Двигатель автомобиля устройство и принцип работы: Устройство двигателей автомобиля и его компонентов

Содержание

Устройство современного двигателя

Устройство двигателя

Двигатель – энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. Еще двигатель называют «мотором», что было позаимствовано из немецкого языка. Различают различные типы двигателей из которых широкое распространение получили двигатели внутреннего сгорания и электрические двигатели. Существует более подробная классификация двигателей внутреннего сгорания.

Устройство двигателя внутреннего сгорания состоит из двух механизмов:

1) Кривошипно-шатунного механизма (КШМ) — преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала. Детали КШМ делят на две группы: подвижные детали КШМ и неподвижные детали КШМ. 

Подвижные детали КШМ: поршень , поршневой палец, шатун, коленчатый вал, маховик.

Неподвижные детали КШМ: блок цилиндров, головка цилиндров, картер маховика и сцепления, гильзы цилиндров, крышка блока, крепежные детали, кронштейны, прокладки.

2) Газораспределительного механизма (ГРМ) — служит для своевременного открытия и закрытия впускных и выпускных клапанов двигателя, обеспечивая качественное наполнение цилиндров двигателя свежим зарядом, их очистку от отработавших газов и герметизацию цилиндров при сжатии и рабочем ходе поршня.

Неисправности двигателя автомобиля

Как запустить двигатель, если он не заводится?

Замена ремня ГРМ своими руками

Двигатель состоит также из пяти систем:

  • Система охлаждения — предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.
  • Система смазки — служит для подвода масла к трущимся поверхно­стям деталей двигателя, частичного отвода теплоты и продуктов изнаши­вания.
  • Система питания — служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов.
  • Система зажигания — служит для создания тока высокого напряжения и распределения его по цилиндрам двигателя и воспламенения рабочей смеси в камере сгорания в определенные моменты.
  • Система пуска — служит для первоначального вращения коленчатого вала, что обеспечивает запуск двигателя.

 

Поршневые двигатели внутреннего сгорания классифицируют по следующим признакам:

1) По назначению:

-транспортные

-стационарные

2) По способу осуществления рабочего цикла:

-четырехтактные

-двухтактные

3) По способу смесеобразования: (внешнее и внутреннее)

4) По способу воспламенения:

-с принудительным воспламенением от свечи зажигания (конструкция карбюраторного двигателя)

-с воспламенением от сжатия (самовоспламенение) (конструкция дизельного двигателя)

5) вид применяемого топлива:

-бензин

-дизельное топливо

-газ

6) по числу цилиндров: одноцилиндровые и многоцилиндровые

7) по расположению цилиндров:

однорядные, двухрядные,V-образные.

8) по способу наполнения свежим зарядом:

-без наддува

-с наддувом

9) по охлаждению: жидкостное и воздушное

Для изучения общего устройства автомобиля и остальных его элементов заходите в раздел «Устройство и ремонт автомобиля«.

Как сделать

капитальный ремонт

двигателя самому?

Запресовка

поршневых пальцев.

Диагностика двигателя Не дорого!

Ремонт головки блока

цилиндров двигателя

шаг за шагом

Принцип работы двигателя автомобиля

Процессы, происходящие в автомобильных двигателях, их влияние на износ деталей и возникновение неисправностей в совокупности представляет собой

принцип работы двигателя автомобиля


Ремонт двигателя предусматривает глубокие знания автослесаря  о технологических приемах ремонта и о предмете ремонта, то есть двигатель, его конструкцию и рабочий процесс. Определить причины неисправности бывает очень сложно, даже с хорошей теоретической подготовкой. Для точного определения причин возникновения неисправности мы должны четко представлять рабочий процесс двигателя, его конструкцию и наиболее нагружаемые детали.
Общее представление об устройстве двигателя и рабочих процессах, которые в нем протекают можно найти во многих пособиях. Но главной задачей для учащегося является сопоставление теоретического и практического материала. Нужный подход к восприятию материала я попытаюсь изложить ниже.
Современные двигатели выпускаются различных конструкций и типов. Некоторые двигатели имеют различия даже в самом рабочем процессе. Когда сталкиваешься с ремонтом двигателей автомобилей разных производителей, то понимаешь, что у каждого автомобиля есть свои нюансы и нельзя быть полностью уверенным в диагностировании неисправностей, если вы не обладаете должной практикой и знаниями, конкретно для данной конструкции двигателя.

Нагружение, износ и повреждение деталей автомобильного двигателя.

Если проанализировать работу двигателя, изменение усилий прикладываемых к деталям в зависимости от положения коленчатого вала, можно определить для себя, какие детали наиболее нагружены и подвергаются наибольшему износу.
Подробный анализ по внешним признакам, таким как шум, стуки, станет основой для дальнейшей диагностики неисправностей двигателя.  После чего проводится дефектация деталей, и более точно определяются причины поломки.
Правильная диагностика двигателя дает нам большой процент того, что ремонт двигателя будет произведен качественно и надежно с наименьшими потерями времени и средств.

Принцип работы двигателя автомобиля. Такт впуска.


Такт впуска начинается при движение поршня от ВМТ к НМТ.

Коленчатый вал проворачивается под действием стартера или по инерции от маховика, поршень движется вниз. Распределительный вал приводится в действие от ведущей шестерни коленчатого вала, поворачивается и нажимая своими кулачком на толкатель, открывает впускной клапан. Выпускной клапан во время такта впуска закрыт.
За счет относительно небольшой площади, открываемой впускным клапаном, по сравнению с площадью двигающегося вниз поршня, объем пространства в цилиндре увеличивается значительно быстрее, чем количество воздуха, которое может поступить через впускной клапан. В результате этого в цилиндре возникает разрежение, под действием которого через открытый впускной клапан топливовоздушная смесь поступает из впускного коллектора в цилиндр.
При движении поршня вниз поршневые кольца силой трения прижимаются к верхним краям канавок на поршне. За счет ускорения поршня (скорость поршня нарастает при постоянной скорости вращения коленчатого вала) шатун и поршень испытывают растягивающие нагрузки, действующие на стержень, верхнюю и нижнюю головки шатуна, шатунные болты, поршневой палец и бобышки поршня. Нагрузки от шатуна и поршня при движении из ВМТ передаются на шатунный подшипник, причем на его нижнюю часть (вкладыш, установленный в крышке шатуна).
Указанные нагрузки максимальны вблизи положения поршня в ВМТ и тем больше, чем больше частота вращения коленчатого вала, массы шатуна и поршня, причем эти нагрузки усиливаются разрежением в цилиндре. Вследствие этого момент начала движения поршня из ВМТ на такте впуска является достаточно опасным с точки зрения возможных поломок деталей.
На режимах частичных нагрузок (малые углы открытия дроссельной заслонки) и на больших частотах вращения разрежение во впускном трубопроводе превышает 0,05-0,07 МПа. Такое большое разрежение на впуске объясняет чувствительность работы двигателя к негерметичности различных соединений трубопроводов и фланцев, а также к легкому засасыванию небольших посторонних предметов. Так, в эксплуатации встречаются случаи разрушения поршней в результате гидроударов, превышения максимальной частоты вращения, обрыва шатуна, тарелки клапана, выпадения седла клапана. За счет негерметичности деформированных или сломанных клапанов и перепада давлений между выпускной и впускной системами куски разрушившихся деталей засасываются во впускной коллектор и распределяются по впускным трубопроводам всех цилиндров.
Если при последующем ремонте двигателя впускная система не будет тщательно очищена, то после запуска и непродолжительной работы двигатель выйдет из строя и потребует повторного ремонта.
Разрежение, возникающее во впускном трубопроводе при всасывании смеси через открытый впускной клапан способствует проникновению масла через зазоры между стержнями впускных клапанов и направляющих втулок. В многоцилиндровом двигателе такты в различных цилиндрах чередуются, поэтому во впускных каналах (за дроссельной заслонкой) устанавливается разрежение, величина которого зависит от частоты вращения и положения дроссельной заслонки. При этом масло может непрерывно проникать в канал по стержню даже того впускного клапана, который в данный момент закрыт. Поступление масла через зазор между клапаном и направляющей втулкой приводит к увеличению расхода масла, отложению нагара на тарелке и стержне клапана, из-за чего со временем возможно снижение количества поступающей в цилиндр смеси, падение мощности и увеличение расхода топлива.

Смесь, обтекая впускной клапан, охлаждает его тарелку и стержень, и далее, поступая в цилиндр, охлаждает поршень. При этом в цилиндре происходит образование вихря сопровождающегося интенсивной турбулизацией (перемешиванием) смеси. Турбулизация смеси тем выше, чем больше частота вращения и нагрузка (открытие дроссельной заслонки). Чем сильнее турбулизация, тем интенсивнее идет процесс испарения и сгорания топлива, больше мощность и крутящий момент двигателя. При движении поршня вниз происходит съем масла со стенок цилиндра маслосъемными кольцами. Масло сбрасывается в пазы между гребнями колец и далее через отверстия и пазы в маслосъемной канавке внутрь поршня. При этом важное значение для уменьшения расхода масла имеет надежное уплотнение между верхними торцевыми поверхностями канавки и маслосъемного кольца. Поршневые кольца, двигаясь вместе с поршнем вниз, скользят по поверхности цилиндра. Между наружной поверхностью колец и цилиндром находится тонкая пленка масла толщиной в несколько микрон, которая разделяет движущиеся друг относительно друга поверхности и уменьшает трение и износ деталей.

Для достижения минимального трения и износа масло должно хорошо удерживаться на деталях, поэтому детали не должны иметь гладкую, отполированную поверхность.

Подробнее, такт сжатия…

Автомобильные датчики: определение, функции, схемы, типы, работа

Развитие технологий упростило жизнь даже в автомобилестроении, поскольку теперь они оснащены датчиками, которые отправляют информацию о состоянии автомобиля. Технология включает искусственный интеллект и мобильную связь. Датчики теперь являются одним из основных устройств, которые должны быть включены в современные конструкции транспортных средств.

Современные автомобили теперь настолько удобны, что теперь есть доступ в Интернет, отдых в режиме автономного вождения, эффективная коммуникация и т. д. Все это является частью функционального аспекта сенсорного устройства. С компонентом у механизма есть способность и интеллект, чтобы знать и вносить изменения, когда это необходимо.

Сегодня мы познакомимся с определением, функциями, компонентами, схемой, типами, принципом работы и симптомами неисправных или неисправных датчиков.

Подробнее: Все, что вам нужно знать об автомобильном масляном фильтре

Содержание

  • 1 Что такое автомобильный датчик?
  • 2 Функции автомобильных датчиков
      • 2.0.1 Схема автомобильных датчиков:
  • 3 Типы автомобильных датчиков:
    • 3.1 Датчик массового расхода воздуха:
    • 3.2 Датчик частоты вращения двигателя:
    • 3.3 Датчик напряжения:
    • 3.4 Датчик абсолютного давления во впускном коллекторе (MAP):
    • 3.5 Датчик детонации:
    • 3.6 Датчик температуры топлива:
    • 3.9001 3.7 Датчик кислорода Различные типы датчиков и их функции в табличной форме:
  • 3.8 Подпишитесь на нашу рассылку новостей
  • 4 Принцип работы
      • 4.0.1 Посмотрите видео, чтобы узнать больше о работе датчиков:
  • 5 Преимущества и недостатки автомобильных датчиков
    • 5.1 Преимущества:
    • 5. 2 Недостатки:
    • 5.3 Поделись!
  • Что такое автомобильный датчик?

    Автомобильный датчик — это интеллектуальное устройство, которое отслеживает состояние автомобиля и отправляет информацию пользователю, чтобы знать, когда следует внести изменения. В некоторых ситуациях он автоматически вносит изменения в движок. Устройство контролирует различные параметры автомобиля, в том числе температуру, систему охлаждения, давление масла, уровни выбросов и т. д.

    Автомобильные датчики настолько умны, что принимают диапазон значений, идеально их исследуют и определяют подходящее состояние. Если компонент, содержащий датчик, неисправен, он отправляет пользователю предупреждающую информацию.

    Датчик всегда настроен на обнаружение изменений деталей автомобиля. Это означает, что датчики всегда работают, пока работает двигатель. Ранняя конструкция датчика работала только с двигателем, но теперь он контролирует каждую часть автомобиля, начиная от контроля температуры внутри двигателя и заканчивая наименьшим электрическим компонентом автомобиля.

    Функции автомобильных датчиков

    Я уверен, что из приведенного выше объяснения вы сможете вывести некоторые функции автомобильных датчиков. Поскольку они разных типов, питают различные приложения и функциональные системы в автомобиле. Функции такие широкие.

    Тем не менее, основные функции всех терминов, называемых датчиками в автомобиле, остаются неизменными при их различном применении. Информацию о приложении они отслеживают на компьютере (ЭБУ), который работает с алгоритмами. Алгоритмы уже содержат различные условия, которые может испытывать устройство, поэтому, когда это происходит, компьютер может внести изменения в правильную ситуацию. Всякий раз, когда компьютер не может выполнить настройку, он отправляет водителю предупреждающую информацию.

    Подробнее: Что нужно знать о генераторе переменного тока

    Схема автомобильных датчиков:

    Типы автомобильных датчиков:

    Ниже приведены различные типы датчиков, используемых в автомобиле для контроля различных аспектов:

    Датчик массового расхода воздуха:

    Типы датчиков расхода воздуха используются для определения объема и плотности воздуха, поступающего в двигатель. Эти датчики используются внутри двигателя, где происходит сгорание, он выполняет свою работу путем расчета. Устройство обеспечивает правильное количество топлива и воздуха для смеси, чтобы двигатель мог соответствовать оптимальным условиям вождения. если датчик выходит из строя, автомобиль может потреблять больше топлива, а иногда и глохнуть.

    Датчик частоты вращения двигателя:

    Датчик частоты вращения двигателя контролирует и контролирует скорость вращения коленчатого вала. это значит, что датчик крепится к коленчатому валу. если вы понимаете работу двигателя, вы будете знать, как работа преобразует возвратно-поступательное движение двигателя во вращательное движение коленчатого вала. вы можете прочитать это в конце этой статьи.

    Датчик напряжения:

    Функции датчиков напряжения в автомобильных двигателях заключаются в управлении скоростью холостого хода автомобиля. он обеспечивает увеличение или уменьшение скорости по мере необходимости.

    Датчик абсолютного давления во впускном коллекторе (датчик абсолютного давления):

    Типы датчиков абсолютного давления в коллекторе контролируют нагрузку двигателя, вычисляя разницу между давлением во впускном коллекторе автомобиля и внешним давлением, чтобы гарантировать, что двигатель использует топливо в зависимости от изменений давления. Выход из строя этого датчика также вызывает высокий расход топлива.

    Датчик детонации:

    Датчик детонации предназначен для обеспечения плавного сгорания топлива и предотвращения неожиданной детонации. Детонация очень опасна для двигателя, так как поршневые кольца сломаются, прокладка головки выйдет из строя и даже повредит шатунные вкладыши. Устранение проблем может быть довольно дорогим, поэтому следует серьезно относиться к информации, отправляемой датчиком.

    Подробнее: Что такое стартер двигателя

    Датчик температуры топлива:

    При постоянной скорости имеется датчик, который контролирует температуру топлива, чтобы обеспечить оптимальный расход топлива. Холодное топливо будет гореть дольше из-за его более высокой плотности, в то время как холодное топливо имеет тенденцию сгорать быстрее. Датчик следит за тем, чтобы топливо впрыскивалось при правильной температуре и скорости, чтобы двигатель мог работать бесперебойно.

    Кислородный датчик:

    Эти типы датчиков помогают определить количество кислорода в выхлопной трубе. Он определяет, горит ли автомобиль на богатой или бедной смеси, основываясь на расчетах датчика. Выход из строя устройства вызовет больший расход топлива, холостой ход и даже заставит машину дергаться.

    Various types of sensors and their functions in tabular form:
    STT Sensor Main Function
    1 The Mass Air Flow Sensor Calculates the density and объем воздуха, всасываемого двигателем
    2 Датчик частоты вращения двигателя Контролирует скорость вращения коленчатого вала
    3 Oxygen Sensor Measures the amount of unburden oxygen presented in the exhaust pipe
    4 Manifold Absolute Pressure Sensor Measures the manifold pressure inside and outside
    5 Spark Knock Sensor Ensures что топливо сгорает правильно
    6 Датчик температуры топлива Обеспечивает впрыск необходимого количества топлива для поддержания плавного движения
    7 Датчик напряжения Управляет скоростью автомобиля и обеспечивает скорость контролируемой системы

    Подробнее: Понимание зарядной системы. автомобильные датчики достаточно просты, интересны и понятны. Для простого понимания этих сенсоров давайте подумаем об органе чувств человека, который включает в себя нос, глаз, рот, руку, ухо. Все эти части человека получают информацию от жизненных явлений и отправляют ее в мозг, который затем принимает решение. То же самое происходит с автомобильными датчиками, они чувствуют, что происходит с автомобилем, и отправляют информацию на компьютер, который затем исправляет ситуацию.

    Работа датчиков осуществляется с помощью процесса, называемого мультиплексированием, это объединение проводов в микропроцессоре, что гарантирует, что работа никогда не выйдет из-под контроля. приведя пример системы охлаждения двигателя с датчиком, поскольку система охлаждения широкая, она может содержать один или несколько датчиков. Итак, как только двигатель начинает работать, датчики контролируют каждый аспект системы охлаждения, начиная с радиатора и заканчивая расширительным бачком. Таким образом, всякий раз, когда какой-либо компонент системы охлаждения выходит из строя, информация отправляется водителю. Датчик заметит низкий уровень охлаждающей жидкости в системе.

    Ранние применения датчиков в автомобиле довольно интенсивны, поскольку они посылают информацию на аналоговый процессор. Процессор принимает решение на основе простых алгоритмов управления состоянием системы. Аналоговая система могла обрабатывать только предопределенные значения, то есть любые значения, кроме запрограммированных. Если произойдет неизвестная ошибка, система в конечном итоге выйдет из строя.

    Посмотрите видео, чтобы узнать больше о работе датчиков:

    Преимущества и недостатки автомобильных датчиков

    Преимущества:

    Ниже перечислены преимущества датчиков в автомобилях:

    • Датчики облегчают жизнь водителям.
    • Неисправные компоненты легко обнаруживаются
    • Автоматическое управление обычно используется в автомобилях с датчиками.
    • Двигатель правильно обслуживается приборами.
    • Каждая регулировка выполняется точно с помощью датчиков.
    • Драйвер получает информацию о нагревании неисправных компонентов.

    Подробнее: Система охлаждения в двигателях внутреннего сгорания

    Недостатки:

    Несмотря на преимущества датчика, все же имеет место одно большое ограничение. Ниже приведены недостатки датчиков в автомобилях:

    • Почти все современные автомобили используют множество различных датчиков для сбора нужной информации. Недостатки использования множества различных датчиков заключаются в том, что они могут со временем выйти из строя, что может привести к дорогостоящей замене.

    В заключение мы дали определение и функции датчиков в автомобилях, одним из которых является контроль и отправка информации о компонентах двигателя. мы также видели различные типы датчиков и их функции в табличной форме. Также были объяснены работа, преимущества и недостатки датчиков.

    Надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте, поделитесь и проверьте некоторые другие интересные темы, чтобы получить больше знаний. Спасибо!

    система контроля выбросов | Описание, компоненты и факты

    Связанные темы:
    загрязнение воздуха двигатель внутреннего сгорания контроль загрязнения вытяжная система

    См. всю соответствующую информацию →

    система контроля выбросов в автомобилях, средство, используемое для ограничения выброса вредных газов из двигателя внутреннего сгорания и других компонентов. Есть три основных источника этих газов: выхлоп двигателя, картер, топливный бак и карбюратор. Выхлопная труба выбрасывает сгоревшие и несгоревшие углеводороды, окись углерода, оксиды азота и серы, а также следы различных кислот, спиртов и фенолов. Картер является вторичным источником несгоревших углеводородов и, в меньшей степени, угарного газа. В топливном баке и (в старых автомобилях) в карбюраторе углеводороды, которые постоянно испаряются из бензина, составляют второстепенный, но немаловажный фактор загрязнения. Разработано множество систем контроля выбросов из всех этих источников.

    В картере — части блока цилиндров под цилиндрами, где расположен коленчатый вал — выделившиеся продукты сгорания объединяются с вентиляционным воздухом и возвращаются во впускной коллектор для дожигания в камере сгорания. Устройство, выполняющее эту функцию, известно как клапан принудительной вентиляции картера или клапан PCV.

    Подробнее по этой теме

    Автомобиль: Контроль выбросов

    Побочные продукты работы бензинового двигателя включают окись углерода, оксиды азота и углеводороды (несгоревшие топливные соединения),…

    Для контроля выбросов выхлопных газов, на долю которых приходится две трети всех загрязняющих веществ в двигателе, используются два типа систем: система впрыска воздуха и система рециркуляции отработавших газов (EGR). В EGR определенная часть выхлопных газов направляется обратно в головку блока цилиндров, где они смешиваются с топливно-воздушной смесью и попадают в камеру сгорания. Рециркулирующие выхлопные газы служат для снижения температуры сгорания, что способствует снижению образования оксидов азота в качестве продуктов сгорания (хотя и с некоторым снижением эффективности двигателя). В типичной системе впрыска воздуха насос с приводом от двигателя впрыскивает воздух в выпускной коллектор, где воздух соединяется с несгоревшими углеводородами и окисью углерода при высокой температуре и, по сути, продолжает процесс сгорания. Таким образом, большой процент загрязняющих веществ, которые ранее выбрасывались через выхлопную систему, сжигается (хотя и без дополнительной выработки энергии).

    Еще одной областью дополнительного сгорания является каталитический нейтрализатор, состоящий из изолированной камеры, содержащей керамические гранулы или керамическую сотовую структуру, покрытую тонким слоем металлов, таких как платина и палладий. По мере того, как выхлопные газы проходят через набивные гранулы или соты, металлы действуют как катализаторы, заставляя углеводороды, монооксид углерода и оксиды азота в выхлопных газах превращаться в водяной пар, диоксид углерода и азот. Эти системы не совсем эффективны: во время прогрева температура настолько низка, что выбросы не могут быть катализированы. Предварительный подогрев каталитического нейтрализатора является возможным решением этой проблемы; например, высоковольтные батареи в гибридных автомобилях могут обеспечить достаточную мощность для очень быстрого нагрева преобразователя.

    Раньше пары бензина, испаряющиеся из топливного бака и карбюратора, выбрасывались прямо в атмосферу. Сегодня эти выбросы значительно сокращаются за счет герметичных крышек топливных баков и так называемой системы контроля испарения, сердцем которой является канистра с активированным углем, способная удерживать до 35 процентов собственного веса в виде паров топлива. При работе пары топливного бака поступают из герметичного топливного бака в сепаратор паров, который возвращает исходное топливо в бак и направляет пары топлива через продувочный клапан в адсорбер. Канистра действует как склад; при работающем двигателе пары всасываются образующимся вакуумом из адсорбера через фильтр в камеру сгорания, где они сгорают.

    Повышение эффективности сгорания достигается за счет компьютеризированного контроля всего процесса сгорания.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *