демонстрирует критический путь действий, продолжительность и необходимые предшествующие условия, определяющие дату окончания расписания. Базовый график не должен превышать срок, указанный в Контрактных документах.
Набор для самостоятельной сборки модели двигателя I Комплекты двигателя для модели автомобиля, которые работают – Pergear
Интерес – лучший учитель. Генри Форд, известный как король американских автомобилей, является основателем Ford Motor Company. С детства проявлял большой интерес к технике. Когда ему было 12 лет, он потратил много времени на создание собственной машинной мастерской, ремонт часов и прочего. Когда ему было 15 лет, он сам построил двигатель внутреннего сгорания; когда ему было 16 лет, он пошел на машиностроительный завод учеником механика; к 23 годам его производственный опыт был уже очень богатым, и он начал изучать транспортные средства с двигателями внутреннего сгорания; в возрасте 33 лет он построил первый автомобиль и назвал его четырехколесным транспортным средством.
TECHING является представителем по производству комплектов двигателей для образовательных моделей. Модельный двигатель TECHING обеспечивает обучение промышленной грамотности, которое обеспечивает характерное обучение грамотности посредством независимых исследований и разработок, проектирования и производства моделей сборки металлических машин. Он также играет роль в распространении индустриальной культуры.
99% собранных моделей Teching изготовлены из металла, особенно из металлического сплава из окисленного алюминиевого сплава. Металлический материал более реалистичен, чем пластиковые игрушки, с которыми обычно сталкиваются дети. Как правило, пластиковые игрушки стимулируют только абстрактное мышление детей, а металлические изделия активизируют рациональное мышление детей.
TECHING имеет 2-цилиндровые, 4-цилиндровые двигатели для моделей автомобилей и другие комплекты моделей двигателей. Сегодня мы познакомим вас с двумя самыми популярными моделями двигателей.
Первый — комплект модели цилиндра V2. V2 состоит из 217 частей. Он изготовлен из качественной нержавеющей стали и экологически чистого анодированного алюминиевого сплава, что обеспечивает долговечность и бесконечную игру. Весь процесс приближен к работе профессионального сборочного конвейера, позволяя творить и детям, и взрослым.
Изготовление из алюминиевого сплава и нержавеющей стали в сочетании с процессом анодирования делает его не только прочным и дорогим, но и износостойким.