Двигатель на водороде принцип работы: Как работает водородный двигатель в автомобиле?

Содержание

Как работает водородный двигатель в автомобиле?

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

  • Краткая история
  • Принцип работы и типы водородного двигателя
    • Силовые установки на основе водородных топливных элементов
    • Водородные двигатели внутреннего сгорания
  • Водородный двигатель на современном рынке
  • Плюсы и основные недостатки водородных двигателей

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше.

Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Водородный двигатель принцип работы

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

  • Устройство водородного двигателя
  • Принцип работы
  • Водородные топливные элементы
  • Принцип работы
  • Особенности гибридных конструкций
  • Водород как горючее

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

 

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. 

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

  • Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
  • Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения.

Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

  1. Моторы внутреннего сгорания;
  2. Двигатели на водородных элементах.

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от h3O для последующей реакции с O2.

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается h3, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

 

Водородные топливные элементы

Водородный топливный элемент, с конструктивной точки зрения, является своеобразной аккумуляторной «батарейкой» с высокими показателями коэффициента полезного действия (порядка 50%). Внутри корпуса протекают физико-химических процессы с участием специальной мембраны, отвечающей за проведение протонов. Посредством такого мембранного элемента происходит деление корпуса на пару частей – резервуар с анодом и камеру с катодом.

Камера с анодом заполняется водородом, а в катодную часть поступает атмосферный кислород. В качестве покрытия электродов используются дорогостоящие редкоземельные металлы, включая платину. Особенности поверхности обеспечивают взаимодействие с водородными молекулами, в результате чего происходит потеря электронов. Одномоментно с этим процессом выполняется прохождение протонов сквозь мембрану к катоду. Благодаря такому воздействию катализатора протоны соединяются с поступившими извне электронами.

Результат произошедшей реакции – образование воды и поступление электронов из анодной камеры в электрическую цепь, подключённую к силовому агрегату. Таким образом, двигатель приводится в движение водородным топливным элементом и может проработать порядка 200-250 км. Тормозит применение такой технологии и серийный выпуск автомобилей с водородными двигателями необходимость использовать в конструкции элементов платину, палладий и другие дорогостоящие металлы.

Принцип работы

Устройство водородных двигателей не отличается особой сложностью. Главным отличием является способ подачи и воспламенения смесей при полном сохранении основного принципа преобразования. При этом на фоне традиционного бензина и дизеля, водородное топливо обеспечивает мгновенную скорость реакции даже в условиях незначительного уровня давления внутри топливной системы. Для образования смеси участие воздуха не является необходимым, а остающийся в камере сгорания пар, после прохождения сквозь радиатор и конденсации, снова становится Н2О.

Безусловно, топливный элемент в данном варианте предполагает использование специального электролизера, обеспечивающего выделение достаточного количества водорода для участия в возобновлённом гидролизе с кислородом. Основная проблема состоит в том, что в современных реалиях данный вариант практически невыполним. Современные технологии не гарантируют стабильность функционирования и беспроблемный запуск мотора при отсутствии атмосферного воздуха.

Особенности гибридных конструкций

Характеристики, которыми обладает водородное топливо, активно использовались многими конструкторами с целью создания уникального гидродвигателя внутреннего сгорания. Например, разработанный В.С. Кащеевым метод – это принципиально иная установка, имеющая не только традиционный подающий воздух впускной клапан и выпускное устройство отвода выхлопных газов, но и отдельный клапанный механизм подачи водорода, а также свечу зажигания в головке блоков цилиндров.

Несмотря на некоторые принципиальные отличия, механизм работы остаётся неизменным, поэтому любые гибридные силовые агрегаты принято считать переходной стадией от применения дизеля и бензина к использованию водородного топлива. Благодаря высоким показателям КПД, лёгкое химическое вещество вводится в состав топливно-воздушных смесей, что значительно повышает степень сжатия, а также снижает токсичность выхлопов. Кроме этого, взаимодействие кислорода с водородом сопровождается выделением достаточного количества энергии, которая нужна автомобильным электродвигателям.

Водород как горючее

Первым делом хочется понять, что собой представляет двигатель на водороде. А для этого нам необходимо изучить сам водород как эффективный источник энергии, то есть альтернатива привычному нам топливу.

Каждый прекрасно знает, что в обычном двигателе с системой внутреннего сгорания, который работает на бензине, происходит смешивание топлива с воздухом. Затем эта смесь поступает внутрь цилиндров, где и сгорает. Это создаёт энергию для перемещения поршней, что и способствует в итоге движению ТС.

У водорода есть свои нюансы, которые проявляются в следующем:

  • когда сжигается смесь с использованием водорода, на выходе получается только обычный водяной пар;
  • на воспламенение водорода уходит меньше времени, чем в случае с дизельным или традиционным бензиновым топливом;
  • детонационная устойчивость вещества способствует увеличению степени сжатия;
  • показатели теплоотдачи состава превосходят топливовоздушную смесь на 250%;
  • водород является летучим газом, из-за чего он может проникать в малейшие полости и зазоры;
  • лишь некоторые металлы способны справиться с воздействием воспламеняющегося водорода;
  • такое топливо можно хранить в жидком или сжатом агрегатном состоянии;
  • если ёмкость получает пробой или небольшую трещину, всё топливо испаряется довольно быстро;
  • чтобы вступить в реакцию с кислородом, нижний уровень газа составляет 4%;
  • последняя особенность позволяет настраивать необходимые оптимальные режимы для двигателя за счёт дозировки консистенции.

Если принимать во внимание все рассмотренные особенности, можно с уверенностью сказать, что вариант с использованием чистого водорода в обычном ДВС невозможен. Чтобы добиться желаемого, необходимо обязательно внести некоторые изменения в конструкцию, а также установить дополнительное оборудование.

В чём опасность такого топлива

Водород позиционируется как взрывоопасное вещество. Именно это можно справедливо считать главной опасностью и проблемой всей технологии водородных моторов.

Сочетаясь с окислителем, в качестве которого выступает кислород, увеличивается риск воспламенения, и также возникает угроза взрывов. Исследования показатели, что на воспламенение водорода уходит около десятой доли энергии, требуемой при воспламенении топливовоздушной смеси. Фактически можно обойтись небольшой статической искрой, дабы водород вспыхнул.

Есть ещё одна опасность. Газ невидимый, и даже в процессе горения его практически незаметно. Невидимость огня усложняет возможность бороться с ним.

Нельзя забывать об опасности вещества для самого человека. Находясь в зоне с повышенной концентрацией газа в воздухе, может наступить удушье. А распознать наличие вещества крайне проблематично. Объясняется это отсутствием запаха и цвета. То есть человеческий газ не способен его разглядеть, а нос не может разнюхать.

В качестве последнего аргумента в пользу того, что водород действительно опасен, выступает факт его очень низкой температуры в случае нахождения в сжиженном состоянии. Контакт с таким веществом способен спровоцировать обморожение.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 3.7 из 5.

Электромобили на водородных топливных элементах

Электромобили на топливных элементах питаются от самого распространенного элемента во Вселенной: водорода. Хотя автомобиль на топливных элементах работает на электричестве, он работает иначе, чем автомобили с аккумуляторным питанием или гибридные автомобили с подключаемым модулем. В топливном элементе водород вступает в электрохимическую реакцию, производя электричество для питания автомобиля.

Как они работают

Автомобили на топливных элементах работают на сжатом газообразном водороде, который подается в бортовую батарею топливных элементов, которая не сжигает газ, а вместо этого преобразует химическую энергию топлива в электрическую энергию. Затем это электричество питает электродвигатели автомобиля. Выбросы выхлопных газов равны нулю, а единственными отходами является чистая вода.

Конструкция топливного элемента аналогична батарее. Водород поступает на анод, где контактирует с катализатором, способствующим разделению атомов водорода на электрон и протон. Электроны собираются токопроводящим коллектором, который подключен к высоковольтной схеме автомобиля, питая бортовую батарею и/или двигатели, вращающие колеса.

  1. Блок топливных элементов — Совокупность многочисленных топливных элементов, которые объединяют кислород и водород для выработки электроэнергии и питания электродвигателя

  2. Топливный бак – Газообразный водород хранится в баках, армированных углеродным волокном, для подачи топлива в блок топливных элементов

  3. Электродвигатель — приводит автомобиль в движение за счет энергии, вырабатываемой блоком топливных элементов

  4. Аккумулятор – Захватывает энергию от рекуперативного торможения и обеспечивает дополнительную мощность для электродвигателя

  5. Выхлоп – Побочным продуктом реакции, происходящей в блоке топливных элементов, является водяной пар, который выбрасывается через выхлоп
Производительность

Автомобили на водородных топливных элементах бесшумны, очень энергоэффективны, не производят вредных выбросов и имеют такой же запас хода и характеристики, что и бензиновые аналоги. Водители считают запас хода, время дозаправки, выбросы, мощность и производительность ценными характеристиками автомобиля.

Поощрения

Автомобили на топливных элементах имеют право на скидку в размере 4500 долларов США (7500 долларов США для покупателей, имеющих право на получение дохода) от Калифорнийского проекта скидок на чистые транспортные средства. Они также имеют право на наклейку Clean Air Vehicle для вождения в одиночку по полосам для автомобилей, а также на различные программы поддержки владения чистым транспортом в малообеспеченных и неблагополучных сообществах. Проверьте другие поощрения в вашем регионе.

Дополнительные ресурсы

Калифорнийские водородные инициативы
Получите последние нормативные обновления по водородной инфраструктуре от Калифорнийского совета по воздушным ресурсам (CARB).

Партнерство по водородным топливным элементам (HFCP)
Сотрудничество между промышленностью и правительством, направленное на расширение рынка электромобилей на топливных элементах, работающих на водороде.

Министерство энергетики США – Транспортные средства на топливных элементах
Веб-сайт федерального правительства, на котором представлен обзор технологии топливных элементов и сравнение доступных моделей.

Калифорнийский совет по водородному бизнесу (CHBC)
Группа по защите интересов, состоящая из более чем 100 компаний и агентств, работающих над продвижением коммерциализации производства водорода и топливных элементов.

Электромобили для всех автомобилей на топливных элементах
Полный список моделей электромобилей на топливных элементах, доступных в настоящее время в Калифорнии, включая льготы.

Знакомство с водородными автомобилями. Как они работают

Мы много слышим о разработке электромобилей – и это правильно. Но есть еще одна альтернативная автомобильная технология, о которой говорят меньше. И это зависит от самого распространенного химического элемента во Вселенной. Водород.

На дорогах Великобритании есть автомобили на водороде, и хотя вам может быть трудно найти их прямо сейчас, производители (в частности, Toyota, Honda и Hyundai) уже выпустили модели на водороде.

Правительство Великобритании также финансирует разработку водородных транспортных средств и инфраструктуры. В марте 2017 года компания объявила о выделении фонда в размере 23 миллионов фунтов стерлингов для ускорения этого развития, а министр транспорта Джон Хейс заявил в то время, что «электромобили на водородных топливных элементах могут играть жизненно важную роль наряду с аккумуляторными электромобилями, помогая нам сократить вредные выбросы».

Имея это в виду, вот еще немного информации о водородных транспортных средствах, в том числе о том, как мы участвуем здесь, в Арвале.

КАК РАБОТАЮТ ВОДОРОДНЫЕ АВТОМОБИЛИ?

Двигатели, работающие на водороде, уходят корнями намного дальше, чем вы думаете. Более двух веков назад французский изобретатель Франсуа Исаак де Риваз разработал примитивный двигатель, который работал на водороде и кислороде и воспламенялся от электрической искры.

В наши дни все дело в топливных элементах, но те же самые элементы по-прежнему лежат в основе химической реакции, происходящей в водородном автомобиле.

По сути, нет никаких движущихся частей, это просто химическая реакция, которая «подпитывает» действие. Он видит, как водород попадает в топливный элемент из бака и смешивается с кислородом, образуя H 2 O в результате химической реакции, которая вырабатывает электричество, используемое для питания двигателей, приводящих в движение колеса.

Резервуары с водородом заправляются в процессе, который почти такой же, как и с бензиновым или дизельным автомобилем. Вам просто нужно запереть трубу в машине и ждать. Стоимость заправки бака также сопоставима и составляет около 10 фунтов стерлингов за кг, что эквивалентно бензину.

ВОДОРОДНЫЕ АВТОМОБИЛИ: ПЛЮСЫ И ПРОТИВ

Итак, в чем преимущества водородных автомобилей?

– Быстрая заправка: по сравнению с подзарядкой электромобиля, водородный автомобиль можно полностью заправить за три-пять минут.

— Отсутствие вредных выбросов: единственное, что выбрасывается из автомобиля на водородных топливных элементах, — это вода.

– Впечатляющий запас хода: с запасом хода около 300 миль на одном баке водородные автомобили не уступают многим обычным автомобилям.

— Хорошие уровни эффективности: силовые агрегаты на топливных элементах намного эффективнее получают энергию из водорода, чем традиционные автомобили — из бензина или дизельного топлива.

А недостатки водородных автомобилей?

– Места заправки: в настоящее время в Великобритании всего 17 заправочных станций, и строительство каждой станции стоит 1,3 миллиона фунтов стерлингов.

— Стоимость: хотя стоимость заправки автомобиля водородом аналогична стоимости традиционного топлива, разработка технологии недешева, равно как и хранение или перемещение самого водорода.

– Предполагаемый риск для безопасности: водород легко воспламеняется, но опять же, бензин тоже, и это не помешало нам управлять миллионами бензиновых автомобилей.

РАЗРАБОТКА ВОДОРОДНЫХ АВТОМОБИЛЕЙ

Разработка водородных автомобилей в Великобритании находится на относительно ранней стадии. Однако, как упоминалось выше, некоторые производители уже сделали решительный шаг и разработали модели на основе этой технологии, в то время как другие находятся в стадии разработки.

Toyota Mirai, Honda Clarity и Hyundai iX35 можно найти в ограниченном количестве на дорогах Великобритании, при этом iX35 должен быть заменен новой моделью в 2018 году9.0003

Mercedes-Benz собирается выпустить водородную версию своего модельного ряда GLC. Это отражает общее внедрение водородных технологий в Германии, где в настоящее время по всей стране строятся 23 новые водородные станции.

ИНИЦИАТИВА «ВОДОРОДНЫЙ ХАБ»

Штаб-квартира Arval в Великобритании находится в Суиндоне, где около 50 организаций (включая нас) участвуют в инициативе, благодаря которой город стал «водородным центром». Hydrogen Hub – это отраслевое сообщество заинтересованных сторон, представляющих всю цепочку поставок водорода и топливных элементов, правительство, местные органы власти, предприятия, а также текущих и потенциальных пользователей.

Это означает, что в Суиндоне ведется большая работа по разработке водородных технологий, и, поскольку все это происходит в одном месте, это приведет к повышению осведомленности, сотрудничеству и открытости, а также к снижению затрат.

Среди других вовлеченных организаций: Nationwide, National Trust, Johnson Matthey, а также местные городские и окружные советы.

Благодаря широкому представительству компаний и секторов происходит четыре разных рабочих потока:

Комбинированное производство тепла и электроэнергии (ТЭЦ): проект по установке блока водородных топливных элементов, который будет обеспечивать энергией местные общественные здания. : разработка плана развертывания автобусов на топливных элементах в Суиндоне

Автомобили: Arval является исполнительным спонсором рабочего потока, который также поддерживается Toyota и Hyundai

В рамках рабочего потока «автомобили» мы получили доступную Toyota Mirai для наших сотрудников, и как единственная компания по аренде автомобилей, участвующая в Hydrogen Hub, мы получаем реальное представление о том, как работает водород.

Таким образом, у нас есть хорошие возможности увидеть и изучить, как технология развивается и как она потенциально может быть использована бизнесом в ближайшие годы, когда водородные автомобили можно будет увидеть во все большем количестве на дорогах Великобритании. Это было подтверждено нашим собственным исследованием автопарка в CVO 2017 года, где мы обнаружили, что 56% предприятий уже используют альтернативные виды топлива или рассматривают возможность использования альтернативных видов топлива в составе своего автопарка.

И это еще не все. Небо — это предел для водородного транспорта: четырехместный водородный самолет совершил свой первый полет в Германии в прошлом году и был провозглашен крупным шагом на пути к обезуглероживанию авиаперелетов.

Так что следите за водородными технологиями. Это может быть улица или аэропорт рядом с вами.

 

Контакты для СМИ: +44(0) 121 709 5587

Примечания для редактора

 

  1. Оригинал статья, опубликованная Arval 
  2. Hydrogen Hub — это отраслевое сообщество заинтересованных сторон со всего мира.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *