Двигатели виды: виды, типы и особенности ДВС

Содержание

✔ Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

 

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
 

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.

 

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
 

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
 

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.

 

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
 

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Какие бывают двигатели и что они едят

На сегодняшний день наиболее распространённым двигателем является поршневой двигатель внутреннего сгорания с искровым зажиганием, или Отто-мотор. Он установлен на большинстве автомобилей в мире. Это легкий, дешевый, тихий и хорошо изученный двигатель. Однако человечество постоянно пытается придумать ему альтернативу как по устройству, так и использованию другого рабочего тела – топлива. И иногда у инженеров получаются весьма занятные экземпляры.

Гибридный двигатель на сжатом воздухе

В 2013 году французский концерн PSA представил систему Hybrid Air, работающую на сжатом воздухе. Однако они были далеко не первыми. Motor Development International на Женевском автосалоне 2009 года представили пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. В 2011 году японцы провели тест-драйв концепт-кара Toyota Ku Rin, который проехал 3,2 км на одном «заряде» сжатого воздуха. А в 2012 году Tata Motors представила трехместный и трехколесный автомобиль Tata AIRPod.

В отличие от предшественников, разработка PSA оказалась элегантнее и проще. Два баллона со сжатым воздухом, компрессор, нагнетающий воздух, и гидравлический мотор, передающий энергию сжатого воздуха в КПП. Система сама пополняла воздушные запасы (например, Tata Airpod требовалось «накачивать» каждые 200 км). Помимо установки со сжатым воздухом, под капотом Hybrid Air предполагалось устанавливать классический 3-цилиндровый двигатель внутреннего сгорания, который бы играл роль насоса и вспомогательного мотора.

В городе машина с Hybrid Air может до 80% времени ехать только на воздухе, не загрязняя атмосферу. Топливная экономичность варьируется от нулевых значений расхода и выбросов до 2,9 л/100 км и 69 г/км при использовании двигателя внутреннего сгорания соответственно. В компании планировали ставить систему Hybrid Air начиная с 2016 года, но – не сложилось.

Водородные топливные элементы

Существует три типа двигателей, использующих водород: одни работают как обычный двигатель внутреннего сгорания, другие – газотурбинные, третьи – агрегаты, использующие химическую реакцию водорода.

Первый двигатель внутреннего сгорания, работающий на водороде, появился в 1806 году, водород в нем использовался как обычный бензин. Однако использовать такие оригинальные двигатели накладно. В газотурбинных двигателях газ сжимается и нагревается, затем выделяемая энергия преобразуется в механическую. В качестве топлива можно использовать практически любое горючее.

Но самые интересные из водородных силовых установок – «химические». Концерны BMW и Toyota представили кроссовер i Hydrogen NEXT на базе последнего X5. Его силовая установка состоит из электродвигателя и литий-ионной батареи, стеков с водородными топливными элементами, химического преобразователя и двух баков, в которых под давлением 700 бар хранится 6 кг водорода. Стек специальных ячеек, наполненных водородом, конвертирует химическую энергию газа в электричество, которое аккумулируется в батарее, а она в свою очередь питает электромотор. Электрохимический генератор в составе топливного элемента выдает мощность 125 кВт (170 л.с.), а пиковая мощность силовой установки — 275 кВт (374 л.с.). В качестве топлива используется смесь водорода и кислорода из окружающего воздуха, вместо вредных выбросов система вырабатывает водяной пар. В BMW заявляют, что к 2022 году планируют выпустить первую партию водородомобилей.

Дизельный двигатель

Более ста лет назад, 23 февраля 1892 года Рудольф Дизель получил патент на свой двигатель. Принципиальным отличием его двигателя от Отто-мотора было то, что топливо в нем нагревалось быстрым сжатием, а не поджогом. Удивительно, но первые двигатели Дизеля работали на растительных маслах или легких нефтепродуктах. Кроме того, первоначально в качестве идеального топлива он предлагал использовать каменноугольную пыль, так как в Германии не было запасов нефти.

Спектр видов топлива для дизельных двигателей весьма широк. Сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения: рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определенным успехом работать даже на сырой нефти.

Кстати, в 1898 году на Путиловском заводе в Петербурге был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления» – агрегат, аналогичный мотору Дизеля. Наша конструкция оказалась более совершенной и перспективной. Но под давлением владельцев лицензий Дизеля все работы над отечественным аналогом дизельного двигателя были остановлены.

Роторный двигатель

Самый престарелый из всех тепловых двигателей именно роторный. С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. В 19 веке стали активно использовать роторные паровые двигатели.

В 1957 года Феликс Ванкель и Вальтер Фройде показали общественности полностью работоспособный роторно-поршневой двигатель (РПД) внутреннего сгорания. Через 7 лет этот движок установили на спорткар NSU Spider, который стал первым серийником с роторно-поршневой двигатель. Такой двигатель лишен большого количества движущихся частей, он проще, а особая конструкция мотора позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Но из-за конструктивных особенностей у роторных двигателей крайне низкий ресурс, высокий расход масла и топлива, хотя и большая отдача с меньшего объема.

Из-за этих особенностей единственной компанией, которая массово, помимо NSU, выпускала автомобили с роторно-поршневым движком была Mazda. И легендарная Mazda RX-8 была скорее имиджевой моделью, нежели коммерческой. В итоге в начале 2000-х работу с роторно-поршневыми двигателями свернули.

По материалам портала «Популярная механика»

Типы судовых двигателей | Yanmar Russia

Компания Yanmar производит судовые двигатели для коммерческого судоходства (commercial marine) и для прогулочного судоходства (marine pleasure). Рассмотрим представленные коммерческие судовые двигатели.

Типы судовых двигателей для коммерческого использования

В каталоге Yanmar представлены судовые дизельные двигатели  двух категорий:

  • Пропульсивные (главные)
  • Вспомогательные

По частоте вращения коленвала среди них выделяют:

  • Среднеоборотные, частота вращения которых составляет 620-1350 об/мин.
  • Высокооборотные, с частотой вращения от 1840 об/мин.

Высокооборотные модели Yanmar имеют мощность 21-1340 кВт, среднеоборотные — 374-3310 кВт.

Пропульсивные двигатели

Пропульсивной установкой именуется совокупность нескольких силовых элементов: главного двигателя (ГД), валопровода, гребного винта (движителя).

Главный судовый двигатель — это основной силовой агрегат, благодаря которому обеспечивается вращение гребного винта (ход судна) и электрического генератора (частично либо полностью, в зависимости от конструкции). К судовым дизелям любой модификации предъявляются определенные требования, наиболее важным из которых является безотказность работы, длительность времени наработки на отказ. 


Назначение главных передач — перенос энергии вращения с вала силового агрегата всем потребителям, в случае одновременного использования нескольких ГД — суммирование их мощности. Функцией валопровода является передача вращающего момента к гребному винту. Движение судна с заданной скоростью обеспечивается гребным винтом, преобразующий энергию вращения в упор к судовому корпусу.

Вспомогательные судовые двигатели

Вспомогательные судовые дизели служат для обеспечения функционирования генераторов судовых электростанций и прочего электрооборудования, необходимого для производства различных видов работ на плавсредстве, например, компрессоров, насосов. 


Вспомогательные ДВС выполняют ряд важных функций:

  • обеспечивают работу центральной энергоустановки корабля;
  • питают отдельные системы судна;
  • обеспечивают энергией механизмы и узлы.

Применение

Высокооборотные дизельные двигатели устанавливают на большие суда в качестве вспомогательных, в составе энергетической установки и на небольшие судах в качестве главных. Среднеоборотные применяют на пассажирских и рабочих плавсредствах, судах морского флота, траулерах. Малооборотные дизели могут применяться на судах любого типа и водоизмещения.

Виды и типы электродвигателей | Публикации

Электрический двигатель

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

  • Коллекторные.
  • Бесколлекторные.

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

  • 1-нофазные;
  • 2-хфазные;
  • 3-хфазные;
  • многофазные.

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Источник: Технический отдел ЗАО «КранЭлектроМаш»

Шаговые двигатели: описание, примеры, обзоры, характеристики

Шаговый электродвигатель это синхронный бесщёточный электродвигатель с несколькими обмотками. Ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения ротора, они же шаги. Именно поэтому двигатель называется шаговым. Для управления шаговым двигателем используется специальный контроллер, который называют драйвером шагового двигателя.

Шаговые двигатели стандартизованы национальной ассоциацией производителей электрооборудования NEMA по посадочным размерам и размеру фланца. Самые ходовые типоразмеры это NEMA 17 с фланцем 42*42мм, NEMA 23 с фланцем 57*57мм и NEMA 34 размером 86*86мм соответственно. Шаговые электродвигатели NEMA 17 могут создавать крутящий момент приблизительно до 6 кг*см, NEMA 23 до 30 кг*см и NEMA 34 до 120 кг*см.


Как устроен шаговый двигатель

Конструктивно шаговые двигатели можно поделить на три больших класса – это двигатели с переменным магнитным сопротивлением, двигатели с постоянными магнитами и гибридный класс, сочетающий характеристики первых двух. 


Шаговые двигатели с переменным магнитным сопротивлением имеют несколько полюсов на статоре и ротор из магнитомягкого материала, который не сохраняет остаточную намагниченность. Для простоты ротор на рисунке имеет 4 зубца, а статор имеет 6 полюсов. Двигатель имеет 3 независимые обмотки, каждая из которых намотана на двух противоположных полюсах статора. Двигатель на рисунке имеет шаг 30 град.

При включении тока в одной из катушек, ротор стремится занять положение, когда магнитный поток замкнут, т.е. зубцы ротора будут находиться напротив тех полюсов, на которых находится запитанная обмотка. Если затем выключить эту обмотку и включить следующую, то ротор поменяет положение, снова замкнув своими зубцами магнитный поток. Таким образом, чтобы осуществить непрерывное вращение, нужно включать фазы попеременно. Такой двигатель не чувствителен к направлению тока в обмотках, а из-за того, что ротор не имеет магнитных свойств, данный тип двигателя может работать на высоких оборотах. Так же данный тип двигателя легко отличить от других шаговиков, просто повращав его за вал, когда он отключен. Вал будет крутиться свободно, тогда как у остальных типов явно будут ощущаться шаги. Иногда поверхность каждого полюса статора выполняют зубчатой, что вместе с соответствующими зубцами ротора обеспечивает уменьшение значения угла шага до нескольких градусов. Двигатели с переменным магнитным сопротивлением сейчас почти не используют.


Двигатели с постоянными магнитами состоят из статора с обмотками и ротора, содержащего постоянные магниты. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением.

Показанный на рисунке двигатель имеет 3 пары полюсов ротора и 2 пары полюсов статора. Статор имеет 2 независимые обмотки, каждая из которых намотана на двух противоположных полюсах. Двигатель на рисунке имеет величину шага 30 град, так же, как и предыдущий. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга и для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют от 48 до 24 шагов на оборот, что соответствует углам шага 7.5 – 15 град).


На практике двигатель с постоянными магнитами выглядит, например, вот так. Увидеть такой двигатель можно в лазерном принтере.
Двигатели с постоянными магнитами подвержены влиянию обратной ЭДС со стороны ротора, которая ограничивает максимальную скорость. Это значит, что при свободном выбеге на больших оборотах двигатель сработает как генератор и может сжечь драйвер током, который сам и сгенерирует. Это же относится и к гибридным двигателям.


Гибридные двигатели сочетают в себе лучшие черты шаговых двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами. Гибридные шаговые двигатели обеспечивают меньшую величину шага, больший момент и большую скорость, чем двигатели с переменным магнитным сопротивлением и двигатели с постоянными магнитами.

Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400, что соответсвует углам шага 3.6 – 0.9 градусов. Ротор показанного на рисунке двигателя имеет 100 полюсов (50 пар), двигатель имеет 2 фазы, поэтому полное количество полюсов – 200, а шаг, соответственно, 1.8 град.

Выглядит гибридный двигатель, например, вот так.


Большинство современных шаговых двигателей являются именно гибридными, поэтому давайте подробней рассмотрим устройство шаговых двигателей этого типа.

 

Ротор двигателя разделен поперек на две части, между которыми расположен цилиндрический постоянным магнит. Благодаря этому зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки – южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для двигателей с шагов в 3,6 градуса и 8 основных полюсов в случае шагов в 1.8 и 0.9 градусов. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними.


Посмотрим на продольное сечение гибридного шагового двигателя. Стрелками показано направление магнитного потока постоянного магнита ротора. Часть потока (на рисунке показана черной линией) проходит через полюсные наконечники ротора, воздушные зазоры и полюсный наконечник статора. Эта часть не участвует в создании момента.

Как видно на рисунке, воздушные зазоры у верхнего и нижнего полюсного наконечника ротора разные. Это достигается благодаря повороту полюсных наконечников на половину шага зубьев, что очень хорошо было видно на предыдущем фото. Поэтому существует другая магнитная цепь, которая содержит минимальные воздушные зазоры и, как следствие, обладает минимальным магнитным сопротивлением. По этой цепи замыкается другая часть потока (на рисунке показана штриховой белой линией), которая и создает момент. Часть цепи лежит в плоскости, перпендикулярной рисунку, поэтому она не показана. В этой же плоскости создают магнитный поток катушки статора. В гибридном двигателе этот поток частично замыкается полюсными наконечниками ротора и слабо влияет на постоянный магнит. Поэтому в отличие от двигателей постоянного тока, магнит гибридного шагового двигателя невозможно размагнитить ни при какой величине тока обмоток.

Величина зазора между зубцами ротора и статора очень небольшая, около 0.1 мм. Это требует высокой точности при сборке, поэтому шаговый двигатель не стоит разбирать ради удовлетворения любопытства, иначе на этом его служба может закончиться.

Чтобы магнитный поток не замыкался через вал, который проходит внутри магнита, его изготавливают из немагнитных марок стали.
Для получения больших моментов необходимо увеличивать как поле, создаваемое статором, так и поле постоянного магнита . При этом требуется больший диаметр ротора, что ухудшает отношение крутящего момента к моменту инерции. Поэтому мощные шаговые двигатели иногда конструктивно выполняют из нескольких секций в виде этажерки. Крутящий момент и момент инерции увеличиваются пропорционально количеству секций, а их отношение не ухудшается.


Мы рассмотрели устройство самого «железа» шаговых двигателей, но помимо этого двигатели можно еще поделить по количеству и способу коммутации их обмоток.

Тут всего два основных вида – биполярный и униполярный


Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовываться драйвером. Для такого типа двигателя требуется мостовой или полумостовой драйвер. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода. Примером распространенного биполярного двигателя может быть шаговый двигатель марки 17HS4401


Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера, который в случае униполярного двигателя должен иметь только 4 простых ключа. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 выводов, как на рисунке, или 6 выводов в случае если выводы AB и CD разъединены. Униполярный двигатель с двумя обмотками и отводами можно использовать в биполярном режиме, если отводы оставить неподключенными.


Примером распространенного униполярного двигателя с пятью выводами может быть шаговый двигатель марки 28BYJ-48. Данный двигатель можно переделать в биполярный, разделив выводы AB и CD, для чего достаточно перерезать одну из перемычек на плате под синей крышкой.

 

Иногда двигатели имеют 4 раздельные обмотки, по этой причине их ошибочно называют 4-х фазными или четырехобмоточными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8. При соответствующем соединении обмоток такой двигатель можно использовать и как униполярный, и как биполярный.


Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность, а значит при одних и тех же размерах биполярные двигатели обеспечивают больший момент. Момент, создаваемый шаговым двигателем, пропорционален величине магнитного поля, создаваемого обмотками статора. Путей для повышения магнитного поля два – это увеличение тока или числа витков обмоток. Естественным ограничением при повышении тока обмоток является опасность насыщения железного сердечника, однако на практике гораздо более существенным является ограничение по нагреву двигателя в следствии потерь из-за омического сопротивления обмоток. Тут и проявляется преимущество конструкции биполярных двигателей. В униполярном двигателе в каждый момент времени используется лишь половина обмоток, а другая половина просто занимает место в окне сердечника, что вынуждает делать обмотки проводом меньшего диаметра или увеличивать габариты двигателя. В то же время в биполярном двигателе всегда работают все обмотки. Иными словами, на биполярный двигатель той же мощности надо намотать в два раза меньше медного обмоточного провода, чем на униполярный, а случае, если обмотки равны по массе, то биполярный двигатель будет мощнее примерно на 40%.

На практике можно встретить оба типа двигателей, так как биполярные дешевле из-за меньшей материалоемкости, а униполярные требуют значительно более простых драйверов. В настоящее время наиболее широко распространены гибридные биполярные двигатели.

Где приобрести ШД? Вы можете купить шаговые двигатели в нашем магазине 3DIY с доставкой по всей России!

Управление шаговым двигателем

Независимо от того, какой драйвер или двигатель использован, управление шаговым двигателем может осуществляться в одном из трёх режимов:

  • полношаговое

  • полушаговое

  • микрошаговое

Полношаговый режим управления ШД подразумевает попеременную коммутацию фаз без перекрытия, при этом единовременно к источнику напряжения подключена только одна из фаз. При таком способе управления на каждый полный шаг электродвигателя приходится одна фаза и точки равновесия ротора идентичны полюсам статора. Данный режим имеет и недостаток: в случае с биполярным двигателем в полношаговом режиме в один и тот же момент задействуется только половина обмоток, с униполярным – четверть. Существует и другой вариант полношагового управления, подразумевающий единовременное включение двух фаз. Такой способ управления ШД основан на фиксации ротора между полюсами статора благодаря подаче питания на обмотки, при этом на полный шаг приходится две фазы. При этом способе управления точка равновесия ротора смещается на половину шага относительно способа с одной фазой, а момент возрастает примерно на 40 процентов.

Применение полушагового режима управления шаговым двигателем позволяет увеличить количество шагов, приходящихся на один оборот ротора, в два раза. При работе ШД в таком режиме на каждый второй шаг приходится включение одной из фаз, а между шагами включаются сразу обе. Фактически это комбинация переменного включения однофазного и двухфазного полношаговых режимов.

Микрошаговый режим управления ШД применяется тогда, когда необходимо получение максимально большого количества шагов, приходящихся на оборот ротора. При работе в таком режиме так же работают две фазы, однако токи обмоток в данном случае распределяются неравномерно, а не 50/50, как в полушаговом. Величина микрошага зависит от конкретного устройства и настроек драйвера. При работе в микрошаговом режиме точность позиционирования ШД значительно повышается, однако требуется более сложный драйвер двигателя.

Где приобрести драйвера ШД? Купить драйвера шаговых двигателей можно у нас в онлайн магазине с доставкой!


 Конструктивные исполнения ШД


Обычный шаговый двигатель 

Тут нет никаких изысков – корпус, вал, в общем стандарт. Широко распространен в разном оборудовании, начиная от фрезеров и 3д принтеров, заканчивая приводом заслонки или мешалки.

Двигатель с полым валом


Шаговые двигатели с полым валом применяются когда существует необходимость передачи крутящего момента без применения соединительных муфт, например для использования в ограниченном пространстве. Так же сквозь него можно продеть длинный вал, который будет торчать с двух сторон и синхронно крутить что-то с одной и с другой стороны.

Двигатель со встроенной в вал приводной гайкой 

Такой вид двигателя может найти применение в том случае, если требуется быстрое перемещение на большое расстояние. Длинный винт на высоких оборотах ведет себя подобно скакалке, а при использовании такого мотора винт можно неподвижно натянуть между опорами, а сам мотор закрепить на подвижной части оборудования. Тогда длина и нежесткость винта не будет влиять на максимальную скорость.

Двигатель с двойным валом

В этом исполнении двигатель имеет удлиненный вал, длинный конец которого выступает со стороны задней крышки. На этот удлиненный вал можно повесить барашек, чтоб можно было выставить положение вала вручную, повесить энкодер и получить сервошаговый двигатель, а можно повесить дополнительный шкив или винт, которые будут работать абсолютно синхронно с передним валом.

Двигатель с винтом вместо вала


Находят себе применение например в 3д принтерах или в любом другом месте, где хочется сэкономить место не только на муфте между валом и винтом, но и на подшипниковой опоре винта, роль которой в данном случае выполняют подшипники двигателя.

Двигатель со встроенным тормозом

Позволяет зафиксировать вал в нужной позиции дополнительно к удержанию самим шаговиком. Так же позволяет удерживать вал в случае отключения питания двигателя.

Двигатель с редуктором

Редуктор позволяет понизить обороты двигателя и поднять его крутящий момент. Данное исполнение редко встречается в связи с тем, что шаговые двигатели и так имеют значительный момент на низких оборотах и сами по себе могут достигать весьма низких скоростей вращения.

Двигатель с энкодером

Он же сервошаговый двигатель. Фактически это сервопривод на шаговом двигателе. На удлиненный вал со стороны задней крышки монтируется энкодер в корпусе и благодаря этому мы получаем обратную связь о положении вала двигателя. В случае пропуска шагов двигателем контроллер узнает об этом и ориентируясь на показания энкодера будет подавать дополнительные импульсы до тех пор, пока вал не займет нужное положение. Сервошаговый двигатель используется со своим специальным драйвером, который имеет вход для подключения энкодера.


Преимущества шагового двигателя

  • угол поворота ротора определяется числом поданных импульсов. Шаговый двигатель крутится не плавно, а шагами, шаг имеет определенную величину. Поэтому чтобы повернуть вал в нужное положение мы просто подаем известное нам количество импульсов.
  • зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи. Один шаг – один импульс. Какое количество импульсов подали, в то положение двигатель и шагнул.
  • двигатель обеспечивает полный момент в режиме остановки. Это хорошо тем, что для фиксации положения вала запитанному двигателю не нужен тормоз, можно тормозить его при помощи драйвера.
  • прецизионное позиционирование и повторяемость. Хорошие шаговые двигатели имеют точность от 3 до 5% от величины шага. Эта ошибка не накапливается от шага к шагу, так как на один оборот двигателя приходится неизменное количество шагов, совершив которые мы всегда получим поворот на 360 градусов.
  • высокая надежность. Высокая надежность двигателя связанна с отсутствием щеток. Срок службы фактически определяется сроком службы подшипников
  • возможность получения низких скоростей вращения. Для получения низкой скорости вращения двигателя достаточно замедлить скорость подачи импульсов, тогда двигатель будет медленнее шагать и скорость его вращения будет небольшой.
  • большой крутящий момент на низких скоростях. Большой крутящий момент на низких оборотах позволяет отказаться от применения редуктора, что упрощает конструкцию оборудования
  • может быть перекрыт довольно большой диапазон скоростей. Скорость вращения двигателя пропорциональна частоте входных импульсов, подавая их быстрее или медленнее мы так же влияем и на скорость вращения.

Недостатки шагового двигателя:

  • шаговым двигателем присуще явление резонанса. Шаговые двигатели обладают собственной резонансной частотой. Это связано с тем, что ротор после подачи тока в обмотку некоторое время колеблется, прежде чем зафиксироваться в конечном положении, и колебания тем сильней, чем больше инерция ротора. Резонанс приводит к повышенному шуму, вибрациям и падению крутящего момента двигателя. Один из способов победить резонанс – увеличить деление шага. Мелкие перемещения в микрошаге не требуют длительных разгона и фиксации ротора, быстро останавливают его между шагами и увеличивают частоту шагания выше резонансной.
  • возможна потеря контроля положения ввиду работы без обратной связи. При превышении усилия на валу выше того, который может создать двигатель, он начнет пропускать шаги. Так как у двигателя нет обратной связи, то контроллер не может узнать об этом и даже если двигатель начнет вращаться снова, стартует он уже из неправильного рабочего положения. Для устранения этого недостатка можно использовать сервошаговый двигатель или увеличить момент на валу, повысив напряжение, настроив драйвер на больший ток или заменив двигатель на более мощный.
  • потребляет энергию независимо от нагрузки. Шаговый двигатель в промежуточном положении фиксируется с полным моментом. Шагает он тоже с полным моментом. Поэтому он продолжает потреблять электричество без особой зависимости от нагрузки на валу. Снизить общее потребление энергии двигателем мы можем применив драйвера, которые уменьшают подаваемый в режиме удержания ток.
  • затруднена работа на высоких скоростях. На высоких скоростях вращения шаговый двигатель значительно теряет момент и при достижении определенной частоты оборотов момент становится настолько мал, что вал не может дальше крутиться. В этом момент двигатель останавливается и гудит с частотой подаваемых импульсов. Этот недостаток можно устранить, повысив питающее напряжение, что увеличит крутящий момент как на повышенных, так и на пониженных оборотах, использовать более продвинутый драйвер, который на высоких скоростях вращения переходит на полношаговый режим управления двигателем или попросту заменив шаговик на сервопривод, который рассчитан на высокие скорости.
  • невысокая удельная мощность.Шаговый двигатель по удельной мощности на грамм веса не самый энергонасыщенный электропривод. Сделать с этим мы ничего не можем.
  • относительно сложная схема управления.Драйвера шаговых двигателей насыщены электроникой. Тут мы тоже не можем что-то изменить.

Как выбрать шаговый двигатель? На какие параметры обратить внимание.

По большому счету, выбор двигателя сводится к выбору нескольких вещей:
  1. вида двигателя (его размеры)
  2. тока фазы
  3. индуктивность

Что касается вида двигателя, то при отсутствии каких-то определенных предпочтений мы бы рекомендовали использовать биполярные шаговые двигатели с 4 выводами, так как они наиболее распространены и, что не менее важно, не менее распространены драйвера для них. То есть случае какой-либо поломки вы легко найдете замену и отремонтируете станок.
Размер двигателя и его ток проще всего подобрать, ориентируясь на готовые станки от известных производителей, которые близки к конструируемому по размерам и характеристикам — проверенная конструкция означает, что двигатели уже подобраны оптимальным образом и можно взять их характеристики за основу. Производитель двигателя в данном случае не особо важен, так как ввиду отработанной технологии производства их характеристики у разных производителей примерно одинаковые.
Остается одна характеристика – индуктивность.

При одинаковом напряжении питания двигатели с большей индуктивностью имеют больший момент на низких оборотах, и меньший – на высоких, как видно из графика. Но большая индуктивность потенциально дает вам возможность получить больший крутящий момент, повысив напряжение питания, тогда как при использовании двигателей с небольшой индуктивностью повышение напряжения может привести к тому, что двигатель будет перегреваться без заметной прибавки в характеристиках. Это связано с тем, что нарастание тока в обмотках с низкой индуктивностью идет быстрее и мы легко можем получить среднее значение тока выше номинального, а как следствие этого – перегрев. Таким образом при прочих равных лучше выбрать двигатель с большим значением индуктивности.


Виды двигателей и их сравнительные характеристики

Категория:

   Процессы, происходящие в двигателях

Публикация:

   Виды двигателей и их сравнительные характеристики

Читать далее:



Виды двигателей и их сравнительные характеристики

На тяговых и дорожно строительных машинах различные, в зависимости от вида используемой энергии, двигатели: тепловые (паровые или двигатели внутреннего сгорания) и электрические постоянного тока с последовательным возбуждением.

Любой двигатель должен обладать хорошей приспособляемостью к внешним нагрузкам, высокой экономичностью, малой массой, большой надежностью, легкостью и простотой обслуживания, а также постоянной готовностью к работе. Приспособляемость двигателя к колебаниям внешней нагрузки состоит в том, что с изменением последней автоматически должен меняться и крутящий момент на валу двигателя.

Сериесный электродвигатель обладает наилучшей из всех перечисленных приспосабливаемостью к внешней нагрузке. С возрастанием нагрузки и при снижении оборотов ротора автоматически увеличивается крутящий момент двигателя. Основной недостаток такого двигателя — большие трудности подачи к нему электроэнергии. Аккумуляторный способ питания тяговых электродвигателей в условиях дорожных строек трудно осуществим и невыгоден, троллейный требует крупных капиталовложений на создание контактной сети и подстанций, кабельный способ возможен только на очень коротких расстояниях.

Рекламные предложения на основе ваших интересов:

Паровой двигатель имеет хорошую приспособляемость к нагрузке, поэтому раньше его устанавливали на тракторах и даже автомобилях. Первый в мире трактор Ф. А. Блинова (1888 г.) приводился в движение двумя паровыми машинами. Однако низкий коэффициент полезного действия, трудоемкость обслуживания, необходимость иметь на машине большой запас топлива и воды и другие недостатки обусловили его слабую конкурентную способность.

Двигатель внутреннего сгорания обладает худшей приспособляемостью к нагрузкам. Тем не менее, имея ряд важных достоинств-, главными из которых являются относительно высокий коэффициент полезного действия, малые масса и габарит, легкость обслуживания, быстрый запуск в работу, он получил исключительное применение на транспортных и дорожных машинах.

Рекламные предложения:


Читать далее: Рабочий цикл двигателя

Категория: — Процессы, происходящие в двигателях

Главная → Справочник → Статьи → Форум


Коллекторный и бесколлекторный двигатели — Green-Battery

В ассортименте продукции Greenworks есть инструменты с коллекторным (щёточным) и бесколлекторным (бесщёточным) двигателями. Но везде делается акцент только на бесколлекторном электродвигателе. Почему только на нём, и для чего тогда устройства с щёточным? Расскажем в данной статье преимущества и недостатки каждого электродвигателя и ответим на эти два вопроса.

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

Плюсы:

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

Минусы:

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым).
Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей. Так как такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro

Плюсы:

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.

Минусы:

  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

Всегда интересные новости и статьи от команды сайта Green-Battery.ru
Копирование текстов возможно только со ссылкой на первоисточник.


Типы двигателей — Инженерное изучение

Типы двигателей

Типы двигателей: — Двигатель — это устройство, преобразующее тепловую энергию топлива в механическую. Двигатели в основном используются в автомобильной промышленности. В зависимости от наших требований доступны различные типы двигателей.

Различные типы двигателей

Основное различие между двигателями состоит в следующем: 1) Двигатель внутреннего сгорания 2) Двигатель внешнего сгорания.

A) Двигатель внутреннего сгорания

Как следует из названия, в двигателе внутреннего сгорания сгорание топлива происходит внутри двигателя.Наиболее распространенным типом двигателя внутреннего сгорания является четырехтактный двигатель с четырьмя ступенями.

  1. Впрыск смесителя топлива и окислителя (воздуха) внутрь двигателя.
  2. Компрессионный смеситель.
  3. Воспламенение смесителя топлива искрой.
  4. Отказ выхлопа.

В этом двигателе топливо попадает внутрь камеры сгорания, и поршень сжимает его. Из-за сжатия и искрового зажигания на поршень воздействуют высокое давление и температура, которые используются для вращения кривошипа, который соединен с поршнем через шатун.

B) Двигатель внешнего сгорания

Как следует из названия, в двигателе внешнего сгорания сгорание топлива происходит вне двигателя. Здесь дополнительное тепло используется для производства пара низкого давления, который используется в турбине для производства электроэнергии. Здесь топливо сжигается вне двигателя, поэтому мы также можем использовать твердое топливо.

Теперь поговорим о различных типах двигателей, основанных на разных критериях:

C) На основе конструкции:

1.Поршневой двигатель (поршневой двигатель): (Типы двигателей)

В данном типе двигателя используется поршневой цилиндр в сборе. Поршень движется внутрь цилиндра и обратно. Это наиболее распространенный тип двигателя, используемый в автомобильной промышленности.

2. Роторный двигатель (двигатель Ванкеля): (Типы двигателей)

Роторный двигатель: В этом типе двигателя вместо поршня используется ротор, который вращает колесо транспортного средства. Он изобретен в 1957 году, но в настоящее время не используется людьми.Давление, создаваемое при сгорании топлива, передается на ротор.

D) В зависимости от количества ходов:

1. Четырехтактный двигатель: (Типы двигателей)

Четырехтактный двигатель: В этом двигателе поршень перемещается два раза вверх и вниз, а кривошип поворачивается два раза за одно сгорание топлива. Это очень эффективный тип двигателя. Он используется в мотоциклах, автомобилях и т. Д.

2. Двухтактные двигатели: (Типы двигателей)

Двухтактные двигатели: В этих двигателях поршень перемещается вверх и вниз только один раз.Кривошип вращается только один раз за одно сгорание топлива.

E) В зависимости от используемого топлива:
  1. Дизельный двигатель: В качестве топлива используется дизельное топливо. Бывший. Автобусы, грузовики и т. Д.
  2. Бензиновый двигатель: В качестве топлива используется бензин. Бывший. Автомобиль, велосипед и т. Д.
  3. Газовый двигатель: В качестве топлива используется сжиженный нефтяной газ или сжатый природный газ. Бывший. Авто и т. Д.
  4. Электродвигатель: Использует электрическую энергию для вращения кривошипа. Бывший. Автомобиль.

F) В зависимости от метода зажигания:

1.Двигатель с воспламенением от сжатия: (Типы двигателей)

Здесь не используется дополнительное оборудование для воспламенения топлива. Из-за сжатия топлива температура увеличивается, что вызывает воспламенение топлива.

2. Двигатель с искровым зажиганием: (Типы двигателей)

Здесь для воспламенения топлива используется свеча зажигания. Из-за этого его называют двигателем с искровым зажиганием.

G) В зависимости от количества цилиндров:

1. Одноцилиндровый двигатель: (Типы двигателей)

Здесь мы используем только один цилиндр и поршень в сборе, который соединен с кривошипом.

2. Многоцилиндровый двигатель: (Типы двигателей)

Здесь мы используем более двух цилиндров и поршневой узел, который соединен с кривошипом. Рисунок показан ниже.

H) В зависимости от расположения цилиндров:
  1. Рядный двигатель: Здесь цилиндры расположены в одну линию вместе с коленчатым валом.
  2. Двигатель V-образный: Здесь цилиндры расположены под углом к ​​коленчатому валу.
  3. Двигатель с оппозитными цилиндрами: Здесь цилиндры расположены под углом 180 o . То же, что и V-образный, но с углом 180 o .
  4. Двигатель типа W: Здесь цилиндры такие же, как у двигателя V, но у него три цилиндра на один коленчатый вал.
  5. Радиальный двигатель: Здесь цилиндры расположены вокруг вала, как показано на рисунке.

6 различных типов автомобильных двигателей, используемых сегодня

Двигатель — это душа и сердце вашего автомобиля просто потому, что это самая важная его часть.Он действует как основной источник энергии и преобразует энергию в механическое движение.

Несомненно, конструкции и модели автомобилей значительно изменились за последние несколько лет, и, что интересно, автомобильные двигатели последовали их примеру.

У двигателей

интересная история, и если вы планируете в ближайшее время купить автомобиль, понимание различных типов автомобильных двигателей поможет вам сделать лучший выбор.

Люди разные, и в то время как одни предпочитают экономичные двигатели, другие делают упор на большей мощности.

Помня об этом, производители автомобилей день и ночь упорно трудятся, чтобы удовлетворить потребности всех клиентов, и поэтому они разработали различные типы автомобильных двигателей, и вот некоторые из них.

Содержание

Типы двигателей

Как правило, существует два типа двигателей, а именно двигатели внутреннего и внешнего сгорания.

1. Двигатели внутреннего сгорания

В этих двигателях сгорание топлива происходит внутри двигателя, что вызывает повышение давления и температуры.

В результате сгорания возникающее высокое давление прикладывается к ротору, поршням или соплу, и это та же сила, которая перемещает ваш автомобиль из одного места в другое и преобразует химическую энергию в полезную механическую энергию.

Отличными примерами являются двухтактные и четырехтактные бензиновые и дизельные двигатели

.

2. Двигатель внешнего сгорания

В этих двигателях сгорание топлива происходит вне двигателя, и паровой двигатель является отличным примером.

Для вашего спокойствия существуют различные типы двигателей внутреннего сгорания (ДВС), которые классифицируются по разным основаниям, и мы рассмотрим их ниже;

1.На базе дизайна

а. Поршневой двигатель

Поршень и цилиндр — основные компоненты поршневого двигателя. Двигатель может иметь один или несколько поршней, основная цель которых — преобразовывать давление во вращательное движение.

Каждый поршень помещается внутри цилиндра, и в результате сгорания газа поршень совершает возвратно-поступательное движение (возвратно-поступательное движение), которое затем преобразуется во вращательное движение.

г. Двигатель Ванкеля

Также известный как роторный двигатель, двигатель Ванкеля преобразует давление во вращательное движение с помощью эксцентриковой поворотной системы.

По сравнению с поршневым двигателем, двигатель Ванкеля более плавный, простой и компактный.

Обратите внимание, что эти двигатели обычно производят больше импульсов мощности на оборот, и поэтому они в основном используются в гоночных автомобилях, и Mazda RX-8 является очень популярным примером.

2. По методу зажигания

а. Двигатель с воспламенением от сжатия

Двигатели этих типов не имеют свечи зажигания на головке блока цилиндров, и поэтому тепло сжатого воздуха отвечает за воспламенение топлива.

Отличным примером двигателя с воспламенением от сжатия является дизельный двигатель, потому что он работает только за счет сжатия воздуха.

Некоторые из преимуществ двигателя с воспламенением от сжатия — это уменьшенная паразитная нагрузка и более высокий термодинамический КПД.

г. Двигатель с искровым зажиганием

Эти двигатели оснащены свечой зажигания, установленной на головке двигателя, которая производит искру после сжатия топлива для воспламенения топливовоздушной смеси для процесса сгорания.

По мнению экспертов, бензиновые двигатели основаны на искровом зажигании, но могут работать только на биоэтаноле, метаноле, водороде, сжатом природном газе (CNG), автогазе (LPG) и нитрометане.

3. По количеству цилиндров

а. Одноцилиндровый двигатель

Они состоят из одного цилиндра, соединенного с коленчатым валом. Эти типы двигателей легкие, компактные и обладают выдающимся соотношением массы и мощности.

Они обычно используются в мотороллерах, мотоциклах, картингах и мотоциклах для бездорожья.

г. Двухцилиндровый двигатель

Эти двигатели состоят из двух цилиндров, отсюда и название двухцилиндровый двигатель.

г. Многоцилиндровый двигатель

Эти двигатели имеют более двух цилиндров и могут быть трех, четырех, шести, двенадцати или шестнадцати. Эти двигатели обладают превосходной способностью нейтрализовать дисбаланс и без особых усилий достигать более высоких оборотов в минуту (об / мин).

Хорошими примерами являются двухтактные и четырехтактные двигатели, которые могут быть дизельными или с искровым зажиганием.

4. В зависимости от расположения цилиндров

а. Вертикальный двигатель

Цилиндры вертикальных двигателей, как и название, расположены вертикально.

г. Горизонтальный двигатель

Цилиндры этих двигателей расположены горизонтально

г. V-образный двигатель

В двигателях этого типа поршни и цилиндры выровнены в два ряда с некоторым углом между ними, и если смотреть сверху, они напоминают V-образную форму .

По мнению экспертов, эти двигатели обладают уникальной формой, которая предотвращает вибрацию и проблемы с балансировкой.

г. Двигатель типа W

В этих двигателях цилиндры расположены в 3 ряда, образуя форму «W» , и в большинстве случаев этот двигатель изготавливается за счет производства 16-цилиндровых и 12-цилиндровых двигателей.

эл. Оппозиционный цилиндр

Цилиндры в этом типе двигателя расположены в противоположных направлениях.Что наиболее важно, этот двигатель имеет отличную балансировку и работает плавно просто потому, что и поршень, и шатун работают одинаково.

5. Виды используемого топлива
  • Бензиновый двигатель — использует бензин в качестве основного источника энергии
  • Дизельный двигатель — использует дизельное топливо для своей работы
  • Газовый двигатель — использует топливо для своей работы

6. В зависимости от количества ходов

а. Двухтактный двигатель

В двигателе этого типа поршень совершает два движения вверх (от НМТ к ВМТ) и вниз (от ВМТ к НМТ), чтобы произвести рабочий ход.

г. Четырехтактный двигатель

В двигателе этого типа поршень перемещается четыре раза, два движения вверх и два движения вниз за один цикл рабочего хода.

г. Шеститактный двигатель

Шестицилиндровый двигатель находится в стадии разработки, но, по словам источников, он вызовет внимание и интерес в автомобильной промышленности.

Ожидается, что он принесет огромные преимущества, такие как снижение механической сложности, повышение топливной эффективности и снижение выбросов.

Итог

Двигатель — самая важная часть вашего автомобиля, поскольку он позволяет вам эффективно перемещаться из одного места в другое.

Повернуть ключ для запуска автомобиля всегда интересно и просто, и в большинстве случаев его простота заставляет людей воспринимать двигатель как должное.

Если вы хотите понять конструкцию вашего автомобиля, рекомендуется разобраться в технологиях, которые используются под капотом, и, что наиболее важно, разобраться в различных типах доступных автомобильных двигателей.

Было бы целесообразно разбираться в различных автомобильных двигателях и принципах их работы и принимать обоснованное решение о том, какой из них покупать, исходя из ваших личных предпочтений.

Типы двигателей

| Exton & Warminster

Скорее всего, вы слышали о различных типах двигателей, от усовершенствованных версий, которые работают на старом добром газе, до электродвигателей, которые обеспечивают эффективность, превосходящую невероятную.

Чтобы узнать больше о современных достижениях в технологии двигателей, ознакомьтесь с приведенным ниже руководством ATC по трем различным типам двигателей и их преимуществам.

Автомобильная учебная библиотека

Узнайте больше о нашей программе автомобильных технологий, предлагаемой в кампусах Экстона и Уорминстера. Запланируйте тур по кампусу сегодня!

Тип двигателя № 1: Газовые двигатели

Традиционный тип двигателя, который до сих пор живет под капотом бесчисленных транспортных средств на дорогах, — это бензиновый двигатель внутреннего сгорания. Рентгеновский снимок газового двигателя показал бы работу нескольких цилиндров (часто четырех, шести или восьми), где происходят крошечные контролируемые взрывы, сжимающие и воспламеняющие топливо, передавая эту энергию на колеса.Газовые двигатели

имеют несколько компоновок, включая рядный, V-образный, оппозитный и роторный, которые могут обеспечить улучшенную управляемость, эффективность и производительность. Рядные двигатели, в которых цилиндры расположены по прямой линии на единственном коленчатом валу, имеют небольшой вес и потенциально могут быть достаточно экономичными (но они не могут конкурировать с гибридными или электрическими двигателями в этой категории).

Прочтите наши другие сообщения в блоге о двигателях здесь

Тип двигателя № 2: гибридные и электрические двигатели

Гибридные двигатели включают в себя несколько компонентов в своих силовых агрегатах, обычно двигатель внутреннего сгорания, электродвигатель / генератор и аккумулятор.

На пониженных оборотах электродвигатель гибридного двигателя получает энергию исключительно от аккумулятора. На умеренных оборотах газовый двигатель обеспечивает питание автомобиля и генератора, который вырабатывает электроэнергию для пополнения заряда батареи. Энергия, которая вырабатывается, когда ускоритель не нажат, также улавливается генератором. Использование энергии, которая уже присутствует в колесах, и переключение между двумя источниками энергии позволяет гибридным автомобилям обеспечивать оптимальную эффективность и значительно сокращать выбросы.

Электромобили не имеют бензинового двигателя и выхлопной трубы. Они полагаются исключительно на электричество от аккумуляторной батареи для поворота оси и создания движения колес автомобиля. Нет необходимости заправлять топливо, а нужно заряжать его, преимущества электрических двигателей включают нулевые выбросы и снижение затрат на топливо.

По мере того, как аккумуляторные технологии и срок службы энергии продолжают развиваться и расширяться, ожидается, что гибридные и электромобили станут еще более популярными.

Тип двигателя № 3: Дизельные двигатели

Дизельные двигатели работают аналогично газовым двигателям, но имеют другой цикл зажигания.Вместо использования свечей зажигания для воспламенения топливовоздушной смеси перед входом в камеру сгорания, как это делают газовые двигатели, дизельные двигатели полагаются исключительно на сжатие для сжигания смеси. Дизельные двигатели более прочны, чтобы выдерживать экстремальное давление, возникающее при сгорании.

Благодаря этой более надежной конструкции срок службы дизельных двигателей намного превышает срок службы традиционных газовых двигателей. Дизельные двигатели также более экономичны; В качестве источника топлива дизельное топливо, естественно, содержит больше энергии, чем бензин.Более высокий крутящий момент дает дизельным двигателям серьезную мощность и быстрое ускорение, поэтому вы часто будете видеть их в более крупных транспортных средствах, которые требуют буксировки или буксировки тяжелых грузов.

Студенты, зачисленные на курсы по автомобильным и морским программам ATC, знакомятся со сложными компонентами, которые используются в современных двигателях. Если вам нравятся различные типы двигателей и их внутреннее устройство, вам может быть интересна карьера в автомобильной или морской промышленности.

Ознакомьтесь с нашими электронными книгами и ресурсами, чтобы узнать больше о топливе для двигателя!

Есть вопрос? Свяжитесь с нашими специалистами в нашем кампусе в Экстоне и / или Уорминстере!

[hs_action id = ”537 ″]

Какие бывают типы двигателей? с (Изображения и PDF)

Из этой статьи вы узнаете, какие типы двигателей используются в автомобильной промышленности.А также вы можете скачать PDF-файл этой статьи в конце.

Что такое двигатель?

Двигатель — это машина, предназначенная для преобразования одной формы энергии в механическую. Тепловые двигатели, такие как двигатели внутреннего сгорания, сжигают свое топливо внутри цилиндра двигателя.

С другой стороны, двигатели внешнего сгорания — это те тепловые двигатели, которые сжигают свое топливо вне цилиндра двигателя.

Это паровые машины. Энергия, вырабатываемая при сгорании топлива, передается пару, который воздействует на поршень внутри цилиндра.В двигателях внутреннего сгорания химическая энергия сохраняется при их работе.

Тепловая энергия преобразуется в механическую за счет расширения газов относительно поршня, прикрепленного к коленчатому валу, который может вращаться.

Типы двигателей

Ниже приведены различные типы двигателей :

  1. Типы используемого топлива
    1. Бензиновый двигатель
    2. Дизельный двигатель
    3. Газовый двигатель
  2. В соответствии с рабочим циклом
    1. Двигатель с циклом Отто
    2. Дизельный двигатель
    3. Двигатель с двойным циклом сгорания
  3. Число тактов за цикл
    1. Четырехтактный двигатель
    2. Двухтактный двигатель
  4. Классификация по типу зажигания
    1. Двигатель с воспламенением от горячей точки
    2. Искровое зажигание (С.I.) двигатель
    3. Двигатель с воспламенением от сжатия (CI)
  5. Количество цилиндров
    1. Одноцилиндровый двигатель
    2. Двухцилиндровый двигатель
    3. Трехцилиндровый двигатель
    4. Четырехцилиндровый двигатель
    5. Шестицилиндровый двигатель
    6. Восьмицилиндровый двигатель
    7. Двенадцатицилиндровый двигатель
    8. Шестнадцатицилиндровый двигатель
  6. Классификация по расположению клапанов
    1. Двигатель с L-образной головкой
    1. Двигатель с I-образной головкой
    2. Двигатель с F-образной головкой
    3. Двигатель с T-образной головкой
  7. Классификация по системе охлаждения
    1. Двигатель с воздушным охлаждением
    2. Двигатель с водяным охлаждением
    3. Двигатель с испарительным охлаждением

В дополнение к вышеуказанным классификациям, двигатели внутреннего сгорания также классифицируются по следующим основаниям:

  1. Скорость
    1. Низкооборотный двигатель
    2. Высокоскоростной двигатель
    3. Средний- скоростной двигатель
  2. Способ впрыска топлива
    1. Карбюраторный двигатель
    2. Двигатель с впрыском воздуха
    3. Двигатель безвоздушного или твердого впрыска
  3. Метод управления:
    1. Двигатель с управляемым попаданием
    2. Двигатель с качественным управлением
    3. с количественным управлением двигатель
  4. Применение:
    1. Стационарный двигатель
    2. Автомобильный двигатель
    3. Локомотивный двигатель
    4. Судовой двигатель
    5. Авиационный двигатель

Некоторые другие типы двигателей внутреннего сгорания также предлагаются для использования в качестве автомобильных силовых установок.К ним относятся

  1. Свободнопоршневой двигатель
  2. Двигатель Ванкеля
  3. Двигатель Sterling

Читайте также: Список деталей автомобильного двигателя: его функции (с изображениями)

1. Классификация по типам используемого топлива

Согласно Тип топлива , используемый в двигателях , подразделяется на три категории:

  1. Бензиновый двигатель (или Бензиновый двигатель)
  2. Дизельный двигатель
  3. Газовый двигатель
Бензиновый двигатель

Бензиновый двигатель работает на бензине.Бензин или бензин — это углеводород, состоящий из соединений водорода и углерода. Смесь воздух-бензин всасывается в цилиндр во время такта всасывания поршня. Правильная смесь воздуха и бензина получается из карбюратора.

Смесь сжимается во время такта сжатия, воспламеняется во время рабочего такта, а выхлопные газы выталкиваются наружу во время такта выпуска. В верхней части цилиндра установлена ​​свеча зажигания, которая дает искру для воспламенения смеси.

Дизельный двигатель

В этих типах двигателей для работы используется дизельное топливо.Дизельное топливо легкое, с низкой вязкостью и высоким цетановым числом. В дизельном двигателе только воздух всасывается в цилиндр во время такта всасывания и сжимается до высокого давления, степень сжатия достигает 22: 1. Его температура также повышается примерно на 1000 ° F.

Дизельное топливо впрыскивается форсункой в ​​конце такта сжатия, которая загорается и горит из-за высокой температуры сжатого воздуха. Никакой отдельной системы зажигания не требуется. Сгоревшие газы расширяются, толкая поршень вниз во время рабочего такта, и, наконец, газы выталкиваются наружу во время такта выпуска.

Газовая турбина

Газовая турбина по существу состоит из двух секций — секции газификатора и секции мощности. Топливо, используемое в газовой турбине, может быть бензином, керосином или маслом. Секция газификатора сжигает топливо в горелке и подает полученный газ в силовую секцию, где он раскручивает силовую турбину. Затем силовая турбина вращает колеса транспортного средства через ряд шестерен.

Газификатор состоит из компрессора, у которого есть ротор с рядом лопастей по внешнему краю.При вращении ротора воздух между лопастями переносится и выбрасывается под действием центробежной силы в горелку. Таким образом, давление воздуха в горелке повышается. Топливо впрыскивается в горелку, где оно горит и дополнительно повышает давление.

2. Классификация по циклу эксплуатации

По циклу эксплуатации автомобильные двигатели могут быть трех типов:

  1. Двигатель по циклу Отто.
  2. Дизельный двигатель.
  3. Двухтактный двигатель.
Цикл Отто или цикл постоянного объема

Цикл Отто или цикл постоянного объема. Этот цикл был введен в практическую форму немецким ученым Отто в 1876 году, хотя он был описан французским ученым Бодом Роше в 1862 году. Двигатели, работающие по этому циклу, известны как двигатели с циклом Отто. Бензиновые двигатели работают по этому циклу.

I.C. двигатель не подвергается циклическим изменениям, но здесь предполагается, что рабочая среда — это чистый воздух, не претерпевающий никаких химических изменений.Воздух просто нагревается и охлаждается, чтобы пройти цикл. Также предполагается строгое соблюдение идеальной индикаторной диаграммы.

Идеальный цикл Отто состоит из следующих операций:
1-2 Адиабатическое сжатие.
2-3 ​​Добавление тепла при постоянном объеме.
3-4 Адиабатическое расширение.
4 1 Отвод тепла при постоянном объеме.

Дизельный цикл или цикл постоянного давления

Дизельный цикл был введен доктором Dr.Рудольф Дизель в 1897 году. Двигатели, работающие по этому циклу, известны как дизельные двигатели. На рисунке показана диаграмма p-v для дизельного цикла.

Состоит из следующих операций:
1-2 Адиабатическое сжатие.
2-3 ​​Подвод тепла при постоянном давлении
3-4 Адиабатическое расширение.
4-1 Отвод тепла при постоянном объеме

Дизельный цикл отличается от цикла Отто в одном отношении.В дизельном цикле тепло добавляется при постоянном давлении вместо постоянного объема.

Воздух сжимается в цилиндре во время такта сжатия от точки 1 до 2. Теперь тепло добавляется при постоянном давлении от точки 2 до 3, а затем воздух адиабатически расширяется от точки 3 до 4. Наконец, тепло отклоняется при постоянном объеме от точки 4 до 1. Воздух возвращается в исходное состояние, и цикл завершается.

Двойной цикл (или двойной цикл сгорания)

В этих типах двигателей для сгорания топлива в дизельном двигателе отводится больше времени без отрицательного влияния на эффективность.

Топливо впрыскивается в цилиндр до конца такта сжатия, так что сгорание происходит частично при постоянном объеме и частично при постоянном давлении. Такой цикл известен как двойной цикл. Фактически, все дизельные двигатели действительно работают по этому циклу. На рисунке показан двойной цикл на диаграмме p-v.

Он состоит из следующих операций.
1-2. Адиабатическое сжатие
2-3. Подвод тепла при постоянном объеме
3-4.Подвод тепла при постоянном давлении
4-5. Адиабатическое расширение
5-1. Отвод тепла при постоянном объеме.

Поскольку топливо впрыскивается в цилиндр до конца такта сжатия в двойном цикле, он учитывает характеристику запаздывания воспламенения топлива.

Прочтите об этих темах полностью:

3. Классификация по количеству ходов за цикл

По количеству ходов за цикл автомобильные двигатели классифицируются как

  1. Четырехтактные двигатели.
  2. Двигатель двухтактный.
Четырехтактный двигатель

Четырехтактный двигатель завершает цикл операций во время тактов четырех поршней, а именно всасывания, сжатия, мощности и выпуска. Эти четыре хода требуют двух оборотов коленчатого вала. Таким образом, за каждые два оборота коленчатого вала происходит только один рабочий ход поршня.

Двухтактный двигатель

Двухтактный двигатель завершает рабочий цикл во время двухтактных ходов поршня.Эти два хода требуют одного оборота коленчатого вала. Таким образом, за каждый оборот коленчатого вала происходит один рабочий ход поршня. Следовательно, двухтактный двигатель производит в два раза больше лошадиных сил, чем четырехтактный двигатель того же размера, работающий с той же скоростью.

В двухтактном двигателе такты впуска и сжатия, а также такты мощности и выпуска в некотором смысле объединены. Двухтактные двигатели используются в мотоциклах, скутерах. Четырехтактные двигатели используются в легковых, грузовых автомобилях, автобусах.

Подробнее: Двухтактные двигатели

4. Классификация по типу зажигания

В зависимости от типа зажигания современные автомобильные двигатели делятся в основном на две группы:

  1. Двигатели с искровым зажиганием.
  2. Двигатели с воспламенением от сжатия.
Двигатель с искровым зажиганием

В двигателе с искровым зажиганием на головке блока цилиндров установлена ​​свеча зажигания, которая дает электрическую искру в конце такта сжатия для воспламенения топлива.Бензиновые двигатели — это двигатели с искровым зажиганием.

Читайте также: Что такое система зажигания и 3 различных типа системы зажигания

Двигатель с воспламенением от сжатия

В этих типах двигателей топливо воспламеняется за счет тепла сжатого воздуха внутри цилиндра. В нем нет свечи зажигания, дающей искру. Воздух сжимается в цилиндре во время такта сжатия относительно при более высоком давлении.

Степень сжатия также выше, чем у двигателя с искровым зажиганием.Топливо впрыскивается в конце такта сжатия , , который горит из-за тепла сжатого воздуха. Дизельные двигатели — это двигатели с воспламенением от сжатия. Двигатели с воспламенением от горячей точки практически не используются.

5. Классификация по количеству и расположению цилиндров

Автомобильные двигатели могут иметь один, два, три, четыре, шесть, восемь, двенадцать и шестнадцать цилиндров. Одноцилиндровый двигатель используется в скутерах, мотоциклах. В тракторах используется двухцилиндровый двигатель. Четырех- и шестицилиндровые двигатели используются в легковых автомобилях, джипах, автобусах, грузовиках.

Грузовик и автобус Comet имеют шестицилиндровые двигатели. Американские легковые автомобили имеют восьмицилиндровые двигатели. Двенадцати- и шестнадцатицилиндровые двигатели также используются в некоторых легковых автомобилях, автобусах, грузовиках, промышленных установках. Трехцилиндровый двигатель используется и в переднеприводном иномарке.

Цилиндры могут быть расположены несколькими способами: вертикально, горизонтально, в ряд (рядный), в два ряда или рядами, расположенными под углом (V-образный), в два ряда, противоположных друг другу (плоский или блинный) или как спицы на колесе (радиальные).

Одноцилиндровый двигатель

Эти типы двигателей обычно используются для легких транспортных средств, таких как скутеры и мотоциклы. Максимальный размер одноцилиндрового двигателя ограничен примерно 250-300 куб. Для двигателей большего размера потребуются тяжелые двигатели из-за более высоких сил дисбаланса в одноцилиндровом двигателе.

В одном цилиндре возникает один импульс мощности на два оборота коленчатого вала. Таким образом, из четырех ходов поршней мощность передается за один ход, а в оставшихся тактах поршней мощность расходуется на преодоление сопротивления трения движущихся частей.Распределение крутящего момента во время цикла неравномерное, что приводит к грубой работе и вибрациям.

Поскольку имеется только один поршень и один шатун, которые совершают возвратно-поступательное движение без рабочих частей, уравновешивающих их вес, одноцилиндровый двигатель не имеет механической балансировки. Тем не менее, двигатель до некоторой степени сбалансирован за счет использования противовеса, прикрепленного к коленчатому валу, а также за счет использования маховика, настолько тяжелого, что его импульс вызывает относительно устойчивое движение.

Колебания частоты вращения двигателя вызывают вибрацию даже в лучших конструкциях одноцилиндровых двигателей.Следовательно, одноцилиндровые двигатели нежелательны для использования в автотранспортных средствах.

Двухцилиндровый двигатель.

Двигатели данного типа используются в основном в тракторах. Они также используются в небольшом немецком автомобиле и голландском автомобиле DAF. Расположение цилиндров в двухцилиндровых двигателях может быть трех типов

  • Рядный вертикальный тип
  • V-образный
  • Оппозиционный тип
Трехцилиндровый двигатель

Трехцилиндровый двигатель используется на переднеприводный автомобиль, в котором дифференциал расположен между двигателем и трансмиссией.Три цилиндра выстроены в линию. Это двухтактный двигатель. Картер в этом двигателе служит впускной камерой и камерой предварительного сжатия.

Каждый цилиндр имеет свою изолированную часть картера. Таким образом, основные подшипники, поддерживающие коленчатый вал, являются герметичными, так что картер разделен на три отдельных отсека, по одному для каждого цилиндра.

Четырехцилиндровый двигатель

Четырехцилиндровые двигатели в основном используются для обычных автомобилей.Полученный крутящий момент намного более равномерен по сравнению с двухцилиндровым двигателем, поскольку достигается два рабочих хода на оборот.

Цилиндры четырехцилиндрового двигателя расположены следующим образом:

  • Рядный вертикальный тип
  • V-образный
  • Противоположный тип
Шести- и восьмицилиндровый двигатель

Шесть и восемь- цилиндровые двигатели обеспечивают более плавный крутящий момент и более высокую мощность. Цилиндры этих двигателей также расположены трехрядным образом, V-образным и оппозитным, так же, как и в четырехцилиндровых двигателях.Практически повсеместно используются линейные 6-цилиндровые двигатели и двигатели V-8. Угол между рядами цилиндров в двигателях V-8 обычно составляет 90 °.

Двигатели V-8 с меньшими углами V-образного сечения также производились, но в них сложен механизм управления клапанами. Двигатели V-6 имеют два трехцилиндровых ряда, установленных под углом друг к другу. Коленчатый вал имеет только три кривошипа, причем шатуны противоположных цилиндров в двух рядах прикреплены к одной шатунной шейке. К каждой шатунной шейке прикреплены два шатуна.

Двигатель V-8 имеет два ряда по четыре цилиндра, установленных под углом друг к другу. Коленчатые валы имеют четыре кривошипа с шатунами из противоположных цилиндров в двух рядах, прикрепленных к одному шатуну. Таким образом, к каждой шатунной шейке прикреплены по два шатуна, а к каждой шатунной шейке работают два поршня. Коленчатый вал обычно опирается на пять подшипников.

Читайте также: Что такое двигатель V8 (восьмицилиндровый двигатель) и как он работает?

Двенадцати- и шестнадцатицилиндровые двигатели.

Расположение цилиндров в двенадцатицилиндровых и шестнадцатицилиндровых двигателях может быть следующих типов.

  1. V-образного или блинного типа с двумя рядами цилиндров.
  2. W-образный имеет три ряда цилиндров.
  3. X-тип имеет четыре ряда цилиндров.

Двенадцати- и шестнадцатицилиндровые двигатели применялись в легковых автомобилях, автобусах. грузовые автомобили и промышленные установки. Единственный легковой автомобиль, который сейчас выпускается с двенадцатицилиндровым двигателем, — это Ferrari.

7. Классификация по расположению клапанов

Автомобильные двигатели подразделяются на четыре категории в зависимости от расположения впускного и выпускного клапана в различных положениях в головке блока цилиндров.Эти устройства обозначаются как «L», T F и T. Легко запомнить слово «LIFT», чтобы вспомнить четырехклапанные устройства. I-образная головка чаще всего используется в автомобильных двигателях.

Двигатель с I-образной головкой

В двигателях с I-образной головкой или с верхним расположением клапанов клапаны расположены в головке блока цилиндров. Рядные двигатели обычно имеют клапаны в один ряд. Двигатели V-8 могут иметь клапаны в один ряд или в два ряда в каждом ряду. Независимо от расположения, один распределительный вал приводит в действие все клапаны.

Читайте также: Клапаны двигателя: Типы клапанов двигателя, их работа и механизм клапана

Двигатель с L-образной головкой

При расположении с L-образной головкой впускные и выпускные клапаны расположены рядом и управляются одним распредвалом. Камера сгорания и цилиндр из перевернутой L. Все клапаны для двигателя расположены в одну линию, за исключением двигателей V-8 с L-образной головкой, в которых они расположены в две линии.

В двигателях с L-образной головкой клапанные механизмы находятся в блоке, и, следовательно, головка блока цилиндров может быть легко снята при необходимости ремонта двигателя.Хотя двигатель с L-образной головкой прочен и надежен, он не особенно приспособлен к более высокой степени сжатия.

Двигатель с I-образной головкой клапана лучше приспособлен к высокой степени сжатия. В двигателе с I-образным клапаном объем зазора может быть уменьшен в большей степени, чем в двигателе с L-образной головкой. В некоторых двигателях с I-образной головкой в ​​головках поршней имеются карманы, в которые может перемещаться клапан, когда они открыты, когда поршень находится в положении T.D.C.

Двигатель с F-образной головкой

Этот двигатель представляет собой комбинацию двигателей с L-образной головкой и I-образной головкой, в которых один клапан обычно впускной клапан находится в головке, а выпускной клапан находится в блоке цилиндров.Оба комплекта приводятся в движение от одного и того же распредвала.

Двигатель с Т-образной головкой

Двигатель с Т-образной головкой имеет впускные клапаны с одной стороны и выпускные клапаны с другой стороны цилиндра. Таким образом, для их работы требуется два распредвала.

Читайте также: Камера сгорания: Типы камеры сгорания и головки цилиндров

7. Классификация по типу охлаждения

По типу метода охлаждения автомобильные двигатели делятся в основном на две категории:

  1. С воздушным охлаждением двигатели.
  2. Двигатели с водяным охлаждением.
Двигатели с воздушным охлаждением

Двигатели с воздушным охлаждением используются в мотоциклах и скутерах. В двигателях с воздушным охлаждением гильзы цилиндров обычно разделены и оснащены металлическими ребрами, которые обеспечивают большую излучающую поверхность для увеличения скорости охлаждения.

Многие двигатели с воздушным охлаждением оснащены металлическими кожухами, которые направляют воздушный поток вокруг цилиндров для улучшения охлаждения. Поскольку в этих двигателях не используется вода, устраняется проблема обслуживания в холодную погоду.

Читайте также: Типы систем охлаждения в автомобильных двигателях (двигатели I.C)

Двигатели с водяным охлаждением

Эти типы двигателей используются в автобусах, грузовиках, легковых и других четырехколесных транспортных средствах большой грузоподъемности. В этих двигателях используется вода с добавлением антифриза в качестве охлаждающей жидкости.

Вода рассчитывается через водяные рубашки вокруг каждой камеры сгорания, цилиндров, седел клапанов и штоков клапанов. Пройдя через рубашки двигателя в блоке и головке блока цилиндров, вода проходит через радиатор, где она охлаждается воздухом, проходящим через радиатор.

Двигатели испарительного охлаждения практически не используются.

Читайте также: Что такое система воздушного охлаждения и как она работает в автомобиле


Вот и все, спасибо за чтение. Надеюсь, эта статья окажется для вас полезной. Если у вас есть вопросы по « Типы двигателей », задавайте их в комментариях. Поделитесь этим постом, если им стоит поделиться.

Подпишитесь на нашу рассылку, чтобы получать уведомления о наших новых статьях.

Загрузите PDF-файл отсюда:

Двигатели на природном газе

Двигатели на природном газе

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Двигатели, работающие на природном газе, могут варьироваться от небольших двигателей малой мощности до низкооборотных двухтактных судовых двигателей мощностью более 60 МВт. Доминирующим циклом двигателя может быть Отто или Дизель, с использованием нескольких различных методов приготовления смеси и зажигания. Большинство коммерческих и разрабатываемых двигателей, работающих на природном газе, можно разделить на четыре типа технологий: (1) двигатели со стехиометрическим циклом Отто; (2) сжигание обедненной смеси, двигатели с циклом Отто; (3) двухтопливные двигатели смешанного цикла (комбинация Отто и Дизеля) и (4) дизельные двигатели, работающие на природном газе.Эти технологии демонстрируют различия в тепловом КПД, производительности и требованиях к последующей обработке.

Введение

Низкая стоимость природного газа по сравнению с дизельным топливом и бензином в сочетании с различными регулирующими мерами, связанными с выбросами, продолжает вызывать значительный интерес к природному газу как альтернативному топливу для двигателей внутреннего сгорания. Производители двигателей ответили поставкой новых, специально созданных двигателей, работающих на природном газе, в размерах от небольших легких двигателей мощностью несколько кВт до низкооборотных двухтактных судовых двигателей мощностью более 60 МВт.В 2019 году WinGD заявила, что их двухтопливный двигатель 12X92DF является самым мощным двигателем с циклом Отто с мощностью 63 840 кВт [4829] . Производители оригинального оборудования и поставщики послепродажного обслуживания также предоставляют комплекты для переоборудования, которые позволяют переоборудовать существующие дизельные и бензиновые двигатели для работы на природном газе.

Двигатели, работающие на природном газе, можно разделить на категории по многочисленным параметрам, включая: подготовка смеси (предварительно смешанная или не предварительно смешанная), зажигание (искровое зажигание или пилотный дизель) и преобладающий цикл двигателя (отто или дизель).Одна из распространенных категорий: Рис. 1 [4247] :

  • Предварительная смесь, искровое зажигание, только природный газ
  • Предварительная смесь, пилотное зажигание дизеля, комбинированное топливо — природный газ / дизельное топливо
  • Прямой впрыск природного газа под высоким давлением, пилотное зажигание дизельного топлива, комбинированное топливо природный газ / дизельное топливо
Рисунок 1 . Три категории двигателей, работающих на природном газе

(Источник: Wärtsilä)

Приведенная выше группа адекватно охватывает коммерческие двигатели размером примерно до 2.5 л / цилиндр, когда также рассматриваются более крупные двигатели, возникает ряд проблем при представлении общих концепций между некоторыми из различных подходов. В частности, двухтопливные двигатели, работающие на обедненной смеси, с воспламенением от небольшого (<~ 5% топливной энергии) дизельного микропилотного двигателя имеют больше общего с двигателями SI, работающими на обедненной смеси, чем с двухтопливными двигателями, использующими гораздо более крупный пилотный дизельный двигатель (> ~ 15 % топливной энергии). Он также не охватывает некоторые концепции, находящиеся на стадии разработки. Следующая категоризация является более общей и отражает общие концепции различных подходов:

  • Двигатели со стехиометрическим циклом Отто
  • Бедное сжигание, двигатели с циклом Отто
  • Двухтопливные двигатели со смешанным циклом (комбинация Отто и Дизеля)
  • Дизельные двигатели, работающие на природном газе

В двигателях со стехиометрическим циклом Отто используется предварительно смешанная «почти стехиометрическая» воздушно-топливная смесь, и они воспламеняются свечой зажигания.Важным мотивом для использования стехиометрических двигателей является тот факт, что они могут использовать трехкомпонентный катализатор (TWC), иногда также называемый катализатором неселективного каталитического восстановления (NSCR), для снижения NOx и окисления CO и углеводородов в выхлопе. . Следует отметить, что пиковая эффективность преобразования для NOx, CO и HC в TWC с природным газом просто богата стехиометрией, и двигатели, работающие на природном газе, сжигающие «стехиометрическую» топливно-воздушную смесь, обычно калибруются для работы на слегка обогащенной смеси.Это отражено в терминологии, используемой для стационарных двигателей, работающих на природном газе, для которых двигатели, работающие на природном газе, использующие смесь, близкую к стехиометрической, иногда называют двигателями «богатого горения».

В двигателях с циклом Отто с обедненным сжиганием используется обедненная предварительно смешанная воздушно-топливная смесь с несколькими вариантами зажигания. Свеча зажигания или дизельный микропилот — два наиболее распространенных варианта. Свечи накаливания также нашли ограниченное коммерческое применение. Одним из важных преимуществ двигателей с циклом Отто, работающего на обедненной смеси, является их высокий термический КПД тормозов (BTE), который во многих случаях может достигать 50%.Если на двигателях, работающих на обедненной смеси, требуется дополнительная обработка, для контроля выбросов NOx можно использовать СКВ мочевины. Катализаторы окисления метана требуют высокой температуры выхлопных газов, чтобы быть эффективными, и полезны только в некоторых стационарных применениях.

В двухтопливных двигателях смешанного цикла используется обедненная предварительно смешанная воздушно-топливная смесь, воспламеняемая значительным пилотным двигателем дизельного топлива, что составляет более ~ 15% от общей энергии топлива. Они упоминаются здесь как двигатели со смешанным циклом, потому что пилотный дизельный двигатель вносит значительный вклад в общее тепловыделение при сгорании предварительно смешанной смеси природного газа и воздуха.Важным преимуществом этого подхода является то, что существующие дизельные двигатели (либо используемые двигатели, либо существующие платформы дизельных двигателей от производителя двигателей) могут быть относительно легко преобразованы для использования природного газа — популярное соображение, когда разница в ценах на дизельное топливо и природный газ составляет большой.

В дизельных двигателях, работающих на природном газе, природный газ предварительно не смешивается с воздухом. Вместо этого природный газ впрыскивается прямо в камеру сгорания под высоким давлением почти так же, как это делается в дизельном двигателе.Однако, в отличие от дизельных двигателей, требуется источник воспламенения. Основным средством зажигания струй природного газа является зажигание небольшого дизельного двигателя непосредственно перед впрыском газа. Этот подход иногда называют прямым впрыском высокого давления (HPDI) или газодизелем. Также исследуются возможности зажигания через свечу накаливания или свечу зажигания с форкамерой. Важным преимуществом этого подхода является то, что достижима более высокая удельная мощность и может использоваться более высокая степень сжатия по сравнению с подходами с предварительным смешиванием.

В таблице 1 суммированы эти подходы с более подробной информацией, представленной ниже. Доступны и другие сводки, аналогичные таблице 1, но в основном они ориентированы только на приложения с тяжелыми условиями эксплуатации [3568] [4323] .

  • Свеча зажигания форкамеры (пассивная или активная)
  • Дизельный микропилот с открытой камерой
  • Дизельный микропилот, форкамера
  • Свеча накаливания, предварительная камера (ограниченное применение)
Таблица 1
Сравнение различных систем сгорания для двигателей, работающих на природном газе
Стехиометрический цикл Отто Цикл Отто сгорания обедненной смеси Двухтопливный смешанный цикл Дизельный цикл
Состояние смеси воздух / топливо Стехиометрический Lean
Доминирующий цикл двигателя Otto Otto / Diesel Diesel
Technology Опции зажигания
    Свеча зажигания
  • Пилотный дизель, открытая камера
  • Пилотный дизель, открытая камера
  • Свеча накаливания открытая камера (опытная)
  • Свеча зажигания форкамеры (опытная)
Контроль выбросов из двигателя
  • NOx: EGR, угол опережения зажигания
  • CH 4 : объемы щелей камеры сгорания, продувочный поток, закрытая вентиляция картера (CCV)
  • ПМ: расход масла
  • NOx: AFR, угол опережения зажигания
  • CH 4 : объемы щелей камеры сгорания, продувочный поток, CCV, объемные потери при сгорании
  • ПМ: расход масла
  • NOx: AFR, пилотное дизельное топливо, шт., угол опережения зажигания
  • CH 4 : объемы щелей камеры сгорания, продувочный поток, CCV, объемные потери при сгорании
  • PM: дизель-пилот кол-во, расход масла
  • NOx: EGR, угол впрыска
  • PM: аналог дизельного
Опции системы дополнительной обработки (ATS)
  • TWC для NOx, CH 4 , CO
  • PM: ATS не требуется до 2010 США и Euro VI-D
  • NOx: Мочевина SCR
  • CH 4 : MOC в ограниченных применениях
  • NOx: Мочевина SCR
  • CH 4 : MOC в ограниченных применениях
  • NOx: Мочевина SCR
  • CH 4 : обычно не требуется
  • PM: DPF (активная регенерация требует DOC + дизельное топливо)
Основные области применения
  • Легкие, средние и тяжелые условия
  • Стационарный <~ 1 МВт
  • Железнодорожное и крупногабаритное внедорожное оборудование, модернизация дизельного топлива
  • Тяжелые, стационарные и морские
КПД, BTE, без WHR
  • <40%, коммерческие двигатели; ~ 45% потенциал заушных слуховых аппаратов
  • Для тяжелых условий эксплуатации: <46%; Потенциал КПД аналогичен дизелю, ~ 50%
  • Морские низкоскоростные двигатели: <48%, коммерческие двигатели
Преимущества
  • 100% замена дизельного топлива
  • Низкие выбросы NOx и CH 4
  • Простой пассивный АТС
  • Работает с КПГ или СПГ
  • Высокая эффективность
  • Можно избежать использования свечей зажигания
  • Возможна работа только на дизельном топливе (только на двухтопливном топливе)
  • Работает с КПГ или СПГ
  • 100% дизельная подстанция (кроме дизельной микропилотной)
  • Замена дизельного топлива до> 99% с помощью дизельного микропилота
  • Высокая эффективность
  • Свечи зажигания отсутствуют
  • Возможна работа только на дизельном топливе
  • Возможна модернизация существующих дизельных двигателей
  • Работает с КПГ или СПГ
  • Высокая удельная мощность
  • Ударопрочность
  • Высокая эффективность
  • Можно избежать использования свечей зажигания
  • Замена дизельного топлива до 95%
  • Низкий CH 4 Выбросы
  • Устойчивость к изменениям в составе топливного газа
Проблемы
  • Срок службы свечи зажигания
  • Более низкая удельная мощность по сравнению с дизельным
  • Низкий КПД по сравнению с дизелем
  • Работа при высоких нагрузках может быть ограничена детонацией
  • Срок службы свечи зажигания (только при искровом зажигании)
  • Несгоревшие CH 4 Выбросы
  • Работа при высоких нагрузках на NG может быть ограничена детонацией
  • Замена дизельного топлива ограничена ~ 50-85%
  • Пропуски воспламенения при малой нагрузке с NG
  • Несгоревшие CH 4 Выбросы
  • Работа при высоких нагрузках на NG может быть ограничена детонацией
  • Работа только на дизельном топливе невозможна
  • СПГ только для мобильных приложений.Для КПГ требуется компрессор большой мощности с большой занимаемой площадью
  • Дороговизна и сложность
  • PM и NOx требуют полного дизельного двигателя ATS (для тяжелых условий эксплуатации)

###

Типы двигателей

Типоразмеры

Типы двигателей — многоцилиндровые


Ниже показаны различные компоновки двигателей; есть и другие, такие как V 12.
Вообще говоря, чем больше цилиндров, тем большую мощность развивает двигатель и тем плавнее он будет работать.
Эти компоновки не ограничиваются бензиновыми двигателями, дизельные двигатели также могут отличаться компоновкой.
Единственным ограничением разнообразия компоновок является воображение дизайнеров, за исключением того, что неэкономично (как с точки зрения производственных затрат, так и мощности, а также использования) проектировать и строить двигатель, скажем, с 4-литровым V8, тогда как 2-литровый V6 был бы неэффективен. быть адекватным.



Типы двигателей — порядок зажигания

Все многоцилиндровые поршневые двигатели внутреннего сгорания работают в одном рабочем цикле: —
Индукционный «сосать»
Сжатие «Squeeze»
Мощность «Bang»
Выхлоп «Blow
» Каждый рабочий ход используется для приведения в действие транспортного средства, приведения в действие других цилиндров во время других частей цикла и преодоления трения.
Важно, чтобы порядок зажигания был рассчитан по времени, чтобы выровнять все силы рабочего хода на компонентах двигателя и обеспечить плавную работу двигателя, при которой уровни разрушительной вибрации сведены к абсолютному минимуму.
Мы уже рассмотрели порядок запуска двигателя Inline 4, а ниже проиллюстрирован порядок запуска двигателя Flat 4, типичный для оригинальных серийных автомобилей VW Beetle и Porsche, а также Vee 8, который используется во многих автомобилях. высокопроизводительные суперкары.
Порядок включения различных других двигателей указан ниже: —

Рядный 6 1 — 5 — 3 — 6 — 2 — 4
V 4 1 — 3 — 4 — 2 (согласно Inline 4)
V 6 1 — 4 — 2 — 5 — 3 — 6
На двигателях Vee также важен угол между рядами цилиндров (рядами); 60 ° идеально подходит для 6-цилиндровых двигателей, а 90 ° — для двигателей большего размера.



Типы двигателей — «Двухтактный» цикл


Как следует из названия, рабочий цикл этого двигателя завершается за два такта, т.е.е. один полный оборот коленчатого вала.
Ниже описаны два хода, начиная со сжатия: —
Ход 1 — Ход вверх
Выше поршня воздух и топливо захватываются и сжимаются, когда впускная и выпускная части цилиндра закрыты.
Примерно в верхней мертвой точке горение инициируется либо искрой, теплом, вызванным сжатием, либо «свечой накаливания» (поясняется позже).
Под поршнем увеличивающийся объем под поршнем и в картере втягивает заряд топлива и воздуха в картер.
Ход 2 — ход вниз
Над поршнем расширяющиеся газы толкают поршень вниз по цилиндру, обеспечивая мощность. Когда выхлопное отверстие открыто, отработанные газы выходят из цилиндра.
Ниже поршня движущийся вниз поршень закрывает впускное отверстие картера, открывает впускное и выпускное отверстия цилиндра. Движущийся вниз поршень нагнетает поток воздуха / топлива из картера в цилиндр (впуск) над поршнем и помогает вытеснить последние выхлопные газы из цилиндра.
Открытие и закрытие клапана — это просто движение поршня, закрывающее или открывающее порты.
Другие варианты
Некоторые двухтактные двигатели имеют «герконовый» клапанный механизм. Это клапан откидного типа, который открывается за счет эффекта всасывания, когда поршень поднимается, и закрывается под давлением, когда поршень опускается.
Приложения
Двухтактные двигатели используются там, где требуется небольшой легкий источник питания, например, в бензопилах, подвесных моторах, стриммерах, небольших мотоциклах и модельных установках.
Смазка
Поскольку картер является неотъемлемой частью системы подачи топливовоздушной смеси, не существует простых способов создания системы смазки с рециркуляцией масла. Поэтому масло добавляется в топливо для обеспечения необходимой смазки.
Свечи накаливания и системы зажигания
Свечи накаливания похожи на маленькие свечи зажигания, но вместо разрядника здесь катушка. Он нагревается электрически для запуска, а затем остается горячим в процессе сгорания.Широко используется в двигателях модельного типа.
Некоторые двухтактные двигатели имеют искровую систему зажигания, похожую на свечи зажигания в четырехтактных двигателях.



Типы двигателей — Дизель


Рабочий цикл дизельного двигателя такой же, как и у бензиновых двигателей, то есть этот двигатель имеет аналогичный механизм клапана, масляные системы и т. Д.
Большая разница в том, что у дизелей нет ни системы зажигания, ни свечей зажигания.
В дизельном двигателе сгорание инициируется повышением температуры смеси сжатого воздуха и топлива.
Это означает, что зажигание рассчитывается точно по времени, когда это необходимо, без зависимости от времени искры.
Подача топлива
Поскольку дизельный двигатель работает с более высокими степенями сжатия, необходимо впрыскивать топливо для получения правильной скорости подачи.
Топливо впрыскивается либо Косвенно, , то есть , во впускной коллектор сразу за впускным клапаном, либо Непосредственно i.е. в цилиндр.
Впрыск топлива синхронизируется со сжатием воздуха в цилиндре, обеспечивая подачу топлива в нужное время и в нужном количестве.
Системы впрыска топлива описаны в разделе о топливе.



Типы двигателей — Двигатель Ванкеля — Описание


Этот двигатель был разработан Феликсом Ванкелем и впервые установлен на автомобиле NSU Ro 80 в 1967 году.
Двигатель имеет вращающийся треугольный ротор, работающий в удлиненной камере (почти восьмерка). Форма ротора и камеры означает, что ротор имеет небольшое поперечное перемещение.
Треугольный ротор входит в зацепление с неподвижной (невращающейся) ведущей шестерней. Ротор приводит в движение выходной вал через смещение кривошипа (аналогично коленчатому валу поршневого двигателя).
За каждый оборот ротора выходной вал поворачивается четыре раза.
Между ротором и камерой имеется четыре точки соприкосновения. Три угла ротора находятся в постоянном скользящем контакте (показано желтыми стрелками на схеме ниже) с внутренней стенкой камеры. Уплотнение в этот момент очень важно, любая утечка и двигатель теряет мощность.
Контакт, обозначенный ниже желтым кружком, меняется из стороны в сторону при вращении ротора.
Двигатели Ванкеля могут иметь несколько роторов, каждый в своей камере, точно так же, как поршневые двигатели могут иметь более одного поршня.



Типы двигателей — Двигатель Ванкеля — Эксплуатация


Три отдельные камеры, образованные треугольным ротором и корпусом, показаны ниже как A, B и C.
Посмотрим, что происходит в каждой из этих камер.
Камера A
По мере вращения ротора камера A расширяется, втягивая топливно-воздушную смесь в двигатель. — Индукция.
Камера B
Топливно-воздушная смесь сжата и вот-вот начнет рабочий такт.
Камера C
Выпускное отверстие открыто, и камера C становится меньше, поэтому сгоревшие газы вытесняются через выпускное отверстие.
Секвенирование камеры
Поскольку камера A вращается вместе с ротором, сначала она втягивает топливо / воздух (индукция), затем камера становится меньше (сжатие), смесь воспламеняется свечой зажигания; затем расширяющиеся газы заставляют ротор вращаться. Когда камера вращается, выпускное отверстие открывается, и газы вытесняются наружу.
Все три камеры следуют той же последовательности индукции, сжатия, мощности и выхлопа; такой же, как у обычного поршневого двигателя.
В двигателе Ванкеля рабочий ход составляет за каждые оборотов коленчатого вала для каждого ротора; в поршневом двигателе на каждые два оборота коленчатого вала для каждого поршня приходится один рабочий ход.



Типы двигателей — радиальные / роторные типы


Другие типы двигателей, которые сейчас не используются, — это радиальные и роторные двигатели, которые обычно использовались на первых самолетах, особенно во время Первой мировой войны.
Радиальные и роторные двигатели выглядят одинаково, у них обоих было несколько цилиндров, расположенных одинаково и радиально расположенных вокруг центрального коленчатого вала. На видах сбоку ниже для ясности не показаны некоторые цилиндры.
Большая разница между ними: —
A. В радиальных двигателях картер и цилиндры неподвижны (как и в современных автомобильных двигателях), а коленчатый вал вращает гребной винт.
B. В роторных двигателях картер и цилиндры вращались, приводя в движение воздушный винт, а коленчатый вал оставался неподвижным.
Роторные двигатели, будучи в то время лучшим двигателем по соотношению мощности к массе, страдали некоторыми недостатками, такими как: —
Гироскопический эффект — вращение такой большой массы вызывало проблемы с управлением самолетом.
Масляная система — использовалась система полной потери, поскольку было трудно рециркулировать масло. В качестве масла использовалось касторовое масло, которое буквально разбрызгивалось после выхода из двигателя; Пилоты должны были использовать шарф, чтобы стереть слизь с очков, чтобы они могли видеть, как летать!
Радиальные двигатели довольно часто применялись во время Второй мировой войны на различных транспортных средствах, бомбардировщиках и истребителях.
Ниже показаны: —
Миниатюрный радиал для авиамоделей
Радиальный двигатель авиационного типа, адаптированный для мотоцикла!
А у Pratt and Whitney Wasp было четыре ряда по семь цилиндров, всего , двадцать восемь цилиндров, всего . Такие двигатели чрезвычайно мощные, но вес двигателя ограничивал его использование для более крупных самолетов того времени.
Позже мы увидим, как эти двигатели стали в основном устаревшими, когда стали обычным явлением реактивные двигатели (газовые турбины) с их значительно улучшенным соотношением мощности к массе и простотой.
Примечание. Устранение двигателя не означает, что он исчез в одночасье, было бы слишком дорого и технически сложно удалить все поршневые двигатели с существующих самолетов и заменить их газовыми турбинами.
Это означало, что газовые турбины стали предпочтительным двигателем при разработке новых самолетов.
С учетом вышеизложенного были опробованы некоторые отдельные изменения двигателя, в частности, Rolls-Royce Dart Turbo-Props был установлен как на истребителе P51 Mustang (заменяющий один Packard Merlin), так и на транспортном средстве McDonald Douglas Dakota (заменяющем два Pratt & Whitney R-1830). -90 — многорядный радиальный).
Порядок включения: — Для 9 цилиндра = 1, 3, 5, 7, 9, 2, 4, 6, 8.



Размеры двигателя могут отличаться, как показано на рисунке ниже.
Малогабаритный двигатель используется в моделях самолетов, размер определяется по руке, держащей двигатель.
А собираемое ниже огромное чудовище можно было использовать только в нефтяном танкере. Снова измерьте размер, сравнивая с техниками по сборке.

Размер, использование, сложность ограничены только воображением.

Существуют и другие типы двигателей, различные типы клапанных механизмов, все они доступны для просмотра в Интернете.

Источник: https://www.2473atc.org.uk/trainingMaterial/Senior/Senior%20&%20Master%20-%20Piston%20Engine%20Propulsion/CHAPTER%203%20NOTES.doc

Если вы автор текста выше, и вы не соглашаетесь делиться своими знаниями для обучения, исследований, стипендий (для добросовестного использования, как указано в авторских правах США), отправьте нам электронное письмо, и мы быстро удалим ваш текст.Добросовестное использование — это ограничение и исключение из исключительного права, предоставленного законом об авторском праве автору творческой работы. В законах США об авторском праве добросовестное использование — это доктрина, которая разрешает ограниченное использование материалов, защищенных авторским правом, без получения разрешения от правообладателей. Примеры добросовестного использования включают комментарии, поисковые системы, критику, репортажи, исследования, обучение, архивирование библиотек и стипендии. Он предусматривает легальное, нелицензионное цитирование или включение материалов, защищенных авторским правом, в работы других авторов в соответствии с четырехфакторным балансирующим тестом.(источник: http://en.wikipedia.org/wiki/Fair_use)

Информация о медицине и здоровье, содержащаяся на сайте , носит общий характер и цель, которая является чисто информативной и по этой причине не может в любом случае заменить совет врача или квалифицированного лица, имеющего законную профессию.

Тексты являются собственностью их авторов, и мы благодарим их за предоставленную нам возможность бесплатно делиться своими текстами с учащимися, преподавателями и пользователями Интернета, которые будут использоваться только в иллюстративных образовательных и научных целях.

Что такое двигатель? | Типы двигателя

Что такое двигатель?

В противном случае использовать топливо для выполнения механических работ за счет приложения крутящего момента или линейной силы (обычно в форме тяги). Устройства, преобразующие тепловую энергию в скорость, обычно называют только двигателями. Примеры двигателей, передающих крутящий момент, включают знакомые автомобильные бензиновые и дизельные двигатели, а также турбовальные двигатели.

Примеры двигателей, создающих тягу, включают турбовентиляторные и ракетные двигатели.После прочтения остальной части этой страницы кажется, что этот термин первоначально относится к любому механическому устройству, которое рассматривает любую форму энергии и преобразует ее в полезные механические движения. Таким образом, что-то, связанное с воздушной или водяной мельницей или даже приводимое в действие людьми или животными, будет называться двигателем.

Мне интересно, что значение этого термина изменилось, и это подчеркивает драматическое значение изобретения.

Также читайте: Разница между ЧПУ и ЧПУ | Определение числового управления (NC) | Определение компьютерного числового управления (ЧПУ)

Типы двигателей:

Двигатели бывают двух типов: это двигатели внешнего сгорания и двигатели внутреннего сгорания.

  • Двигатель внешнего сгорания: — В двигателях внешнего сгорания сгорание топлива происходит вне двигателей, например, в паровом двигателе.
  • Двигатели внутреннего сгорания: — В двигателях внутреннего сгорания сгорание топлива происходит внутри двигателя. Двухтактный и четырехтактный бензиновый и дизельный двигатель являются примерами двигателя внутреннего сгорания.

Различные типы двигателей внутреннего сгорания (I.C.) и их классификация зависит от разных оснований.

В зависимости от цикла эксплуатации типы двигателей бывают:

Также читайте: Что такое станок с ЧПУ? | Блок-схема ЧПУ | Детали станка с ЧПУ

№1. Цикл операции

Велосипедные двигатели Отто: —

Эти типы двигателей работают на велосипеде Отто.

Дизельный двигатель: —

Двигатель, работающий на дизельном велосипеде, называется дизельным двигателем велосипеда.

Двойной велосипедный двигатель: —

Двигатель, который работает как с дизельным двигателем, так и с велосипедом Отто, называется двигателем для двойного велосипеда или полудизельным двигателем для велосипеда.

Также читайте: Детали и функции шлифовального станка | Шлифовальный станок | Типы шлифовальных машин

№ 2. Тип зажигания

Двигатель с искровым зажиганием: —

В двигателе с искровым зажиганием на головке двигателя установлена ​​свеча зажигания. Свеча зажигания производит искру после сжатия топлива и воспламеняет топливовоздушную смесь для сгорания. Бензиновые двигатели — это двигатели с искровым зажиганием.

Двигатель с воспламенением от сжатия: —

В двигателе с воспламенением от сжатия на головке блока цилиндров нет свечи зажигания.Топливо воспламеняется от тепла сжатого воздуха. Дизельные двигатели — это двигатели с воспламенением от сжатия.

Также читайте: Что такое центробежный насос? | Принцип работы центробежного насоса | Работа центробежного насоса

№ 3. Расположение цилиндров

Вертикальный двигатель: —

В вертикальном двигателе цилиндр расположен в вертикальном положении, как показано на рисунке.

Горизонтальный двигатель: —

В горизонтальном двигателе цилиндры расположены горизонтально, как показано на рисунке ниже.

Радиальный двигатель: —

Радиальный двигатель — это двигатель внутреннего сгорания возвратно-поступательного типа, в котором цилиндры выступают наружу из центрального картера, как спицы колеса. Если смотреть спереди, он выглядит как стилизованная звезда и называется «звездообразным» двигателем. Он обычно используется для авиационных двигателей до того, как газотурбинный двигатель не преобладает.

V-образный двигатель: —

В двигателе V-образного типа цилиндры размещены в двух рядах с некоторым углом между ними.Чтобы предотвратить вибрацию и проблемы с балансировкой, угол между двумя опорами должен быть как можно меньшим.

Вт Тип двигателя: —

В двигателях типа W цилиндры расположены в три ряда таким образом, что образуется расположение типа W. Двигатель W-типа образуется из 12-цилиндровых и 16-цилиндровых двигателей.

Двигатель с реверсивным цилиндром: —

В двигателе с реверсивным цилиндром цилиндры расположены напротив друг друга. Поршни и шатуны показывают одинаковые скорости.Он работает плавно и более сбалансирован — размер антицилиндрового двигателя увеличивается из-за его расположения.

Также читайте: Что такое орехи? | Что такое болты? | Разница между гайками и болтами

№ 4. Типы охлаждения

Двигатели с воздушным охлаждением: —

В двигателях с воздушным охлаждением цилиндр цилиндра разбирается и используются металлические ребра, которые обеспечивают площадь поверхности излучения, увеличивающую охлаждение. Двигатели с воздушным охлаждением обычно используются в мотоциклах и скутерах.

Двигатель с водяным охлаждением: —

В двигателях с водяным охлаждением вода используется для охлаждения двигателя. Двигатели с водяным охлаждением используются в легковых автомобилях, автобусах, грузовиках и других четырехколесных транспортных средствах, большегрузных транспортных средствах.

В воду добавляется антифриз, чтобы она не замерзла в холодную погоду. Каждый двигатель с водяным охлаждением имеет радиатор для охлаждения горячей воды из двигателя.

Также читайте: Как работают атомные электростанции? | Основные компоненты атомных электростанций | Принцип работы атомных электростанций

№ 5.Расположение клапана

В зависимости от расположения впускных и выпускных клапанов в различных положениях в головке или блоке цилиндров автомобильные двигатели подразделяются на четыре категории. Эти устройства называются «L», «I», «F» и «T.» Легко запомнить слово «LIFT», чтобы запомнить четырехклапанное устройство.

Двигатель с L-образной головкой: —

В двигателях этих типов впускные и выпускные клапаны расположены вместе и приводятся в действие распределительным валом. Цилиндр и камера сгорания образуют перевернутый L.

Двигатель с I-образной головкой: —

В двигателе с I-образной головкой впускной и выпускной клапаны расположены в головке блока цилиндров. Один клапан активирует все клапаны. Эти типы двигателей в основном используются в автомобилях.

Двигатель с головкой F: —

Это комбинация двигателей i-head и F-head. Клапан обычно находится в головке впускного клапана, а выпускной клапан — в блоке цилиндров. Оба набора клапанов приводятся в действие одним распределительным валом.

Двигатель с Т-образной головкой: —

В двигателе с Т-образной головкой впускной клапан расположен с одной стороны, а выпускной клапан — с другой стороны цилиндров.Здесь для работы требуются два распределительных вала: один для впускных клапанов, а другой для выпускного клапана.

Также читайте: угольная электростанция | Работа угольной электростанции | Основные компоненты угольной электростанции

№ 6. Типы дизайна

Поршневой двигатель: —

В поршневом двигателе есть поршень и цилиндр, поршень перемещается (вперед и назад) внутри цилиндра. Из-за возвратно-поступательного движения поршней его называют поршневым двигателем.Двухтактные и четырехтактные двигатели являются обычными примерами поршневых двигателей.

Роторный двигатель: —

В роторном двигателе ротор совершает вращательное движение для выработки электричества. Возвратного движения нет. В камерах присутствует ротор, совершающий вращательное движение внутри камеры. Роторные двигатели Ванкеля, газотурбинные двигатели относятся к роторным двигателям.

Также читайте: Что такое гидроэлектростанция? | Работа ГЭС | Типы гидроэлектростанций

№ 7.Количество ходов

Четырехтактный двигатель: —

Это двигатель, в котором поршень перемещается четыре раза, т. Е. Два движения вверх (из нижней мертвой точки в верхнюю мертвую точку) и два вниз (из верхней мертвой точки в нижнюю мертвую точку) за цикл рабочего такта; он четырехтактный. Это называется двигатель.

Двухтактный двигатель: —

Двигатель, в котором поршень ускоряется дважды, т. Е. Один от ВМТ до НМТ, а другой от НМТ до ВМТ, чтобы произвести рабочий такт, называется двухтактным двигателем.

Двигатель с зажиганием от горячей точки: —

Эти типы двигателей не используются на практике.

Также читайте: Что такое солнечная панель? | Как работают солнечные панели? | Основные компоненты солнечной панели | Принцип работы солнечных панелей

№ 8. Типы используемого топлива

Бензиновый двигатель: —

Двигатель, работающий на бензине, называется бензиновым двигателем.

Дизельный двигатель: —

Двигатель, работающий на дизельном топливе, называется дизельным двигателем.

Газовый двигатель: —

Двигатель, работающий на газовом топливе, называется газовым двигателем.

Также прочтите: Как работает радиатор? | Части радиатора | Охлаждающая жидкость в радиаторе | Неисправность радиатора

Детали двигателя:

Автомобильные двигатели — это сложные механизмы, состоящие из множества внутренних частей, которые действуют как часы и вырабатывают энергию, приводящую в движение ваш автомобиль. Чтобы двигатель работал нормально, все его детали должны быть в хорошем состоянии. Одна ошибка может иметь катастрофические последствия. Давайте посмотрим на основную часть двигателей.

Блок двигателя: —

Блоки являются основной частью двигателей.Все остальные части мотора по существу прикреплены к нему. Внутри блоков происходит волшебство, такое как горение.

Поршень: —

Когда зажигается свеча зажигания, поршень качает вверх и вниз, и поршень сжимает топливно-воздушную смесь. Эти возвратно-поступательные движения преобразуются во вращательное движение и передаются трансмиссией через карданный вал шинам для их вращения.

Головка цилиндра: —

Головки цилиндров прикреплены к верхней части блока для герметизации зоны и предотвращения утечки газов.Он состоит из свечей зажигания, клапанов и других деталей.

Коленчатый вал: —

Расположенная рядом с нижней частью блока цилиндров, это часть, которая преобразует энергию из возвратно-поступательного движения во вращательную.

Распредвал: —

Распределительный вал открывает и закрывает клапан в нужный момент вместе с остальными.

Клапан: —

Клапаны регулируют поток воздуха, топлива и выхлопных газов внутри головки блока цилиндров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *