Двигатели внутреннего сгорания виды: Типы поршневых двигателей внутреннего сгорания: виды

Содержание

Типы поршневых двигателей внутреннего сгорания: виды

Автопроизводители с каждым годом разрабатывают все больше новых моторов. Они отличаются по размерам, объему и мощности.

Линейки моторов, устанавливающихся на конкретный автомобиль, пестрят ассортиментом. На одну модель производитель может предлагать до 15 вариантов двигателей. Вид топлива, лошадиные силы, количество цилиндров, наличие турбины, тип впрыска, количество клапанов — отличают моторы друг от друга. Но одним из самых главных критериев для различия двигателей является их тип. Именно его чаще всего отмечают дополнительным шильдиком на крышке багажника. Двигатели внутреннего сгорания (ДВС) можно разделить на рядные, V-образные, VR-образные, опозитные и W-образные. Также к ним можно отнести роторный мотор. Авто Информатор разобрался, в чем же характерные различия этих ДВС.

Вкратце о принципе работы самого распространенного четырехтактного поршневого двигателя внутреннего сгорания. В таком двигателе цикл делится на 4 такта (4 хода поршня):

  1. Поршень идет вниз от верхней мертвой точки, освобождая камеру сгорания (цилиндр) и засасывая смесь из открытого впускного клапана.
  2. Поршень движется к верхней мертвой точке, сдавливая смесь. Когда поршень приближается к ней, в камеру сгорания подается искра.
  3. Свободный ход поршня. После подачи искры смесь детонирует и выдавливает поршень из камеры сгорания.
  4. Когда поршень совершает свой четвертый ход, открывается выпускной клапан, через который поршень выдавливает отработанные газы из камеры сгорания.

4 такта работы одного цилиндра ДВС

Рядный двигатель

Ход поршней в рядном ДВС (R6 — 6 цилиндров)

Один из самых простых типов двигателя. Он обозначается буквой «R» (R3, R4, R5 и так далее). В таком моторе цилиндры расположены в ряд. Их может быть от двух до шести. Самый распространенный из рядных двигателей — 4-х цилиндровый. Но в истории есть автомобили и с рядными 8-ми цилиндровыми моторами. Их перестали устанавливать из-за большой длины. Рядные «четверки» устанавливаются почти на все машины, объем которых находится в диапазоне от 1 до 2,4 литра. «Пятерки» начали устанавливать еще в 1974 году на Mercedes-Benz W123. Позже они начали появляться на Audi, а в конце 80-х — на автомобилях Volvo и Fiat. Касаемо рядной шестерки, самым ярким носителем данного мотора является Volvo S80, с объемом 3,2 литра.

V-образный двигатель

Ход поршней в V-образном двигателе (V8 — 8 цилиндров)

Следующий по популярности после рядного мотора. В таком двигатели цилиндры расположены друг напротив друга под углом от 10° до 120° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V», с равным количеством «котлов» на обоих сторонах. В таких моторах поршни вращают один общий коленчатый вал. На шильдике буква «V» обозначает тип двигателя, а следующие за ней цифры — количество цилиндров. Такие моторы бывают V6, V8, V10, V12. (не путать с 16V или 20V, в случае когда буква «V» расположена после цифр, она обозначает количество клапанов «Valve»). Почти всегда это машины с объемом двигателя более 3-х литров. Но бывают и меньше, например 2,8 v6 или 2,6 v6.

VR-образный двигатель

Так располагаются поршни в VR-образном двигателе

Знаменитый двигатель VR6 от Volkswagen, «V-образно-рядный» мотор (об этом и говорит обозначение VR). На таких двигателях применяется очень маленький развал блока, всего в 15°. Угол настолько мал, что такой мотор называют еще «смещённо-рядным». Самыми известными авто с таким мотором являются Golf VR6 и Passat VR6.

W-образный двигатель.

Ход поршней в W-образном двигателе (W16 — 16 цилиндров)

Этот мотор также разрабатывался компанией Volkswagen. Суть двигателя заключается в слиянии двух VR-образных моторов в один под углом 72°. Мотор W12 был презентован на концепт каре W12 Roadster. Он состоял из двух моторов VR6. Позже Volkswagen презентовал топовую версию Passat B5 с двигателем W8. Он компоновался из тех же двух VR6 моторов, только с «обрезанными» двумя цилиндрами с каждого. Самый известный W-образный мотор установлен на Bugatti Veyron. Его объем достигает 16,4 литра, а сделан он из двух моторов VR8.

Оппозитный двигатель

Ход поршней в оппозитном двигателе

Двигатель внутреннего сгорания, в котором угол между цилиндрами составляет 180°. Отличается от V-образного с развалом в 180° тем, что стоящие напротив поршни достигают верхней мертвой точки одновременно, а не поочередно. Оппозитный мотор очень активно устанавливается в автомобили марки Subaru.

Рекомендуем посмотреть наш репортаж с чемпионата по дрифту. Он прошел в Киеве на автодроме «Чайка».

Двигатель внутреннего сгорания - это... Что такое Двигатель внутреннего сгорания?

Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее

), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

История создания

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы.

Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Типы двигателей внутреннего сгорания

Поршневой ДВС Роторный ДВС Газотурбинный ДВС

ДВС классифицируют:

а) По назначению — делятся на транспортные, стационарные и специальные.

б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, "двойной веер", ромбовидные, трехлучевые и некоторые другие.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 "Жигули", ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

См. также

Примечания

Ссылки

Какие бывают двигатели и что они едят

На сегодняшний день наиболее распространённым двигателем является поршневой двигатель внутреннего сгорания с искровым зажиганием, или Отто-мотор. Он установлен на большинстве автомобилей в мире. Это легкий, дешевый, тихий и хорошо изученный двигатель. Однако человечество постоянно пытается придумать ему альтернативу как по устройству, так и использованию другого рабочего тела – топлива. И иногда у инженеров получаются весьма занятные экземпляры.

Гибридный двигатель на сжатом воздухе

В 2013 году французский концерн PSA представил систему Hybrid Air, работающую на сжатом воздухе. Однако они были далеко не первыми. Motor Development International на Женевском автосалоне 2009 года представили пневмоколяску MDI AIRpod и ее более серьезный вариант MDI OneFlowAir. В 2011 году японцы провели тест-драйв концепт-кара Toyota Ku Rin, который проехал 3,2 км на одном «заряде» сжатого воздуха. А в 2012 году Tata Motors представила трехместный и трехколесный автомобиль Tata AIRPod.

В отличие от предшественников, разработка PSA оказалась элегантнее и проще. Два баллона со сжатым воздухом, компрессор, нагнетающий воздух, и гидравлический мотор, передающий энергию сжатого воздуха в КПП. Система сама пополняла воздушные запасы (например, Tata Airpod требовалось «накачивать» каждые 200 км). Помимо установки со сжатым воздухом, под капотом Hybrid Air предполагалось устанавливать классический 3-цилиндровый двигатель внутреннего сгорания, который бы играл роль насоса и вспомогательного мотора.

В городе машина с Hybrid Air может до 80% времени ехать только на воздухе, не загрязняя атмосферу. Топливная экономичность варьируется от нулевых значений расхода и выбросов до 2,9 л/100 км и 69 г/км при использовании двигателя внутреннего сгорания соответственно. В компании планировали ставить систему Hybrid Air начиная с 2016 года, но – не сложилось.

Водородные топливные элементы

Существует три типа двигателей, использующих водород: одни работают как обычный двигатель внутреннего сгорания, другие – газотурбинные, третьи – агрегаты, использующие химическую реакцию водорода.

Первый двигатель внутреннего сгорания, работающий на водороде, появился в 1806 году, водород в нем использовался как обычный бензин. Однако использовать такие оригинальные двигатели накладно. В газотурбинных двигателях газ сжимается и нагревается, затем выделяемая энергия преобразуется в механическую. В качестве топлива можно использовать практически любое горючее.

Но самые интересные из водородных силовых установок – «химические». Концерны BMW и Toyota представили кроссовер i Hydrogen NEXT на базе последнего X5. Его силовая установка состоит из электродвигателя и литий-ионной батареи, стеков с водородными топливными элементами, химического преобразователя и двух баков, в которых под давлением 700 бар хранится 6 кг водорода. Стек специальных ячеек, наполненных водородом, конвертирует химическую энергию газа в электричество, которое аккумулируется в батарее, а она в свою очередь питает электромотор. Электрохимический генератор в составе топливного элемента выдает мощность 125 кВт (170 л. с.), а пиковая мощность силовой установки — 275 кВт (374 л.с.). В качестве топлива используется смесь водорода и кислорода из окружающего воздуха, вместо вредных выбросов система вырабатывает водяной пар. В BMW заявляют, что к 2022 году планируют выпустить первую партию водородомобилей.

Дизельный двигатель

Более ста лет назад, 23 февраля 1892 года Рудольф Дизель получил патент на свой двигатель. Принципиальным отличием его двигателя от Отто-мотора было то, что топливо в нем нагревалось быстрым сжатием, а не поджогом. Удивительно, но первые двигатели Дизеля работали на растительных маслах или легких нефтепродуктах. Кроме того, первоначально в качестве идеального топлива он предлагал использовать каменноугольную пыль, так как в Германии не было запасов нефти.

Спектр видов топлива для дизельных двигателей весьма широк. Сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения: рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизельный двигатель может с определенным успехом работать даже на сырой нефти.

Кстати, в 1898 году на Путиловском заводе в Петербурге был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления» – агрегат, аналогичный мотору Дизеля. Наша конструкция оказалась более совершенной и перспективной. Но под давлением владельцев лицензий Дизеля все работы над отечественным аналогом дизельного двигателя были остановлены.

Роторный двигатель

Самый престарелый из всех тепловых двигателей именно роторный. С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. В 19 веке стали активно использовать роторные паровые двигатели.

В 1957 года Феликс Ванкель и Вальтер Фройде показали общественности полностью работоспособный роторно-поршневой двигатель (РПД) внутреннего сгорания. Через 7 лет этот движок установили на спорткар NSU Spider, который стал первым серийником с роторно-поршневой двигатель. Такой двигатель лишен большого количества движущихся частей, он проще, а особая конструкция мотора позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Но из-за конструктивных особенностей у роторных двигателей крайне низкий ресурс, высокий расход масла и топлива, хотя и большая отдача с меньшего объема.

Из-за этих особенностей единственной компанией, которая массово, помимо NSU, выпускала автомобили с роторно-поршневым движком была Mazda. И легендарная Mazda RX-8 была скорее имиджевой моделью, нежели коммерческой. В итоге в начале 2000-х работу с роторно-поршневыми двигателями свернули.

По материалам портала «Популярная механика»

устройство - АВТОШКОЛА ФАВОРИТ

Устройство двигателя.

Наверное, вам просто любопытно, что же происходит внутри него. Или может бы вы, покупая новую машину, хотите понять, что же на самом деле значит «3-х литровый V6» или «двойной распредвал DOHC» или «фазированный впрыск». Что же это всё значит?

В этой статье мы раскроем основные принципы строения двигателя и работы его основных частей. Также расскажем, что может сломаться и что можно прокачать.

Основное назначение бензинового двигателя — это преобразовывать энергию сгорания бензина в движение так, чтобы автомобиль мог двигаться.

 Большое развитие получили двигатели, в которых бензин сгорает внутри самого двигателя. Именно поэтому они и называются двигателями внутреннего сгорания — процесс сгорания происходит внутри двигателя.

И так, для общего развития: Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели, газотурбинные двигатели. Есть ещё роторные, двухтактные и HEMI-двигатели. У каждого вида есть свои преимущества и недостатки.

Бывают ещё и двигатели внешнего сгорания. Яркий пример таких двигателей — это паровые двигатели старых паровозов. Топливо (уголь, дерево, мазут и т. д.) в паровом двигателе сгорает вне двигателя для того чтобы произвести пар, а пар в свою очередь приводит двигатель в движение изнутри.

Двигатели внутреннего сгорания более эффективны (меньше расход топлива) чем двигатели внешнего сгорания, а кроме того двигатель внутреннего сгорания намного меньше аналогичного двигателя внешнего сгорания. Именно поэтому Mercedes и BMW не ставят на свои машины паровые двигатели. Внутреннее сгорание

Если вы поместите совсем небольшое количество горючего (бензина, например) и подожжете его в закрытом пространстве, скажем внутри стянутого сапога, то сапог просто разорвется.

Это происходит, потому что очень большое количество газа выделяется при сгорании топлива. Вот так энергию сгорания бензина можно превратить в разорванный сапог. А можно её пустить на благие цели — отвезти вас с семьёй на дачу.

Например, если вы сможете зациклить процесс сгорания так, чтобы сгораемый газ приводил в движение механизмы с частотой в несколько сотен раз в минуту, то считайте, что основа двигателя у вас уже есть.

Схема работы двигателя внутреннего сгорания

Почти все двигатели в автомобилях работают в четырехтактном цикле сгорания. Четырехтактный цикл известен также как цилк Отто.

Он был назван так в честь своего изобретателя Николаса Отто, который в 1867 году придумал этот цикл. Эти четыре цикла представлены на схеме.

Эти циклы, или по другому, такты называются впуск, сжатие, рабочий ход, выпуск.

На картинке вы можете увидеть, что в двигателе поршень движется под действием сгорания топлива — как будто снаряд выстреливает из пушки.

Поршень соединяется с коленчатым валом с помощью шатуна. Так как коленвал продолжает вращение, он перезаряжает «пушку» и она снова стреляет.

А теперь, чтобы вы лучше разобрались, мы внимательнее посмотрим на этот цикл.

Поршень начинает своё движение с верхней точки. Впускной клапан открывается, а поршень, двигаясь вниз, всасывает в цилиндр топливо и свежий воздух.

Эти действия называются тактом впуска. Причем в цилиндр закачивается всего несколько капель топлива — этого вполне достаточно.

Затем поршень поднимается вверх и сжимает смесь воздуха с топливом. Чем больше сжать смесь, тем с большей силой она выстрелит.

Когда поршень достигает своей верхней точки, свеча даёт искру, которая подрывает горючую смесь. Взрыв приводит поршень к движению.

После того как поршень придет к своему нижнему положению, откроется выпускной клапан, и выхлоп вытолкнется наружу к выхлопной трубе.

И вот двигатель уже готов к новому циклу — снова засосать горючую смесь, выстелить и освободить цилиндр от выхлопа.

Заметьте что движение на выходе двигателя — крутящее, хотя движение поршня при взрыве — прямолинейное. Линейное движение поршней преобразовывается в крутящее движение двигателя с помощью коленчатого вала. Нам как раз и нужно крутящее движение: ведь нам надо крутить колеса автомобиля.

Вот и посмотрим, как это получается, что движение, начавшись в цилиндре двигателя, переходит на колеса автомобиля. Компоновка двигателя

Основа двигателя — это цилиндр и поршень. Поршень двигается внутри цилиндра, создавая движение. Двигатель, описанный нами выше, имел только один цилиндр. Такие двигатели обычно ставятся на бензопилы, а на машинах обычно стоят четырех-, шести- и восьмицилиндровые двигатели внутреннего сгорания.

В многоцилиндровом двигателе цилиндры могут быть расположены тремя разными способами: «в ряд», «V-образно», «оппозитно». Рядная компоновка  двигателя.

 

 

 

 

 

 

 

 

 

Все цилиндры расположены в ряд в одном блоке. V-образная компоновка двигателя.

 

 

 

 

 

 

 

 

 

Цилиндры расположены в двух блоках, установленных под определенным углом. Оппозитная компоновка двигателя.

 

 

 

 

 

 

 

 

 

Цилиндры расположены в двух блоках, установленных один напротив другого.

Разные формы имеют различные преимущества и недостатки в плане плавности хода, стоимости производства, размеров и формы. В зависимости от типа проектируемого автомобиля на него ставят наиболее подходящий ему двигатель.

Виды автомобильных двигателей внутреннего сгорания

Все виды двигателей внутреннего сгорания могут быть классифицированы по различным признакам. В зависимости от типа применяемого топлива двигатели бывают бензиновые и дизельные; в зависимости от способа образования горючей смеси – внутренние и внешние. Внутренние – это дизельные двигатели. Внешние – это двигатели с применением карбюраторов. В зависимости от количества цилиндров и способа их расположения двигатели могут быть рядными, V-образными, W-образными.

Рядные двигатели

Рядные двигатели внутреннего сгорания

Рядные двигатели оснащаются цилиндрами, ось которых расположена вдоль оси коленчатого вала. Количество цилиндров может быть от 2 до 10, однако встречаются двигатели с 1 цилиндром. В зависимости от числа цилиндров можно выделить следующие особенности двигателей:

  • Двигатель с 1 цилиндром. Это не сбалансированные двигатели, которые имеют простейшую конструкцию, полностью и обладают неравномерным ходом. КПД таких двигателей достаточно высокий.
  • Двигатель с 2 цилиндрами. Такие зачастую применяются в конструкции мотоциклов, не обеспечивают плавность хода.
  • Двигатель с 3 цилиндрами. Благодаря простоте конструкции является относительно распространенным. Нередко дополнительно оснащается турбиной, что позволяет увеличить мощность двигателя.
  • Двигатель с 4 цилиндрами. Является наиболее распространенной модификацией среди рядных двигателей. Применяется при конструировании автомобилей различных марок и моделей.
  • Двигатель с 5 цилиндрами. Двигатель не сбалансирован, однако при корректной настройке работы цилиндров вибрация отсутствует.
  • Двигатели с количеством цилиндров 6, 8 и 10. Двигатели сбалансированы за счет того, что работа разных цилиндров компенсирует друг друга. Такие двигатели обладают простой конструкцией и имеют высокую плавность хода.

V-образные двигатели

V-образные двигатели внутреннего сгорания

Цилиндры в данных двигателях располагаются в двух отдельных блоках и оснащаются общим картером. Шатуны поршней обоих рядов соединяются с общим коленчатым валом. Наиболее распространенные V-образные виды двигателей внутреннего сгорания оснащаются 6, 8 и 12 цилиндрами:

Двигатель с 6 цилиндрами. Данная модификация не сбалансирована. Проблема вибрации разрешается путем применения противовеса в коленчатом вале.
Двигатель с 8 цилиндрами. Цилиндры располагаются в 2 ряда, по 4 цилиндра в каждом. Данная конфигурация удобна для проектирования негабаритного двигателя большого объема.
Двигатель с 12 цилиндрами. В данной конфигурации цилиндры располагаются в 2 ряда, по 6 цилиндров в каждом.

W-образные двигатели

W-образные двигатели внутреннего сгорания

Данные двигатели оснащены тремя раздельными блоками цилиндров с одним общим картером. Шатуны поршней двигателя соединяются с общим коленчатым валом. Производство таких двигателей очень сложно и они редко применяются в автоиндустрии.

Понравилась статья?

Поделитесь ссылкой с друзьями в социальных сетях:

А еще у нас интересные e-mail рассылки, подписывайтесь! (1 раз в неделю)

Интересные материалы

Пошлина на двигатели внутреннего сгорания сохранена на уровне 0%

Члены Совета Евразийской экономической комиссии (ЕЭК) продлили срок действия нулевой ставки ввозной таможенной пошлины на отдельные виды двигателей внутреннего сгорания, одобрили Порядок взаимодействия между государствами Евразийского экономического союза (ЕАЭС) и ЕЭК по вопросам устранения ограничительных мер в торговле с третьими сторонами, согласовали приведение ставки ввозных таможенных пошлин «для промышленной сборки» в соответствие с обязательствами Российской Федерации в ВТО, утвердили «дорожные карты» по реализации соглашений с Китаем и Ираном и приняли решение, которое обеспечит непрерывность реализации проекта по маркировке меховых изделий.

До 30 сентября 2019 года продлен срок действия нулевой ставки ввозной таможенной пошлины ЕТТ ЕАЭС на поршневые двигатели внутреннего сгорания с воспламенением от сжатия (дизелей или полудизелей) для сборки моторных транспортных средств с рабочим объемом цилиндров двигателя не менее 18 500 см3, мощностью не менее 500 кВт.

Ранее ставка была снижена решениями Совета ЕЭК с 5% до 0% на период с 3 октября 2014 года по 30 сентября 2018 года включительно.

Продление срока действия меры позволит потребителям карьерной техники продолжить приобретать самосвалы по более низким ценам за счет снижения стоимости импортных двигателей, аналоги которых не производятся в Союзе. Это решение поможет в первую очередь белорусскому ОАО «БЕЛАЗ» сохранить благоприятные условия для развития, поддержит его конкурентоспособность на внутреннем и внешнем рынках. БЕЛАЗ является одним из крупнейших в мире и единственным в СНГ производителем карьерной техники. Предприятию принадлежит около 30% мирового рынка карьерных самосвалов.

Создание условий для роста объемов производства на ОАО «БЕЛАЗ» приведет к мультипликационному эффекту – увеличению производства и занятости в смежных отраслях промышленности на территории Союза.

Члены Совета ЕЭК одобрили Порядок взаимодействия между государствами ЕАЭС и Комиссией по вопросам устранения ограничительных мер в торговле с третьими сторонами. Согласно документу, страны Союза – при наличии достаточной информации – должны информировать ЕЭК об ограничительных мерах, введенных партнерами по действующим и возможным переговорным направлениям. Это будет содействовать проведению скоординированной внешнеторговой политики ЕАЭС. Комиссия сможет оперативно готовить аргументированные предложения по устранению ограничений.

Документ содержит механизм взаимодействия ЕЭК и государств-членов, позволяющий оперативно вырабатывать согласованную позицию для участия в консультациях с третьей стороной.

Для обеспечения непрерывности реализации проекта по маркировке меховых изделий внесены изменения в некоторые решения Совета ЕЭК, касающиеся этого проекта. Это необходимо в связи с тем, что после вступления в силу Соглашения о маркировке товаров средствами идентификации в ЕАЭС, которое сейчас проходит внутригосударственные процедуры в странах Союза, прекратит действовать принятое ранее Соглашение о реализации пилотного проекта по маркировке меховых изделий.

Согласно новому соглашению, требования к структуре и формату информации, передаваемой эмитентами контрольных (идентификационных) знаков и участниками оборота маркируемых товаров в уполномоченные органы государств-членов, а также сроки передачи такой информации будут устанавливаться не Советом Комиссии, а законодательством стран ЕАЭС. При этом в минимальный состав сведений о маркированном товаре, доступ к которым должен предоставляться потребителям и иным заинтересованным лицам, войдут: наименование товара, его разновидность (вид меха, цвет, размер, модель), бренд, изображение товара, идентификатор контрольного знака и страна происхождения.

Принято решение привести ставки ввозных таможенных пошлин «для промышленной сборки» в соответствие с обязательствами Российской Федерации в ВТО. В ходе присоединения к ВТО Россия получила право в течение переходного периода использовать индивидуальные преференциальные ставки ввозных пошлин на коды Единого таможенного тарифа ЕАЭС, в наименовании которых содержится «для промышленной сборки». Срок действия изъятий истекает 1 июля 2018 года, после чего они должны быть подняты на 3-10%. В соответствии с решением Совета ЕЭК Россия будет применять одинаковые ставки ввозных таможенных пошлин для автокомпонентов, ввозимых в режиме «для промышленной сборки», а также в обычном режиме для иных целей.

Совет ЕЭК утвердил «дорожные карты» по реализации Временного соглашения, ведущего к образованию зоны свободной торговли (ЗСТ) между ЕАЭС и Ираном, и Соглашения о торгово-экономическом сотрудничестве между ЕАЭС и Китаем.

Оба соглашения были подписаны на Астанинском экономическом форуме 17 мая этого года. После этого ЕЭК разработала перечни мероприятий, которые должны обеспечить техническую подготовку к вступлению документов в силу и стать отправной точкой для реализации встроенной повестки соглашений в различных сферах.

Планируется, что до конца года Высший Евразийский экономический совет примет решения об обязательности этих документов для ЕАЭС.

Приоритетными направлениями в отношениях с Китаем являются отраслевое сотрудничество, а также взаимодействие по снижению нетарифных барьеров в отдельных областях. О полноформатном соглашении с Ираном планируется договориться в течение трех лет, в перспективе оно охватит практически всю товарную номенклатуру.

Виды двигателей внутреннего сгорания

При выборе садовой техники и оборудования нужно обращать внимание на тип двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный. Для садовой техники более крупного размера, таких как газонокосилки, мотоблоки, мотокультиваторы, мини тракторы, рейдеры и т. д. в основном используют 4-х тактные двигатели, а для садовой техники малого размера - такой как бензокосы, бензопилы, и др. в основном 2-х тактные.

Рассмотрим принцип работы этих двух видов двигателей внутреннего сгорания.

Оба двигателя приводятся в действие за счет использования расширения газов при нагревании, которое происходит за счет принудительного воспламенения горючей смеси, поступаемой в воздушное пространство цилиндра. Все двигатели внутреннего сгорания, независимо от его типа, имеют основные механизмы, такие как кривошипно-шатунный механизм, газораспределительный механизм, система смазки, система охлаждения, система питания и система зажигания. Передача полезной энергии расширяющегося газа происходит через кривошипно-шатунный механизм, а за впрыск топливной смеси в цилиндр отвечает механизм газораспределения.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: ими являются сжатие и рабочий ход.

Сжатие.
Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное окно, а затем выпускное окно, после чего смесь попадает в цилиндр и начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем такте.

Рабочий ход.
После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Следующее движение поршня приводит к повторному сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания и так такт за тактом химическая энергия топлива превращается в механическую работу двигателя и его агрегатов.

Недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает сгорать и выбрасывается в атмосферу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты. Требуется смесь на основе бензина и масла для смазки механизмов двигателя, что требует дополнительных расходов на покупку масла и необходимости постоянно готовить топливную смесь. Основными преимуществами двухтактного двигателя является его маленькие по сравнению с 4-х тактным двигателем размер и вес.

Принцип работы четырехтактного двигателя

Принцип работы четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов. Когда происходит впускной этап поршень двигается вниз, открывается впускной клапан, в цилиндр поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь. При сжатии поршень движется из НМТ к ВМТ, все два клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня из ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан. Во время выпускного этапа продукты сгорания, вытесняемые давлением поршня, движущимся из НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов и фаз газораспределения четырехтактные двигатели внутреннего сгорания намного экономичнее и экологичнее - потому что исключает выброс неиспользованной топливной смеси. При работе 4-х тактные двигатели значительно тише, чем 2-х тактные и в эксплуатации намного проще. Масло в данных двигателях заливается в масляный картер, что значительно уменьшает его потребление и избавляет от заботы по приготовлению бензино-маслянной смеси. На сегодняшний день 4-х тактные двигатели становятся все компактнее, и ими оснащают такую садовую технику как бензокосы, мотобуры и т.д.

Для справки: Сравнение преимуществ и недостатков

Двигатели Преимущества
Двигатель внутреннего сгорания
  1. Высокая дальность передвижения на одной заправке;
  2. Малый вес и объем источника энергии (топливного бака).
Электродвигатель
  1. Малый вес;
  2. Максимальный момент доступный при 0 об/мин;
  3. Нет необходимости в КПП;
  4. Высокий КПД.
Паровой двигатель
  1. Работа на любом топливе.
  2. Самая высокая единичная мощность.
  3. Различные варианты теплоносителя.
  4. Широкая линейка мощностей.
  5. Значительный ресурс.
Реактивный двигатель
  1. Сверхбольшие скорости.
  2. Преодоление больших расстояний.
  3. Большая мощность.
Двигатели Недостатки
Двигатель внутреннего сгорания
  1. Низкий средний КПД во время эксплуатации;
  2. Высокое загрязнение окружающей среды;
  3. Обязательное наличие КПП;
  4. Отсутствие режима рекуперации энергии;
  5. Работа ДВС подавляющую часть времени с недогрузом.
Электродвигатель
  1. Малое плечо на одной зарядке;
  2. Долгая зарядка;
  3. Малый срок службы батареи;
  4. Большой объем и вес батареи.
Паровой двигатель
  1. Высокая инертность.
  2. Высокая стоимость.
  3. Производство тепла преобладает над электроэнергией.
  4. Сложный и дорогой капитальный ремонт.
  5. Высок нижний порог эффективного применения.
Реактивный двигатель
  1. Большой расход топлива.
  2. Дорогое обслуживание.
  3. Узкий спектр применения

Двигатели внутреннего сгорания - обзор

2.1 Введение

Двигатели внутреннего сгорания (ДВС) и реактивные двигатели являются важными силовыми установками для гражданского и военного применения. Эти двигатели - это машины, которые преобразуют тепло, выделяемое при сгорании, в механическую или кинетическую энергию. В настоящее время ДВС и реактивные двигатели по-прежнему работают на ископаемом топливе и в основном полагаются на него. Растущая озабоченность по поводу экологической и энергетической безопасности привлекает внимание к альтернативным видам топлива (AFs). Существует два типа ДВС, а именно двигатели с искровым зажиганием (SI) и двигатели с воспламенением от сжатия (CI), обычно соответствующие бензиновым двигателям и дизельным двигателям.Двигатели SI широко используются в качестве источников энергии для легковых автомобилей и мотоциклов, в то время как двигатели CI в основном используются для грузовиков, кораблей и внедорожников из-за их более высокой энергоэффективности и удельной мощности по сравнению с бензиновыми двигателями [1].

Преобладающие АФ, задействованные в ДВС, охватывают широкий спектр нетрадиционных видов топлива, включая биотопливо, полученное из биомассы, сжиженного нефтяного газа (СНГ), преобразования угля в жидкие углеводороды (CtL) и водорода (H 2 ). Биотопливо считается более чистым, чем обычное топливо для ДВС, с точки зрения выбросов вредных газообразных веществ и твердых частиц (ТЧ) [2,3]. Хотя все еще существуют некоторые технологические барьеры при использовании H 2 в ДВС, H 2 по-прежнему является одним из перспективных видов топлива для будущих двигателей, о котором будет кратко рассказано в разделе 2.2. LPG и CtL обычно получают из ископаемого топлива [4], и они обычно классифицируются как альтернативные виды топлива, но не как биотопливо. В этой главе основное внимание уделяется технологии и производству биотоплива. Сжиженный нефтяной газ и CtL также кратко рассматриваются в разделе 2.2.

Биотопливо, которое в настоящее время применяется в транспортных средствах во всем мире, - это биодизель и биоспирт [5].Биодизель - это кислородсодержащее топливо на основе сложных эфиров, состоящее из длинноцепочечных жирных кислот, полученных из растительных масел (как пищевых, так и несъедобных) или животных жиров, и оно невзрывоопасно, биоразлагаемо, негорючо, возобновляемо и нетоксично. Его можно использовать в дизельном двигателе в качестве альтернативы дизельному топливу без существенной модификации двигателя с такими же или лучшими характеристиками по сравнению с обычным дизельным топливом [6–8]. С другой стороны, биоспирты производятся из ряда сельскохозяйственных культур, таких как картофель, сахарный тростник, зерно, кукуруза, сорго и т. Д.Этанол и бутанол - наиболее часто используемые альтернативные виды топлива в ДВС [9]. Таким образом, биодизель используется для замены дизельного топлива в двигателях CI, тогда как биоспирты используются для смешивания с бензином для работы двигателей SI. Сообщается, что сжигание биодизеля может привести к заметному снижению выбросов ТЧ из-за присутствия атомов кислорода и более полному сгоранию [10,11].

Пластинки графена выглядят более искаженными и имеют более длинные разделительные расстояния. Кроме того, выбросы NO x несколько увеличиваются, в то время как выбросы углеводородов (HC) и оксида углерода (CO) уменьшаются по сравнению со сжиганием нефтяного дизельного топлива.Это можно объяснить более высокой температурой камеры сгорания при сжигании биодизеля. Биобутанол и обычные смеси дизельного топлива, по-видимому, способны эффективно снизить выбросы ТЧ, а выбросы NO x немного ниже, чем при сжигании чистого дизельного топлива. Более высокий уровень смешивания может привести к большему снижению. Аналогичная тенденция наблюдается и при использовании топлива, смешанного с биоэтанолом. Тенденция выбросов углеводородов диаметрально противоположна выбросам NO x . Однако влияние биоспиртов на выбросы CO все еще остается спорным и требует дальнейшего объяснения [12–14].

Реактивные двигатели можно разделить на четыре типа: турбореактивные двигатели, турбовентиляторные двигатели, турбовальные двигатели и турбовинтовые двигатели, работающие на реактивном топливе со строгими стандартами [15]. Альтернативные виды топлива для реактивных двигателей получают из ископаемых источников, таких как уголь и природный газ, экологически чистого сырья растений или животных или других потенциальных углеводородных материалов. Как правило, альтернативные реактивные топлива получают с использованием следующих методов: газификация биомассы, синтез с использованием процесса Фишера-Тропша (F-T) и гидрообработка растительных масел и жиров (гидрообработанные сложные эфиры и жирные кислоты) [16].Синтез F-T, который был предложен и разработан Францем Фишером и Гансом Тропшем в 1925 г. [17], включает ряд химических реакций и позволяет преобразовывать синтез-газ (CO и H 2 ) в жидкие углеводороды. Sasol и Shell поставляют коммерчески доступные виды топлива F-T по всему миру. Sasol производит топливо F-T с помощью процесса преобразования угля в жидкость (CtL), а Shell - с помощью процесса преобразования газа в жидкость (GtL).

Большинство альтернативных видов топлива содержат большую долю изопарафинов и нормальных парафинов, не содержат ароматических углеводородов и серы.Более высокое содержание парафинов в альтернативных топливах приводит к более высокому содержанию C и H и, следовательно, к более высокому уровню выбросов CO 2 и H 2 O. Для большинства альтернативных видов топлива можно найти сокращение выбросов CO примерно на 20%. Нет существенной разницы в выбросах NO x , поскольку образование NO x обычно является тепловым. Выбросы SOx напрямую связаны с содержанием серы в топливе. Ароматические углеводороды являются важными предшественниками сажи. Предыдущие экспериментальные работы показали, что сжигание альтернативных видов топлива может снизить образование сажи на 60–95%, особенно при более низкой мощности [18].

Эта глава демонстрирует классификацию альтернативных видов топлива и знакомит с их характеристиками выбросов по сравнению с обычными видами топлива. Во-первых, альтернативные виды топлива для ДВС и реактивных двигателей будут обсуждаться в разделах 2 и 3, где будут рассмотрены пути производства топлива и сырье. Далее, выбросы газообразных веществ и твердых частиц (ТЧ) от ДВС, работающих на альтернативных видах топлива, будут объяснены в разделах 4 и 5. Наконец, характеристики выбросов газообразных и ТЧ реактивных двигателей будут рассмотрены в разделах 6 и 7.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский центр

В течение сорока лет после первый полет братьев Райт использовались самолеты Двигатели внутреннего сгорания повернуть пропеллеры чтобы генерировать толкать. Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель.На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные Работа. Базовая механическая конструкция двигателя Райта такова: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели. Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр .Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немецким доктором Н. А. Отто в 1876 г. и используется до сих пор.

Хотя есть некоторые важные различия между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете детально изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года путем нажатия кнопок для остановки, шага или поворота Изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на "Engine.html" для автономной работы программы.


Действия:

Экскурсии

Навигация ..


Руководство для начинающих Домашняя страница

Двигатели внутреннего сгорания | Конструкция машины


Самыми транспортабельными и прочными источниками энергии являются двигатели внутреннего сгорания.

Большинство промышленных двигателей внутреннего сгорания (IC) в диапазоне малой мощности, около 30 л.с. или меньше, работают на бензине, потому что дизельные двигатели слишком тяжелые и дорогие. Например, в небольшом водяном насосе с приводом от двигателя бензиновый двигатель будет составлять около 60% стоимости всего пакета. С дизельной мощностью стоимость будет ближе к 90%.
Таким образом, в диапазоне малой мощности выбор двигателя в значительной степени зависит от таких факторов, как выбор между четырехтактным или двухтактным режимом работы, а также между чугунной или алюминиевой конструкцией.


Четырехтактный двигатель обычно является предпочтительной бензиновой силовой установкой. Он имеет репутацию долгой безотказной работы, плавно работает на холостом ходу и хорошо работает на низких оборотах, не требует смазки в топливе и, как правило, не имеет выхлопных газов с видимым дымом.

Небольшие двигатели обычно имеют воздушное охлаждение для простоты и снижения веса. Однако вода наиболее эффективно охлаждает более крупные стационарные двигатели.

Четырехтактные двигатели мощностью до 40 л.с. обычно имеют простые клапаны с L-образной головкой, которые дешевле, чем верхний кулачок.Расположение распредвалов с верхним расположением цилиндров обеспечивает большую мощность и экономию топлива и обычно используется в более крупных двигателях.

В малых двигателях используется тот же простой дыхательный механизм и карбюратор, что и в автомобильных двигателях. Более сложный впрыск топлива и наддув предназначены для более крупных и дорогих двигателей и дизелей.

Четырехтактные двигатели мощностью более 10 л.с. обычно изготавливаются из чугуна. С меньшими двигателями покупатель может выбирать между чугунным литьем и литым под давлением алюминием. Алюминиевый двигатель дешевле, если его производить в больших количествах.

Говорят, что железо изнашивается лучше, но сторонники алюминиевого двигателя говорят, что он служит одинаково долго при правильном уходе. Железо более устойчиво к грязи, в то время как попадание грязи внутрь алюминиевого двигателя очень вредно.

Автомобильные, морские и авиационные двигатели значительно сложнее малых промышленных двигателей, и в этих приложениях алюминий успешно используется в больших двигателях.

Двухтактный двигатель выдает значительно больше мощности, чем четырехтактный двигатель того же размера.Преимущество двухтактного режима в отношении мощности к весу составляет от 50% до 300% или более. Например, четырехтактный двигатель мощностью 40 л.с. может весить 250 фунтов, в то время как двухтактный двигатель той же мощности весит всего 65 фунтов. Один двухтактный двигатель развивает 80 л.с. при объеме всего 440 куб. См.

Из-за такого отношения высокой мощности к массе двухтактный двигатель обычно предпочтительнее для спортивных автомобилей или там, где двигатель необходимо поднимать, удерживать или переносить вручную. Электропилы и большинство подвесных судовых двигателей - двухтактные, как и большинство снегоходов.

Новые разработки в этой области заставили автопроизводителей переосмыслить предыдущие концепции двухтактных двигателей. Одна исследовательская компания обнаружила, что за счет тонкого распыления топлива сгорание становится более полным, выхлоп достаточно чист, чтобы обходиться без каталитического нейтрализатора, а холостой ход контролируется более тщательно.

В других областях применения двухтактный двигатель имеет неблагоприятную репутацию из-за резкого холостого хода, плохой работы на низких оборотах, темпераментного поведения и быстрого загрязнения. Поскольку они, как правило, лучше всего работают на высокой скорости, у них может быть короткий срок службы.Также в топливо необходимо добавить смазку.

К их преимуществу, первоначальная стоимость составляет примерно 70% от стоимости эквивалентного четырехтактного двигателя, произведенного в том же объеме производства. Двухтактные двигатели обычно изготавливают из алюминия в целях экономии веса.

Дизели обычно становятся конкурентоспособными с бензиновыми двигателями мощностью более 30 л.с., и они, как правило, становятся более логичной альтернативой по мере увеличения потребности в мощности. Их обычно выбирают из-за их экономичности в эксплуатации и большей прочности.В целом дизель стоит примерно в 2,5 раза дороже бензинового двигателя, но в среднем дизель работает примерно в 2,5 раза дольше. Помимо того, что дизели более дорогие, чем бензиновые, они также производят больше шума и вибрации. Дизели также работают в узком диапазоне оборотов и обычно требуют значительного переключения при использовании в автомобилях без преобразователей крутящего момента. Они требуют впрыска топлива, что способствует их более высокой стоимости.

Дизели приобрели репутацию надежных тяжелых двигателей, прежде всего потому, что они сконструированы таким образом, чтобы выдерживать высокие пусковые нагрузки и высокое давление в цилиндрах, которые являются следствием высокого сжатия, необходимого для самовоспламенения.

Иногда выбор двигателя основан не на экономических соображениях. Например, тенденция к стандартизации топлива часто диктует использование небольших дизелей на установках, уже использующих большие дизели. Тенденция к использованию больших сельскохозяйственных тракторов с дизельным двигателем, например, поощряет использование меньших дизельных двигателей для сельскохозяйственных нужд, поэтому в них хранится только один вид топлива.

Дизельное топливо менее летучее, чем бензин, и поэтому с ним безопаснее обращаться. А дизельное топливо меньше хищается, чем бензин, что заставляет многих строительных подрядчиков рассматривать дизельное топливо для небольших двигателей.Многие компании стандартизировали дизельную мощность для всех двигателей; Большинство двигателей, используемых на буровых установках, являются дизельными.

Географический регион также может влиять на выбор дизельного топлива по сравнению с бензином. Европейские страны, например, сильно склонны к использованию дизельных двигателей даже для двигателей мощностью менее 30 л.с.

Как и в случае с бензиновыми двигателями, есть выбор между двух- или четырехтактным дизелем. Тем не менее, дизели были усовершенствованы и усовершенствованы до такой степени, что есть небольшие внешние функциональные различия между двух- и четырехтактным режимом работы с точки зрения мощности, экономичности или долговечности.

Для двухтактного дизельного двигателя требуется механический нагнетатель для принудительной подачи воздуха, чтобы двигатель имел достаточную наддува. Это в дополнение к турбокомпрессорам (с приводом от выхлопа), которые часто используются как на четырехтактных, так и на двухтактных дизелях.

Двигатель Ванкеля с точки зрения функциональных характеристик, включая вес, выходную мощность, эффективность и скорость, напоминает двухтактный бензиновый двигатель. Короче говоря, Ванкель имеет тенденцию экономить немного больше веса и места по сравнению с обычным четырехтактным двигателем.Эта экономия варьируется от незначительной для небольших двигателей до значительной суммы по сравнению с большим автомобильным V8. Здесь Ванкель весит примерно вдвое меньше и имеет примерно одну треть размера четырехтактного поршневого двигателя.

В долгосрочной перспективе некоторые исследователи ожидают, что Ванкель с его четырехтактным принципом работы может оказаться лучше двухциклового. Первоначально Ванкель страдал от плохой герметизации камеры сгорания и большого расхода топлива. Но постоянные разработки привели к значительным улучшениям в уплотнении и снижению расхода топлива.

Ванкель получил признание в некоторых кругах автомобильного рынка, но в настоящее время он не претендует на промышленное применение. Однако некоторые крупные промышленные роторные двигатели были разработаны специально для комплексных применений, которые включают в себя приводы компрессоров, генераторов и насосов. В основном эти роторные двигатели представляют собой низкооборотные агрегаты большой мощности.

Газовая турбина очень хорошо подходит для применений, где требуется значительная выходная мощность при постоянной скорости.Например, одно из их наиболее важных промышленных применений - привод огромных электрических генераторов для увеличения выработки пара при пиковом спросе энергетических компаний. Однако газотурбинные двигатели дороги как в покупке, так и в эксплуатации. Электроэнергия, вырабатываемая на уровне энергокомпании с помощью газовой турбины, стоит в три-четыре раза больше, чем вырабатываемая паровой турбиной.

Стоимость газовой турбины составляет от 15 до 35 долларов за л.с., тогда как поршневые двигатели обычно стоят от 1 до 10 долларов за л.с.Высокая стоимость турбины связана с необходимостью использования дорогих материалов, способных выдерживать высокие температуры.

Турбины имеют низкую топливную экономичность при небольшой нагрузке, и им требуется много времени, чтобы набрать скорость при ускорении. Таким образом, они, как правило, делают плохие автомобильные двигатели. Они лучше подходят для тяжелых грузовиков и автобусов, а также для мощных стационарных установок, где они обычно движутся с постоянной высокой скоростью. Несмотря на свои недостатки, армейский боевой танк M1 приводится в движение турбинным двигателем мощностью 1500 л.с.Двигатель может развивать 40-тонную машину со скоростью, превышающей 40 миль в час. Тем не менее, это приложение неординарное.

Двигатели Стирлинга внешнего сгорания в настоящее время не имеют промышленного значения, поскольку они столкнулись с жесткой конкуренцией со стороны хорошо зарекомендовавших себя двигателей внутреннего сгорания. Кроме того, двигатели Стирлинга обычно сложны, громоздки и дороги в производстве.

Тем не менее, в автомобильных кругах есть интерес к дизайну из-за присущей ему высокой эффективности и низкого уровня выбросов выхлопных газов.Правительство США, например, спонсировало программу, цель которой - сделать Stirling экономичной и экономичной альтернативой двигателю внутреннего сгорания в автомобильной промышленности. Однако первые коммерческие применения двигателя Стирлинга заключаются в портативных электрогенераторах для транспортных средств для отдыха и государственных транспортных средств.

Заправка двигателей внутреннего сгорания | Давайте поговорим о науке

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

AB Наука о знаниях и возможности трудоустройства 8, 9 (пересмотрено в 2009 г.) 9 Блок B: Материя и химические изменения

AB Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

AB Наука 20 (2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

AB Наука 7-8-9 (2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

г. до н.э. Химия 11 (июнь 2018) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

г. до н.э. Химия 11 (июнь 2018) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

г. до н.э. Science Grade 10 (март 2018 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

МБ Химия 11 класс (2006) 11 Тема 5: Органическая химия

МБ Старший 1 наук (2000) 9 Кластер 2: атомы и элементы

МБ Старший 2 науки (2001) 10 Кластер 2: химия в действии

NB Химия 111/112 (2009) 11 Блок 2: Стехиометрия

NB Химия 121/122 (2009) 12 Раздел 1: Термохимия

NB Химия 121/122 (2009) 12 Раздел 4: Органическая химия

NB 10 класс естественных наук (2002) 10 Физическая наука: химические реакции

NB Естественные науки 9 класс (2002) 9 Атомы и элементы

NL Химия 2202 (2018) 11 Раздел 3: Органическая химия

NL Химия 3202 (2005) 12 Раздел 3: Термохимия

NL Земные системы 3209 (н. Д.) 12 Блок 5: Ресурсы Земли: Реальные приложения

NL Наука об окружающей среде 3205 (редакция 2010 г.) 12 Раздел 5: Атмосфера и окружающая среда

NL 9 класс естествознания 9 Раздел 2: Атомы, элементы и соединения (редакция 2011 г.)

NL Наука 1206 (2018) 10 Блок 2: Химические реакции

NL Наука 3200 (2005) 12 Блок 1: Химические реакции

НС Химия 11 (2003) 11 Органическая химия

НС Химия 12 (2003) 12 Термохимия

НС Структура результатов обучения: естественные науки 9 класс (2014 г.) 9 Атомы и элементы

НС Наука 10 (2012) 10 Физическая наука: химические реакции

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

NT Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

NT Наука 10 (Альберта, 2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

NT Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

NT Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

NU Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

NU Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

NU Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

NU Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

NU Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

NU Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

NU Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

NU Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда

NU Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

NU Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

ВКЛ Химия, 11 класс, ВУЗ (СЧ4У) 11 Нить C: химические реакции

ВКЛ Химия, 12 класс, техникум (СЧ5С) 12 Строка C: органическая химия

ВКЛ Химия, 12 класс, ВУЗ (СЧ5У) 12 Направление B: органическая химия

ВКЛ Науки о Земле и космосе, 12 класс, Университет (SES4U) 12 Strand E: Земляные материалы

ВКЛ Экология, 11 класс, Университет / колледж (SVN3M) 11 Строка B: Научные решения современных экологических проблем

ВКЛ Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand F: Сохранение энергии

ВКЛ Экология, 11 класс, рабочее место (SVN3E) 11 Strand D: Энергосбережение

ВКЛ Естественные науки 10 класс, академический (SNC2D) 10 Нить C: химические реакции

ВКЛ Прикладная наука 10 класс (SNC2P) (2008) 10 Нить C: химические реакции и их практическое применение

ВКЛ Естественные науки, 12 класс, рабочее место (SNC4E) 12 Направление C: химические вещества в потребительских товарах

PE Химия 521A (2006) 11 Органическая химия

PE Химия 621А (2006) 12 Термохимия

PE Наука 421A (2005) 10 Блок 3: Химические реакции

PE Science 421A (проект, 2018 г.) 10 СК 2.1 Предскажите продукты химических реакций.

PE Science 421A (проект, 2018 г.) 10 CK 2.2 Анализируйте реальные химические реакции, применяя принципы химической реактивности.

PE Наука 431A (без даты) 10 Блок 2: Химические реакции

PE Science 7e année (2016) (только на французском) 7 Тема 2: L’univers vivant - Понятие D: Режимы воспроизведения

PE Естественные науки 9 класс (2018) 9 Блок 2: Атомы и элементы

КК Прикладная наука и технологии Раздел IV Материальный мир

КК Химия Раздел V Энергетические изменения в реакциях

КК Наука и технология Раздел IV Материальный мир

СК Химия 30 (2016) 12 Химическая связь и материаловедение

СК Химия 30 (2016) 12 Химическое равновесие

СК Науки о Земле 30 (фев 2018) 12 Литосфера

СК Физические науки 20 (2016) 11 Основы химии

СК Физические науки 20 (2016) 11 Нагревать

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

YT Science Grade 10 (Британская Колумбия, июнь 2016 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

Поршневые двигатели внутреннего сгорания (Технический отчет)

Segaser, C.L. Поршневые двигатели внутреннего сгорания .США: Н. П., 1977. Интернет. DOI: 10,2172 / 5315920.

Segaser, C.L. Поршневые двигатели внутреннего сгорания . Соединенные Штаты. https://doi.org/10.2172/5315920

Segaser, C. L. Fri. «Поршневые двигатели внутреннего сгорания».Соединенные Штаты. https://doi.org/10.2172/5315920. https://www.osti.gov/servlets/purl/5315920.

@article {osti_5315920,
title = {Поршневые двигатели внутреннего сгорания},
author = {Segaser, C. L.},
abstractNote = {Текущее мировое производство поршневых двигателей внутреннего сгорания включает в себя множество разнообразных типов конструкций и очень широкий диапазон размеров.Размеры двигателей варьируются от нескольких лошадиных сил в небольших мобильных установках до более 40000 тормозных лошадиных сил в больших стационарных и морских установках. Оцениваются ключевые характеристики поршневых двигателей внутреннего сгорания, которые считаются подходящими для использования в качестве первичных двигателей в интегрированных энергосистемах сообщества (ICES). К рассматриваемым категориям двигателей относятся газовые двигатели с искровым зажиганием, масляные (дизельные) двигатели с воспламенением от сжатия и двухтопливные двигатели. Двигатели оцениваются с точки зрения эксплуатационных характеристик при полной и частичной нагрузке, надежности, экологических требований, расчетных данных о затратах на 1976 год, а также текущего и будущего статуса разработки.Самые большие поршневые двигатели внутреннего сгорания, производимые в Соединенных Штатах, имеют номинальную тормозную мощность до 13 540 лошадиных сил. Ожидается, что дальнейшие усилия по развитию приведут к увеличению тормозной мощности на 20-25% без увеличения или потери веса, экономии, надежности или продолжительности жизни, что основано на простом расширении текущих тенденций развития.},
doi = {10.2172 / 5315920},
url = {https://www.osti.gov/biblio/5315920}, journal = {},
number =,
объем =,
place = {United States},
год = {1977},
месяц = ​​{7}
}

Прикладные науки | Специальный выпуск: Двигатели внутреннего сгорания (ДВС) для наземного транспорта

Уважаемые коллеги,

Двигатели внутреннего сгорания (ДВС) являются основными силовыми установками для наземного транспорта, как на дорогах, так и на бездорожье.Прогноз заключается в том, что в ближайшие десятилетия не удастся избежать использования этих силовых установок в трансмиссии большинства транспортных средств, даже с учетом роста сегментов электромобилей и гибридных транспортных средств. Растущий спрос на транспорт, доступность ископаемого топлива по разумным ценам и высокая удельная энергия обычных видов топлива позволят ДВС стать ведущими электростанциями для движения мирового транспортного флота.

Параллельно с этим, предстоящие ограничения выбросов парниковых газов (CO2), газообразных загрязнителей и шума будут становиться все более серьезными; вынуждает производителей двигателей и автомобильную промышленность инвестировать в более инновационные и сложные технологии для борьбы с выбросами.Нормативы реальных выбросов при вождении (RDE) будут постепенно приниматься в основных экономических областях; что создает дополнительные проблемы для производителей автомобилей, поскольку это значительно расширяет рабочий диапазон ДВС, при котором выбросы загрязняющих веществ должны оставаться ниже разрешенных пределов.

Этот сценарий предлагает инженерам и исследователям захватывающие возможности для исследования новых идей и инновационных технологий. Грядет революция в отношении традиционных бензиновых и дизельных двигателей, границы между обоими исчезают по мере получения более глубоких знаний и большего контроля над процессом сгорания.Старые идеи пересматриваются с возрождением концепций двухтактных двигателей. Возникают новые циклы, новые концепции и более сложные архитектуры. Силовые установки, основанные на ДВС, становятся сложной комбинацией машин, выходящей далеко за рамки традиционного возвратно-поступательного механизма. Турбокомпрессоры, нагнетатели, органические циклы Ренкина (ORC) и гибридизация являются частью среды ICE, и все они предназначены для извлечения каждого ватта энергии из ископаемого топлива. Наконец, массовое использование выхлопных газов после очистки вводит новые парадигмы в глобальное проектирование электростанций на базе ДВС.В настоящее время нет ничего слишком инновационного, чтобы удовлетворить ожидаемый среднесрочный спрос на более чистые и эффективные ДВС.

В этом специальном выпуске приветствуются научные и технически продвинутые работы, освещающие любую из предыдущих тем, касающихся ICE. В этом контексте очень уместен специальный выпуск, посвященный бесшумной революции, которую исследователи всего мира создают вокруг машины, которой более 140 лет, которая моложе, чем когда-либо.

Проф. Д-р Хосе Рамон Серрано
Приглашенный редактор

Информация для подачи рукописей

Рукописи должны быть представлены онлайн на сайте www.mdpi.com, зарегистрировавшись и войдя на этот сайт. После регистрации щелкните здесь, чтобы перейти к форме отправки. Рукописи можно подавать до установленного срока. Все статьи будут рецензироваться. Принятые статьи будут постоянно публиковаться в журнале (как только они будут приняты) и будут перечислены вместе на веб-сайте специального выпуска. Приглашаются исследовательские статьи, обзорные статьи, а также короткие сообщения. Для запланированных статей название и краткое резюме (около 100 слов) можно отправить в редакцию для объявления на этом сайте.

Представленные рукописи не должны были публиковаться ранее или рассматриваться для публикации в другом месте (за исключением трудов конференции). Все рукописи тщательно рецензируются в рамках процесса простого слепого рецензирования. Руководство для авторов и другая важная информация для подачи рукописей доступна на странице Инструкции для авторов. Applied Sciences - это международный рецензируемый журнал с открытым доступом, выходящий один раз в месяц, издающийся MDPI.

Пожалуйста, посетите страницу Инструкции для авторов перед отправкой рукописи. Плата за обработку статьи (APC) для публикации в этом журнале с открытым доступом составляет 2000 швейцарских франков. Представленные документы должны быть хорошо отформатированы и написаны на хорошем английском языке. Авторы могут использовать MDPI Услуги редактирования на английском языке перед публикацией или во время редактирования автора.

% PDF-1.4 % 3448 0 объект > эндобдж xref 3448 286 0000000016 00000 н. 0000011175 00000 п. 0000011406 00000 п. 0000011492 00000 п. 0000011901 00000 п. 0000012403 00000 п. 0000013031 00000 п. 0000013083 00000 п. 0000013640 00000 п. 0000013755 00000 п. 0000014013 00000 п. 0000014264 00000 п. 0000014927 00000 п. 0000021647 00000 п. 0000021835 00000 п. 0000024649 00000 п. 0000027532 00000 п. 0000030289 00000 п. 0000032707 00000 п. 0000035484 00000 п. 0000038339 00000 п. 0000038464 00000 п. 0000038565 00000 п. 0000041311 00000 п. 0000043796 00000 п. 0000046738 00000 п. 0000046876 00000 п. 0000047029 00000 п. 0000047181 00000 п. 0000047333 00000 п. 0000047486 00000 п. 0000047639 00000 п. 0000047792 00000 п. 0000047945 00000 п. 0000048098 00000 п. 0000048249 00000 н. 0000048400 00000 н. 0000048553 00000 п. 0000048706 00000 п. 0000048858 00000 п. 0000049009 00000 п. 0000049161 00000 п. 0000049314 00000 п. 0000049467 00000 п. 0000049620 00000 н. 0000049773 00000 п. 0000049926 00000 н. 0000050079 00000 п. 0000050232 00000 п. 0000050385 00000 п. 0000050538 00000 п. 0000050691 00000 п. 0000050844 00000 п. 0000050995 00000 п. 0000051146 00000 п. 0000051299 00000 п. 0000051452 00000 п. 0000051605 00000 п. 0000051758 00000 п. 0000051911 00000 п. 0000052064 00000 п. 0000052217 00000 п. 0000052370 00000 п. 0000052523 00000 п. 0000052676 00000 п. 0000052829 00000 п. 0000052982 00000 п. 0000053135 00000 п. 0000053288 00000 п. 0000053441 00000 п. 0000053594 00000 п. 0000053747 00000 п. 0000053896 00000 п. 0000054045 00000 п. 0000054196 00000 п. 0000054347 00000 п. 0000054498 00000 п. 0000054649 00000 п. 0000054800 00000 п. 0000054951 00000 п. 0000055102 00000 п. 0000055253 00000 п. 0000055406 00000 п. 0000055559 00000 п. 0000055712 00000 п. 0000055863 00000 п. 0000056014 00000 п. 0000056167 00000 п. 0000056320 00000 п. 0000056473 00000 п. 0000056626 00000 п. 0000056779 00000 п. 0000056932 00000 п. 0000057083 00000 п. 0000057234 00000 п. 0000057386 00000 п. 0000057538 00000 п. 0000057691 00000 п. 0000057844 00000 п. 0000057997 00000 п. 0000058150 00000 п. 0000058302 00000 п. 0000058454 00000 п. 0000058607 00000 п. 0000058760 00000 п. 0000058913 00000 п. 0000059066 00000 н. 0000059217 00000 п. 0000059368 00000 п. 0000059521 00000 п. 0000059674 00000 п. 0000059827 00000 п. 0000059980 00000 н. 0000060133 00000 п. 0000060286 00000 п. 0000060433 00000 п. 0000060578 00000 п. 0000060729 00000 п. 0000060882 00000 п. 0000061035 00000 п. 0000061188 00000 п. 0000061341 00000 п. 0000061494 00000 п. 0000061647 00000 п. 0000061800 00000 п. 0000061953 00000 п. 0000062106 00000 п. 0000062259 00000 п. 0000062412 00000 п. 0000062562 00000 п. 0000062712 00000 п. 0000062865 00000 п. 0000063018 00000 п. 0000063169 00000 п. 0000063320 00000 п. 0000063471 00000 п. 0000063620 00000 п. 0000063771 00000 п. 0000063924 00000 п. 0000064077 00000 п. 0000064230 00000 н. 0000064383 00000 п. 0000064536 00000 п. 0000064689 00000 н. 0000064842 00000 п. 0000064995 00000 п. 0000065147 00000 п. 0000065299 00000 п. 0000065452 00000 п. 0000065605 00000 п. 0000065757 00000 п. 0000065909 00000 н. 0000066062 00000 п. 0000066215 00000 п. 0000066368 00000 п. 0000066521 00000 п. 0000066672 00000 п. 0000066823 00000 п. 0000066976 00000 п. 0000067129 00000 п. 0000067281 00000 п. 0000067433 00000 п. 0000067584 00000 п. 0000067735 00000 п. 0000067888 00000 п. 0000068039 00000 п. 0000068190 00000 п. 0000068343 00000 п. 0000068496 00000 п. 0000068649 00000 п. 0000068802 00000 п. 0000068955 00000 п. 0000069108 00000 п. 0000069260 00000 п. 0000069412 00000 п. 0000069565 00000 п. 0000069718 00000 п. 0000069871 00000 п. 0000070024 00000 н. 0000070177 00000 п. 0000070329 00000 п. 0000070481 00000 п. 0000070634 00000 п. 0000070787 00000 п. 0000070940 00000 п. 0000071093 00000 п. 0000071246 00000 п. 0000071399 00000 п. 0000071550 00000 п. 0000071701 00000 п. 0000071853 00000 п. 0000072005 00000 п. 0000072158 00000 п. 0000072310 00000 п. 0000072462 00000 п. 0000072615 00000 п. 0000072766 00000 п. 0000072915 00000 п. 0000073066 00000 п. 0000073219 00000 п. 0000073372 00000 п. 0000073525 00000 п. 0000073678 00000 п. 0000073831 00000 п. 0000073982 00000 п. 0000074133 00000 п. 0000074280 00000 п. 0000074427 00000 п. 0000074580 00000 п. 0000074733 00000 п. 0000074885 00000 п. 0000075037 00000 п. 0000075190 00000 п. 0000075343 00000 п. 0000075495 00000 п. 0000075647 00000 п. 0000075800 00000 п. 0000075953 00000 п. 0000076106 00000 п. 0000076259 00000 п. 0000076412 00000 п. 0000076565 00000 п. 0000076718 00000 п. 0000076871 00000 п. 0000077024 00000 п. 0000077177 00000 п. 0000077330 00000 п. 0000077483 00000 п. 0000077636 00000 п. 0000077787 00000 п. 0000077936 00000 п. 0000078087 00000 п. 0000078240 00000 п. 0000078393 00000 п. 0000078546 00000 п. 0000078699 00000 п. 0000078852 00000 п. 0000079005 00000 п. 0000079158 00000 п. 0000079311 00000 п. 0000079464 00000 п. 0000079616 00000 п. 0000079768 00000 п. 0000079921 00000 н. 0000080074 00000 п. 0000080227 00000 п. 0000080380 00000 п. 0000080533 00000 п. 0000080684 00000 п. 0000080835 00000 п. 0000080988 00000 п. 0000081140 00000 п. 0000081292 00000 п. 0000081443 00000 п. 0000081594 00000 п. 0000081747 00000 п. 0000081899 00000 п. 0000082051 00000 п. 0000082202 00000 п. 0000082353 00000 п. 0000082506 00000 п. 0000082659 00000 п. 0000082812 00000 п. 0000082965 00000 п. 0000083116 00000 п. 0000083267 00000 п. 0000083420 00000 п. 0000083573 00000 п. 0000083726 00000 п. 0000083879 00000 п. 0000084030 00000 п. 0000084181 00000 п. 0000084334 00000 п. 0000084487 00000 п. 0000084642 00000 п. 0000084799 00000 п. 0000084956 00000 п. 0000085112 00000 п. 0000085268 00000 п. 0000085425 00000 п. 0000085565 00000 п. 0000086043 00000 п. 0000125233 00000 н. 0000150176 00000 н. 0000010940 00000 п. 0000006143 00000 п. трейлер ] / Назад 3029068 / XRefStm 10940 >> startxref 0 %% EOF 3733 0 объект > поток h [TY HB % t "UC / * қ &! i *" 4 ^ D ,, MEEE, UsQɛ ߭͝

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *