Двигатель внутреннего сгорания что это: Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания (далее по тексту — «Д. в. с.») — это тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.

Первый практически пригодный газовый двигателя внутреннего сгорания был сконструирован французским механиком Этьенном Ленуаром в 1860 году. В 1876 году немецкий конструктор, предприниматель и изобретатель Николаус Август Отто построил более совершенный 4-тактный газовый двигатель. По сравнению с паромашинной установкой двигатель принципиально более прост, т. к. устранено одно звено энергетического преобразования — парокотельный агрегат. Это усовершенствование обусловило большую компактность Д. в. с., меньшую массу на единицу мощности, более высокую экономичность, но для него потребовалось топливо лучшего качества (газ и нефть).

В 1880-х годах изобретатель и конструктор в области воздухоплавания Огнеслав Степанович Костович в России[en] построил первый бензиновый карбюраторный двигатель.

В 1897 году немецкий инженер Рудольф Дизель, работая над повышением эффективности Д. в. с., предложил двигатель с воспламенением от сжатия. Усовершенствование этого двигателя внутреннего сгорания на заводе Л. Нобеля в Петербурге (ныне «Русский дизель») в 1898 — 1899 годах позволило применить в качестве топлива нефть. В результате этого Д. в. с. стал наиболее экономичным стационарным тепловым двигателем.

3 апреля в 1885 года Готтлиб Даймлер, будучи немецким инженером, конструктором и промышленником получил патент на одноцилиндровый двигатель внутреннего сгорания с водяным охлаждением.

В 1901 году в Соединенных Штатах Америки[en] был разработан первый трактор с двигателем внутреннего сгорания. Дальнейшее развитие автомобильных Д. в. с. позволило братьям Орвилл и Уилберу Райт построить первый самолёт с Д. в. с., начавший свои полёты в 1903 году. В том же 1903 русские инженеры установили Д. в. с. на судне «Вандал», создав первый теплоход. В 1924 году по проекту Я. М.

Гаккеля в Ленинграде был создан первый удовлетворяющий практическим требованиям поездной тепловоз.

По роду топлива двигатели внутреннего сгорания разделяются на двигатели жидкого топлива и газовые. По способу заполнения цилиндра свежим зарядом — на 4-тактные и 2-тактные. По способу приготовления горючей смеси из топлива и воздуха — на двигатели с внешним и внутренним смесеобразованием. К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе. В Д. в. с. с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой. В двигателях с внутренним смесеобразованием (дизелях) топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.

Рабочий цикл 4-тактного карбюраторного Д. в. с. совершается за 4 хода поршня (такта), т.е. за 2 оборота коленчатого вала. При 1-м такте — впуске поршень движется от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.). Впускной клапан при этом открыт (рис. 1) и горючая смесь из карбюратора поступает в цилиндр. В течение 2-го такта — сжатия, когда поршень движется от н. м. т. кв. м. т., впускной и выпускной клапаны закрыты и смесь сжимается до давления 0,8 — 2 Мн/м 2 (8 — 20 кгс/см 2). Температура смеси в конце сжатия составляет 200 — 400°C. В конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива. Сгорание имеет место при положении поршня, близком кв. м. т. В конце сгорания давление в цилиндре составляет 3 — 6 Мн/м

2 (30 — 60 кгс/1см 2), а температура 1600 — 2200°C. 3-й такт цикла — расширение называется рабочим ходом; в течение этого такта происходит преобразование тепла, полученного от сгорания топлива, в механическую работу. 4-й такт — выпуск происходит при движении поршня от н. м. т. к в. м. т. при открытом выпускном клапане. Отработавшие газы вытесняются поршнем.

Рис. 1. Рабочий цикл 4-тактного карбюраторного двигателя

Рабочий цикл 2- тактного карбюраторного двигателя внутреннего сгорания осуществляется за 2 хода поршня или за 1 оборот коленчатого вала (рис. 2). Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам 4-тактного Д. в. с. При прочих равных условиях 2-тактный двигатель должен быть в 2 раза более мощным, чем 4-тактный, т. к. рабочий ход в 2-тактном двигателе происходит в 2 раза чаще, однако на практике мощность 2-тактного карбюраторного Д. в. с. часто не только не превышает мощность 4-тактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже. Это обусловлено тем, что значительная часть хода (20 — 35%) поршень совершает при открытых окнах, когда давление в цилиндре невелико и двигатель практически не производит работы; продувка цилиндра требует затрат мощности на сжатие воздуха в продувочном насосе; очистка пространства цилиндра от продуктов сгорания газов и наполнение его свежим зарядом значительно хуже, чем в 4-тактном Д.

в. с.

Рис. 2. Схема работы 2-тактного карбюраторного Д. в. с. с кривошипно-камерной продувкой: вверху — сжатие и наполнение кривошипной камеры; внизу — продувка и выпуск; 1 — свеча зажигания; 2 — поршень; 3 — продувочное окно; 4 — выпускное окно; 5 — кривошипная камера; 6 — карбюратор; 7 — впускное окно; 8 — головка цилиндра; 9 — цилиндр.

Рабочий цикл карбюраторного двигателя внутреннего сгорания может быть осуществлен при очень большой частоте вращения вала (3000 — 7000 об/мин). Двигатели гоночных автомобилей и мотоциклов могут развивать 15 000 об/мин и более. Нормальная горючая смесь состоит примерно из 15 частей воздуха (по массе) и 1 части паров бензина. Двигатель может работать на обеднённой смеси (18:1) или обогащенной смеси (12:1). Слишком богатая или слишком бедная смесь вызывает сильное уменьшение скорости сгорания и не может обеспечить нормального протекания процесса сгорания.

Регулирование мощности карбюраторного Д. в. с. осуществляется изменением количества смеси, подаваемой в цилиндр (количественное регулирование). Большая частота вращения и выгодные соотношения топлива и воздуха в смеси обеспечивают получение большой мощности в единице объёма цилиндра карбюраторного двигателя, поэтому эти двигатели имеют сравнительно небольшие габариты и массу [1-4

кг/квт (0,75-3 кг/л. с.)]. Применение низких степеней сжатия обусловливает умеренные давления в конце сгорания, вследствие чего детали можно делать менее массивными, чем, например, в дизелях. При увеличении диаметра цилиндра карбюраторного Д. в. с. возрастает склонность двигателя к детонации, поэтому карбюраторные двигатели внутреннего сгорания не делают с большими диаметрами цилиндров (как правило, не более 150 мм). Примером карбюраторного Д. в. с. может служить двигатель ГАЗ-21 «Волга». Это 4-цилиндровый 4-тактный двигатель, развивающий мощность 55 квт (75 л. с.) при 4000 об/мин и степени сжатия 6,7. Удельный расход топлива на наиболее экономичном режиме составляет 290 г (квт.
ч).

Наибольшая мощность 4-тактного карбюраторного Д. в. с. 600 квт (800 л. с.). Мотоциклетные карбюраторные 2-тактные и 4-тактные Д. в. с. имеют мощность от 3,5 до 45 квт (от 5 до 60 л. с.). Авиационные поршневые двигатели с непосредственным впрыском бензина и искровым зажиганием развивают до 1100 квт (1500 л. с.) и более.

Карбюраторные Д. в. с. представляют собой сложный агрегат, включающий ряд узлов и систем.

Остов двигателя — группа неподвижных деталей, являющихся базой для всех остальных механизмов и систем. К остову относятся блок-картер, головка (головки) цилиндров, крышки подшипников коленчатого вала, передняя и задняя крышки блок-картера, а также масляный поддон и ряд мелких деталей.

Механизм движения — группа движущихся деталей, воспринимающих давление газов в цилиндрах и преобразующих это давление в крутящий момент на коленчатом валу двигателя. Механизм движения включает в себя поршневую группу (поршни, шатуны, коленчатый вал и маховик).

Механизм газораспределения служит для своевременного впуска горючей смеси в цилиндры и выпуска отработавших газов. Эти функции выполняют кулачковый (распределительный) вал, приводимый в движение от коленчатого вала, а также толкатели, штанги и коромысла, открывающие клапаны. Клапаны закрываются клапанными пружинами.

Система смазки в двигателе — система агрегатов и каналов, подводящих смазку к трущимся поверхностям. Масло, находящееся в масляном поддоне, подаётся насосом в фильтр грубой очистки и далее через главный масляный канал в блок-картере под давлением поступает к подшипникам коленчатого и кулачкового валов, к шестерням и деталям механизма газораспределения. Смазка цилиндров, толкателей и других деталей производится масляным туманом, образующимся при разбрызгивании масла, вытекающего из зазоров в подшипниках вращающихся деталей. Часть масла отводится по параллельным каналам в фильтр тонкой очистки, откуда сливается обратно в поддон.

Система охлаждения может быть жидкостной и воздушной. Жидкостная система состоит из рубашек цилиндров и головок, заполненных охлаждающей жидкостью (водой, антифризом и т. п.), насоса, радиатора, в котором жидкость охлаждается потоком воздуха, создаваемым вентилятором, и устройств, регулирующих температуру воды. Воздушное охлаждение осуществляется обдувом цилиндров и головок вентилятором или потоком воздуха (на мотоциклах).

Система питания осуществляет приготовление горючей смеси из топлива и воздуха в пропорции, соответствующей режиму работы, и в количестве, зависящем от мощности двигателя. Система состоит из топливного бака, топливоподкачивающего насоса, топливного фильтра, трубопроводов и карбюратора, являющегося основным узлом системы.

Система зажигания служит для образования в камере сгорания искры, воспламеняюшей рабочую смесь. В систему зажигания входят источники тока — генератор и аккумулятор, а также прерыватель, от которого зависит момент подачи искры (см. электрооборудование автомобиля). В систему включается распределитель тока высокого напряжения по соответствующим цилиндрам. В одном агрегате с прерывателем находятся конденсатор, улучшающий работу прерывателя, и катушка зажигания, с которой снимается высокое напряжение (12-20 кв). В то время, когда Д. в. с. не имели электрического зажигания, применялись запальные калоризаторы.

Система пуска состоит из электрического стартёра, шестерён передачи от стартёра к маховику, источника тока (аккумулятора) и элементов дистанционного управления. В функции системы входит вращение вала двигателя для пуска.

Система впуска и выпуска состоит из трубопроводов, воздушного фильтра на впуске и глушителя шума на выпуске.

Газовые двигатели внутреннего сгорания работают большей частью па природном газе и газах, получаемых при производстве жидкого топлива. Кроме того, могут быть использованы: газ, генерируемый в результате неполного сгорания твёрдого топлива, металлургические газы, канализационные газы и пр. Применяются как 4-тактные, так и 2-тактныс газовые Д. в. с.

По принципу смесеобразования и воспламенения газовые двигатели разделяются на: Д. в. с. с внешним смесеобразованием и искровым зажиганием, в которых рабочий процесс аналогичен процессу карбюраторного двигателя; двигатели с внешним смесеобразованием и зажиганием струей жидкого топлива, воспламеняющегося от сжатия; Д. в. с. с внутренним смесеобразованием и искровым зажиганием. Газовые двигатели, использующие природные газы, применяются на стационарных электростанциях, компрессорных газоперекачивающих установках и т. п. Сжиженные бутано-пропановые смеси используются для автомобильного транспорта (см. Газобаллонный автомобиль).

Экономичность работы двигателя внутреннего сгорания характеризуется эффективным кпд, который представляет собой отношение полезной работы к количеству тепла, выделяемого при полном сгорании топлива, затраченного на получение этой работы. Максимальный эффективный кпд наиболее совершенных Д. в. с. около 44%.

Основным преимуществом Д. в. с., так же как и других тепловых двигателей (например, реактивных двигателей), перед двигателями гидравлическими и электрическими является независимость от постоянных источников энергии (водных ресурсов, электростанций и т. п.), в связи с чем установки, оборудованные Д. в. с., могут свободно перемещаться и располагаться в любом месте. Это обусловило широкое применение Д. в. с. на транспортных средствах (автомобилях, сельско-хозяйственных и строительно-дорожных машинах, самоходной военной технике и т. п.).

Совершенствование двигателей внутреннего сгорания идёт по пути повышения их мощности, надёжности и долговечности, уменьшения массы и габаритов, создания новых конструкций (см., например, Ванкеля двигатель). Можно наметить также такие тенденции в развитии Д. в. с., как постепенное замещение карбюраторных Д. в. с. дизелями на автомобильном транспорте, применение многотопливных двигателей (См. многотопливный двигатель), увеличение частоты вращения и др.

Подробнее о двигателях внутреннего сгорания читайте[en] в литературе:

  • Двигатели внутреннего сгорания, т. 1 — 3, Москва. 1957 — 62;
  • Двигатели внутреннего сгорания, М., 1968. (Д. Н. Вырубов, В. П. Алексеев).

Двигатель внутреннего сгорания

История XIX века неразрывно связана с паровыми машинами: они приводили в действие станки на заводах, заставляли ехать паровозы и плыть пароходы. Паровая машина – двигатель внешнего сгорания, поскольку создание рабочего тела (горячего пара) происходит снаружи самого двигателя.

Однако развитие техники показало, что наиболее эффективным является двигатель внутреннего сгорания, в котором рабочее тело (горячий газ) создаётся непосредственно внутри цилиндра с поршнем. В принципе, это тоже может быть горячий пар, однако технически проще оказалось использовать горячий газ, который образуется при сжигании жидкого топлива – бензина.

Карбюраторный двигатель. Это название подчёркивает, что существенной его деталью является карбюратор – устройство для смешивания бензина с воздухом. Основные части карбюраторного двигателя внутреннего сгорания следующие (см. рисунок).

Цифрами на рисунке обозначено: 1 – фильтр для всасываемого воздуха, 2 – карбюратор, 3 – бензобак, 4 – топливопровод, 5 – распыляющийся бензин, 6 – впускной клапан, 7 – запальная свеча, 8 – камера сгорания, 9 – выпускной клапан, 10 – цилиндр, 11 – поршень.

Работа двигателя состоит из четырёх повторяющихся друг за другом этапов, называемых тактами. Отсчёт тактов начинается с момента, когда поршень находится в верхней точке, и оба клапана закрыты.

Первый такт – впуск (рис. «а»). Впускной клапан открывается, и опускающийся поршень засасывает бензино-воздушную смесь внутрь цилиндра. Затем впускной клапан закрывается. Второй такт – сжатие (рис. «б»). Поршень, поднимаясь вверх, сжимает бензино-воздушную смесь. Третий такт – рабочий ход поршня (рис. «в»). На конце свечи вспыхивает электрическая искра. Бензино-воздушная смесь быстро сгорает, и в цилиндре возникает высокая температура. Это приводит к сильному возрастанию давления, и горячий газ совершает полезную работу – толкает поршень вниз. Четвёртый такт – выпуск (рис. «г»). Выпускной клапан открывается, и поршень, двигаясь вверх, выталкивает отработавший газ из камеры сгорания в трубу. Затем клапан закрывается.

Дизельный двигатель. В 1892 г. немецкий инженер Р.Дизель получил патент (документ, подтверждающий изобретение и права изобретателя) на двигатель, впоследствии названный его фамилией. В цилиндры двигателя Дизеля попадает не смесь бензина и воздуха, а только воздух. Поршень, сжимая этот воздух, совершает над ним работу и, согласно первому закону термодинамики, внутренняя энергия воздуха возрастает. Причём температура воздуха возрастает настолько, что впрыскиваемое топливо сразу же самовоспламеняется. Образующиеся при этом газы выталкивают поршень обратно, осуществляя рабочий ход.

Следовательно, работа двигателя Дизеля также состоит из четырёх тактов: а) всасывание воздуха; б) сжатие воздуха; в) впрыск и сгорание топлива – рабочий ход; г) выпуск отработавших газов. Важно: карбюратор и свеча становятся ненужными, что упрощает конструкцию двигателя и повышает его надёжность.

Дизели могут работать на менее качественном, а значит, на более дешёвом топливе, чем карбюраторные двигатели. Дизели способны развивать большую мощность. КПД дизелей достигает 35–40%, что выше, чем КПД карбюраторных двигателей: 30–35%.

Опубликовано в разделах: 7 класс, Введение в термодинамику

Стационарные поршневые двигатели внутреннего сгорания

Нужно ли мне разрешение на установку дизельного двигателя, такого как генератор?
Применимость разрешения будет зависеть в первую очередь от номинальной мощности двигателя и предполагаемого использования генератора. Чтобы установить неаварийный генератор мощностью более 300 тормозных л.с., вам потребуется получить разрешение на полет или внести поправки в существующее разрешение до принятия каких-либо договорных обязательств на Объекте.  Только в аварийных ситуациях  генераторам, как правило, не требуется разрешение или поправка к разрешению для установки; однако программы пикового бритья не считаются чрезвычайными ситуациями, и все же есть несколько положений, которые могут применяться независимо от того, требуется ли разрешение. Эти положения и факторы, используемые для определения применимости, более подробно обсуждаются ниже.

Что такое стационарный поршневой двигатель внутреннего сгорания?
Стационарные поршневые двигатели внутреннего сгорания (RICE) — это двигатели, в которых используется расширение газов и возникающее в результате этого повышенное давление от сгорания топлива внутри замкнутого цилиндра (цилиндров) для перемещения одного или нескольких поршней вперед и назад для вращения вала и производят механическую энергию. Механическая энергия может использоваться непосредственно для оборудования, такого как насосы или компрессоры, или ее можно использовать для питания электрического генератора и производства электроэнергии.

Стационарные поршневые двигатели внутреннего сгорания используют либо воспламенение от сжатия (CI), либо искровое зажигание (SI), чтобы вызвать сгорание в цилиндрах. CI RICE обычно работает на дизельном топливе, тогда как SI RICE обычно работает на более легком топливе (например, бензине, пропане, природном газе, биогазе и т. д.). RICE загрязняет воздух в результате сжигания топлива, обычно создавая более высокие уровни загрязнения, чем другие источники сгорания, такие как котлы, из-за более высокого давления внутри RICE и повторяющегося «периодического» сгорания, которое происходит с каждым циклом сгорания, который перемещает поршень ( с).

Чтобы соответствовать определению стационарного RICE в соответствии с правилами Вермонта, двигатель должен оставаться на стационарном источнике в течение 12 месяцев подряд или в течение всего рабочего сезона на сезонных источниках. Федеральные правила отличаются тем, что, если двигатель установлен на шасси, предназначенном для перемещения либо собственным ходом, либо внешним источником питания, он считается не стационарным RICE, а скорее внедорожным двигателем.

Как насчет двигателей для шоссейных и внедорожных транспортных средств на моем объекте?
Дорожные транспортные средства (например, грузовые автомобили, автобусы, легковые автомобили и мотоциклы), зарегистрированные для использования на дорогах общего пользования, подпадают под действие отдельных стандартов выбросов автотранспортных средств и не подпадают под действие каких-либо разрешений на использование стационарных источников, выдаваемых Vermont AQCD, и не включаются в них. Внедорожные двигатели (например, локомотивы, морские суда, внедорожные транспортные средства для отдыха, оборудование для газонов и садов, а также внедорожное строительное оборудование, включая самосвалы, бульдозеры и портативные генераторы) также подпадают под действие отдельных норм выбросов, но их регулирование является более сложным. . Для любого стационарного источника в Вермонте, необходимого для получения разрешения на другие выбросы загрязнителей воздуха (см. VAPCR 5-401 для списка источников загрязнителей воздуха, требующих разрешений на выбросы в воздух), выбросы загрязнителей воздуха и использование топлива для любых внедорожных двигателей будут включены в разрешение на полет. Основная причина их включения в разрешение на использование воздуха связана с выбросами этих двигателей, которые, вероятно, происходят полностью из стационарного источника, в отличие от транспортных средств, которые выделяют выбросы на многие мили автомагистралей.

Однако федеральное определение внедорожных двигателей включает положения, согласно которым эти двигатели станут стационарными источниками в зависимости от того, как они используются. Если внедорожный двигатель остается неподвижным в одном и том же фиксированном месте в течение 12 месяцев подряд или в течение всего сезона эксплуатации у сезонных источников, он будет считаться стационарным двигателем. Компрессоры и генераторы часто используются таким образом.

Выбросы внедорожных двигателей и использование топлива на Производственном объекте будут включены в регистрацию Производственного объекта и будут регулироваться в разрешении на полеты Производственного объекта. Однако, если внедорожный двигатель не будет реклассифицирован как стационарный двигатель, разрешение не может ввести какие-либо новые стандарты выбросов для двигателя, поскольку внедорожные двигатели уже подпадают под действие федеральных стандартов выбросов.

Как регулируются стационарные RICE?
Существует несколько факторов, которые могут повлиять на то, какие правила применяются к стационарному RICE, например:

  • номинальная тормозная мощность двигателя,
  • при изготовлении или установке двигателя,
  • независимо от того, находится ли двигатель в крупном источнике или зональном источнике,
  • предполагаемое использование двигателя, в том числе когда/куда двигатель перемещается (если применимо),
  • и является ли двигатель двигателем с воспламенением от сжатия или с искровым зажиганием. Двигатели с искровым зажиганием далее подразделяются по силовому циклу (т. е. двухтактные и четырехтактные, а также «богатое горение» и «бедное горение»)
  • .

Таким образом, перед установкой стационарного RICE вы должны уведомить отдел разрешений и проектирования AQCD, чтобы убедиться, что вы полностью осведомлены о своих обязательствах по соблюдению требований. Уведомление должно содержать следующую информацию: марка, модель, номинальная мощность двигателя, номинальная мощность генератора (если применимо), год выпуска двигателя и сертификация двигателя по выбросам. Эта информация доступна на паспортной табличке двигателя, прикрепленной к двигателю, в отличие от паспортной таблички генератора, которая прикреплена к компоненту генератора. К уведомлению должна быть приложена фотография заводской(ых) таблички(ей) двигателя, чтобы гарантировать, что вся информация будет точно зафиксирована и представлена. Если предполагается использование в качестве аварийного генератора, в уведомлении также должно быть указано, что аварийный генератор должен использоваться для в экстренных случаях используйте только  и что вы знакомы с государственными и федеральными определениями, ограничивающими операции, разрешенные для аварийных генераторов. Генераторы, которые будут использоваться в неаварийных целях, включая большинство программ снижения пиковой нагрузки, как правило, требуют разрешения или изменения разрешения перед установкой.

Что мне нужно сделать, чтобы получить разрешение на полет?
Заявка на получение разрешения на строительство должна быть подана с соответствующим сбором за подачу заявки в AQCD. Разрешение должно быть выдано до того, как заявитель сможет начать строительство проекта. Это потребуется перед установкой или эксплуатацией неаварийного стационарного RICE на объекте. Дополнительную информацию см. на нашей веб-странице «Руководство по применению разрешения на строительство». В дополнение к информации, необходимой для подачи заявки на получение разрешения на строительство, пожалуйста, также представьте следующие спецификации и проекты оборудования.

Спецификации и конструкции оборудования
При подаче заявки на разрешение предоставьте следующую информацию в Отдел разрешений и проектирования.

  • Производитель двигателя, номер модели, серийный номер (при наличии), дата изготовления
  • Дата установки:
  • Использование двигателя (аварийное резервирование, основное питание, пиковая мощность, использование без генератора (поясните)):
  • Номинальная мощность двигателя (л.с.):
  • Номинальная мощность двигателя (непрерывная/основная/режим ожидания):
  • Мощность генератора (кВт):
  • Рабочая скорость двигателя (об/мин):
  • Тип топлива (автомобильное дизельное топливо [прозрачное, без оттенка]/стандартное дизельное топливо [красного оттенка]/природный газ/пропан/бензин/другое):
  • Максимальный расход топлива при нагрузке 100 % (жидкое топливо [галлонов/ч]/газообразное топливо [куб. фут/ч]):
  • Конструкция двигателя: количество цилиндров
    • рабочий объем на цилиндр (куб. дюймы)
    • двухтактный или четырехтактный
    • с турбонаддувом, наддувом или без наддува?
    • с промежуточным или промежуточным охлаждением?
    • способ зажигания [искровой или компрессионный (дизельный цикл)]:
  • Сертифицирован ли двигатель на соответствие федеральным предельным значениям выбросов для внедорожных двигателей 40 CFR, часть 89 или часть 1039?
  • Если да, укажите уровень сертификации двигателя и год сертификации (т. е. год стандартов, по которым он сертифицирован):
  • Будет ли использоваться послойный заряд или замедление двигателя?
  • Будет ли двигатель использовать катализатор для очистки воздуха?
  • Будет ли двигатель оборудован уловителем дыма для снижения выбросов твердых частиц?
  • Производитель генератора, номер модели, серийный номер (при наличии)
  • Мощность генератора (кВт): основная мощность и/или мощность в режиме ожидания
  • Химия выхлопных газов (при наличии)

Государственные правила для генераторов
Исключение штата для аварийных генераторов применяется только к генераторам только для аварийного использования и только в том случае, если совокупная мощность этих двигателей-генераторов на всем объекте составляет менее 2000 л.с. Вермонтское определение только аварийное использование  позволяет неограниченную работу во время чрезвычайных ситуаций, не зависящих от объекта, а также до 100 часов в год на плановые испытания и техническое обслуживание. Согласно определению, принятому только в штате Вермонт, аварийные события также включают работу в рамках программ ISO Новой Англии или местных энергетических компаний по реагированию на чрезвычайные ситуации. Эти программы используются для обеспечения надежности электросети в периоды чрезвычайно высокого спроса на электроэнергию и реализуются только после того, как также были реализованы отключения электроэнергии. Эти программы очень ограничены и не включают большинство программ пиковой нагрузки или сброса нагрузки, используемых для сокращения потребления электроэнергии, когда затраты на электроэнергию высоки, но надежность сети не находится под угрозой. Если у вас есть сомнения, вам следует обратиться в свою энергетическую компанию и в Отдел разрешений и проектирования AQCD, чтобы подтвердить, соответствует ли программа требованиям. Даже если ваш аварийный генератор имеет право на освобождение от разрешения, он не может быть освобожден от соблюдения минимальных стандартов выбросов. Если двигатель мощностью 450 л. с. или выше и установлен после 1 июля 2007 г., он должен как минимум соответствовать федеральным стандартам выбросов EPA Tier 2 для внедорожных двигателей 40 CFR Part 89.или эквивалент. Это включает в себя двигатели, которые будут использоваться для аварийного резервного копирования. Эффект этого правила заключается в том, что многие старые двигатели, не соответствующие требованиям, не могут быть установлены в Вермонте. Большинству существующих аварийных генераторов, установленных до этой даты, было разрешено оставаться только для аварийного использования. Если ваш двигатель мощностью 450 л.с. или больше, вам необходимо будет предоставить в отдел разрешений и проектирования AQCD документацию о том, что предлагаемый двигатель соответствует требованиям, прежде чем устанавливать двигатель.

Федеральные правила для генераторов
Федеральное агентство по охране окружающей среды США имеет два правила, касающихся загрязнения воздуха, которые могут применяться к вашему генератору. Один применяется к новым двигателям, а другой применяется к существующим двигателям. Оба позволяют аварийным генераторам работать неограниченное количество часов в аварийных ситуациях и до 100 часов в год для проверок технического обслуживания и проверки готовности, но оба имеют более строгие требования к работе в рамках программ реагирования на чрезвычайные ситуации.

Точная применимость этих правил очень сложна для двигателей, установленных в переходный период 2005-2007 гг. Одно правило применяется к новым двигателям 2007 модельного года и новее, а также заказанным после 11 июля 2005 г., которые были изготовлены (не установлены) после 1 апреля 2006 г., а другое применяется к существующим двигателям, установленным до 12 июня 2006 г. Применимость Соблюдение этих правил в переходный период не является гладким, и двигатель может подчиняться одному, обоим правилам или ни одному из правил.

Краткое изложение этих правил представлено ниже. Поскольку Вермонт не делегировал эти правила, Агентство по охране окружающей среды США является исполнительным органом и несет ответственность за определение применимости и выполнения этих правил. Для получения дополнительной информации вам следует напрямую обратиться в Агентство по охране окружающей среды США и на их веб-сайт.

Часть 60 Подчасть IIII
Это правило применяется к более новым двигателям, включая аварийные генераторы, примерно 2007 модельного года и новее. За некоторыми исключениями, это правило для стационарных двигателей в основном указывает на стандарты выбросов для внедорожных двигателей, указанные в 40 CFR Part 89.и 1039. Его требования ложатся в первую очередь на производителя двигателей для производства двигателей, соответствующих все более строгим стандартам выбросов для новых моделей. Стандарты выбросов варьируются в зависимости от года выпуска, размера двигателя и, в некоторых случаях, предполагаемого использования двигателя. В то время как большинство двигателей, произведенных после 2014 года, должны соответствовать стандартам выбросов Tier 4, которые требуют усовершенствованных средств контроля выбросов оксидов азота, состоящих из катализатора селективного каталитического восстановления (SCR) и впрыска дизельной выхлопной жидкости (DEF) 9. 0141 1 , некоторые двигатели до сих пор производятся в соответствии с менее строгими стандартами выбросов, если они предназначены только для аварийного использования или для больших (> 750 л.с.) приложений без генераторных установок. Если двигатель сертифицирован для использования только в аварийных ситуациях , оператор должен ограничить его эксплуатацию только аварийным использованием . На табличке сертификации двигателей по выбросам будет указано, ограничены ли такие ограничения для двигателя. Перед покупкой любого двигателя убедитесь, что он предназначен только для аварийного использования. Такие двигатели ни в коем случае нельзя использовать или переоборудовать для неаварийной работы в любой момент в будущем. Независимо от уровня сертификации двигателя по выбросам оператор двигателя должен использовать только топливо ULSD и должен обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с передовыми методами контроля загрязнения воздуха для минимизации выбросов.

Если вы планируете использовать биодизельное топливо, обратите внимание, что все из следующих условий должны быть выполнены:

  • Биодизельное топливо соответствует требованиям к топливу 40 CFR 60.4207(b),
  • Гарантия производителя двигателя на двигатель (включая системы контроля выбросов) включает использование биодизеля (или смеси биодизеля), используемого в двигателе, и
  • Биодизель соответствует стандарту ASTM D6751.

1 Для стационарных двигателей, изготовленных и промаркированных для аварийного использования только , подраздел IIII не требует, чтобы они соответствовали последним (уровень 4) стандартам выбросов, установленным для двигателей внедорожной техники в 40 CFR Part 89 и 1039. Такие стационарные аварийные режимы могут использоваться только для двигателей с маркировкой . Уровень 3 для двигателей мощностью менее 750 л.с. и уровень 2 для двигателей мощностью более 750 л.с. Кроме того, внедорожные двигатели мощностью более 750 л. с. (560 кВт), которые не являются компонентом генераторной установки, могут соответствовать стандартам выбросов Tier 4 без необходимости использования катализатора селективного каталитического восстановления (SCR) и впрыска дизельного топлива. выхлопная жидкость (DEF).

Часть 63 Подчасть ZZZZ
Это правило применяется к существующим двигателям, установленным до 12 июня 2006 г., и его требования касаются в первую очередь объекта, эксплуатирующего двигатель. Требования варьируются в зависимости от размера и использования двигателя. Исключением являются аварийные генераторы в жилых/коммерческих/институциональных объектах, но не на промышленных объектах. Федеральное определение аварийной операции не соответствует определению штата и является предметом продолжающегося судебного разбирательства. В настоящее время только двигатели аварийного использования могут  , а не , должны использоваться в рамках программы реагирования на чрезвычайные ситуации ISO Новой Англии. Некоторые неэкстренные операции разрешены, но такие операции не могут использоваться для снижения пиковых нагрузок или реагирования на неэкстренный спрос или для получения дохода для объекта, за исключением случаев, разрешенных в настоящее время в (f)(4)(ii), которые по-прежнему позволяют до 50 часов «местного» реагирования на запросы. Вам следует напрямую проконсультироваться с правилами и Агентством по охране окружающей среды, чтобы убедиться, что вы продолжаете соблюдать эти положения, если вы собираетесь использовать двигатель для каких-либо неаварийных программ или программ реагирования на запросы.

Аварийные генераторы на промышленных объектах и ​​неаварийные двигатели мощностью менее 300 л.с. должны устанавливать счетчик наработанного времени (аварийные агрегаты), менять масло и фильтр через каждые 500 часов (аварийные агрегаты) или 1000 часов (неаварийные агрегаты) работы но не реже одного раза в год, проверяйте воздушный фильтр двигателя через каждые 1000 часов работы, но не реже одного раза в год, проверяйте шланги и ремни двигателя каждые 500 часов, но не реже одного раза в год и ведите соответствующие записи. В неаварийных двигателях мощностью 300 л.с. и выше должен быть установлен катализатор окисления для снижения выбросов окиси углерода, они должны использовать только топливо ULSD и должны обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с передовыми методами контроля загрязнения воздуха для минимизации выбросов, в том числе ограничение времени работы на холостом ходу.

Какие еще разрешения или требования могут быть применимы к моему проекту?
Отдел экологической помощи Департамента охраны окружающей среды оказывает помощь в выдаче разрешений с помощью инструмента Permit Navigator. Навигатор разрешений может помочь вам определить, какие экологические разрешения вам могут понадобиться для проекта на одном участке. Если у вас есть линейный, полигональный или многоуровневый проект, обратитесь к специалисту по поддержке сообщества, чтобы начать работу.

Двигатель внутреннего сгорания — Stirlingkit

Модель двигателя внутреннего сгорания

Модель двигателя внутреннего сгорания — это модель четырехтактного двигателя внутреннего сгорания, который по указанию ведущего делегата обязан работать на заданной скорости. В двигателе внутреннего сгорания (двигатель с ДВС или ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Горение или горение — это основной химический процесс высвобождения энергии из топливно-воздушной смеси. Затем двигатель частично преобразует энергию сгорания в работу. Он рассматривался в конце девятнадцатого века и производился различными ассоциациями из 189с 0-х до 1940-х годов. Название происходит от контроля скорости на этих двигателях: они запускаются только во время работы на заданной скорости или ниже нее и циклически повторяются, когда превышают установленную скорость. Это когда выделилась из техники управления кляпом для контроля скорости. Звук, издаваемый при работе двигателя без магазина, представляет собой очевидный «POP whoosh POP», поскольку двигатель вспыхивает и через некоторое время плавает, пока скорость не снизится, и он снова не запустится, чтобы поддерживать свою обычную скорость. Двигатели внутреннего сгорания сыграли значительную роль в истории, поскольку они помогли освободить людей от самого тяжелого ручного труда, сделали возможным создание самолетов и других видов транспорта, а также помогли совершить революцию в производстве электроэнергии. Оба двигателя внутреннего сгорания бывают двух типов: поршневые и роторные. .

Наряду с бензином или дизельным топливом в двигателях внутреннего сгорания также можно использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизельное топливо или этанол). Модели с двигателем внутреннего сгорания могут прожигать спирт. Алкогольный центр невысокий, и можно использовать самый разбавленный 58-градусный ликер, и масло не требуется. Каждая из этих моделей имеет прозрачную камеру потребления, внутреннюю ситуацию можно безошибочно увидеть, можно четко увидеть схему работы двухтактного двигателя с внутренним запуском, и бесценно подобрать возможности с рабочим стандартом внутреннего потребления. двигатель.

Снаружи звездообразная камера снабжена рукавом прямого водяного охлаждения. Внутри вода. Вода на 360 градусов полностью окружает звездообразную камеру, охлаждая потребляющую камеру. Не нужно возиться с сифоном для воды и, следовательно, курсами. Вот когда температура воды показывает 90 и более градусов, это регулярно, вода струится в сэндвич бака, чтобы прогреть топливо посередине, топливо прогревается еще адекватнее, в итоге засасывает в двигатель.

Начальные точки модели ДВС настраиваются. Как только двигатель показывает определенную стабильную скорость, начинающий специалист привыкает к предварительному свету. Мобильный от 0 до 30 градусов, найти лучшую начальную точку для достижения наиболее значительной жизнеспособности двигателя. Скорость CDI также регулируется, поскольку интересный адаптируемый воспламенитель скорости может электронным образом управлять двигателем.

Эта машина напоминает двигатель Стирлинга. Кроме того, есть силовые камеры и организующие камеры. Помимо прозрачных частей, все не может не быть полностью металлическим, а звездная камера — кварцевой. Гильза с водяным охлаждением изготовлена ​​из ударопрочного стекла, камера представляет собой стальную хромированную камеру, гильза камеры выполнена из металла, а внешняя обвязка выполнена из алюминиевого сплава.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *