Гидроудар двигателя что происходит: Гидроудар двигателя — что это такое? Последствия и решение вопроса

Содержание

Гидроудар двигателя — что это такое? Последствия и решение вопроса

Гидроудар двигателя — это воздействие влаги на поршень мотора при попадании воды из атмосферы в воздушный фильтр. Поскольку жидкость в отличие от воздуха практически не сжимается, то создается эффект удара цилиндра о прослойку воды при движении в крайнюю верхнюю точку к головке блока. Влага может попасть при движении автомобиля по глубокой луже.

  • Последствия гидроудара двигателя: чем это грозит
  • Что делать при гидроударе двигателя
  • Повреждения коленвала
  • Ремонт при гидроударе
  • Гидроудар дизельного двигателя
  • Предупреждение гидроударов двигателя
  • Последствия гидроудара двигателя: чем это грозит

    Последствия гидроудара зависят от того, когда именно произошло попадание воды. Если автомобиль оставался неподвижным, а двигатель работал на холостом ходу, то мотор может просто заглохнуть. При попадании влаги в рабочий объем цилиндра во время движения последствия окажутся более серьезными — деформации и разрушения вкладышей, поршневых колец, шатунов и коленвала.

    Во время движения автомобиля после разрушения деталей, например, колец, шатунов и обратного хода поршня может произойти его заклинивание или пробой. Особенно опасен гидроудар в дизельном двигателе, поскольку компрессия в нем намного больше и, следовательно, разрушение деталей цилиндропоршневой группы произойдет быстрее, чем в случае с бензиновым мотором. В отдельных случаях двигатель после гидроудара восстановлению не подлежит. Также при гидроударе повреждаются детали кривошипно-шатунного механизма и другие детали моторной группы.

    Характер повреждений напрямую зависит от скорости движения автомобиля и объема воды, попадающей в рабочий объем цилиндра. Чем выше скорость, тем больше вероятность серьезных повреждений силового агрегата.

    Что делать при гидроударе двигателя

    Если при езде по глубокой луже мотор заглох, то нельзя пытаться завести двигатель от стартера. Необходимо выключить зажигание, открыть капот и снять кожух воздушный фильтр. Дальнейшие действия зависит от того, есть ли вода в воздушном фильтре. Если присутствует влага, то следует:

    • Снять свечи зажигания.
    • Попробовать прокрутить коленвал вручную.

    Если коленвал проворачивается с трудом или возникает стук при его повороте, то самостоятельно избавиться от последствий гидроудара уже не получится — необходимо вызвать эвакуатор для транспортировки автомобиля до автосервиса.

    Повреждения коленвала

    Обычно при гидроударе коленчатый вал не повреждается. Его деформация возникает, как правило, из-за разрушения поршня и шатунов. Заклинивание колевала больше характерно при перегреве и деформациях шатунов, что при гидроударе не происходит. Определить точную причину заклинивания коленчатого вала мастер смогут при проведении визуальной диагностики деталей моторной группы.

    Ремонт при гидроударе

    В случае гидроудара двигателя производится частичная разборка двигателя и диагностика деталей кривошипно-шатунного механизма. Может потребоваться шлифовка, восстановление или замена отдельных деталей. При попадании влаги в воздушный фильтр на большой скорости движения автомобиля, попытке завести мотор через стартер может потребоваться и капитальный ремонт двигателя.

    Не всегда можно сразу определить факт гидроудара, поскольку нередко серьезные проблемы появляются не сразу. Двигатель удается завести, но водитель не обращает внимание на посторонние шумы и стуки со стороны мотора. Стуки могут свидетельствовать о механических повреждениях деталей кривошипно-шатунного механизма. Дальнейшая эксплуатация транспортного средства, как правило, приводит к серьезным деформациям деталей мотора. Поэтому необходимо как можно раньше обратиться в специализированный автосервис для проведения диагностики двигателя.

    Гидроудар дизельного двигателя

    Более серьезные последствия возникают при гидроударе дизельного двигателя. На месте попытаться удалить влагу из дизеля не получится, поэтому потребуется только буксировка или эвакуация транспортного средства с последующей разборкой мотора и оценкой степени и характера повреждений. Нельзя допускать простоя авто после гидроудара, поскольку вода достаточно быстро приведет к коррозии.

    Предупреждение гидроударов двигателя

    Один из вариантов защиты мотора является установка шноркелей. Это оправдано для внедорожников, на которых часто приходится преодолевать препятствия с глубоким уровнем воды. И, конечно, не стоит допускать погружения автомобиля в воду на уровне воздухозаборников, так как это однозначно приведет к гидроудару, переборке мотора и его капитальному ремонту. Если же гидроудар произошел, то нужно заглушить двигатель, выключить зажигание и отбуксировать автомобиль в СТО. Мастера проведут диагностику и выполнят необходимые восстановительные работы. Помните, что гидроудар проще предупредить или устранить его последствия сразу же, чем потом выполнять капитальный ремонт двигателя.

    Что такое гидроудар двигателя авто

    Если после проезда глубокой лужи машина резко останавливается, возможно двигатель получил гидроудар. Объясним — что это такое, какие бывают последствия и как их избежать.

    Что это такое

    Гидроудар — ситуация, когда при работающем двигателе внутрь попадает вода. Из курса физики знаем, что вода практически несжимаема. Представьте: Вы едите по луже и создаёте стену воды впереди капота. Она легко может попасть в мотор через воздушный фильтр и тогда поршень не сможет её сжать.

    Из-за этого резко происходит остановка и стопор двигателя с характерным ударом. В этот момент на подвижные части мотора передаётся колоссальная кинетическая энергия, которая скрутит и поломает любые металлические конструкции. Чем выше были обороты, тем больше удар нанесёт последствий. Случиться может всё, вплоть до капитального ремонта.

    Гидроударом ошибочно называют заполнение надпоршневого пространства в двигателе водой, вследствие чего поршень начинает сжимать жидкость. Это приводит к внезапной остановке и поломке мотора (излому шатуна, обрыву шпилек головки цилиндра, разрыву прокладки).

    По-научному называется «попадание несжимаемого объекта в рабочий объём двигателя».

    Как правило, не имеет значения была это жидкость или твердое тело — урон мотору наносится значительный в любом случае.

    Какие последствия

    Если силы, действующие на детали двигателя, невелики, то шатун, поршень и палец могут выдержать нагрузку. Но чаще стержень шатуна сжимается и изгибается. Если силы инерции значительны, то шатун деформируется сильно. При этом поршень проходит через верхнюю мертвую точку, коленвал продолжает вращаться и поршень начинает двигаться вниз.

    Если шатун изогнулся сильно, то может упереться в стенку цилиндра, и двигатель заклинит. Гораздо хуже, если мотор продолжает работать. При приближении к нижней мертвой точке поршень юбкой садится на противовесы коленчатого вала. Далее следует разрушение поршня, а возможно, обрыв шатуна.

    Гидроудар сказывается и на других деталях. Под действием высокого давления деформируется головка блока цилиндров (очень редко). В момент резкой остановки двигателя за счет инерции газораспределительного механизма страдает цепь или ремень привода. Значительные нагрузки испытывает натяжитель цепи (ремня). Поэтому данные детали и узлы тоже могут потребовать замены.

    Ремонт двигателя, пережившего гидроудар, мало отличается от обычного капитального ремонта. Хуже, если оборванный шатун пробьет блок цилиндров, но как показывает опыт, блок также можно отремонтировать.

    Ложные причины гидроудара

    Как показала практика, в 90 процентах случаев, если машина заглохла при проезде лужи виноват не гидроудар. Виной могут быть датчики или проводка. Например, вода попала в датчик положения коленвала — без него машина не заведется и на приборной панели будет гореть значок «чек энджин».

    Стоит подождать пять минут, после повторить запуск мотора. Если действительно вода попала на датчик или проводку, то за это время успевает подсохнуть. Если ничего не помогло и автомобиль не заводится, то следует диагностировать двигатель. О явной причине гидроудара говорит низкая компрессия.

    В дальнейшем, чтобы избежать гидроудара, следует осторожно проезжать через глубокие лужи. Лучше притормозить заранее, а не проезжать на полной скорости. Ведь у многих машин система забора воздуха находится низко.

    что это такое Симптомы, причины и последствия гидроудара

    Многие опытные водители знакомы с непредвиденным обстоятельством, которое возникает во время скоростного прохождения луж. Влага проникает в камеру сгорания через элемент очищения воздуха. Целостности системы наносится вполне ощутимый урон, так как это происходит в момент такта сжатия горючей смеси. Неправильно обычно действует сам человек, но исключение составляют случаи, когда на дороге складывается аварийная ситуация, и приходится идти на определенный риск. Ниже подробно о том, от чего бывает гидроудар и как проверить.

    Признаки гидроудара

    Вот как происходит гидроудар двигателя — транспортное средство резко глохнет. Почти всегда в фильтре или зоне ГБЦ собирается жидкость, а работа агрегата сопровождается характерными звуками. В зависимости от обстановки, силовая установка получает лёгкие или значительные повреждения.

    Однако по одним лишь симптомам определить последствия гидроудара удаётся редко. Потребуется окончательная диагностика с замером компрессии, «вскрыванием» движка и другими манипуляциями.

    Больше всех страдает дизельный мотор, так как здесь создаётся очень высокое давление внутри цилиндров.

    Кроме того, частыми «гостями» ремонтных центров по причине гидроударов становятся автомобили с низким дорожным просветом. Особенно это касается спортивных машин.

    Последствия гидроудара

    Чаще всего такой удар вызывает следующее:

    • деформацию шатунов — если повезёт, то изогнётся только стержень;
    • разрушение поршней;
    • загиб пальцев;
    • обрыв цепи или ремня привода — также возможны другие проблемы газораспределения;
    • разрыв блока цилиндров — редкая, но тяжёлая неисправность;
    • поломку валов ДВС.

    Деформированные шатуны

    Нередко двигатель после этого уже нормально работать не может. Тогда приходится искать мотор на замену.

    Что делать при гидроударе двигателя

    Как понять, был ли гидроудар, и какое решение принять? Первый и достаточно опасный признак — это вода, стоящая в корпусе. Безусловно, водителю транспортного средства паниковать не стоит, ведь такое случается сплошь и рядом. Любая спешка только усугубляет ситуацию. Желательно сразу переставить машину на нейтральной скорости в сухое место и проверить воздушный фильтр. Заводить двигатель повторно не стоит, лучше сразу вызвать эвакуатор.

    Нередко водителю везёт. Мотор глохнет до того, как колесо автомобиля попадает в яму и влага проникает в цилиндры. Но она не причиняет существенного вреда, так как сопротивления не возникает. Мокрый воздушный фильтр в этом случае разрешается изъять и выбросить, а корпус тщательно протереть. Также надо выкрутить свечи зажигания, и поработать стартером. Всё эти действия позволят вытолкнуть оставшуюся часть влаги. Однако рекомендуется всё же напоследок заехать в сервисный центр, чтобы исключить отложенный гидроудар. Здесь тщательно проверят двигатель и проведут качественную просушку цилиндров посредством специального оборудования.

    Случается, что свечи выкрутить не удаётся. Тогда приходится запастись терпением и ждать, пока вода не стечёт в картер. После этого аккуратно завести мотор и оставить его работать на холостых оборотах.

    Ещё одна удачная развязка — заклин ДВС происходит из-за попадания воды на катушку, проводку или датчики. К примеру — на регулятор положения коленвала. Он должен быть сухим, чтобы автомобиль нормально заводился, а на приборку не выводился значок Chek Engine. Поэтому надо подождать 5 минут и повторить запуск.

    В сервисах для устранения влаги из силовой установки ремонт после гидроудара проводят только с диагностикой.

    Классический способ такой: двигатель разбирается, затем оценивается степень внутреннего разрушения и осуществляются все необходимые работы. Почти всегда внутренние элементы ДВС повреждаются на 30% или более. На вскрытом агрегате бывает хорошо видно следующее:

    • в цилиндрах образовался ступенчатый нагар;
    • поршень покрылся сажей, опустился ниже требуемого уровня;
    • на вкладышах появились блестящие полосы износа;
    • коленвал не крутися вручную;
    • из свечных колодцев вытекает вода.

    Более простой вариант оценки подразумевает демонтаж ГБЦ, выкручивание свечей зажигания и несколько часов (лучше сутки) паузы. Этого времени вполне достаточно, чтобы агрегат подсох.

    Сушка двигателя после гидроудара

    Затем шприцем в каждое гнездо вливают по 15-20 граммов автола и прокручивают коленвал. При удачной попытке, это будет означать, что никаких серьёзных повреждений нет — шатуны не деформировались, а мотору нужна была лишь качественная просушка. В противном случае, если наблюдаются проблемы с вращением вала, разборка движка неизбежна.

    Также крайне важно замерять компрессию силовой установки. При её низких значениях, даже при целостности шатунов, надо разбирать ДВС.

    Не исключено, что поломаны другие элементы, не выдержавшие большой нагрузки. Замеряется компрессия так: наконечник компрессометра плотно вставляется в свечное отверстие. Включается стартер и движок прокручивается до тех пор, пока показания манометра не перестанут расти. Обычно на это уходит 2-3 секунды. Крайне важно при проверке, чтобы аккумулятор был заряжён на 70% и выше.

    Если мотор в норме, то просушить его можно самостоятельно. Сначала кратковременно прокручивается стартер, после чего машину оставляют сушиться на 24 часа.

    Однако такой вариант действий очень рискованный. Водитель может ошибиться, решив, что никаких повреждений нет. Поэтому диагностику лучше доверить специалистам.

    К тому же, в центрах обслуживания имеется стационарное оборудование, помогающее выявить разрушения не только по компрессии, но и по другим признакам.

    После этого движок разбирают, оценивают его состояние и проводят ремонт.

    Таким образом, краткий алгоритм действий для водителя, машина которого испытала гидравлический удар:

    • остановить автомобиль, включить аварийку;
    • выкрутить свечу зажигания и проверить, мокрая ли она;
    • разобрать кожух, осмотреть воздушный фильтр на влажность;
    • прокрутить коленвал со снятой свечой — если из колодца вытекает вода, а вал не крутится, это подтвердит попадание влаги;
    • если вал поддаётся, то кратковременно провернуть стартер.

    В заключении можно попробовать продуть цилиндры, вкрутить свечи и заново попытаться запустить движок авто.

    Как избежать гидроудара двигателя

    Желательно вообще не допускать гидроудара. Особых сложностей для проведения профилактики нет, ведь зачастую достаточно избегать луж или ездить по ним на первой скорости. Важно также своевременно обслуживать двигатель на предмет сохранности манжеты головки и уплотнителей системы охлаждения.

    К тому же, надо постараться доработать подкапотное пространство, а именно — вынести воздушный фильтр как можно дальше от днища, организуя максимальную защиту от попадания туда воды.

    От попадания автомобиля в глубокую лужу никто не застрахован

    Ошибочно считать, что гидроудар происходит только на загородных трассах и бездорожье. На самом деле в городе даже больше шансов попасть в лужу. Например, после сильного дождя. Водитель увидел преграду, повернул руль и одним колесом попал в забитый ливнесток. Если скорость передвижения при этом будет высокой, то вода попадёт внутрь движка.

    Гидроудар можно и нужно предотвращать. Сделать это просто, если придерживаться следующих рекомендаций:

    • избегать водных преград на своём пути — глубоких луж, ям, стоков;
    • всегда соблюдать скоростной режим, особенно на мокрой дороге — водитель успевает среагировать.

    Если лужу проехать никак не удаётся, надо двигаться в воде максимально плавно, чтобы не допустить образования волн.

    Узнавать гидроудар и точно определять, почему заглох мотор, должен научиться каждый автолюбитель. Это нужно для того чтобы своевременно отвезти машину на диагностику в сервис. Тянуть с этим не стоит — повторная попытка запуска агрегата может полностью разрушить двигатель.

    Гидроудар двигателя, как вода может нанести вред мотору

    Что такое гидроудар двигателя и «с чем его едят»?

     

    Любой автоводитель, будь он профессионал и проехавший за долгие годы многие сотни тысяч километров или совсем еще «зеленый» водитель-ученик должен знать о следующем, что вода (влага) на дороге в любом своем агрегатном состоянии и количестве таит в себе большую опасность. Мало того, то же сцепление на дорожном полотне при наличии на нем h3O (воды) по-любому и очень заметно снижает необходимый коэффициент сцепления с дорогой. Так например, в сильные и обильные ливни и особенно по причине неправильной работы самих ливневых стоков на автодороге могут появляться большие и даже огромные лужи, которые иногда бывают очень глубокими и при проезде по ним двигатель автомобиля может просто «хватануть» (т.е. захлебнуть) воды, получив при этом для себя так называемый гидроудар (гидравлический удар). Сегодня мы уважаемые друзья хотим как-раз и поговорить именно о таком неприятном и крайне пагубном для двигателей особенно внутреннего сгорания явлении, как о гидроударе.

     

    Для начала давайте разберемся в самой теории.

     

    Что такое гидроудар?

    Гидроудар (гидравлический удар) – это резкое увеличение давления в цилиндре или цилиндрах самого двигателя, которое происходит в результате попадания в него определенного и достаточного для нанесения урона количества воды или иной жидкости. В результате попадания этой самой жидкости в часть камеры сгорания ДВС расположенной  вверху над поршнем, она при ходе поршня вверх препятствует последнему завершить эаданный и необходимый цикл и в результате чего происходит та самая серьезная поломка внутренних частей мотора.

     

    В то время, как топливовоздушная смесь сжимается и позволяет поршню выполнять возвратно-поступательные движения внутри самого цилиндра, жидкость, как нам известно из школьного курса физики, практически перестает сжиматься. Этот самый факт означает, что попытка поршня сжать жидкость не увенчается успехом и он тем самым выйдет из строя, то есть он просто сломается и под ним изогнется шатун или сам шток, а может конкретно оборваться шпилька головки цилиндра или произойти разрыв прокладки головки блока цилиндров.

     

    Причины попадания жидкости в цилиндры ДВС.

     

    Увы, уважаемые автомобилисты, самой причиной этого гидроудара может послужить и не только попавшая в двигатель забортная вода, то есть зачерпнутая из глубокой лужи или иных естественных водоемов. Иногда просто-напросто происходит простое просачивание технических жидкостей в цилиндры из-за самих неисправностей в двигателе.

     

    Важно знать! Самые дорогие поломки в автомобиле

     

    Например, в камеру сгорания двигателя может попасть охлаждающая жидкость, и произойти это может не только из-за прогорания прокладки головки цилиндров, но и из-за неисправности самих инжекторов или того-же карбюратора, который также может сослужить плохую службу двигателю, когда в цилиндры поступит чрезмерно большое количество топлива, что непременно и приведет к этому самому гидроудару.

     

    Теперь перейдем друзья с вами к практике.

     

    Повреждения двигателя, вызванные гидроударом.

    Влияние гидроудара на ДВС (двигатель внутреннего згорания) может существенно и конкретно отличаться в зависимости от самого режима работы двигателя в момент попадания в его камеру сгорания жидкости. Если такая жидкость попала в мотор при работе его на холостом ходу, то это зачастую приводит просто к остановке двигателя без возможности повторного завода с помощью стартера. Пожалуй это наверно единственный и счастливый пример, когда можно избежать крупных поломок двигателя.

     

    К большому сожалению, в большинстве таких случаев такой гидроудар происходит именно в тот момент, когда двигатель автомобиля работает на оборотах. Здесь же последствия гидроудара могут быть просто ужасающими.

     

    Многое будет зависеть естественно от количества той воды, которая поступила в цилиндры и также от ряда других факторов от которых все зависит, в том числе и от того, сколько цилиндров в двигателе зальется и на сколько много поступило туда воды, а также еще и от скорости движения автомобиля (инерции движущегося автомобиля) и от количества оборотов двигателя, ну и конечно-же от других не мало важных нюансов.

     

    Резкое критичное возрастание давления в цилиндре непременно приводит к деформации самого стержня шатуна. Часто этот изгиб шатуна бывает на столько серьезным, что он конкретно упирается в стенку цилиндра и двигатель просто заклинивает. В таком случае можно отделаться достаточно минимальными потерями, под замену пойдет поршень, шатун и палец.

     

    Где находится салонный фильтр и когда его нужно менять?

     

    В самом же нехорошем худшем варианте, когда происходит наполнение одного цилиндра жидкостью и мощности мотора недостаточно для продолжения работы и ее просто не хватает, то такие последствия могут быть гораздо печальнее. В этом варианте возможны уже серьезные разрушения поршня, обрыв того же шатуна с последующим пробитием стенки цилиндра, а также разрушение самой головки блока, того же картера или коленвала. Такой гидроудар может даже привести к появлению трещин и в самом блоке цилиндров.

     

    Что же делать, если случился гидроудар? Бензиновый двигатель.

    Во-первых, есть вариант для оффроудеров и любителей езды по пересеченной местности.

     

    Если у Вас нет шноркеля и вы чувствуете, что не сможете избежать погружения автомобиля с последующим забором мотором воды, то ВЫКЛЮЧИТЕ двигатель, пока у воды нет еще шансов попасть в воздухозаборник. Если же попадание жидкости уже произошло, то НИ В КОЕМ СЛУЧАЕ НЕ ПЫТАЙТЕСЬ ЗАВЕСТИ ДВИГАТЕЛЬ! Это только усугубит создавшуюся ситуацию и приведет еще к более серьезным поломкам деталей мотора.

     

    Смотрите также: Как ездить на машине по бездорожью

     

    Если при проезде брода двигатель машины внезапно заглох, то можно (необходимо) выполнить следующие действия*:

     

    *Эти действия желательно применять при крайней необходимости и случаях. Если же есть возможность вызвать эвакуатор, то лучше всего использовать ее.

     

    1. Не пытайтесь завести двигатель;

     

    2. Откройте крышку воздушного фильтра, если там имеется, т.е. есть вода, то это означает, что скорее всего в цилиндрах она тоже будет присутствовать, а значит произошел именно гидроудар;

     

    3. В данном случае нужно вывернуть свечи и попытаться ВРУЧНУЮ прокрутить двигатель. Если Вы сможете сделать полный оборот коленвала и почувствуете, что поршень не касается противовесов коленчатого вала, то это означает, что шатуны не деформированы или они повреждены не значительно. Есть шанс, что двигатель в автомобиле заработает.

     

    4. Следующим этапом будет попытка прокрутить двигатель самим стартером. Здесь нужно быть предельно очень внимательным, необходимо прислушиваться к любым посторонним звукам. Если услышали стук, то немедленно останавливайте (выключайте) мотор и не предпринимайте больше ни каких попыток его запустить. Иначе Вы еще больше  повредите двигатель.

     

    5. Если прокрутка двигателя стартером Вам удалась и посторонних звуков обнаружено не было, то начинаем заниматься продуванием цилиндров, заворачиваем назад свечи и пытаемся запустить мотор.

     

    А дальше остается один путь — прямым ходом в автосервис. Даже в том случае, если двигатель автомобиля работает без сбоев, состояние внутренностей мотора необходимо проконтролировать. Для этого механики просто разберут мотор и проверят степень повреждения всех его деталей.

     

    Во-вторых, данный вариант подходит для всех остальных водителей. Шоссе, ночь, Вы едите загородом и вдруг у вас перед капотом машины внезапно появляется широкая и глубокая лужа. Вы естественно не успеваете оттормозиться и черпаете воду на капот, двигатель автомобиля встает, говоря простыми словами по-просту глохнет. Все выше описанные действия также применимы и в этом данном случае. Не пытаемся заводить машину, а выставляем знак аварийной остановки и включаем аварийку. Максимум, если есть такая возможность, то лучше оттолкиваем автомобиль на обочину.

     

    Если цивилизация (населенный пункт) близко, то вызываем эвакуатор. Если это произошло далеко от города, то можно конечно и попробовать завестись, но, лучше уж постараться поймать попутку и попросить доброго человека отбуксировать Вас до ближайшей СТО (станции технического обслуживания).

     

    Гидроудар и дизельные двигатели.

    У дизельных моторов есть множество преимуществ, но есть конечно и свои недостатки. Одним из таких можно назвать достаточные и серьезные поломки при гидроударе. Из-за меньшей камеры сгорания если сравнивать с бензиновым мотором, и на много большими показателями самого давления при сжатии рабочей смеси, такой гидроудар для дизеля в 95% случаев, увы, заканчивается «приговором» — на большой и капитальный ремонт.

    Гидроудар двигателя — признаки, последствия и ремонт.

    Гидроудар двигателя — попадание воды внутрь рабочего цилиндра, из-за чего возникает удар поршня о несжимающуюся жидкость с последующим повреждением элементов кривошипно-шатунного механизма.

    Как правило, происходит при пересечении глубоких водных преград на большой скорости и может привести к необходимости капремонта мотора. Ниже рассмотрим, что это такое, как распознать гидравлический удар, и каким способом можно предотвратить появление проблемы.

    Что такое гидроудар двигателя

    В общем смысле гидроудар — резкий скачок давления в системе, заполненной жидкостью, который приводит к изменению скорости потока. Это может привести к трещинам, расколу и иным повреждениям труб, насосов и другого оборудования, работающего под давлением.

    Термин «гидроудар» по отношении к двигателю не совсем корректный, ведь здесь имеет место иная ситуация. Внутрь блока цилиндров попадает вода, которая не сжимается и не дает цилиндру дойти до требуемой точки.

    В результате двигатель останавливается из-за повреждения его элементов. По правилам такой процесс подразумевает попадание жидкости в рабочую полость мотора, а термин «гидроудар» применяется из-за большего удобства и связи с водой.
    Процесс гидравлического удара происходит следующим образом:

    1. Вода через воздушный фильтр / воздуховод попадает в камеру сгорания.
    2. Цилиндр при поднятии в верхнюю точку сталкивается с несжимаемой жидкостью.
    3. Кривошипно-шатунный механизм продолжает давить на цилиндр для достижения последним необходимой точки. В результате давление вырастает в 10-100 раз. 
    4. Происходит повреждение шатуна / штока, обрыв шпилек головки цилиндров, повреждение прокладки и другие проблемы. Наиболее серьезной поломкой является разрыв блока двигателя.

    Для полного понимания, что такое гидроудар двигателя, необходимо разобраться с предпосылками его появления. Здесь возможны две ситуации:

    1. Преодоление глубокой лужи на большой скорости. При этом жидкость под давлением влетает в воздушный фильтр, а далее в рабочую область мотора.
    2. Проезд водной преграды, уровень которой выше верхней точки воздуховода машины. С такими проблемами часто поступают «утопленники» из Европы.

    Нельзя исключать и неисправность силового агрегата, когда в цилиндр попадает антифриз или масло.

    Признаки гидроудара

    Читайте также: Детонация дизеля, внешние проявления и причины

    Серьезность последствий при гидравлическом ударе зависти от объема воды, попавшей в мотор, мощности силового агрегата и текущего количества оборотов. С учетом серьезности проблемы появляются разные признаки, по которым можно определить гидроудар машины.
    Попадание воды внутрь силового агрегата можно распознать по следующим симптомам:

    • Трудности с пуском сразу после преодоления водной преграды.
    • Клин мотора из-за деформирования шатуна.
    • Двигатель продолжает работать, но из-за искривления его элементов слышен нехарактерный звук, вибрации, перебои. Эксплуатация ДВС в таком случае приводит к его быстрому повреждению.
    • Наличие воды в коллекторе.
    • Повреждение гофры воздушного фильтра из-за действия на нее избыточного давления.
    • Нагар на головке. Если после гидравлического удара мотор продолжает работать, но на ГБЦ больше копоти, чем на других участках, это свидетельствует о необходимости проведения ремонтных работ.
    • Искривленный шатун. При этом степень повреждения может быть различной.
    • Вкладыши коленчатого вала потерты по периметру.

    Как правило, реальные последствия гидроудара обнаруживаются уже на СТО после эвакуации машины и разборки двигателя. Так можно увидеть основные признаки, а именно, поврежденный цилиндр, излом шатуна / штока, повреждение шпилек и другое.

    Что делать при гидроударе

    Читайте также: Ремень ГРМ — последствия обрыва

    Часто после проезда глубокой лужи машина глохнет. Это первый признак гидравлического удара, который нельзя игнорировать. В таком случае запрещено крутить мотор стартером, ведь это может привести к серьезным повреждениям.
    Следуйте такой инструкции:

    1. Выйдите из машины.
    2. Снимите крышку воздушного фильтра, если она предусмотрена.
    3. Осмотрите полость на факт наличия жидкости. Если вода там присутствует, то и в поршневой системе она будет однозначно.
    4. Выкрутите все свечи, чтобы посмотреть, в какой из цилиндров попала жидкость.
    5. Попробуйте вручную покрутить силовой узел. Сделайте оборот коленчатого вала. Если вы почувствуете, что поршень не прикасается к противовесам, значит, повреждения нет или оно несущественное.
    6. Попробуйте покрутить коленчатый вал уже стартером. Если внутри есть вода, она должна выйти из отверстий. При выполнении работы будьте предельно внимательны. Если появляется любой нехарактерный шум во время работы мотор, отключайте стартер и больше не пытайтесь его вращать.
    7. При отсутствии посторонних звуков продуйте цилиндры и закрутите свечи.
    8. Попытайтесь завести мотор и, в случае успешного пуска, сразу отправляйтесь на СТО.

    Исключением являются случаи, когда вы находитесь один на трассе и ждать помощи неоткуда. К примеру, разрядился мобильный телефон, нет связи, а по дороге редко ездят машины. В таком случае попробуйте максимально просушить мотор, воздушный фильтр и воздуховод и лишь потом пытайтесь его запустить. Не забывайте о патрубках, в которых также может скапливаться влага.

    При посещении автосервиса сразу проинформируйте работников о подозрении на гидроудар двигателя. В таком случае они не будут делать пробных пусков мотора и не навредят механизму. После диагностики специалисты смогут сказать — нужно делать ремонт или нет.

    Как уберечь двигатель

    Закажите спецтехнику на нашем сайте: Аренда спецтехники в России

    Во избежание последствий необходимо понимать, как защититься от гидравлического удара в силовом узле и повреждения его деталей.

    Следуйте простым правилам:

    • Не проезжайте глубокие лужи на большой скорости, ведь в таком случае воду с высокой вероятностью засосет в камеру сгорания. Это необходимо делать медленно и осторожно.
    • Адекватно оценивайте возможности машины и не пытайтесь преодолеть глубокое водное препятствие.
    • Максимально защитите воздушный фильтр от попадания воды.
    • Контролируйте исправность силового узла. Мало, кто знает, но причиной гидравлического удара может быть поломка мотора: попадание смазки или охлаждающей жидкости в рабочий цилиндр.
    • Если на улице льет сильный дождь, а лужи превратились в потоки, лучше посидеть дома и не рисковать. В таком случае можно защититься от неприятностей и неоправданного тестирования возможностей автомобиля. Если обойтись без поездки все-таки нельзя, при пересечении водных преград двигайтесь н скорости до 10 км/ч и только на первой передаче. При наличии такой возможности глубокие ямы лучше и вовсе объехать.

    Отдельного внимания заслуживают дизельные моторы. Они также подвержены гидравлическому удару, а последствия могут быть даже более серьезными. Так, из-за небольшой камеры сгорания внутри имеет чрезмерное давление. Как результат, в 95 из 100 случаев приходится делать капитальный ремонт.

    Заключение

    Гидроудар двигателя— опасная ситуация, связанная с попаданием воды в камеру сгорания и последующей деформацией элементов силового узла. При выявлении любых признаков этого повреждения необходимо остановиться и проверить систему на факт наличия воды. Если таковая имеется, лучше не испытывать судьбу, а сразу вызвать эвакуатор и гнать машину на СТО для диагностики.

    Гидроудар на дизеле

    Поиск запроса «гидроудар двигателя» по информационным материалам и форуму

    Гидроудар двигателя в авто: что делать, если это случилось

    Многие водители узнают значение этого слова только после того, как им сообщат о полном выходе двигателя из строя. Поэтому лучше познакомиться с этим явлением в теории – чтобы ни при каких обстоятельствах не дать мотору “хлебнуть воды”.

    Двигатель автомобиля при работе забирает в свои цилиндры тысячи литров воздуха в минуту – цилиндры мотора работают как высокоэффективный насос. А если случится попасть во впускной тракт воде, мощная тяга на впуске засасывает и ее.

    Тяжесть последствий гидроудара зависит от количества попавшей в мотор воды и типа двигателя: дизели переносят эту беду хуже.

    Но жидкость, в отличие от воздуха, не сжимается, поэтому присутствие в цилиндре хотя бы пары капель воды приводит к такому нарастанию давления, что поршень при ходе вверх почти ударяется о “стену” водно-газовой смеси.

    Читайте також: Як перевіряти двигун при купівлі б/в авто

    Отсюда и термин – гидроудар. Ну а поскольку удар, то соответственно имеют место и механические повреждения: погнутые шатуны, сломанные пальцы, раскрошенные поршни и т.п. Одним словом, полной разборки двигателя и серьезного ремонта не избежать.

    Основные признаки гидроудара таковы:

    • — Несколько секунд назад вы заезжали в глубокую лужу и/или поднятая перед капотом волна достигала верха облицовки радиатора.
    • — Двигатель работает с перебоями, вибрациями, сотрясениями.
    • — Мокрый сменный элемент воздушного фильтра.
    • — Капли воды в корпусе воздушного фильтра и каналах воздуховода.

    Детали при гидроударе могут и не сломаться, однако потерять геометрию так, что нормальная работа агрегата будет невозможной.

    Что делать, если случился гидроудар

    Если после форсирования водной преграды машина ведет себя необычно, порядок действий должен быть такой:

    • Немедленно заглушите двигатель. В некоторых случаях переживший гидроудар мотор не останавливается сам, а самые тяжелые повреждения детали получают из-за работы после гидроудара.
    • Откройте корпус воздушного фильтра и осмотрите его сменный элемент. Если фильтр мокрый, значит, вероятность полновесного гидроудара велика. Запускать двигатель нельзя. Бумажный фильтр может быть деформирован – это тоже признак того, что он был намочен.
    • Осмотрите внутреннюю полость воздушного фильтра и воздуховода от него к дроссельной заслонке. Если в ней есть капли влаги, значит, скорее всего вода попала и в цилиндры.

    Читайте також: Чим небезпечний потопельник: проблеми з електрикою

    • Всю воду до мельчайшей капельки нужно убрать из корпуса фильтра и воздуховодов. Хорошо использовать для этого бумажные полотенца или салфетки.
    • Выкрутите свечи и покрутите мотор стартером. Если получилось – уже неплохо, значит, двигатель не заклинило. Если у вас есть помощник, попросите его во время прокрутки мотора стартером посмотреть, не вылетает ли из свечных отверстий вода. Ее, кстати, не всегда можно заметить и отличить от топлива, так что главное в этой процедуре – не диагностика, а “изгнание” воды из цилиндров.

    Прежде всего при гидроударе страдают шатуны. Внешне на работе мотора это может и не отражаться, но через время шатун ломается и разрушает цилиндр.

    В принципе, отчаянные водители после всех вышеуказанных этапов просушки могли бы пытаться запустить мотор. Но в идеале для полной гарантии безопасности двигателя нужно разобрать весь впускной тракт, чтобы убедиться в отсутствии в нем воды и удалить найденную влагу. Поскольку, увы, известны случаи, когда вроде как удачно искупанный в реке двигатель не выявлял поначалу проблем, но во время утреннего запуска после стоянки вдруг начинал грохотать и трястись, возвещая о необходимости капремонта.

    Если фильтр мокрый, а под ним в корпусе есть капли воды, нужно тщательно проверить на наличие воды весь впускной тракт.

    Потому что за ночь вода, попавшая через фильтр во впускной тракт, собралась вся разом с верхних стенок вниз воздуховода, в место, где ее утром легко подхватил засасываемый в цилиндры воздух – чем и был вызван гидроудар.
    Так что запуск мотора, хлебнувшего воды, стоит делать только после консультации квалифицированного специалиста.

    Рекомендация Авто24

    Гидроудар не просто старая водительская фобия, его в самом деле стоит бояться, ведь получить его при наличии глубоких луж на дороге – пара пустяков. Последствия могут быть самыми неприятными, и даже “капиталка” тут покажется удачным вариантом. Поэтому перед каждой глубокой лужей внимательно оцените обстановку и при малейших сомнениях отказывайтесь от форсирования. Лучше подождать пару часов, пока вода спадет, или выбрать другой маршрут, чем менять двигатель из-за разрушения цилиндро-поршневой группы и повреждения блока.

    Читайте також: Що краще – бензин чи дизель: який вибрати двигун

    что это такое, какие признаки, последствия гидро удара

    Как происходит гидроудар двигателя

    Несмотря на серьезные последствия от гидроудара для его возникновения должны быть созданы определенные условия. Гидроудар относится к достаточно редким явлениям и, как правило, происходит случайно, но каждый автовладелец должен понимать, что такое гидроудар в автомобиле и как он происходит.

    Чаще всего вода проникает в камеру сгорания через воздушный фильтр. Попадание воды хотя бы в один из цилиндров агрегата исправного ДВС неизбежно приведет к гидроудару, в результате чего ломаются механизмы двигателя, которые участвуют в работе цилиндров. В таком случае может быть несколько вариантов поломок, как с минимальными повреждениями, так и более серьезными, которые требуют замены одного или сразу нескольких элементов системы.

    Существует две причины, по которым это может произойти:

    1. В первом случае автомобиль пытается преодолеть водную преграду с настолько высоким уровнем воды, когда она превышает уровень расположения воздухозаборника под капотом. Такого уровня воды оказывается вполне достаточно для попадания в воздушный фильтр.
    2. Во втором случае автомобиль на достаточно высокой скорости проезжает через впадину или глубокую лужу. При таких условиях вода быстро продавливается в доступный корпус воздушного фильтра и оказывается в одной либо нескольких камерах сгорания.

    Стоит отметить, что в некоторых случаях гидроудар может возникнуть не только из-за попадания жидкости в цилиндры мотора, но и в результате неисправности. К таким неисправностям относится трещины ГБЦ или БЦ, а также разрушение прокладки ГБЦ, через которые в рабочие цилиндры попадает жидкость системы охлаждения двигателя. В данном случае гидроудар чаще всего возникает в момент запуска двигателя после длительного простоя, поскольку за этот период жидкость успевает накопиться в надпоршневом пространстве.

    Эта проблема диагностируется на начальном этапе путем контроля уровня ОЖ и анализа цвета выхлопных газов. Если жидкость в расширительный бочок доливается без других причин или двигатель дымит белым густым дымом, тогда высока вероятность наличия трещин или проблем с прокладкой.

    Важно! Помимо воды, также причиной гидроудара может стать моторное масло, которое после поломки турбины попадает в цилиндр.

    Какие признаки при возникновении гидроудара

    На признаки гидроудара двигателя указывает характерный звук, который возникает при прохождении водных препятствий или после них. Автомобиль в таких случаях часто глохнет, однако иногда бывают случаи, когда авто при гидроударе не глохнет и вполне нормально перемещается довольно продолжительное время (даже до 10 тыс. км). Но обнадеживаться в такой ситуации не стоит, поскольку все это время идет износ силового агрегата ускоренными темпами, что приведет к печальным последствиям.

    Определить перенесенный гидроудар можно по следующим признакам:

    • Явный признак гидроудара – вода во впускном коллекторе.
    • С высокой долей вероятности можно говорит о гидроударе при деформация воздушного фильтра или искривленной гофре.
    • Деформация коленчатого вала.
    • Деформированный шатун.
    • Заклинивание двигателя.
    • Затёртый по диагонали поршень.
    • Поломка кулака.
    • Неравномерный износ вкладышей, который сможет увидеть даже не профессионал.
    • Повреждение блока цилиндров.
    • На дне поршня образовалось два слоя отложений. Первый слой – это нагар, который отложился еще до удара, а второй соответственно, после.
    • Образование на поршневой юбке нагара, потертостей и задиров в несвойственных местах.

    Если присутствует хоть один из вышеперечисленных симптомов – мотор вашего автомобиля подвергся воздействию гидроудара.

    Последствия и их сила напрямую зависят от трех факторов, а именно:

    1. Мощность двигателя автомобиля.
    2. Количество попавшей в цилиндр воды.
    3. Количество оборотов двигателя на момент гидроудара.

    Если после возникновения гидроудара не принимать оперативных действий, а именно заменить поврежденные детали и произвести ремонтно-восстановительные работы последствия могут стать значительно хуже.

    Какие последствия гидроудара

    Последствия удара поршня об прокладку в цилиндре бывают разные, так если машина стояла, и мотор работал исключительно на холостом ходе, он просто может заглохнуть. Если автомобиль во время гидроударя двигался, последствия будут более серьёзными, поскольку давление на поршень со стороны КШМ будет продолжаться, создавая большие усилия. В данном случае может произойти деформация и разрушение вкладышей, шатунов, колец и коленчатого вала.

    Когда происходит обратный ход поршня мелкие обломки деталей, попадая в имеющийся зазор между стенкой цилиндра и поршня, могут пробить стенку или заклинить поршень, после чего двигатель уже восстановлению не подлежит. Это самое тяжёлое последствие от гидроудара двигателя, которое наиболее опасно для дизельных агрегатов, поскольку у них объём камеры сгорания значительно меньше, а степень сжатия гораздо выше.

    Когда машина едет с невысокой скоростью и силы инерции на детали КШМ не столь велики, то импульс гидравлического удара не будет резким, что поможет сохранить узлы от разрушения.

    Кроме этого последствия гидроудара двигателя сказываются и на других деталях мотора. Существуют случаи, когда сильное давление влияло на деформацию головки цилиндра. Внезапная остановка коленвала при работе силового агрегата приводит к высокому механическому напряжению, которое действует на приводные ремни и цепи, а также на регуляторы их натяжения. По этой причине они могут растянуться или порваться, что потребует их замены.

    В таких случаях в последнюю очередь страдает коленчатый вал. Он может деформироваться или сломаться уже вследствие разрушения поршня или шатунной передачи. Разрушение головки шатуна после гидроудара, как правило, не носит следов побежалости и перегрева. Её вид остаётся обычным.

    Что делать в случае гидроудара

    Гидроудар двигателя является достаточно серьёзной причиной для его частичной разборки в мастерской, диагностики и тщательного осмотра приводных ремней и деталей КШМ. Обычно без шлифовки и замены отдельных деталей не обходится, но в зависимости от ситуации может потребоваться и более серьезный ремонт.

    Если при запуске мотора слышен непривычный звук не стоит надеяться, на «авось как-нибудь и дотяну до СТО», поскольку наличие постореннего звука указывает на наличие механического дефекта в узлах, который в процессе эксплуатации двигателя будет только прогрессировать и приведет к невосстанавливаемым последствиям.

    У автомобилей с дизельными моторами свечей зажигания нет и быстро продуть цилиндры невозможно, в следствии чего, для них последствия гидравлического удара более тяжёлые, чем у бензиновых агрегатов. Поэтому выход здесь один – буксировка авто в мастерскую.

    Объём работ по восстановлению мотора после гидроудара, аналогичен как при капитальном ремонте. Очень важно не допускать длительного простоя машины с залитыми водой цилиндрами, иначе коррозия металла обязательно приведёт к довольно серьезным последствиям и необходимости делать расточку и шлифовку цилиндров.

    Не всегда имеется возможность вызвать эвакуатор, в этом же случае необходимо:

    • Прежде всего, если машина находится в воде, ее следует оттуда вытащить.
    • Выключить зажигание.
    • Вывернуть свечи зажигания.
    • Разобрать воздушный фильтр, если в нем имеются следы воды – перейти к следующему этапу, а если нет – все собираем на место, пробуем завести автомобиль.
    • Провернуть коленчатый вал, в случае если через свечные отверстия будет вытекать вода – заводить автомобиль нельзя.
    • Если же вода отсутствует, свечи зажигания вкручиваем и все собираем на свои места.
    • Пробуем завести двигатель.

    Важно! В случае если передняя часть машины пробыла более 10 секунд под водой, можно сказать с вероятностью 99,9% , что вода попала в двигатель. Вовремя принятые защитные меры максимально снизить эффекта гидроудара и его последствий.

    Что такое гидроудар и как его предотвратить?

    Высокотемпературный пар используется в машинном отделении для нескольких целей, таких как нагрев топливопровода и топливных баков. Гидравлический удар — обычное явление, возникающее в паропроводах из-за застревания воды в трубах. Давайте узнаем, как происходит гидроудар и что можно сделать, чтобы его избежать.

    Как происходит гидроудар?

    Когда паропроводы закрываются после использования, вода накапливается в паропроводах в основном из-за конденсации захваченного пара.Когда высокотемпературный пар снова проходит через трубопроводы с водой, пар входит в контакт с водой и выталкивает воду по трубопроводу.

    Когда пар входит в контакт с водой, он в конечном итоге конденсируется и создает вакуум, который с большой скоростью заставляет воду приближаться к открытому клапану. Затем вода с высокой скоростью ударяет по клапану, полностью повреждая или ломая клапан или трубопровод. Разрушение клапана из-за гидроудара в прошлом приводило к катастрофическим авариям, в том числе к гибели людей.Поэтому необходимо принимать все возможные меры для уменьшения воздействия гидроудара.

    Как предотвратить гидравлический удар?

    Самый важный способ предотвратить гидравлический удар — это удалить воду из паропроводов перед тем, как снова пропустить через них пар. Вода удаляется из паропроводов через сливные патрубки.

    Необходимо слить всю воду, чтобы линии стали прозрачными. Как только это будет сделано, паровой клапан следует приоткрыть (приоткрыть), чтобы нагреть линию и довести ее до рабочей температуры.Это также гарантирует, что конденсат, образующийся из-за впуска пара, удаляется через уже открытый клапан. Сливное отверстие следует постоянно проверять, чтобы убедиться, что слита вся вода.

    Избегайте резких изгибов паропроводов, так как из-за резких изгибов пар будет больше конденсироваться.

    Когда вся вода будет удалена и шум из слива сменится паровым потоком, следует открыть паровой клапан дальше. Этот процесс должен быть медленным и очень постепенным.

    Через некоторое время сливной клапан должен быть полностью закрыт, а паровой клапан полностью открыт. Этот метод предотвращает скопление воды в трубах и, в конечном итоге, предотвращает гидравлический удар.

    Ищете практичные, но доступные морские ресурсы? Ознакомьтесь с цифровыми руководствами Marine Insight: Электронные книги для палубного отдела — Ресурсы по различным темам, связанным с палубным оборудованием и операциями. Электронные книги для машинного отделения — Ресурсы по различным темам, связанным с оборудованием и операциями машинного отделения. Экономьте по-крупному с помощью комбо-пакетов — Наборы цифровых ресурсов, которые помогут вам сэкономить по-крупному и включают дополнительные бесплатные бонусы. Электронные книги по судовым электрическим системам — Цифровые ресурсы по проектированию, обслуживанию и поиску и устранению неисправностей морских электрических систем

    Что такое гидравлический удар двигателя?

    Гидравлический удар двигателя — это явление, когда вода проникает в цилиндр двигателя вместе с воздухом и топливом. Это будет происходить исключительно через впускной коллектор — единственное место, открытое для попадания посторонних веществ в двигатель.Помните, что ни один автомобиль не защищен от гидроудара. В большинстве случаев, когда гидравлический удар действительно случается, транспортному средству требуется дорогостоящий ремонт.

    КАК ВОДА ПОДАЕТСЯ В ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ?

    Вода может проникнуть в двигатель внутреннего сгорания двумя способами:

    • Автомобиль был припаркован в низинной зоне, подверженной затоплению. Или это случилось на подземной автостоянке, которая была затоплена.
    • Автомобиль попадает в очень глубокую лужу, из-за которой в воздушный фильтр попало определенное количество воды.

    ЗНАКИ МОЛОТА ВОДЫ ДВИГАТЕЛЯ

    Допустим, ваша машина попала в глубокую лужу или внезапное наводнение. Вероятно, вода достигла верхнего края радиатора вашего автомобиля. Ниже приведены признаки того, что у вашего автомобиля гидравлический удар двигателя:

    1. В модуле впускного коллектора есть вода.
    2. Воздушный фильтр мокрый.
    3. При работе двигателя наблюдаются перебои в скорости и сильная вибрация.

    ЧТО ДЕЛАТЬ ПРИ ПРОИЗВОДСТВЕ МОЛОТКА ВОДЫ В ДВИГАТЕЛЕ?

    Если вы заметили все вышеперечисленные признаки, значит произошел гидроудар двигателя.Вот что можно с этим сделать:

    1. Первое, что вы можете сделать, это высушить машину . Обязательно открутите пробки и снимите крышки воздушного фильтра. Теперь через отверстие для свечи возьмите примерно одну столовую ложку моторного масла и залейте в каждый цилиндр. Вы также можете использовать для этого специальный шприц или шприц для смазки. С помощью смазки поршни могут двигаться, если на стенках цилиндров есть ржавчина.
    1. Поднимите капот, чтобы проверить, есть ли вода в воздушном фильтре.В некоторых случаях вы не увидите видимых капель на фильтрующем элементе, но заметите, что он уже деформирован. Это верный признак гидроудара.
    1. Если есть влага, немедленно удалите ее, используя хорошо впитывающий материал, например, сухую салфетку или тряпку из хлопчатобумажной ткани.
    1. Если вы выполнили все вышеперечисленное, но все еще не продвинулись, лучше всего вызвать эвакуатор на выбранную вами станцию ​​техобслуживания или в гараж. Таким образом, вы можете обратиться за помощью к профессионалам, которые знают, как лучше всего избавиться от гидроудара двигателя.

    СОВЕТЫ ПО ПРЕДОТВРАЩЕНИЮ МОЛОТА ВОДЫ В ДВИГАТЕЛЕ

    Гидравлический удар двигателя — реальная опасность, но ее можно предотвратить. Если вы хотите узнать, как предотвратить гидравлический удар двигателя, вот несколько советов, которым вы можете следовать:

    • В плохую погоду всегда следует помнить об одном правиле: не проходите через огромный бассейн с водой;
    • Если этого нельзя избежать, бегите на более медленной скорости. Это повысит шансы избежать гидравлического удара двигателя.
    • Пройдя через лужу с водой, лучше в качестве профилактики остановиться и проверить состояние воздушного фильтра вашего автомобиля.

    Что это такое и как это влияет на пожаротушение?

    Небольшие действия могут вызвать внезапные скачки давления, которые угрожают водным системам и людям, которые работают вокруг них

    Большинство водопроводных систем — от бытового водопровода до городского водоснабжения — построены так, чтобы выдерживать аномально высокие уровни давления. Но иногда такая простая вещь, как закрытие крана, может вызвать внезапное и даже опасное повышение давления, с которым эти системы не могут справиться: гидравлический удар.

    В этой статье мы объясняем явление увеличения давления, известное как гидравлический удар, описывая, что это такое, как оно работает и как оно влияет на пожаротушение и конструкцию систем противопожарной защиты.

    Столкновения между движущейся водой и твердыми объектами быстро превращают движение в резкое повышение давления

    Закон сохранения энергии, фундаментальный принцип физики, гласит, что энергия не может быть создана или уничтожена, а только преобразована.Ваша духовка преобразует электрическую энергию в тепло. Автомобили превращают химическую энергию бензина в движение. Итак, когда вода сталкивается с твердой поверхностью, эта энергия должна куда-то уходить.

    Но, в отличие от некоторых веществ, воду нельзя раздавить, и она не может отскочить назад, когда она внезапно ударяется о стену. Если клапан внезапно закрывается, вызывая столкновение с быстро движущейся водой, движение воды превращается в давление.

    В замедленной съемке гидравлический удар выглядит примерно так: передняя кромка воды — та часть, которая сталкивается с клапаном — останавливается.Вода за ним начинает сжиматься, в результате чего в трубу попадает больше воды. В результате давление в трубе увеличивается, создавая быструю и мощную ударную волну, которая распространяется примерно со скоростью звука.

    Событие такого рода называется гидравлическим ударом, скачком давления после внезапного изменения расхода воды. Чаще всего гидроудар случается, когда клапаны внезапно закрываются или открываются. Если давление превышает пределы труб, муфт, клапанов или подключенных устройств, вода может повредить компоненты системы или выброс из трубы со значительной силой.

    Некоторые из самых впечатляющих примеров разрушительной способности гидроудара исходят от гидроэлектростанций. Почти 70 лет назад на электростанции в Оигаве, Япония, захлопнулся огромный клапан. В результате скачок давления откололся от секции трубопровода, создав огромный вакуум, который разрушил почти 200 футов трубы. Отдельные участки станции были засыпаны водой, прилегающая территория была затоплена, а в результате наводнения погибли три сотрудника электростанции.

    Трубопроводы, по которым вода подается к турбинам, называемые водозаборниками, обрушились после крупного гидроудара в Оигаве, Япония.Источник: ResearchGate

    .

    Факторы, включая скорость воды и время, затраченное на закрытие клапана, способствуют гидроудару

    На самом базовом уровне интенсивность гидроудара во многом зависит от скорости воды (или, грубо говоря, скорости). Короче говоря, более быстро движущаяся вода создает большие ударные волны.

    В трубопроводных системах гидравлический удар рассчитывается по формуле…

    P = 0,07 (Вл / т)

    … где P — увеличение давления, V — скорость воды в футах в секунду, L — длина трубы, а t — время закрытия клапана. Эта формула означает, что определенные изменения могут снизить интенсивность гидроудара:

    • Медленное закрытие клапана снизит интенсивность помпажа
    • Более короткие трубы менее подвержены гидравлическому удару, чем более длинные
    • Вода, движущаяся медленнее, вызывает меньшие скачки давления

    Два других фактора действуют в системах на водной основе: диаметр трубы и эластичность материалов трубопровода. Трубы большего диаметра и трубы из более гибких материалов могут поглощать больше энергии давления, создаваемой гидроударом.

    Большой диаметр этой водопроводной магистрали позволяет подавать большие объемы воды и защищает от гидроудара. Источник: Suffolk Water Connections

    .

    Удивительно, но существующее давление воды не является фактором гидроудара. Например, система трубопроводов с давлением 50 фунтов на квадратный дюйм (PSI) и система трубопроводов с давлением 500 PSI испытают такое же увеличение давления от гидроудара. Это означает, что в некоторых случаях системы низкого давления даже более уязвимы для гидроудара, чем системы высокого давления. Хотя эта система на 500 фунтов на квадратный дюйм может легко выдержать повышение давления на 50 фунтов на квадратный дюйм, это увеличение удвоит давление, которое в настоящее время в системе на 50 фунтов на квадратный дюйм.

    Специалисты по пожарной безопасности должны опасаться гидроудара, особенно в экстренных случаях

    В отрасли противопожарной защиты спринклерные системы пожаротушения, пожарные гидранты, пожарные рукава и сети трубопроводов, снабжающих их водой, уязвимы к внезапным изменениям давления. Пожарные должны сбалансировать срочность своих жизненно важных задач с постоянным пониманием того, насколько хрупкими могут быть системы трубопроводов.Разрыв трубы может вывести из строя спринклерную систему пожаротушения или пожарный гидрант, оставив здания и находящихся в них людей беззащитными.

    При тушении пожара несоблюдение должного гидроудара может привести к серьезным травмам. В статье в журнале Fire Rescue Magazine помощник начальника пожарной охраны Мэтью Тобиа из Департамента пожарно-спасательной службы округа Лоудун Вирджинии объяснил, как ошибка одного пожарного с насосной системой пожарной машины сделала бесполезным часто используемое устройство защиты от гидроудара:

    «Мой друг управлял двигателем на пожаре, у него была отключена одна линия атаки, и к его насосу входили линии подачи. У него не было возможности настроить предохранительный клапан (рециркуляционный), и он был обеспокоен тем, что его неспособность сделать это привела к травмам пожарного, который ударился о стену после того, как двигатель подачи нагнал трубопроводы до 300 фунтов на квадратный дюйм и послал гидравлический удар через его двигатель ».

    Установка — или не установка — предохранительного клапана пожарной машины может иметь большое значение между безопасными, эффективными операциями и катастрофой. Источник: Брэд Маккой через YouTube.

    Гидранты, закрытые слишком быстро, могут вызвать гидроудар в городской водопроводной сети, вызывая прорывы в сетях подземных трубопроводов.Слишком быстрое открытие шланговых клапанов может передать ударную волну пожарным, атакующим пожар. А внезапное закрытие сопла пожарного рукава может повредить соединения пожарного рукава или сломать насосы пожарных машин. Короче говоря, гидравлический удар может повредить почти все элементы систем на водной основе, используемых при тушении пожаров.

    С помощью правильного оборудования и здравого смысла можно предотвратить гидравлический удар в системах противопожарной защиты

    В системах пожаротушения регулирующие клапаны запускают или останавливают поток воды.Те системы, которые соответствуют стандартам, установленным Национальной ассоциацией противопожарной защиты (NFPA), следуют инструкциям, разработанным для предотвращения гидроударов регулирующих клапанов.

    С этой целью NFPA 13: Стандарт для установки спринклерных систем определяет минимальное время закрытия регулирующих клапанов в системах пожаротушения. Практически идентичное положение также регулирует регулирующие клапаны, используемые в стояках — сетях трубопроводов, которые действуют как внутренние пожарные гидранты (NFPA 14: 4.5.2).

    Из NFPA 13 издания 2019 г.

    7.6.1 Время закрытия клапана. Перечисленные индикаторные клапаны не должны закрываться менее чем за 5 секунд при работе на максимально возможной скорости из полностью открытого положения.

    Маховик этого регулирующего клапана медленно закрывает диск, чтобы предотвратить гидравлический удар в системе противопожарной защиты здания.

    Пожарные машины

    также оснащены устройствами, предназначенными для управления или сброса давления в насосе.Многие пожарные машины включают механические предохранительные клапаны, подобные упомянутым ранее, которые сбрасывают воду, когда давление становится слишком высоким. А новые пожарные машины могут иметь регуляторы давления, которые регулируют скорость пожарной машины для повышения или понижения давления, подаваемого в шланг.

    Хотя имеется оборудование для защиты от многих источников гидроудара при тушении пожаров, другие, как правило, предотвращаются благодаря передовой практике специалистов по пожарной безопасности. Курсы обучения пожарных предупреждают об опасности гидравлического удара, советуют медленно открывать и закрывать пожарные гидранты, клапаны, хомуты для шлангов и другие устройства, прерывающие поток.

    Но даже на гидранте есть оборудование, предотвращающее гидравлический удар. Фирма Fyrelane USA, производитель клапанов гидрантов и другого противопожарного оборудования из Техаса, выпустила специальный клапан, называемый клапаном Carlin, который позволяет операторам гидрантов быстро и полностью открывать гидрант без риска гидравлического удара.

    Клапан модели CV45A Carlin компании Fyrelane USA использует давление воды для автоматического открытия, предотвращая гидравлический удар между гидрантом и насосным оборудованием.

    Клапан Fyrelane модели CV45A Carlin, расположенный между муфтой пожарного рукава и гидрантом, ограничивает поток воды с помощью скользящего затвора, работающего под давлением. Эта заслонка остается частично закрытой, постепенно сбрасывая воду, пока шланг не будет полностью заряжен. Как только другой конец шланга подсоединяется к закрытому клапану на насосе или иным образом герметизируется, давление внутри шланга повышается, и клапан автоматически открывается, позволяя пожарным использовать полный поток гидранта.

    QRFS поставляет необходимое оборудование для предотвращения гидроудара

    Если вам нужны регулирующие клапаны, устойчивые к гидроударам, для спринклерных систем пожаротушения, обратите внимание на наш выбор дисковых затворов.Эти клапаны, внесенные в списки UL и одобренные FM, являются медленно закрывающимися и предназначены для безопасной и продолжительной работы в системах пожаротушения и стояках, соответствующих требованиям NFPA.

    QRFS содержит регулирующие клапаны для труб с пазами, фланцами и резьбой, обслуживающих системы пожаротушения и стояки.

    Щелкните здесь, чтобы просмотреть нашу подборку регулирующих клапанов.

    QRFS также является гордым дистрибьютором продукции Fyrelane USA, включая клапан модели CV45A Carlin. Ассортимент Fyrelane включает клапаны Carlin для гидрантов с резьбой по национальному стандарту (NST) 4 и 4 1/2 дюйма, а также насадки для гидрантов Storz на 4 и 5 дюймов.Эти клапаны Carlin американского производства обеспечивают безопасный и стабильный поток из пожарных гидрантов, позволяя персоналу меньше уделять внимания гидроударам и больше — тушению пожаров.

    Чтобы заказать или узнать больше о наших клапанах Carlin, позвоните в QRFS по телефону +1 (888) 361-6662 или по электронной почте [электронная почта защищена].

    Этот блог изначально был размещен на QRFS.com/blog. Если эта статья помогла вам разобраться в гидравлическом ударе и его влиянии на противопожарную защиту, узнайте о нас на Facebook.com/QuickResponseFireSupply или в Twitter @QuickResponseFS.

    Материалы, представленные на сайтах «Мысли в огне» и QRFS.com, включая весь текст, изображения, графику и другую информацию, представлены только в рекламных и информационных целях. Каждое обстоятельство имеет свой уникальный профиль риска и требует индивидуальной оценки. Содержание этого веб-сайта никоим образом не исключает необходимости в оценке и совете специалиста по безопасности жизнедеятельности, услуги которого следует использовать во всех ситуациях. Кроме того, всегда консультируйтесь со специалистом, таким как инженер по безопасности жизнедеятельности, подрядчик или местный орган власти, имеющий юрисдикцию (AHJ; начальник пожарной охраны или другое государственное должностное лицо), прежде чем вносить какие-либо изменения в вашу систему противопожарной защиты или безопасности жизни.

    Наиболее частые причины гидроудара (и способы его остановить)

    Звон труб при закрытии крана — не редкость. Это состояние называется «гидроудар», или в терминологии сантехники «гидравлический удар».

    Удар, который вы слышите, — это ударная волна, в результате которой трубы движутся и ударяются друг о друга или о соседние рамы. Удары часто усиливаются, если трубы не имеют надлежащей опоры или если клапаны начинают изнашиваться.

    Проблема в том, что шум не только раздражает.Гидравлический удар — это ключевой признак того, что ваша водопроводная система может быть повреждена. Вы должны устранить причину гидроудара, прежде чем он приведет к необратимому повреждению.

    Чтобы помочь вам остановить гидравлический удар, мы составили это руководство для экспертов.

    Если хотите:

    • Определите причину гидроудара
    • Узнайте, как избавиться от гидроудара

    Или вам нужна помощь в том, чтобы узнать, когда звонить сантехнику по поводу гидравлического удара, тогда вам понравится это руководство.

    Приступим.

    Причины гидроудара

    Многие из нас слышали стук трубы при закрытии крана. Обычно это происходит из-за высокого давления в системе сетевого давления. Наиболее частые причины:

    Свободные трубы

    Если трубы закреплены неправильно, даже самая легкая ударная волна может вызвать громкие удары. Через каждые пару метров трубы должны быть надежно закреплены на прочной поверхности. Имейте в виду, что у вас могут быть скрытые трубы, которые проходят под полом или деревянными конструкциями.Обязательно проверьте наличие ослабленных ремней, болтов или балок. Чаще всего незакрепленные трубы можно найти в подвале или в сушильном шкафу. Строительные работы также могут ослабить водопроводные трубы, увеличивая воздействие гидроудара.

    Новая техника для кухни

    Если стук начался после установки новой стиральной или посудомоечной машины, вероятно, проблема с электромагнитными клапанами. Посудомоечные и стиральные машины имеют подачу воды, управляемую электромагнитными клапанами. Они имеют электрический привод и немедленно останавливают поток воды. Когда это происходит, вода отражается вверх по трубе и создает ударную волну, которая вызывает взрыв.

    Изношенные запорные клапаны

    Удары также могут быть вызваны изношенными запорными клапанами. Запорные клапаны могут вызвать гидравлический удар, если они имеют неплотную набивку сальника и / или изношенные шайбы. Клапаны обычно открываются, когда ударная волна гидроудара проходит по трубопроводу, и ударная волна может «дребезжать» за ручку клапана и ослабить перемычку.

    Забитые воздушные камеры

    Если у вас никогда не было гидроудара и однажды вы внезапно испытаете его неожиданно, то, скорее всего, воздушные камеры вашей системы водоснабжения заблокированы. Эти камеры часто забиваются водой или остатками минералов, содержащихся в воде. Блокировка не позволит камере поглотить давление в вашей системе, и в результате вы будете время от времени слышать хлопок.

    Рябь воды из бака

    Другой причиной ударов по трубам является водяная рябь, создаваемая поплавковым клапаном внутри вашего резервуара для воды. Когда вода поступает в резервуар, поплавок клапана качается вверх и вниз, постоянно закрывая и открывая клапан. Это создает «волновую систему», которая эхом разносится по трубам, вызывая стук. Пластиковые резервуары для воды могут значительно прогнуться, поэтому они должны иметь усиливающую пластину (металлическую), чтобы они не двигались.

    Быстродействующие клапаны

    Распространенной причиной гидроудара могут быть быстродействующие клапаны на таких приборах, как стиральные или посудомоечные машины. Эти клапаны внезапно останавливают воду, движущуюся по трубам.Возникает ударная волна, которая заставляет трубы дрожать, вызывая удары. Стук усиливается по мере износа клапанов.

    Как остановить гидроудар

    Гидравлический удар не только раздражает — он также может повредить различные компоненты вашей водопроводной и насосной систем. Вот почему важно как можно скорее избавиться от гидроудара. Ослабленная трубка или изношенный стоп-сигнал могут в конечном итоге обойтись вам в тысячи фунтов.

    Закрепите незакрепленные трубы

    Если незакрепленные трубы превращают слабые ударные волны в громкие удары, вы можете предотвратить это, закрепив хомуты, добавив новые хомуты или затянув шпильки или балки.

    Помните, не смешивайте разные металлы при креплении труб. Не следует использовать стальную ленту для крепления медной трубы или наоборот. Различные металлы могут вступать в химическую реакцию и вызывать коррозию металла.

    Если проблемные трубы расположены в скрытых местах, то вам, скорее всего, понадобится сантехник, который поможет вам найти проблему.

    Обернуть трубы пенопластом

    Еще одна идея — обернуть трубы пенопластом. Пена должна помочь предотвратить удары, поглощая ударные волны.Это также поможет предотвратить замерзание труб зимой. Убедитесь, что вокруг трубы есть пространство для расширения.

    Fix Стиральные или посудомоечные машины

    Если стук происходит только при использовании стиральной или посудомоечной машины, то проблема, скорее всего, в электромагнитном клапане. Электромагнитный клапан — это компонент вашей машины, используемый для отключения подачи воды. Если время срабатывания электромагнитного клапана слишком быстрое, жидкость внутри клапана резко останавливается.В этом случае жидкость отражается как волна, вызывая ударную волну обратно по трубе, которую вы слышите как хлопок. Простое решение — выбрать электромагнитный клапан или другой тип клапана, который имеет более медленное время отклика.

    Установить регулятор давления воды

    Частая причина гидроудара — высокое давление воды. Если ваше давление приближается к 100 фунтам на квадратный дюйм, то это, вероятно, причина вашей проблемы. Нормальное давление должно составлять от 30 до 55 фунтов на квадратный дюйм.

    Чтобы решить эту проблему, подумайте об установке регулятора давления воды.Установленный рядом с водопроводной линией, регулятор давления контролирует движущуюся воду и регулирует давление воды, поступающей в ваш дом.

    Хотя регуляторы давления воды могут быть дорогими, они важны, поскольку помогают защитить дорогостоящие водозависимые приборы, такие как посудомоечные, стиральные машины и туалеты.

    Примечание. Если вам нужно проверить давление воды, вы можете купить домашний манометр для проверки давления воды в большинстве высококачественных строительных магазинов.

    Установите воздушную камеру

    В качестве альтернативы, если редукционный клапан или регулятор не выходит за рамки вашего бюджета, то воздушная камера, установленная рядом с проблемными клапанами, может решить вашу проблему.

    Обычно для этого требуется квалифицированный сантехник, работающий на месте, чтобы изготовить и затем установить небольшую вертикальную трубу рядом с каждым из проблемных клапанов.

    На практике, когда водяные клапаны закрыты, вертикальные трубы действуют как воздушная камера, поглощая воздух и предотвращая удары.

    Основная проблема этого метода заключается в том, что труба обычно наполняется водой, останавливая работу камеры. Затем вам нужно будет слить воду из системы, чтобы починить камеру.

    Установка механических гидроблоков

    В качестве более сложной альтернативы уменьшению гидроудара можно использовать другой вариант — установить «амортизаторы гидроудара».

    Вместо установки вертикальной трубы рядом с клапанами для улавливания и поглощения давления в глушителях используется смесь пружин и воздушных баллонов для поглощения движения воды и уменьшения ударных волн.

    Хотя гидрозатворы будут дороже, чем воздушная камера, нужно помнить одну вещь: вам не нужно беспокоиться о сливе воды из камеры каждые пару месяцев.

    Установка циркуляционного насоса ИБП Grundfos

    Если ваш гидроудар вызван старением поплавкового клапана или рябью в водяной системе, то насосы ИБП могут стать решением вашей проблемы.Циркуляционный насос Grundfos может адаптироваться к различным условиям в водной системе, обеспечивая равномерную циркуляцию жидкостей, снижая вероятность гидроудара. Вы также можете использовать стравливающую систему насоса, чтобы удалить воздух из вашей водяной системы.

    Бесплатная консультация

    Если вам не хватает совета, позвоните нашим специалистам по помпам по телефону 0800 112 3134 или 0333 577 3134. Мы открыты с понедельника по пятницу с 07:00 до 17:30 и в субботу с 08:30 до 12:30.

    Как исправить гидравлический удар в гидравлических контурах

    Большинство читателей этой колонки хорошо осведомлены о том, что вязкость гидравлической жидкости на углеводородной основе обратно пропорциональна температуре.При повышении температуры вязкость жидкости уменьшается, и наоборот. Это не идеальная ситуация по нескольким причинам. Фактически, идеальная гидравлическая жидкость должна иметь индекс вязкости (изменение вязкости жидкости относительно температуры), представленный горизонтальной линией, пересекающей ось Y на расстоянии 25 сантистокс.

    Эта температура-вязкость показывает, что идеальная гидравлическая жидкость не будет показывать изменения вязкости независимо от температуры.

    К сожалению, такой жидкости для повышения эффективности и долговечности гидравлических машин не существует.И вряд ли такая жидкость будет разработана при моей жизни. Но если бы такая жидкость была разработана и запатентована , ее создатель стал бы ключом к золотому руднику. На данный момент у нас есть всесезонное гидравлическое масло. Эти жидкости имеют высокий индекс вязкости, поэтому их вязкость менее чувствительна к изменениям температуры, чем у однотипных масел.

    Непредвиденные последствия

    Вязкость жидкости является одним из факторов, определяющих, будет ли достигнута и сохранена пленочная смазка.Если нагрузка и поверхностная скорость остаются постоянными, но повышенная рабочая температура приводит к падению вязкости ниже той, которая требуется для поддержания гидродинамической пленки, происходит граничная смазка; это создает возможность трения и адгезионного износа.

    С другой стороны, существует диапазон вязкости, в котором трение жидкости, механическое трение и объемные потери оптимальны для работы гидравлической системы. Это диапазон вязкости, в котором гидравлическая система будет работать наиболее эффективно: самое высокое отношение выходной мощности к входной.

    Чтобы проиллюстрировать вышесказанное, рассмотрим следующий пример: В поисках снижения расхода топлива производитель мобильной гидравлической машины с приводом от двигателя заменил свой насос фиксированного рабочего объема, приводящий в действие навесное оборудование машины, на агрегат переменного рабочего объема. Ходовой привод машины уже использовал поршневой насос переменной производительности (гидростатическая трансмиссия), поэтому модернизация гидравлического контура навесного оборудования до более эффективной конфигурации казалась инженерам-разработчикам машины логическим продолжением.

    При испытании этой модификации инженеры были шокированы, обнаружив, что на самом деле расход топлива увеличился на от 12 до 15%! По результатам анализа увеличение расхода топлива было объяснено увеличением вязкости масла, вызванным падением рабочей температуры масла на 30 ° C. Другими словами, «более густое» масло привело к дополнительному сопротивлению гидростатической трансмиссии, приводящей ходовой привод, в результате чего машина потребляла больше топлива.

    В машине использовался двухсекционный комбинированный теплообменник для гидравлического масла и охлаждающей жидкости двигателя.Охлаждение двигателя было улучшено за счет термостатического гидравлического привода вентилятора в зависимости от температуры охлаждающей жидкости двигателя. Секция маслоохладителя была рассчитана на оригинальный гидравлический насос с фиксированным рабочим объемом.

    Недостатком такой конструкции является то, что охлаждение двигателя регулируется термостатически, а гидравлическая система нет, поток воздуха через комбинированный теплообменник полностью зависит от температуры двигателя. Это означает, что снижение тепловой нагрузки за счет замены насоса с постоянным рабочим объемом агрегатом с регулируемым рабочим объемом привело к значительному снижению температуры гидравлического масла, что обычно хорошо!

    Инженеры заблокировали большую часть секции гидравлического масла охладителя и снова провели испытание.Это вернуло расход топлива к исходному уровню, но значительного улучшения не произошло.

    Был сделан вывод, что испытанная модификация может дать небольшую экономию затрат в отношении уменьшения размера маслоохладителя. Но с учетом того, что расход топлива важнее любой скромной экономии охлаждающей способности, идея платить больше за насос, в результате которого масло поддерживалось при более низкой рабочей температуре, но при этом повышался расход топлива, была непримирима для инженеров машины.

    Усвоенный урок

    Этот рассказ иллюстрирует влияние температуры гидравлического масла (и, следовательно, вязкости) на расход топлива. Подытоживая ключевые моменты:

    • Уменьшена тепловая нагрузка на гидросистему (увеличен КПД) за счет замены стационарного насоса на агрегат переменного рабочего объема;
    • Это привело к значительному падению рабочей температуры гидравлического масла;
    • Возникшее в результате увеличение вязкости гидравлического масла привело к значительному увеличению расхода топлива.

    Другими словами, если ваше гидравлическое масло слишком густое, вы заплатите за него через топливный насос или счетчик электроэнергии. Однако предостерегающий оборот здесь заключается в том, что если ваше масло слишком жидкое, вы заплатите за него в ремонтной мастерской.

    Если предположить, что это испытание проводилось при одинаковой температуре окружающей среды для обоих вариантов насоса, падение температуры гидравлического масла на 30 ° C (54 ° F) является весьма значительным. Частично это можно объяснить комбинированным теплообменником, установленным на машине.По мере увеличения вязкости гидравлического масла двигатель работает активнее (сжигает больше топлива), поэтому вентилятор охлаждения (контролируемый температурой двигателя) работает сильнее. Это означает, что гидравлическое масло отводит больше тепла и, следовательно, вязкость гидравлического масла увеличивается. Это вязкий круг.

    Еще один вывод из этой истории — который имеет отношение к проектировщикам машин и людям, которые покупают их машины — заключается в том, что большинство конструкторов не рассматривают масло как ключевой компонент гидравлической системы, которой оно является. Вязкость гидравлического масла, индекс вязкости или оптимальное число вязкости для гидравлических компонентов системы, по-видимому, не учитывались во время испытания. Это говорит о том, что базовый, нормальный расход топлива у машины был просто счастливым совпадением.

    Даже после того, как было обнаружено, что расход топлива возрастает с увеличением вязкости масла, и хотя возможность снижения установленной охлаждающей способности была признана и рассматривалась, очевидно, что не рассматривалось изменение вязкости масла до соответствует более высокой эффективности (поэтому рабочая температура) системы.Если бы более эффективный насос с существующей охлаждающей способностью сочетался с жидкостью подходящей вязкости, вероятно, экономия топлива машины была бы выше, чем у исходной системы.

    Другими словами, конструкторы машин не смогли должным образом учесть все четыре стороны того, что я называю бриллиантом энергоэффективности гидравлической машины.

    Алмаз энергоэффективности

    Энергоэффективность означает отношение выходной мощности к входящей.Девяносто кВт из 100 кВт — это эффективность 90%. Девяносто кВт из 110 кВт — это эффективность 82%. А 90 кВт из 120 кВт — это эффективность 75%. Обратите внимание, что во всех трех случаях выходная мощность остается прежней: 90 кВт. Просто потребляемая мощность — следовательно, потребление топлива или электроэнергии первичного двигателя, необходимое для его получения, — продолжает расти!

    Квадранты алмаза энергоэффективности гидравлической машины взаимосвязаны. Изменение любого из них влияет на симметрию алмаза.

    Четыре стороны алмаза энергоэффективности гидравлической машины взаимосвязаны; измените любой, и это повлияет на симметрию алмаза.

    Расчетная эффективность отражает «естественную» эффективность оборудования, выбранного для системы. Это оборудование включает в себя ряд присутствующих устройств, расходующих энергию, таких как пропорциональные клапаны, регуляторы потока и редукционные клапаны. Он также включает потери, «рассчитанные» по размерам и конфигурации всех необходимых проводников: труб, шлангов, фитингов и коллекторов.

    На противоположной стороне ромба, Установленная холодопроизводительность , в процентах от постоянной потребляемой мощности, должно отражать расчетный или собственный КПД гидравлической системы. Другими словами, чем ниже собственный КПД, тем выше установленная холодопроизводительность.

    Рядом с установленной холодопроизводительностью Температура окружающего воздуха , в которой работает гидравлическая машина. Это напрямую влияет на рабочую температуру масла в гидравлической системе, которая в значительной степени определяет вязкость масла , завершая алмаз энергоэффективности.

    Разработчик станка не может контролировать температуру окружающего воздуха, хотя ей необходимо знать, каков этот диапазон. Но она определяет (или, по крайней мере, должна) определять другие три переменные; расчетная эффективность, установленная холодопроизводительность и вязкость масла. Как показано на графическом изображении алмаза энергоэффективности (и показано в приведенном выше тематическом исследовании), ни одна из этих переменных не может рассматриваться изолированно.

    Глядя на алмаз энергоэффективности с точки зрения владельца машины, полезно понимать, что даже после того, как машина была спроектирована, построена и залита маслом, ее эффективность, установленная мощность охлаждения и температура окружающего воздуха являются движущимися целями — движущимися целями. которые влияют на вязкость рабочего масла и, как следствие, на энергопотребление.

    Возможность изменения температуры окружающего воздуха, особенно если машина перемещается между местами с разными климатическими условиями, довольно очевидна. И хотя конструкция КПД не меняется, фактическая эффективность работы обычно снижается со временем из-за износа. Точно так же, хотя установленная холодопроизводительность не меняется со временем в процентах от потребляемой мощности, эффективность ее может быть снижена из-за износа компонентов контура охлаждения и — в случае воздушно-дутьевых теплообменников — колебания температуры окружающего воздуха и высоты над уровнем моря.

    Таким образом, чтобы достичь оптимального уровня энергоэффективности гидравлической машины, требуется продуманный дизайн. Для его сохранения необходимо, чтобы изменение зависимых переменных было минимальным. В обоих случаях бриллиант энергоэффективности может быть полезен как разработчикам машин, так и владельцам гидравлического оборудования в понимании поставленной задачи.

    Брендан Кейси имеет более чем 26-летний опыт обслуживания, ремонта и капитального ремонта мобильного и промышленного гидравлического оборудования.Для получения дополнительной информации о снижении эксплуатационных расходов и увеличении времени безотказной работы вашего гидравлического оборудования посетите его веб-сайт по адресу: www.HydraulicSupermarket.com .

    Гидравлический молот — обзор

    1.4.3 УДАРНЫЕ ВОЛНЫ В ЖИДКОСТИ

    Жидкости долгое время считались несжимаемыми веществами, пока Кантон (1762) впервые не продемонстрировал их очень низкую сжимаемость. В физике ударных волн жидкости и газы рассматриваются как сжимаемые жидкости.Жидкости, однако, гораздо труднее сжимать, чем газы, и, как следствие, типичные свойства ударных волн, такие как эффект увеличения крутизны волны и сверхзвуковое распространение, четко наблюдаются только при значительно более высоких ударных давлениях. Кроме того, ударно-сжатые жидкости могут проявлять необычные свойства (высокая вязкость, фазовые превращения) и вызывать сложные побочные эффекты (кавитация). Ударные волны в жидкостях, особенно в воде, практически не лечились до начала Первой мировой войны.Однако здесь следует выделить несколько замечательных вкладов, более подробно описанных в Хронологии.

    Гидравлический удар, крутая волна давления, которая ощущается как резкий удар, подобный молотку, вызывается внезапным замедлением или ускорением потока в длинной трубе, например, когда клапан закрывается достаточно быстро. Монгольфье и Арган (1796) успешно применили это явление при создании гидравлического насоса, который они назвали «гидроцилиндром» [ bélier hydraulique ].Однако, как правило, этот эффект вреден для трубопроводных систем, потому что импульс давления может распространяться в отдаленные районы и разрушать трубы, клапаны и другие установки. Карелькич и Жуковский (1898–1900) в Москве первыми с научной точки зрения рассмотрели проблему гидроудара или гидравлических ударов в водопроводных сетях. На рубеже 20-го века эта проблема стала важной и в других странах, когда пришлось строить большие водопроводные системы, чтобы удовлетворить растущие потребности в воде быстрорастущих городских сообществ.Гидравлический удар также может быть вызван ударом объекта и проникновением в жидкость, и в этой модификации, вероятно, это был самый ранний наблюдаемый эффект ударной волны в жидкости. Карре (1705) наблюдал любопытный феномен: пуля, выпущенная в деревянный ящик, наполненный водой, взорвалась. Ударная пуля, передавая воде большой импульс, генерирует ударную волну, которая разрывает стены. Начиная с первых воздушных сражений Первой мировой войны этот эффект был постоянной угрозой для военных самолетов, чьи топливные баки не могут быть полностью защищены от выстрелов. 9 В военных приложениях наблюдались и другие эффекты ударных волн в жидкостях. Например, Эббот в Соединенных Штатах (1881 г.) и Блохманн (1898 г.) в Германии изучали явления подводного взрыва подводных мин, которые стали предметом растущего интереса военно-морского флота с момента изобретения торпеды в 1860-х годах. Во время Второй мировой войны Соединенные Штаты и Англия активно продвигали исследования подводных взрывов. Их отчеты UNDEX, опубликованные вскоре после окончания войны, включают множество данных о явлениях подводных взрывов и их аналитическую трактовку, и даже сегодня являются богатым источником информации. 10

    Водные рикошеты, теперь хорошо известное явление перкуссии, было изучено Марси (1639), который бросил камень на поверхность пруда под небольшим углом и объяснил эффект законом отражения. Это явление вызвало новый интерес с появлением гидросамолетов и необходимостью их посадки на высокой скорости или в неспокойном море. Исследования проводились в разных странах, таких как США (Фон Карман и Ваттендорф, 1929), Германия (Вагнер, 1932) и бывший Советский Союз.(Седов и Владимиров 1942), показали, что этот эффект перескока представляет собой сложную комбинацию скольжения и периодических подпрыгиваний, которые также генерируют волны конечной амплитуды в воде.

    Кавитационные повреждения были впервые обнаружены вскоре после первого использования паровых турбин. Центральное схлопывание кавитационных пузырьков, сопровождающееся выбросом ударных волн, приводит к разрушению материала. В начале эры паровых турбин в 1880-х годах эффекты эрозии, вызванные кавитацией, наблюдались не только на концах лопастей турбинных колес, но и на морских гребных винтах, которые первоначально приводились в движение на очень высоких оборотах, чтобы избежать потерь, связанных с высоким редуктором между турбина и пропеллер.Исследования явлений кавитации были начаты как с инженерной (Торникрофт и Барнаби, 1895; Кук, 1928), так и с научной точки зрения (Лорд Рэлей, 1917; Прандтль, 1925; Жуге, 1927; Акерет, 1938). Кавитация и связанные с ней эффекты ударного давления теперь могут возникать в очень широком пространственно-временном диапазоне, от метров / миллисекунд до нанометров / фемтосекунд. Примером верхнего предела является газовая сфера подводного взрыва, которую можно рассматривать как один огромный пузырь.Примером нижнего предела или микрокавитации является облучение биологической ткани фемтосекундными лазерными импульсами, что приводит к ультракоротким ударным импульсам (эффект фоторазрушения , ). Эта процедура была применена в фемтосекундной лазерной нанохирургии в качестве «наноскальпеля» для вырезания частиц нанометрового размера, таких как хромосомы в живой клетке. 11

    Электрогидравлический эффект , впервые обнаруженный в Англии Сингером и Кроссом (1815 г.), а затем вновь открытый в бывшем Советском Союзе, 12 использует мощный электрический разряд, подаваемый в тонкую проволоку или искровой разрядник, погруженный в воду. для генерации ударных волн.Этот эффект получил известность благодаря латвийскому урологу Голдбергу, 13 , который первым успешно применил его для дезинтеграции камней мочевого пузыря у человека (шоковая литотрипсия). Позже электрогидравлический эффект стал применяться и в технологии производства листового металла.

    Гидравлический молот: что и почему

    Примечание редактора: эта статья изначально была опубликована в виде серии из двух частей в выпусках журнала Pumps & Systems за август и сентябрь 2008 г.

    Гидравлический удар (также гидравлический удар) — это скачок давления, который может возникнуть в любой насосной системе, которая претерпевает резкое изменение скорости потока и обычно возникает в результате запуска и остановки насоса, открытия и закрытия клапанов или отделения и закрытия водяного столба. .Эти резкие изменения могут привести к изменению импульса всего или части столба текущей воды. Это может вызвать ударную волну, которая движется вперед и назад между создавшим ее барьером и вторичным барьером. Если интенсивность ударной волны высока, может произойти физическое повреждение системы. Как ни странно, это может быть более серьезной проблемой в приложениях с низким давлением.

    Гидравлический удар — еще один пример сохранения энергии, возникающий в результате преобразования энергии скорости в энергию давления.Поскольку жидкости обладают низкой сжимаемостью, результирующая энергия давления имеет тенденцию быть высокой.

    Рисунок 1. Пример системы (Предоставлено автором)

    Возможно, лучший способ визуализировать это действие — начать с гипотетического примера. На рисунке 1 показан насос, перекачивающий воду в трубу, которая была пуста при запуске насоса. Два клапана, расположенные на выпуске насоса и на дальнем конце трубы, полностью открыты и могут закрываться мгновенно. Труба, клапаны и другие фитинги полностью неэластичны, и изменение объема не может произойти независимо от давления.Столб воды, протекающий по трубе, также имеет идеально ровную переднюю кромку, которая соответствует внутреннему диаметру (ID) поперечного сечения трубы. Когда передний край водяного столба достигает нижнего по потоку клапана, он закрывается почти со скоростью света и не захватывает воздух перед водяным столбом.

    Даже если передняя кромка задела закрытый клапан, поток в трубу продолжается в течение следующих нескольких миллисекунд. Как только поток прекращается, входной клапан закрывается (на этот раз с истинной скоростью света), и столб воды полностью изолирован между двумя клапанами.Какие события происходят, когда колонна ударяется о закрытый клапан, расположенный ниже по потоку, и почему вода продолжает поступать в трубу, даже если клапан закрыт?

    Если бы эта движущаяся колонна была металлической колонной, а не водой (конечно, гипотетически), могло бы произойти несколько вещей. В зависимости от его коэффициента восстановления (его способности предотвращать необратимые повреждения) кинетическая энергия потока (движения) может быть преобразована в механическую энергию, поскольку передняя кромка металлической колонны прижимается к закрытому клапану.Если это произойдет, колонка остановится и останется неподвижной у клапана. Если его восстановление достаточно велико, чтобы предотвратить раздавливание, та же кинетическая энергия может быть использована для изменения его направления в форме отскока. Независимо от результата, «вся» металлическая колонна либо остановится, либо отскочит в противоположном направлении. Ни одно из этих событий не происходит, когда участвует вода.

    Вода — это почти несжимаемая жидкость, что предполагает ее слабую сжимаемость.При температуре окружающей среды 1 фунт на квадратный дюйм (psi) уменьшит его объем примерно на 0,0000034 процента. Это кажется маленьким, но чем больше громкость, тем легче увидеть эффект. Например, если бы вода не сжималась, уровень моря был бы примерно на 100 футов выше, чем его нынешний уровень! При очень высоких давлениях, скажем, 40 000 фунтов на квадратный дюйм, его сжимаемость увеличивается примерно до 10 процентов. Но большая часть воды — это не просто вода — она ​​содержит воздух, в основном азот (78 процентов) и кислород (21 процент).Растворенный воздух составляет около 2 процентов данного объема необработанной воды и существенно увеличивает ее сжимаемость.

    Почему

    Сжимаемость воды (и растворенного воздуха) заставляет воду действовать иначе, чем металлический столб. Если бы он не был сжимаемым, его передняя кромка была бы постоянно раздавлена ​​или вся колонна отскочила бы назад. Когда передний край водяного столба ударяется о закрытый клапан, он резко останавливается. Поскольку вода за передней кромкой все еще находится в движении, она начинает сжиматься.Это позволяет небольшому количеству воды продолжать течь в трубу, даже если передняя кромка остановилась. Когда поток прекращается, вся кинетическая энергия движения, а также энергия сжатия преобразуется в энергию давления.

    Сжатие начинается на переднем крае водяного столба, и, поскольку дополнительная энергия, которую оно производит, не может продолжаться после закрытого клапана, создается волна давления или ударная волна, которая распространяется по пути наименьшего сопротивления, который в этом примере — назад вверх по течению.Его возникновение похоже на эхо, возникающее при столкновении звуковой волны, проходящей через воздух, с аналогичным барьером. Когда волна попадает в клапан выше по потоку, она отражается обратно вниз по потоку, но с меньшей интенсивностью. Это возвратно-поступательное движение продолжается до тех пор, пока из-за потерь на трение и отражение волна не исчезнет. Скорость, с которой движется волна, и энергия, которую она теряет во время движения, зависят от плотности и сжимаемости среды, в которой она движется. Плотность и сжимаемость воды делают ее хорошей средой для генерации и передачи ударных волн.

    Волны давления, создаваемые гидравлическим ударом, имеют характеристики, аналогичные характеристикам звуковых волн, и распространяются с такой же скоростью. Время, необходимое для того, чтобы волна давления гидравлического удара преодолела длину трубы, просто равна длине трубы, деленной на скорость звука в воде (приблизительно 4860 футов в секунду [фут / сек]). При анализе гидроудара часто используется постоянная времени, описывающая распространение волны от ее начала до вторичного барьера, а затем обратно.Он имеет вид Tc = 2L / a (где L — длина трубы, а a — скорость волны, которая является скоростью звука). В трубе длиной 1000 футов волна может совершить полный обход менее чем за полсекунды.


    P (дополнительный) = aV / 2.31g
    Уравнение 1

    P = дополнительное давление, создаваемое ударной волной
    a = скорость волны
    V = скорость текущей воды в трубе в футах в секунду
    g = универсальная гравитационная постоянная 32 фут / сек 2
    2.31 = постоянная преобразования давления.


    Давление, создаваемое этой ударной волной, прямо пропорционально скорости волны и скорости воды, текущей в трубе. Хотя уравнение 1 не учитывает влияние длины, диаметра и упругости трубы, оно дает некоторое представление о дополнительном давлении, создаваемом волной давления гидроудара.

    При скорости трубопровода 5 футов / сек дополнительное давление, создаваемое ударной волной, составляет примерно 328 фунтов на квадратный дюйм.Увеличение этой скорости до 10 футов / сек увеличивает дополнительное давление примерно до 657 фунтов на квадратный дюйм. Очевидно, что системы, не рассчитанные на такое повышенное давление, часто повреждаются или даже разрушаются.

    Рисунок 2. Магистральный трубопровод с ответвлением.

    Закрытие и открытие клапана

    Одна из основных причин гидроудара — резкое закрытие клапана. На рис. 2 показан магистральный трубопровод с ответвленной цепью, питаемой от тройника. В конце ответвления — вентиль.Черные стрелки показывают направление потока в основной и ответвительной линиях, а фиолетовая стрелка — это длина ответвления. Как и в системе на Рисунке 1, клапан действует как первичный барьер, но на этот раз вторичным барьером является «тройник».

    Если вода течет в ответвлении и клапан быстро закрывается, разовьется ударная волна. Его начало следует той же последовательности событий, что и в нашем гипотетическом примере. Одно небольшое отличие состоит в том, что часть интенсивности волн будет потеряна в «тройнике», поскольку он открыт для основного трубопровода с обеих сторон.Тем не менее, значительная часть будет отражаться обратно к клапану.


    P = 0,07 (VL / t)
    Уравнение 2

    P = дополнительное давление, создаваемое ударной волной
    V = скорость потока в футах / сек
    L = длина трубы между барьерами в футах
    t = время закрытия клапана в секундах.
    0,07 = производная константа.


    Отличие в этом примере состоит в том, что у нас есть некоторый контроль над временем закрытия клапана. В нашем гипотетическом примере клапаны закрываются почти со скоростью света.Время закрытия существенно влияет на возникновение и интенсивность гидроудара. Две другие переменные, скорость потока и длина трубопровода, также являются основными факторами. Уравнение 2 показывает взаимосвязь этих трех переменных. Дополнительное давление, создаваемое ударной волной, прямо пропорционально скорости потока и длине трубопровода и обратно пропорционально времени закрытия. Другими словами, более высокие значения V или L увеличивают давление, тогда как более высокие значения t приводят к снижению давления.В таблице 1 показаны результаты этого уравнения при использовании различных скоростей, длин труб и времени закрытия. Значения V составляют 5 и 10 футов / сек, значения L — 100 и 1000 футов, а значения t — 1 и 2 секунды. В каждом примере две переменные постоянны.

    Таблица 1. Дополнительное давление, создаваемое разными скоростями, длинами труб и временем закрытия.

    Оба столбца таблицы иллюстрируют пропорциональное влияние скорости и длины — давление увеличивается по мере их увеличения. Нижние значения в правом столбце иллюстрируют обратную зависимость времени; это давление вдвое меньше, чем в левом столбце, потому что время закрытия увеличилось вдвое.Значение L часто фиксировано и зависит от приложения, но мы можем осуществлять существенный контроль над двумя другими переменными. Таким образом мы можем устранить или значительно уменьшить эффект гидроудара.

    Диаметр трубы и эластичность ее материала также влияют на создаваемое давление. Более крупные диаметры и более эластичные материалы поглощают часть интенсивности ударных волн и, следовательно, уменьшают создаваемое давление. Некоторые производители труб публикуют кривые или таблицы, которые показывают возможное увеличение давления гидравлического удара для труб различного диаметра и материалов.

    Предположим, что клапан ответвления закрыт. Если его открыть быстро, эффект будет аналогичен быстрому закрытию. Когда клапан открывается быстро, в отводной линии происходит немедленное падение давления, а поступающая из магистральной магистрали вода ускоряет ранее статический столб. Поскольку трение и другие факторы ограничивают его поток, передняя часть колонны может действовать как начальный барьер и вызывать гидравлический удар. Обычно его эффект намного меньше, чем эффект закрытия клапана, и его часто называют «помпажем».Тем не менее, при определенных условиях этот всплеск может быть разрушительным.

    Пуск и остановка насоса

    Воздействие гидроудара может быть более значительным в системах низкого давления. Дополнительное давление, создаваемое ударной волной, пропорционально длине трубы и скорости протекающей в ней воды и полностью не зависит от ее рабочего давления. Следовательно, ударная волна, создаваемая в трубе длиной 1000 футов, протекающей со скоростью 5 футов / сек, будет одинаковой, независимо от того, составляет ли рабочее давление 50 фунтов на квадратный дюйм или 200 фунтов на квадратный дюйм.Разница в том, что отношение ударного давления к расчетному давлению может быть значительно выше в системе низкого давления, поэтому вероятность повреждения выше.

    Во многих крупных системах запуск насоса при закрытом нагнетательном клапане является нормальной процедурой. Когда насос начинает работать на полной скорости, клапан открывается медленно. Начинается поток, который затем увеличивается до максимума по мере того, как клапан продолжает открываться. Эта процедура меняется на противоположную, когда насос останавливается. Запуск и остановка против клапана, который открывается или закрывается медленно, препятствует возникновению гидроудара.

    Нагнетательный клапан может приводиться в действие вручную или каким-либо автоматическим механизмом. Один недостаток клапанов с ручным управлением возникает во время отключения электроэнергии. Когда двигатель насоса теряет мощность, скорость и расход насоса снижаются быстро. В результате изменение кинетической энергии на энергию давления может вызвать гидроудар в линии нагнетания. Когда столб воды меняет направление, крыльчатка будет ускоряться в обратном направлении. Когда он достигает максимальной скорости обратного хода, обратный поток уменьшается и создается дополнительный скачок давления.

    В большинстве случаев применения повышения давления «подпружиненный» обратный клапан устанавливается на выходе насоса или рядом с ним и остается закрытым, когда насос не работает. Когда насос запускается, поток не начинается до тех пор, пока создаваемое им давление не превысит давление на стороне выхода закрытого клапана. Если давление ниже по потоку не может упасть ниже определенного уровня, поток увеличивается медленно, и возникновение гидроудара предотвращается или уменьшается.

    Когда насос останавливается, происходит непредвиденное событие — быстро закрывающийся клапан фактически предотвращает, а не инициирует гидроудар.В этом конкретном случае пружина обеспечивает быстрое закрытие клапана, что предотвращает изменение направления водяного столба из-за более высокого давления на выходе. Несмотря на то, что поток резко меняется, давление остается относительно постоянным во всей колонне ниже по потоку. Если бы был установлен стандартный обратный клапан, водяной столб ускорился бы назад, захлопнул бы чек и вызвал ударную волну.

    Сегодня управление частотно-регулируемым приводом (VFD) используется во многих приложениях, чтобы исключить возникновение гидравлического удара во время запуска и остановки насоса.Этот метод, известный как плавный пуск и остановка, достигается путем увеличения или уменьшения скорости двигателя в течение нескольких секунд. Это позволяет скорости потока увеличиваться или уменьшаться намного медленнее, чем при включении и остановке линии.

    До сих пор наше обсуждение гидравлического удара касалось однофазных систем. В этих системах вода остается в одном состоянии (в наших примерах — в жидкости) независимо от изменений гидравлических условий. Ударные волны, генерируемые однофазными системами, возникают из-за резкого изменения потока и, как следствие, преобразования кинетической энергии.

    Гидравлический удар, возникающий при разделении и закрытии водяного столба, представляет собой двухфазный процесс. В двухфазной системе вода меняет состояние и может существовать как в жидкости, так и в виде пара в одном и том же ограниченном объеме. Это изменение может происходить всякий раз, когда давление в трубопроводе снижается до давления водяного пара. Когда происходит падение давления, водяной столб может быть отделен в одном или нескольких местах карманом водяного пара. Когда давление поднимается выше давления пара, колонна присоединяется или закрывается и может создать волну высокого давления.Разделение водяного столба само по себе может вызвать проблемы в трубах очень большого диаметра или с тонкими стенками (которые могут разрушиться), но гидравлический удар во время закрытия является более распространенной проблемой.

    Разделение водяного столба может происходить, когда насос останавливается и водяной столб меняет направление, или в конденсатопроводах, где высокие температуры могут уменьшить необходимость большого перепада давления. Хотя обе формы могут быть чрезвычайно опасными, трубопроводы конденсата гораздо более опасны. Ударные волны, генерируемые закрытием колонны, могут распространяться в противоположных направлениях, и если они сталкиваются со второстепенными препятствиями, они могут быть перенаправлены обратно друг к другу.Нет ничего необычного в том, что эти отраженные волны увеличивают интенсивность при столкновении. Это, безусловно, относится к воде и волнам напряжения и может быть причиной часто более значительных повреждений в результате гидроудара, вызванного закрытием.

    В ближайшие месяцы мы опубликуем статьи, которые восполнят пробел в нашей отрасли: основная информация для новых пользователей помп. Мы возьмем их из классических статей «Насосы и системы », а также из нового контента. Если у вас есть полезная статья для обучения новых сотрудников или освежения знаний основам, расскажите нам об этом на странице pumpeditors @ cahabamedia.com.
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *