Как определить неисправность турбины дизельного двигателя: Признаки неисправности турбины дизельного двигателя. Обращаем внимание на это

Содержание

методы диагностики и устранения неисправности

Турбированные двигатели стремительно завоевывают популярность. Если раньше турбонагнетатели устанавливались в тяжеловесные или мощные спортивные автомобили, то теперь турбины можно увидеть на легковых автомобилях, как с бензиновым движком, так и с дизельным.

Турбины дизельного двигателя обычно имеют срок эксплуатации намного меньший, чем у самого движка. Для того чтобы вовремя провести профилактические работы и не столкнуться с необходимостью оплачивать дорогостоящие детали, нужно периодически проверять работу турбины. Это вполне можно сделать самостоятельно, не обращаясь в автосервис.

Турбина на дизеле

Причины неисправности

Для того чтобы провести осмотр турбины и выявить неисправность, необходимо понимать, какие именно поломки могут произойти в системе турбонагнетателя.

Обычно самыми проблемными элементами являются сальники и подшипники. От износа этих деталей может появиться люфт, шум, можно столкнуться с клином турбины. Нарушиться работа может из-за неисправности смазочной системы, клапанов вентиляции, или поршневые кольца уже достаточно изношены. В таком случае продукты сгорания дизтоплива попадают в картер и приводят к негативным последствиям.

Если в выхлопе замечен дым, чаще всего сизый, то следует обратить внимание на PCV-клапан. Его неправильная работа повышает давление масла в турбине, из-за этого смазочный материал продавливает сальники. Попав наружу или в нагнетаемый воздух, масло меняет состав смеси, от этого движок значительно теряет мощность и начинает выделять вышеупомянутый дым.

Когда проверять турбину

Если использовать качественное масло и бережно относиться к дизельному агрегату, то турбонагннетатель будет работать исправно примерно 150 тысяч километров. Чтобы обнаружить любую поломку на ее начальной стадии, нужно внимательно следить за турбиной, достаточно проверить работу агрегата во время замены масла.

Замена масла

Таким образом, автовладелец может значительно сэкономить, ремонтируя неисправность на ее начальной стадии, вместо замены дорогостоящей детали.

Первые признаки неисправности

Разумеется, если у автолюбителя нет опыта в работе с автомобилями, не стоит сразу же разбирать агрегат и пытаться выявить неисправность изнутри. Существует несколько признаков, которые свидетельствуют о неправильной работе турбокомпрессора:

  • появление сизого или черного дыма во время выхлопа;
  • очень громкая работа дизельного агрегата при различных нагрузках;
  • двигатель часто перегревается;
  • расход топлива неуклонно растет, как и скорость расхода масла;
  • ухудшение тяги, потеря мощности и динамики.

Каждый из признаков может говорить не только о неисправной турбине, но и о ряде других мелких поломок. Если причина не в турбонагнетателе, то необходимо немедленно обратиться на сервис для дальнейшей диагностики. Чем раньше обнаружить поломку, тем дешевле обойдется ее устранить.

Турбина на дизеле

Самостоятельная проверка

Первичную проверку можно провести собственными силами, чтобы не тратиться на компьютерную диагностику, которая часто стоит немалых денег.

Для начала, турбокомпрессор нужно тщательно осмотреть.

В первую очередь проверяется уровень и качество моторного масла используемого для дизельного мотора. Затем нужно убедиться, что в компрессор не попал никакой посторонний предмет.

После проведенных процедур необходимо оценить цвет выхлопа. Он также может указать на конкретные проблемы с турбиной. Если цвет выхлопа черный, и при этом замечено падение мощности, то, скорее всего, придется иметь дело с переобогащенносй смесью. Она появляется из-за поломки системы впуска-выпуска воздуха. На впуске в цилиндры попадает недостаточное количество воздуха, а на выпуске могут быть утечки, которые и приводят к потере мощности.

Сизый или даже белый дым из выхлопной трубы говорит о том, что масло попадает в цилиндры, а затем сгорает в рабочей камере. При этом расход масла может вырасти примерно до литра на 1000 километров. Необходимо проверить работу ротора и чистоту фильтров. Ротор должен иметь небольшой люфт и не касаться корпуса, иначе деталь требует немедленного осмотра и ремонта.

Грязный воздушный фильтр

Сильно загрязненный фильтр не может пропускать необходимое количество воздуха, за счет этого создается разное давление в корпусе турбонагнетателя и в картридже с подшипниками. Из этого картриджа масло попадает в компрессор. Если дело не в фильтре, то необходимо проверить всю систему подачи масла, шланги и патрубки на наличие загибов, трещин и щелей.

Герметичность соединений патрубков можно проверить при заведенном двигателе. Свист и скрип, а также воздух, прорывающийся сквозь систему, говорит о том, что хомуты нужно подтянуть. Любая неплотность или повреждение ведет к недостаточной подаче воздуха в цилиндры.

Еще одной причиной неисправности турбины становится неправильный слив масла из-за того, что газы попали в картер. Необходимо проверить систему вентиляции, чтобы дизельный мотор не начал сапунить.

Проверка на заведенном двигателе

Самый простой способ, как проверить турбину на дизельном двигателе требует присутствия хотя бы двух человек.

  1. Заведите двигатель.
  2. Найдите патрубок между турбонагнетателем и впускным коллектором.
  3. Передавите его.
  4. Несколько секунд погазуйте.

Турбина на дизеле

При правильной работе турбины, почувствуется, что патрубок ощутимо надувается. Если этого не происходит, возможны разнообразные трещины и дефекты коллектора. Следует обратиться за квалифицированной помощью для устранения поломки.

Очень важно понимать, что диагностику можно провести самостоятельно, но ремонт необходимо доверить профессионалам.

Неквалифицированное вмешательство может привести к тому, что маленькая неисправность приведет к поломке всей детали и поставит автовладельца перед необходимостью менять и ремонтировать турбокомпрессор. Необходимо обратиться в проверенный сервис, где специалисты быстро и качественно устранят неисправность и продлят жизнь турбонагнетателю на дизельном двигателе.

Как проверить турбину на дизельном двигателе

Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО зачастую потребует определенных финансовых затрат, так как специалисты в большинстве случаев подключают диагностическое оборудование, снимают турбину с двигателя для проверки.

Чтобы выявить неисправности самостоятельно без снятия турбины, можно воспользоваться несколькими способами диагностики. На проблемы с турбокомпрессором могут указывать следующие прямые или косвенные признаки, которые проявляются в процессе работы силового агрегата:

  • появление черного, сизого или синеватого дыма выхлопа;
  • дизель шумно работает в разных режимах под нагрузкой;
  • повышается температура, мотор склонен перегреваться;
  • возрастает расход горючего и моторного масла;
  • двигатель теряет мощность, падает тяга и динамика;

В самом начале стоит отдельно отметить, что подобные симптомы могут возникать не только по причине неисправностей турбины, но данный элемент также находится в списке.

Содержание статьи

На начальном этапе диагностики следует проверить уровень и качество дизельного моторного масла. Также необходимо исключить возможное попадание сторонних предметов в турбокомпрессор.

Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске.

Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры.

Турбину нужно дополнительно проверять на износ. Для диагностики ротор турбины потребуется провернуть вокруг своей оси. Присутствие небольшого люфта вполне допустимо. В том случае, если ротор касается корпуса, турбине необходим ремонт.

Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.)

В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов.

Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла.

Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе.

В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики.

Люфта во время осевого смещения вала турбины не должно быть заметно, так как допустимый люфт составляет 0,05 мм и его не почувствуешь. Смещение вала в радиальном направлении допускает присутствие микролюфта ( допустимое значение около 1мм.), который немного ощущается. Если при оценке состояния турбины замечены сильные отклонения от данных требований и показателей, тогда компрессор можно считать сильно изношенным или неисправным.

Проверка турбонагнетателя на заведенном двигателе

Проверять турбину на наддув следует так:

  • пригласите помощника;
  • запустите двигатель;
  • определите патрубок, который соединяет впускной коллектор и турбокомпрессор;
  • пережмите указанный патрубок рукой;
  • помощник должен погазовать несколько секунд;

Если компрессор работает, тогда патрубок должен будет ощутимо раздуваться. При отсутствии производительности турбины этого не произойдет. Дополнительно следует оценить общее состояние патрубков, а также исключить возможность трещин и других дефектов впускного и выпускного коллектора дизельного двигателя.

Читайте также

  • Ресурс турбины дизельного двигателя

    От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.
Турбокомпрессор — неисправности и ремонт — журнал За рулем

Изучаем основные неисправности турбокомпрессоров и технологии их восстановления.

Многие автомобилисты с опаской относятся к ремонту турбокомпрессоров. И не без оснований. При этом производители разрешают ремонтировать некоторые турбины и даже выпускают оригинальные комплектующие, а иные и вовсе занимаются промышленным восстановлением агрегатов. Причиной же невысокого ресурса перебранных турбин зачастую является пресловутый человеческий фактор.

Презумпция невиновности

Турбокомпрессор (ТК) работает на перекрестке нескольких систем двигателя, и его здоровье зависит от исправности других узлов. Поэтому при появлении любых нареканий по поводу работы ТК важно провести вдумчивую диагностику узла в составе мотора. Диагностика необходима и в случае выхода турбины из строя — она послужит гарантией, что новая или отремонтированная турбина не преставится через пару тысяч километров.

Даже ветошь, забытая во впускной системе при обслуживании машины, может повредить крыльчатку вала, не говоря уже о потерянных болтиках или шайбах.

Даже ветошь, забытая во впускной системе при обслуживании машины, может повредить крыльчатку вала, не говоря уже о потерянных болтиках или шайбах.

Один из примеров характерного разрушения компрессорного колеса при перекруте турбины. Опытный мастер может определить этот пагубный режим и по особенному износу лопаток и вала.

Один из примеров характерного разрушения компрессорного колеса при перекруте турбины. Опытный мастер может определить этот пагубный режим и по особенному износу лопаток и вала.

Полное закоксовывание подводящей масляной трубки характерно для бензиновых турбин из-за более высоких температур по сравнению с дизельными.

Полное закоксовывание подводящей масляной трубки характерно для бензиновых турбин из-за более высоких температур по сравнению с дизельными.

Классика жанра — перегрев вала турбины из-за масляного голодания. Обработке или восстановлению ­он не подлежит.

Классика жанра — перегрев вала турбины из-за масляного голодания. Обработке или восстановлению ­он не подлежит.

Сначала с помощью компьютера проверяют систему управления двигателем в целом и отдельные датчики. Абсолютное большинство турбин оборудовано механизмом регулирования давления наддува; его сбой запросто может быть следствием банальной неисправности — например, неправильного сигнала от расходомера воздуха. Нередки случаи, когда из-за игнорирования такой диагностики в профильные компании по ремонту ТК привозят… исправные агрегаты.

Материалы по теме

Здоровье турбины зависит от герметичности систем впуска и выпуска двигателя и давления в них. Если, к примеру, забиты нейтрализатор и воздушный фильтр, манометры покажут повышенное разрежение на впуске и увеличенное противодавление на выпуске. Работа в таких условиях серьезно сокращает ресурс внутренних элементов ТК: подшипников, уплотнителей и самого вала. При больших перепадах давления турбина из-за конструктивных особенностей начинает сильнее гнать масло на впуск — патрубок и впускной трубопровод покрываются жирным налетом.

Негерметичность систем впуска и выпуска также вызывает опасные перепады давления. А банальная экономия на замене воздушного фильтра или несвоевременное устранение подсоса воздуха за его корпусом приводят к износу компрессорного колеса турбины. Его лопатки стачиваются попадающими внутрь частицами песка.

Распространенная причина выхода ТК из строя — попадание инородных предметов в крыльчатки. Порою это случается из-за разгильдяйства механика, который при обслуживании машины оставил во впуске ветошь или уронил внутрь шайбу. Или из-за непредвиденного разрушения деталей мотора, когда, например, отваливается электрод от свечи. Вал турбины вращается с огромной скоростью, и попадающие на крыльчатки инородные предметы значительно их деформируют, из-за чего турбину м

как определить скорую необходимость замены детали |

Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО "Мега групп" (далее - Оператор), расположенному по адресу 115191, г. Москва, Духовской переулок, дом 17, стр. 15, согласие на обработку персональных данных, указанных мной в форме веб-чата и/или в форме заказа обратного звонка на сайте в сети «Интернет», владельцем которого является Оператор.

Состав предоставляемых мной персональных данных является следующим: ФИО, адрес электронной почты и номер телефона.
Целями обработки моих персональных данных являются: обеспечение обмена короткими текстовыми сообщениями в режиме онлайн-диалога и обеспечение функционирования обратного звонка.
Согласие предоставляется на совершение следующих действий (операций) с указанными в настоящем согласии персональными данными: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, передачу (предоставление, доступ), блокирование, удаление, уничтожение, осуществляемых как с использованием средств автоматизации (автоматизированная обработка), так и без использования таких средств (неавтоматизированная обработка).
Я понимаю и соглашаюсь с тем, что предоставление Оператору какой-либо информации о себе, не являющейся контактной и не относящейся к целям настоящего согласия, а равно предоставление информации, относящейся к государственной, банковской и/или коммерческой тайне, информации о расовой и/или национальной принадлежности, политических взглядах, религиозных или философских убеждениях, состоянии здоровья, интимной жизни запрещено.
В случае принятия мной решения о предоставлении Оператору какой-либо информации (каких-либо данных), я обязуюсь предоставлять исключительно достоверную и актуальную информацию и не вправе вводить Оператора в заблуждение в отношении своей личности, сообщать ложную или недостоверную информацию о себе.
Я понимаю и соглашаюсь с тем, что Оператор не проверяет достоверность персональных данных, предоставляемых мной, и не имеет возможности оценивать мою дееспособность и исходит из того, что я предоставляю достоверные персональные данные и поддерживаю такие данные в актуальном состоянии.
Согласие действует по достижении целей обработки или в случае утраты необходимости в достижении этих целей, если иное не предусмотрено федеральным законом.
Согласие может быть отозвано мною в любое время на основании моего письменного заявления.

Признаки неисправности турбины дизельного двигателя

Если вы только собираетесь приобрести или уже являетесь владельцем турбированного авто, то вы должны знать все признаки неисправности турбины дизельного двигателя, ведь исправность турбокомпрессора влияет на работу контрактного мотора и его составляющих. Чем раньше вы обнаружите неполадки и примите меры, тем меньше финансовых и временных затрат потребуется на их устранение и восстановление стабильной работы автомобиля.

Если вы обнаружили даже косвенный признак того, что турбина двигателя на дизельном топливе неисправна – как можно скорее посетите автосервис.

На что стоит обратить внимание?

Наиболее явные признаки сбоя в работе турбокомпрессора следующие:

  • Дымит выхлопная труба, приобретает от белого до черного и темно-синего оттенка.
  • Повышается уровень шума при работе мотора, который можно воспринять на слух;
  • Пульсация давления на выходе турбины или так называемый «помпаж», которая проявляет себя четкими громкими хлопками;
  • Падение тяги, ухудшение показателей динамики, требуется больше времени, чтобы набрать обороты. На холостых – движок работает также нестабильно;
  • Резкий запах горелого масла и увеличение его потребления автомобилем;
  • Глухой звук, свист, щелчки или другой звук под капотом авто.

Но при постановке диагноза машине о неисправности турбины не следует опираться только на вышеперечисленные признаки, лучше обследовать автомобиль у профессионалов, которые определят истинную причину появления неполадок.

Что проверить самостоятельно?

До посещения станции технического обслуживания в некоторых случаях можно своими руками провести базовую диагностику автомобиля.

  1. Если вы обнаружили задымление, то вне зависимости от его цвета, нужно проверить воздушный фильтр и соединения патрубков. Если произошло нарушение герметичности, то ее нужно устранить и заменить фильтр;

  2. Насколько изношена турбина можно узнать легкой прокруткой ротора: люфт маленький – все в порядке, а, если во время поворота ротор даже слегка касается корпуса, то турбину вероятнее всего нужно отдать в ремонт;

  3. Исследовать турбонадув. Открыть капот, запустить движок и пережать патрубок, который ведет от турбокомпрессора к впускному коллектору. Другой человек должен газовать несколько секунд и, если патрубок надувается от давления, то все в норме, если он вял – турбина требует ремонта;

  4. Осмотреть саму турбину. На ее поверхности не должно быть масляных или иных следов. Если отсоединить патрубок, который пережимали в предыдущем пункте и появились следы масла –скорее всего, нужна замена турбины.

Как предотвратить поломку турбокомпрессора?

Во избежание непредвиденного ремонта, замены запчастей и автомобиль служил вам как можно долгий срок, отношение к авто должно быть крайне бережным и оказываться ему должное внимание. Используйте масла и топливо высокого качества, откажитесь от «пятиминутных» промывок, которые могут за один раз уничтожить турбину и исключить возможность ее восстановления, используйте турботаймер, масло должно всегда находиться на нужном уровне, прогревайте движок перед началом движения и регулярно проходите технический осмотр автомобиля. Это и другие моменты являются гарантом того, что турбокомпрессор не потребует серьезного ремонта продолжительное время.

Потеря мощности дизельной турбины - причины, виды неисправностей

Выброс черного или белого дыма, шум и чрезмерное потребление топлива являются основными признаками, которые указывают на возможные сбои в системе турбины дизельного двигателя. Потеря мощности дизельной турбины может быть спровоцирована и другими факторами. Обнаружив первый сигнал неисправности, нужно сразу проверить пригодности механизма, и по возможности, быстрее устранить проблему в мастерской.

Содержание

  1. Особенности и причины неисправностей турбин в дизельных двигателях.
  2. Долговечность дизельной турбины.
  3. Неисправности в дизельной турбине – исключения.

Особенности турбин для дизельных двигателей

В дизельных двигателях зачастую применяются турбины с изменяемой геометрией (аббр. ТИГ или VIG). В таком механизме на место перепускного клапана приходят специальные направляющие лопасти, контролирующие поток выхлопных газов, которые поступают в турбокомпрессор. У направляющих лопастей тот же принцип работы, что и у обычных перепускных клапанов турбин, и управляются они системой вакуума. Дизельная турбина перестает работать, когда лопатки в дизельном моторе закрыты, а выхлопные газы направляются мимо турбокомпрессора. Минус таких турбин – чувствительность к высоким температурам. Турбина с изменяемой геометрией позволяет снизить температуру выхлопных газов.

потеря мощности дизельной турбины

Турбина с изменяемой геометрией – схема

В мире есть только две модели авто, на которых используются турбины VIG на бензиновых, а не дизельных моторах – это Porsche 911 Turbo и Porsche 718 Boxter.

Турбина не изнашивается и не ломается сама по себе, если техническое обслуживание двигателя – замена масла и фильтров, использование качественного топлива, строго выполняется в соответствии с руководством производителя. Сбои в работе турбины могут спровоцировать загрязнения на фильтрах, избыток масла, попадание частиц инородных тел из выпускного коллектора. Перечислим с подробным описанием наиболее распространенные причины, по которым происходит потеря мощности дизельной турбины:

  • Скудное смазывание турбины. Это следствие некачественного топлива, засорения масленой системы авто, забитых масленых каналов в двигателе, закупоренного масленого фильтра;
  • «Горячая парковка» автомобиля. После длительной езды транспортное средство паркуют и сразу глушат двигатель – так элементы турбокомпрессора быстро изнашиваются;
  • Появление углерода в масле двигателя. Углерод накапливается в турбокомпрессоре как отложения, которые также могут стать причиной дисбаланса в работе системы;
Неисправности турбины дизеля и их диагностика и устранение

Сегодня мы опишем неисправности турбины (турбокомпрессора) на дизельных двигателях и способы их определения.

- Падает мощность динамика или тяга.
- Изменение цвета выхлопных газов на черный, сизый или синеватый.
- Двигатель в разных режимах под нагрузкой работает шумно "с напрягом".
- Двигатель "греется" выше обычного, при отсутствии течей и недостатка охлаждающей жидкости.
- Увеличение расхода топлива или моторного масла

Один из вышеперечисленных симптомов может указывать на неисправность турбокомпрессора (турбины, турбонагнетателя).

Так как эти же симптомы могут указывать на другие неисправности, стоит для начала убедиться, что причина симптома именно в турбине.

Итак, для начала проверим качество и уровни ГСМ. Еси всё нормально, преходим к звуквому анализу работы мотора и турбины. Так, как те-же симптомы могут быть вызваны неисправностью кривошипно-шатунного механизма, то следует послушать мотор и убедиться в отсутствии глухого стука или звона в блоке двигателя. При наличии посторонних звуков в блоке смотрим статью о неисправности КШМ.

При анализе звука работы мотора вы можете услышать звон или хруст (глухой стук) в турбокомпрессоре. Это указывает на механическую поломку ротора или крыльчатки турбины.

Если посторонних звуков нет, преходим к визуальному осмотру турбины - ищем масло на корпусе, надрывы патрубков, механические повреждения. Эти признаки могут быть следствием попадания сторонних предметов в корпус турбины или физического износа деталей турбины.

Турбину нужно дополнительно проверять на износ. Для диагностики ротор турбины потребуется провернуть вокруг своей оси. Присутствие небольшого люфта вполне допустимо. В том случае, если ротор касается корпуса, турбине необходим ремонт.

Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске.

Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры.

Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.)

В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов.

Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла.

Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе.

В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики.

Люфта во время осевого смещения вала турбины не должно быть заметно, так как допустимый люфт составляет 0,05 мм и его не почувствуешь. Смещение вала в радиальном направлении допускает присутствие микролюфта ( допустимое значение около 1мм.), который немного ощущается. Если при оценке состояния турбины замечены сильные отклонения от данных требований и показателей, тогда компрессор можно считать сильно изношенным или неисправным.

ВНИМАНИЕ! Администрация сайта ни при каких условиях не несёт ответственности за действия лиц или организаций пользующихся материалами (контентом) сайта при проведении ремонта или диагностики.  

ПОМНИТЕ! Ремонт техники должен осуществляться компетентными, прошедшими обучение -подтверждённое соответствующими документами, специалистами.

Как обслуживать турбодизельный двигатель

How To Maintain a Turbo Diesel Engine

Турбодизельные двигатели легче обслуживать , и если они регулярно обслуживаются регулярно, то они являются самым надежным двигателем . В этой статье мы узнаем о некоторых советах о том, как обслуживать турбодизельный двигатель , чтобы вы могли дольше пользоваться своим двигателем и не тратить деньги на более серьезные ремонтные работы.

Совет 1

Во избежание преждевременного выхода из строя зарядного устройства с турбонаддувом вам необходимо позаботиться о том, чтобы при запуске двигателя автомобиля двигатель не запускался немедленно из холостого хода.Дайте 5 - 10 секунд, чтобы масло двигателя достигло turbo charger. Тогда вы сможете начать гонку, и ваше зарядное устройство Turbo не будет повреждено.

How To Maintain a Turbo Diesel Engine - Tip 1

Совет 2

До необходимо правильно обслуживать турбодизельного двигателя , регулярно проверять свечи накаливания . Для зажигания турбодизельного двигателя требуется сжатое тепло, а само топливо не может выделять столько тепла. Это когда свечи накаливания начинают использоваться.Это происходит в основном в зимний период, и поэтому в это время года светящиеся мопсы нуждаются в частом осмотре.

How To Maintain a Turbo Diesel Engine - Tip 2

Совет 3

Поскольку турбодизельные двигатели работают при высоком давлении сжатия, выделяется много тепла, благодаря чему система охлаждения используется регулярно. Итак, для эффективной работы двигателя требуется регулярное техническое обслуживание системы охлаждения.

Совет 4

Смазочное масло для вашего турбодизельного двигателя необходимо регулярно заменять.Это связано с тем, что углерод, являющийся побочным продуктом, постоянно откладывается в масле, и если его не заменить, он блокирует теплопередачу. Это также затрудняет функцию охлаждения масла. Поэтому лучше, чтобы ваш двигатель заменял дизельного топлива на смазок через каждые 100 часов.

Посмотрите нашу статью, чтобы узнать, как часто вы должны менять моторное масло.

How To Maintain a Turbo Diesel Engine - Tip 4

Совет 5

Дизельные двигатели используют много воздуха. Итак, нужно обратить внимание на систему фильтрации воздуха .Регулярно очищайте фильтрующий элемент двигателя, чтобы он не загрязнился. Так как ваш двигатель с турбонаддувом заряжен, позаботьтесь о том, чтобы воздух из зарядного устройства с турбонаддувом должным образом охлаждался охлаждающими жидкостями. Вы можете научиться делать это дома, просто прочитайте нашу статью о том, как чистить автомобильный воздушный фильтр дома.

How To Maintain a Turbo Diesel Engine - Tip 5

Изображение: blog.elmejorcoche.com

Совет 6

При обслуживании вашего турбодизельного двигателя позаботьтесь о том, чтобы двигатель полностью поддерживался внешней опорой, прежде чем откручивать какие-либо заглушки, монтажные болты или гайки.

Совет 7

Никогда не используйте низкосортное масло для вашего турбодизельного двигателя . Он не может должным образом защитить зарядное устройство Turbo . Таким образом, используйте масло соответствующей вязкости и правильной спецификации качества API.

How To Maintain a Turbo Diesel Engine - Tip 7

Изображение: gasolinerasescoserra.com

Совет 8

Для охлаждения люди часто заливают воду вместо надлежащей охлаждающей жидкости. Это не приведет к надлежащему охлаждению и может привести к коррозии. Лучше всего использовать правильно смешанный раствор рекомендуемой охлаждающей жидкости для лучшего обслуживания турбодизельного двигателя.

Если вы хотите больше советов, мы советуем вам прочитать нашу статью о том, как безопасно чистить двигатель автомобиля.

How To Maintain a Turbo Diesel Engine - Tip 8

Если вы хотите прочитать статьи, аналогичные «Как обслуживать турбодизельный двигатель », мы рекомендуем вам посетить нашу категорию «Техническое обслуживание и ремонт автомобилей».

,
Распознавание и реагирование на неисправность турбореактивного двигателя

Неисправности двигателя

Чтобы обеспечить эффективное понимание и подготовку к правильным ответам на неисправности двигателя в полете, это В статье будут описаны неисправности турбовентиляторных двигателей и их последствия таким образом, что это применимо практически ко всем современным самолетам с турбовентиляторными двигателями. Эти описания, однако, не заменяйте и не заменяйте конкретные инструкции, приведенные в руководстве по летной эксплуатации самолета и соответствующих контрольных списках.

Помпаж компрессора

Наиболее важно обеспечить понимание компрессора помпажа. В современных турбовентиляторных двигателях помпаж компрессора является редким явлением. Если во время взлета при большой мощности произойдет выброс компрессора (иногда называемый остановом компрессора), летный экипаж услышит очень громкий стук, который будет сопровождаться рывком и вибрацией. Удар, вероятно, будет далеко за пределами любого шума двигателя или другого звука, который экипаж, возможно, ранее испытывал при эксплуатации.

Скачок компрессора был ошибочно принят за взорванные шины или бомбу в самолете.Экипаж может быть поражен взрывом, и во многих случаях это привело к отклонению взлета выше V1. Эти скоростные отклоненные взлеты иногда приводили к травмам, гибели самолета и даже гибели пассажиров.

Фактическая причина громкого удара не должна иметь никакого значения для первого ответа летного экипажа, который должен состоять в том, чтобы сохранить контроль над самолетом и, в частности, продолжить взлет, если событие происходит после V1. Продолжение взлета является надлежащим ответом на отказ шины, произошедший после V1, и история показала, что бомбы не представляют угрозы во время разбега при взлете, они обычно настроены на детонацию на высоте.

Всплеск турбовентиляторного двигателя является результатом нестабильности рабочего цикла двигателя. Всплеск компрессора может быть вызван износом двигателя, может быть результатом проглатывания птиц или льда, или это может быть окончательный звук в результате отказа типа «серьезное повреждение двигателя». Рабочий цикл турбинного двигателя состоит из впуска, сжатия, зажигания и выхлопа, которые происходят одновременно в разных местах двигателя. Частью цикла, подверженной нестабильности, является фаза сжатия.

В турбинном двигателе сжатие осуществляется аэродинамически, поскольку воздух проходит через ступени компрессора, а не путем удержания, как в случае с поршневым двигателем. Воздух, проходящий через аэродинамические поверхности компрессора, может заглохнуть так же, как воздух над крылом самолета. Когда происходит это срыв аэродинамического профиля, прохождение воздуха через компрессор становится нестабильным, и компрессор больше не может сжимать поступающий воздух. Воздух высокого давления за стойкой дальше в двигателе выходит вперед через компрессор и выходит из впускного отверстия.

Этот побег внезапен, быстр и часто довольно слышен как громкий взрыв, похожий на взрыв. Всплеск двигателя может сопровождаться видимым пламенем вперед от впускного отверстия и назад к выхлопной трубе. Инструменты могут показывать высокие EGT и EPR или изменения скорости вращения ротора, но во многих киосках событие заканчивается так быстро, что инструменты не успевают отреагировать.

Как только воздух из двигателя выходит наружу, причина (причины) нестабильности может самокорректироваться, и процесс сжатия может восстанавливаться.Один скачок и восстановление произойдет довольно быстро, обычно в течение доли секунды. В зависимости от причины нестабильности компрессора двигатель может испытывать:

1) Одиночный самовосстанавливающийся скачок

2) Несколько скачков до самовосстановления

3) Множественные скачки, требующие действий пилота для восстановления

4) невосстановимый всплеск.

Для выполнения полных, подробных процедур летные экипажи должны следовать соответствующим контрольным спискам и процедурам действий в чрезвычайных ситуациях, подробно изложенным в их конкретном Руководстве по полету самолетов.В целом, однако, во время одного самовосстанавливающегося выброса показания двигателя кабины могут слегка и кратковременно колебаться. Экипаж может не заметить колебаний. (Некоторые из более поздних двигателей могут даже иметь логику потока топлива, которая помогает двигателю самостоятельно восстанавливаться после скачка напряжения без вмешательства экипажа. Остановка может остаться совершенно незамеченной, или она может быть сообщена экипажу для информации только через EICAS сообщения.)

В качестве альтернативы, двигатель может работать два или три раза до полного самовосстановления.Когда это произойдет, летный экипаж, вероятно, заметит сдвиги контрольно-измерительных приборов двигателя кабины достаточной величины и продолжительности. Если двигатель не восстанавливается автоматически после скачка напряжения, он может непрерывно расти до тех пор, пока пилот не предпримет действия, чтобы остановить процесс. Желаемое действие пилота заключается в том, чтобы тормозить рычаг тяги до тех пор, пока двигатель не восстановится.

Затем летный экипаж должен МЕДЛЕННО снова сдвинуть рычаг тяги. Иногда двигатель может работать только один раз, но самовосстановление невозможно.

Фактическая причина помпажа компрессора часто бывает сложной и может быть или не быть результатом серьезного повреждения двигателя. Редкий выброс одного компрессора ВЫЗЫВАЕТ серьезное повреждение двигателя, но продолжительный выброс в конечном итоге приведет к перегреву турбины, так как слишком много топлива предоставляется для объема воздуха, который достигает камеры сгорания. Лопатки компрессора также могут быть повреждены и выходить из строя в результате многократных резких скачков напряжения; это быстро приведет к тому, что двигатель не сможет работать при любой мощности.

Ниже приведена дополнительная информация, касающаяся одного восстанавливаемого скачка, самовосстановления после нескольких скачков, скачка, требующего действий летного экипажа, и невосстановимого скачка. В тяжелых случаях шум, вибрация и аэродинамические силы могут сильно отвлекать. Для летного экипажа может быть трудно вспомнить, что его самая важная задача - управлять самолетом.

Одиночный самовосстанавливающийся скачок

Летный экипаж слышит очень громкий или двойной удар.Инструменты будут колебаться быстро, но, если кто-то не смотрел на датчик двигателя во время помпажа, колебание могло бы не быть замечено.

Например: во время помпажа коэффициент давления двигателя (EPR) может упасть со взлета (T / O) до 1,05 за 0,2 секунды. ЭПР затем может варьироваться от 1,1 до 1,05 с интервалом 0,2 с два или три раза. Низкая скорость ротора (N1) может упасть на 16% в первые 0,2 секунды, а затем еще на 15% в следующие 0,3 секунды. После восстановления EPR и N1 должны вернуться к значениям перед помпажом в соответствии с нормальным графиком ускорения для двигателя.

Множественный всплеск с последующим самовосстановлением

В зависимости от причины и условий двигатель может работать несколько раз, при этом каждый удар отделяется парой секунд. Поскольку каждый удар обычно представляет собой событие помпажа, как описано выше, летный экипаж может обнаружить «одиночный всплеск», описанный выше, в течение двух секунд, затем двигатель вернется к 98% мощности перед помпажем в течение нескольких секунд. Этот цикл может повторяться два или три раза. Во время скачка и восстановления, вероятно, будет некоторое увеличение EGT.

Например: EPR может колебаться между 1,6 и 1,3, температура выхлопных газов (EGT) может повышаться на 5 градусов C / секунду, N1 может колебаться между 103% и 95%, а расход топлива может падать на 2% без изменения положения рычага тяги. Через 10 секунд датчики двигателя должны вернуться к значениям перед помпажем.

Волна восстанавливается после действий летного экипажа

Когда всплески происходят, как описано в предыдущем параграфе, но не прекращаются, для стабилизации двигателя требуется действие летного экипажа.Летный экипаж заметит колебания, описанные в «восстанавливаемых после двух или трех ударов», но колебания и удары будут продолжаться до тех пор, пока летный экипаж не переведет рычаг тяги в положение холостого хода. После того, как летный экипаж переводит рычаг тяги в режим холостого хода, параметры двигателя должны уменьшиться в соответствии с положением рычага тяги. После того, как двигатель работает на холостом ходу, он может быть снова ускорен до мощности. Если при возврате к высокой мощности двигатель снова начинает работать, двигатель можно оставить на холостом ходу или оставить на некоторой промежуточной мощности или выключить в соответствии с контрольными списками, применимыми к самолету.Если летный экипаж не предпринимает никаких действий для стабилизации двигателя в этих условиях, двигатель будет продолжать расти и может испытывать постепенное вторичное повреждение до точки полного отказа.

Невосстановимый скачок

Когда всплеск компрессора не может быть восстановлен, произойдет один удар, и двигатель замедлится до нулевой мощности, как если бы топливо было измельчено. Этот тип помпажа компрессора может сопровождаться серьезной неисправностью двигателя. Это также может произойти без каких-либо повреждений двигателя.

EPR может снижаться со скоростью 0,34 / сек, а EGT повышаться со скоростью 15 градусов C / сек, продолжаясь в течение 8 секунд (с пиковым значением) после того, как рычаг тяги возвращается в положение холостого хода. N1 и N2 должны затухать со скоростью, соответствующей отключению топлива, при этом расход топлива упадет до 25% от его значения перед помпажем за 2 секунды, сужаясь до 10% в течение следующих 6 секунд.

Flameout

Воспламенение - это состояние, при котором процесс горения в горелке остановлен. Воспламенение будет сопровождаться падением EGT, частоты вращения сердечника двигателя и отношения давления двигателя.Как только частота вращения двигателя падает ниже холостого хода, могут появиться другие симптомы, такие как предупреждения о низком давлении масла и отключение электрических генераторов от сети, многие вспышки при низких настройках начальной мощности впервые замечаются, когда генераторы отключаются от линии, и могут изначально ошибаться для электрических проблем. Воспламенение может произойти из-за нехватки топлива в двигателе, неблагоприятных погодных условий, появления вулканического пепла, неисправности системы управления или нестабильной работы двигателя (например, из-за остановки компрессора).Многократное воспламенение двигателя может привести к широкому разнообразию симптомов кабины экипажа, поскольку входные сигналы двигателя теряются от электрических, пневматических и гидравлических систем. Эти ситуации привели к тому, что пилоты устраняют неисправности систем самолета, не распознавая и не устраняя причину, по которой двигатель не работает. Некоторые самолеты имеют специальные сообщения EICAS / ECAM для предупреждения летного экипажа о двигателе, который в полете откатывается на холостом ходу; как правило, сообщение ENG FAIL или ENG THRUST.

Вспышка при взлётной мощности необычна, только около 10% вспышек при взлётной мощности.Наиболее часто вспышки возникают при настройках средней или низкой мощности, таких как круиз и спуск. Во время этих режимов полета, вероятно, используется автопилот. Автопилот компенсирует асимметричную тягу до предела и может затем отключиться. Отключение автопилота должно сопровождаться быстрыми, соответствующими управляющими сигналами от летного экипажа, если самолет должен поддерживать нормальное положение. Если нет внешних визуальных ссылок, например, при полете над океаном ночью или в IMC, вероятность расстройства возрастает.Это условие потери мощности двигателя при включенном автопилоте вызвало несколько расстройств самолета, некоторые из которых не могли быть восстановлены. Смещение контроля полета может быть единственным очевидным показанием. Требуется бдительность, чтобы выявлять эти скрытые отказы двигателя и поддерживать безопасное положение в полете, пока ситуация еще не устраняется.

После того, как подача топлива в двигатель была восстановлена, двигатель может быть перезапущен способом, предписанным применимым Руководством по полету или эксплуатации самолета.Удовлетворительный перезапуск двигателя должен быть подтвержден со ссылкой на все основные параметры, использующие только N1, например, это привело к путанице при некоторых перезапусках в полете. В некоторых условиях полета N1 может быть очень похожим для ветряного двигателя и двигателя, работающего на холостом ходу.

Огонь

Пожар двигателя почти всегда относится к пожару вне двигателя, но внутри гондолы. Пожар в районе двигателя должен быть оповещен летным экипажем путем предупреждения о пожаре в кабине экипажа.Вряд ли летный экипаж увидит, услышит или сразу почувствует запах огня двигателя. Иногда летные экипажи сообщают о пожаре, связываясь с диспетчерской вышкой.

Важно знать, что с учетом пожара в гондоле, есть достаточное время, чтобы сделать первоочередной задачей «полетать на самолете», прежде чем заняться огнем. Было показано, что даже в случае индикации пожара сразу после взлета имеется достаточное время для продолжения набора высоты до безопасной высоты, прежде чем приступить к работе с двигателем.Может быть нанесен экономический ущерб гондоле, но первоочередной задачей летного экипажа должно быть обеспечение того, чтобы самолет продолжал безопасный полет.

Летные экипажи должны рассматривать любое пожарное предупреждение как пожар, даже если индикация исчезает, когда рычаг тяги переводится в режим ожидания. Индикация может быть результатом пневматической утечки горячего воздуха в гондолу. Индикация пожара также может происходить от небольшого пожара или от детектора, чтобы огонь не был заметен при малой мощности.Пожарная индикация также может быть результатом неисправных систем обнаружения. Некоторые пожарные извещатели позволяют идентифицировать ложную индикацию (тестирование пожарных шлейфов), что может избежать необходимости в IFSD. Были случаи, когда диспетчерская вышка по ошибке сообщала о пламени, связанном с выбросом компрессора, как о «пожаре» двигателя.

В случае оповещения о пожаре летный экипаж должен обратиться к контрольным листам и процедурам, относящимся к выполняемому самолету. В общем, как только принято решение о существовании пожара и стабилизации воздушного судна, отключение двигателя должно быть немедленно выполнено путем отключения подачи топлива в двигатель, как при отключении управления подачей топлива в двигателе, так и при перепускном клапане крыла / пилона.Весь отводимый воздух, электрика и гидравлика из поврежденного двигателя будут отключены или изолированы от систем самолета, чтобы предотвратить распространение огня или загрязнение связанных систем самолета. Это достигается с помощью одного общего двигателя «пожарная ручка». Это контролирует огонь, значительно уменьшая количество топлива, доступного для сгорания, уменьшая доступность сжатого воздуха для любого пожара в отстойнике, временно отказывая воздуху в огне через выпуск огнетушащего вещества, и удаляя источники повторного возгорания, такие как живая электропроводка и горячие оболочки.Следует отметить, что некоторые из этих мер контроля могут быть менее эффективными, если пожар является результатом серьезного ущерба, который может потребоваться для тушения пожара в этих условиях несколько дольше. В случае остановки после пожара двигателя в полете не следует пытаться перезапустить двигатель, если это не имеет решающего значения для продолжения безопасного полета, поскольку при повторном запуске двигателя пожар может возобновиться.

Огни выхлопной трубы

Одним из самых тревожных событий для пассажиров, бортпроводников, наземного персонала и даже авиадиспетчерской службы (УВД) является пожар в выхлопной трубе.Во время запуска или останова топливо может попасть в корпус турбины и выхлопные газы, а затем воспламениться. Это может привести к появлению хорошо видимой струи пламени в задней части двигателя, длина которой может достигать десятков футов. Пассажиры инициировали экстренная эвакуация в этих случаях, приводящая к серьезным травмам.

Может быть никаких признаков аномалии для летного экипажа, пока экипаж или диспетчерская вышка не привлекут внимание к проблеме. Вероятно, они описывают его как «пожар двигателя», но пожар выхлопной трубы НЕ приведет к предупреждению о пожаре на кабине экипажа.

При получении уведомления о пожаре двигателя без каких-либо указаний в кабине экипаж должен выполнить процедуру обстрела выхлопной трубы. Это будет включать в себя двигатель двигателя, чтобы помочь погасить пламя, в то время как большинство других ненормальных процедур двигателя не будет.

Поскольку огонь горит внутри корпуса турбины и выпускного сопла, тяга ручки огня для выпуска огнетушителя в пространство между кожухами и кожухами будет неэффективной. Вытягивание рукоятки управления огнем может также сделать невозможным высушивание двигателя двигателя, что является самым быстрым способом тушения большинства пожаров в выхлопной трубе.

Горячие старты

Во время запуска двигателя компрессор очень неэффективен, как уже обсуждалось. Если двигатель испытывает больше, чем обычно, трудности с ускорением (из-за таких проблем, как преждевременное отключение стартера, неправильное планирование подачи топлива или сильные попутные ветра), двигатель может проводить значительное время при очень низких оборотах (под холостом ходу). Нормальные потоки охлаждения двигателя не будут эффективными во время работы на холостых оборотах, и температура турбины может показаться относительно высокой. Это называется горячим запуском (или, если двигатель полностью прекращает ускоряться в режиме холостого хода, пусковой запуск).AFM указывает допустимые пределы времени / температуры для EGT во время горячего старта. Более поздние двигатели, управляемые FADEC, могут включать логику автозапуска для обнаружения и управления горячим пуском.

Проглатывание птицы / FOD

Самолетные двигатели заглатывают птиц чаще всего в окрестностях аэропортов, во время взлета или при посадке. Встречи с птицами происходят как днем, так и ночью.

Безусловно, большинство столкновений с птицами не влияют на безопасный результат полета.При более чем половине попадания птицы в двигатели летный экипаж даже не знает, что это произошло.

Когда при проглатывании участвует большая птица, летный экипаж может заметить глухой стук, грохот или вибрацию. Если птица проникает в сердечник двигателя, то от стравленного воздуха может быть запах сгоревшего мяса в кабине экипажа или в пассажирском салоне.

Удары птиц могут повредить двигатель. Фото на следующей странице показывает лопасти вентилятора, согнутые из-за проглатывания птицы. Двигатель продолжал производить тягу с таким уровнем повреждений.Повреждение посторонними предметами (FOD) из других источников, таких как обломки шин, обломки ВПП или животные, также может встречаться с аналогичными результатами.

Попадание внутрь птицы также может привести к скачку напряжения в двигателе. Волна может иметь любую из характеристик, перечисленных в разделе помпажа. Двигатель может подняться один раз и восстановиться; он может непрерывно расти до тех пор, пока летный экипаж не предпримет никаких действий; или он может взорваться один раз и не восстановиться, что приведет к потере мощности от этого двигателя. Попадание внутрь птицы может привести к поломке одного или нескольких лопастей вентилятора, и в этом случае двигатель, вероятно, поднимется один раз и не восстановится.

Независимо от того, что проглатывание птицы привело к выбросу двигателя, первоочередной задачей летного экипажа является «полет самолета». После того, как самолет находится в стабильном полете на безопасной высоте, могут быть выполнены соответствующие процедуры в соответствующем Руководстве по полету самолета.

В редких случаях несколько двигателей могут проглотить средних и крупных птиц. В случае предполагаемого повреждения нескольких двигателей принятие мер по стабилизации двигателей становится гораздо более высоким приоритетом, чем если бы задействовался только один двигатель, но все же необходимо сначала управлять самолетом.

Сильные повреждения двигателя

Серьезное повреждение двигателя может быть трудно определить. С точки зрения летного экипажа, серьезное повреждение двигателя - это механическое повреждение двигателя, которое выглядит «плохо и безобразно». Для производителей двигателей и самолетов серьезные повреждения двигателя могут включать такие же очевидные симптомы, как большие отверстия в корпусах и гондоле двигателя, или такие же тонкие, как отсутствие реакции двигателя на движение рычага тяги.

Для летного экипажа важно знать, что серьезное повреждение двигателя может сопровождаться такими симптомами, как предупреждение о пожаре (из-за утечки горячего воздуха) или скачок двигателя, потому что ступени компрессора, которые сдерживают давление, могут быть неповрежденными или в рабочем состоянии вследствие повреждение двигателя.

В этом случае симптомы серьезного повреждения двигателя будут такими же, как и помпаж без восстановления. Там будет громкий шум. EPR упадет быстро; N1, N2 и расход топлива упадут. EGT может на мгновение подняться. В результате серьезного повреждения двигателя произойдет потеря мощности самолета. Первоначально не важно проводить различие между невосстановимым выбросом с серьезным повреждением двигателя или без него, а также между пожаром и предупреждением о пожаре с серьезным повреждением двигателя. Приоритетом летного экипажа по-прежнему остается «летать на самолете».«Как только самолет стабилизируется, летный экипаж может диагностировать ситуацию.

Изъятие двигателя

Захват двигателя описывает ситуацию, когда роторы двигателя перестают вращаться в полете, возможно, очень внезапно. Статические и вращающиеся части фиксируются друг против друга, останавливая ротор. На практике это может произойти только при низких оборотах ротора после выключения двигателя, и практически никогда не происходит для вентилятора большого двигателя, у вентилятора слишком большая инерция, и ротор выталкивается поршневым воздухом слишком сильно, чтобы остановлен статической структурой.Ротор HP с большей вероятностью заклинивает после остановки в полете, если причиной неисправности двигателя является механическое повреждение в системе HP. В случае заклинивания ротора низкого давления будет наблюдаться некоторое сопротивление, которое летный экипаж должен компенсировать; однако, если ротор HP заклинивает, это окажет незначительное влияние на управление самолетом.

Захват не может произойти без причинения очень серьезного повреждения двигателя, вплоть до того, что лопасти и лопасти компрессора и турбины в основном разрушаются.Это не мгновенный процесс, поскольку вращающийся ротор обладает большой инерцией по сравнению с энергией, необходимой для разрушения блокирующих вращающихся и статических компонентов.

Как только самолет приземлился и ротор больше не приводится в движение поршневым воздухом, после серьезного повреждения часто наблюдается захват.

Симптомы заклинивания двигателя в полете могут включать вибрацию, нулевую частоту вращения ротора, легкое отклонение от курса самолета и, возможно, необычные шумы (в случае захвата вентилятора). Из-за автоматической компенсации воздушного судна в остальных двигателях может увеличиться расход топлива; не требуется никаких специальных действий, кроме тех, которые соответствуют серьезному повреждению двигателя.

Отделение двигателя

Разделение двигателя - крайне редкое событие. Это будет сопровождаться потерей всех первичных и вторичных параметров для пораженного двигателя, шумов и рыскания самолета (особенно при настройках большой мощности). Разделение, скорее всего, произойдет во время взлета / взлета или при посадке. Это может повлиять на управление самолетом. Важно использовать противопожарную ручку, чтобы закрыть лонжерон и не допустить значительной утечки топлива за борт; обратитесь к полету самолета или руководству по эксплуатации для конкретных процедур.

Проблемы с топливной системой

Утечки

Крупные утечки в топливной системе вызывают беспокойство у летного экипажа, поскольку они могут привести к возгоранию двигателя или, в конечном итоге, к истощению топлива. Очень большая утечка может вызвать воспламенение двигателя.

Приборы двигателя будут показывать утечку только в том случае, если она находится ниже по потоку от расходомера топлива. Утечка между баками и расходомером топлива может быть обнаружена только путем сравнения использования топлива между двигателями, путем сравнения фактического использования с запланированным использованием или путем визуального осмотра топлива, вытекающего из пилона или обтекателей.В конечном итоге, утечка может привести к дисбалансу бака.

В случае серьезной утечки экипаж должен рассмотреть, нужно ли изолировать утечку, чтобы предотвратить истощение топлива.

Следует отметить, что вероятность возникновения пожара в результате такой утечки выше на низкой высоте или когда самолет стоит на месте; даже если в полете не наблюдается пожара, желательно, чтобы аварийные службы были доступны при приземлении.

Невозможность выключить двигатель

Если неисправен клапан отсечки топлива в двигателе, возможно, не удастся выключить двигатель обычной процедурой, поскольку двигатель продолжает работать после того, как топливный выключатель перемещен в положение отключения.Закрытие лонжерона, потянув за ручку огня, обеспечит выключение двигателя, как только он израсходует топливо в линии от лонжерона до впускного отверстия топливного насоса. Это может занять пару минут.

Топливный фильтр Засорение

Засорение топливного фильтра может произойти в результате выхода из строя одного из бустерных насосов топливного бака (насос создает мусор, который сметается вниз по потоку к топливному фильтру), из-за сильного загрязнения топливных баков во время технического обслуживания (отходы ветоши, герметика и т. Д.).которые попадают вниз по потоку к топливному фильтру) или, что более серьезно, из-за сильного загрязнения топлива. Засорение топливного фильтра обычно наблюдается при высоких значениях мощности, когда поток топлива через фильтр (и измеренный перепад давления на фильтре) является наибольшим. Если видны многочисленные сигналы об обходе топливного фильтра, топливо может быть сильно загрязнено водой, ржавчиной, водорослями и т. Д. Как только фильтры обойдут и загрязнитель попадет прямо в топливную систему двигателя, управление топливом двигателя может перестать работать, как предполагалось.Существует потенциал для воспламенения нескольких двигателей. Руководство по полету или эксплуатации самолета дает необходимые указания.

Проблемы с масляной системой

Система моторного масла имеет относительно большое количество указанных параметров, требуемых правилами (давление, температура, количество, засорение фильтра). Многие из используемых датчиков могут давать ложные показания, особенно на более ранних моделях двигателей. Многочисленные аномальные системные показания подтверждают подлинный сбой; одно неправильное указание может быть или не быть действительным указанием отказа.

Существует значительная разница между прогрессиями отказов в масляной системе, поэтому приведенные ниже симптомы могут варьироваться от случая к случаю.

Проблемы с масляной системой могут возникать на любом этапе полета и обычно прогрессировать постепенно. Они могут в конечном итоге привести к серьезному повреждению двигателя, если двигатель не выключен.

Утечки

Утечки приведут к устойчивому снижению количества масла, вплоть до нуля (хотя в этой точке все еще будет некоторое пригодное для использования масло).Как только масло полностью истощится, давление масла упадет до нуля, после чего загорится индикатор низкого давления масла. Были случаи, когда ошибка технического обслуживания приводила к утечкам на нескольких двигателях; поэтому рекомендуется тщательно следить за количеством масла на хороших двигателях. Быстрое изменение количества нефти после того, как движение тяги рычага не может указывать на утечку оно может быть связано с маслом «глотая» или «сокрытие», как больше нефти поступает в отстойники.

Неисправности подшипников

Отказ подшипника будет сопровождаться повышением температуры масла и указанной вибрацией.Звуковые шумы и сообщения о засорении фильтра могут последовать; Если неисправность приводит к серьезному повреждению двигателя, это может сопровождаться указаниями о низком количестве масла и давлении.

Неисправности масляного насоса

Отказ масляного насоса будет сопровождаться низким указанным давлением масла и индикатором низкого давления масла или сообщением о засорении масляного фильтра.

Загрязнение

Загрязнение масляной системы углеродистыми отложениями, хлопковыми отходами, неподходящими жидкостями и т. Д. Обычно приводит к индикации засорения масляного фильтра или приближающемуся байпасу.Эта индикация может исчезнуть при уменьшении тяги, так как поток масла и перепад давления на фильтре также уменьшатся.

Нет ответа рычага тяги

Неисправность типа «реакция без рычага тяги» является более тонкой, чем другие, ранее обсуждавшиеся неисправности, настолько тонкой, что ее можно полностью игнорировать, что может привести к серьезным последствиям для самолета.

Если двигатель медленно теряет мощность или, когда рычаг тяги перемещается, двигатель не реагирует, самолет испытывает асимметричную тягу.Это может быть частично скрыто усилиями автопилота по поддержанию необходимого условия полета.

Как и в случае с пламенем, если нет внешних визуальных ориентиров, например, при полете над океаном ночью или в IMC, асимметричная тяга может сохраняться в течение некоторого времени без того, чтобы летный экипаж его распознал или исправил. В некоторых случаях это приводило к расстройству самолета, которое не всегда можно было исправить. Как уже говорилось, это состояние неуловимо и его нелегко обнаружить.

Симптомы могут включать в себя:

  1. Многочисленные системные проблемы, такие как отключение генераторов или низкое давление моторного масла.
  2. Необъяснимое изменение ориентации самолета.
  3. Большие необъяснимые прогибы поверхности управления полетом (автопилот включен) или необходимость больших входов управления полетом без видимой причины (автопилот выключен).
  4. Значительные различия между основными параметрами от одного двигателя к другому.

Если есть подозрение на асимметричную тягу, первым ответом должно быть выполнение соответствующей настройки триммера или руля направления. Отключение автопилота без предварительного выполнения соответствующего управляющего входа или триммера может привести к быстрому маневру крена.

Реверсор неисправностей

Как правило, неисправности реверсора тяги ограничиваются условиями сбоя, при которых система реверсора не может быть развернута по команде и не может быть размещена по команде. Невыполнение развертывания или укладки во время посадочного крена приведет к значительной асимметричной тяге и может потребовать быстрого реагирования для поддержания направленного управления самолетом.

Произошло незапланированное развертывание современных систем реверса тяги, что привело к принятию директив по летной годности для добавления дополнительных систем блокировки к реверсору.Как следствие этого действия, вероятность непреднамеренного развертывания чрезвычайно низка. Полет самолета или руководство по эксплуатации предоставляет необходимую системную информацию и тип сообщений, предоставляемых типом самолета.

Без начального выреза

Как правило, это условие существует, когда селектор запуска остается в начальном положении или клапан запуска двигателя открыт при закрытии команды. Поскольку стартер предназначен для работы на низких оборотах только в течение нескольких минут, стартер может полностью выйти из строя (взорваться) и вызвать дальнейшее повреждение двигателя, если стартер не отключился.

Вибрация

Вибрация является признаком широкого спектра состояний двигателя, от очень мягких до серьезных. Ниже приведены некоторые причины тактильной или указанной вибрации:

  1. Дисбаланс вентилятора при сборке
  2. Лопатка вентилятора трения или покачивания
  3. Накопление воды в роторе вентилятора
  4. Лезвие глазурное
  5. Пищеварение / FOD
  6. Неисправность подшипника
  7. Искажение лезвия или отказ
  8. Чрезмерные зазоры наконечника системы ротора вентилятора.

Нелегко определить причину вибрации при отсутствии других необычных показаний. Хотя вибрация от некоторых неисправностей может быть очень сильной на кабине экипажа, она не повредит самолет. Нет необходимости предпринимать действия, основанные только на индикации вибрации, но это может быть очень полезным для подтверждения проблемы, выявленной другими способами.

Вибрация двигателя может быть вызвана дисбалансом вентилятора (образование льда, потеря материала лопастей вентилятора из-за проглоченного материала или искажение лопастей вентилятора из-за повреждения посторонними предметами) или из-за внутренней неисправности двигателя.Ссылка на другие параметры двигателя поможет установить, существует ли неисправность.

Вибрация, ощущаемая на кабине экипажа, может не указываться на приборах. При некоторых неисправностях двигателя на кабине экипажа может возникать сильная вибрация либо во время отказа двигателя, либо, возможно, после его остановки, что затрудняет чтение инструментов. Эта большая амплитуда вибрации вызвана несбалансированной ветряной мельницей с вентилятором, близкой к собственной частоте планера, что может усилить вибрацию.Изменение воздушной скорости и / или высоты приведет к изменению скорости ветряной мельницы вентилятора, и скорость самолета может быть найдена там, где будет намного меньше вибрации. Между тем, нет риска разрушение конструкции самолета из-за вибрационных нагрузок двигателя.

Подведение итогов

Приведенная ниже таблица состояния двигателя и его симптомов показывает, что многие неисправности имеют сходные симптомы и что диагностировать природу проблемы с двигателем с помощью приборов в кабине экипажа может быть практически невозможно. Тем не менее, нет необходимости точно понимать, что не так с двигателем, выбор «неправильного» контрольного списка может привести к дополнительному экономическому ущербу для двигателя, но при условии, что предпринимаются действия с правильным двигателем, а управление самолетом остается первым приоритет, самолет все еще будет в безопасности.

Состояние двигателя:

  1. Отделение двигателя
  2. Сильный урон
  3. Surge
  4. Пищеварение / FOD
  5. Изъятие
  6. Flameout
  7. Проблемы с контролем топлива
  8. Огонь
  9. Пожарная труба
  10. Горячий старт
  11. Обледенение
  12. Реверсор некомандного развертывания
  13. Утечка топлива
Состояние двигателя
Симптом 1 2 3 4 5 6 7 8 9 10 11 12 13
Взрыв O X X O O O
Пожарная сигнализация O O O X
Видимое пламя O O O O O X O
Вибрация X O X O X X
рыскание O O O O O O O X
Высокий EGT X X O O X O X O
N1 изменить X X O O X X X X
N2 изменить X X O O X X X X
EPR изменить X X X O X X X X
FF изменить X O O O X O O X
Замена масла в индексе X O O O X O
Vis повреждение капота X X O X
Дым / запах в кабине / стравить воздух O O O

Х = Симптом очень вероятен.

O = Симптом возможен.

Примечание: пустые поля означают, что симптом маловероятен.

Это страница была взято из оригинал документ в http://fromtheflightdeck.com/Stories/turbofan/

,

Обзор электростанции с комбинированным циклом

Газовая турбина с комбинированным циклом

Электростанция с комбинированным циклом или газовая турбина с комбинированным циклом , газотурбинный генератор вырабатывает электроэнергию, а отработанное тепло используется для производства пара для выработки дополнительной электроэнергии с помощью паровой турбины.

An overview of Combined Cycle Power Plant (photo credit: businesswire.com) An overview of Combined Cycle Power Plant (photo credit: businesswire.com) Обзор электростанции с комбинированным циклом (фоторепортаж: businesswire.com)

Газовая турбина является одной из наиболее эффективных для преобразования газового топлива в механическую или электрическую энергию.Использование жидкого дистиллятного топлива, обычно дизельного, также распространено в качестве альтернативного топлива.

В последнее время, когда эффективность простых циклов повысилась, а цены на природный газ упали, газовые турбины стали более широко применяться для выработки электроэнергии с базовой нагрузкой, особенно в режиме комбинированного цикла, где отработанное тепло регенерируется в котлах-утилизаторах и в паре. используется для производства дополнительной электроэнергии.

Эта система известна как комбинированный цикл . Основной принцип комбинированного цикла прост: при сжигании газа в газовой турбине (ГТ) вырабатывается не только мощность, которая может быть преобразована в электроэнергию с помощью связанного генератора, но и довольно горячие выхлопные газы.

При прохождении этих газов через теплообменник с водяным охлаждением образуется пар, который может быть превращен в электроэнергию с помощью паровой турбины и генератора.

Figure - Combined cycle power plant scheme Figure - Combined cycle power plant scheme Рисунок - Схема электростанции с комбинированным циклом

Электростанция такого типа устанавливается во все большем количестве по всему миру, где есть доступ к значительным количествам природного газа.

Электростанция с комбинированным циклом обеспечивает высокую выходную мощность при высокой эффективности (до 55%) и с низким уровнем выбросов.На обычной электростанции мы получаем 33% электроэнергии только и оставшиеся 67% как отходы .

Используя электростанцию ​​комбинированного цикла, мы получаем 68% электроэнергии .

Также возможно использовать пар из котла для отопления , чтобы такие электростанции могли работать для выработки электричества в одиночку или в режиме комбинированного производства тепла и электроэнергии (ТЭЦ).


Механизм

Электростанция с комбинированным циклом, как следует из названия, объединяет существующие газовые и паровые технологии в одну единицу, обеспечивая значительное повышение теплового кпд по сравнению с обычной паровой установкой.На установке ПГУ тепловая эффективность увеличивается примерно до 50-60 процентов за счет подачи выхлопных газов из газовой турбины в парогенератор с рекуперацией тепла.

Однако тепла, извлекаемого в этом процессе, достаточно для работы паровой турбины с электрической мощностью, составляющей приблизительно 50 процентов от газотурбинного генератора.

Газовая турбина и паровая турбина соединены с одним генератором. Для запуска или ‘ с открытым циклом ‘ для работы только газовой турбины паровая турбина может быть отключена с помощью гидравлической муфты.С точки зрения общих инвестиций, стоимость системы с одним валом, как правило, примерно на 5 процентов ниже, а ее простота в эксплуатации обычно приводит к повышению надежности.

3-е моделирование электростанции с комбинированным циклом

Принцип работы завода CCTG

Первый шаг аналогичен газотурбинной установке простого цикла. Газовая турбина с открытым контуром имеет компрессор, камеру сгорания и турбину. Для этого типа цикла температура на входе в турбину очень высокая.Температура на выходе дымовых газов также очень высокая.

Следовательно, этого достаточно, чтобы обеспечить тепло для второго цикла, в котором в качестве рабочего тела используется пар, то есть тепловая электростанция.

Working principle of combined cycle gas turbine (CCTG) plant Working principle of combined cycle gas turbine (CCTG) plant Рисунок - Принцип работы газотурбинной установки с комбинированным циклом (CCTG)

Воздухозаборник

Этот воздух забирается через большую секцию впуска воздуха, где он очищается, охлаждается и контролируется. Сверхмощные газовые турбины могут успешно работать в самых разных климатических условиях и в условиях окружающей среды благодаря системам фильтрации воздуха на входе, которые специально спроектированы с учетом местоположения установки.

В нормальных условиях впускная система имеет возможность обрабатывать воздух, удаляя загрязнения до уровней ниже тех, которые вредны для компрессора и турбины.

Обычно поступающий воздух имеет различные загрязнения. Они:

В газообразном состоянии загрязняющими веществами являются:

• Аммиак
• Хлор
• Углеводородные газы
• Сера в форме h3S, SO2
• Выпуск из вентиляционных отверстий маслоохладителя

В жидком состоянии загрязняющими веществами являются:

• Соли хлоридов, растворенные в воде (натрий, калий)
• Нитраты
• Сульфаты
• Углеводороды

В твердом состоянии загрязняющими веществами являются:

• Песок, глинозем и кремнезем
• Ржавчина
• Дорожная пыль, глинозем и кремнезем
• Сульфат кальция
• Соединения аммиака от удобрений и кормления животных
• Вегетация семян в воздухе

Агенты, вызывающие коррозию:
Хлориды, нитраты и сульфаты могут откладываться на лопатках компрессора и могут привести к коррозии под напряжением и / или вызвать коррозию.Натрий и калий - это щелочные металлы, которые могут соединяться с серой с образованием коррозионно-активных веществ и воздействовать на участки пути горячего газа. Загрязнения удаляются, проходя через различные типы фильтров, которые присутствуют на пути.

Загрязнения газовой фазы, такие как аммиак или сера, не могут быть удалены фильтрацией. Для этого используются специальные методы.


Турбинный цикл

Воздух, который очищается, затем сжимается и смешивается с природным газом и воспламеняется, что вызывает его расширение.Давление, создаваемое расширением, вращает лопасти турбины, которые прикреплены к валу и генератору, создавая электричество.

На втором этапе тепло выхлопа газовой турбины используется для генерации пара путем пропускания его через парогенератор с рекуперацией тепла (HRSG) с температурой живого пара в интервале от 420 до 580 ° C .


Парогенератор с рекуперацией тепла

В парогенераторе с рекуперацией тепла высокоочищенная вода течет по трубам, а горячие газы пропускают вокруг нее и образуют пар.Затем пар вращает паровую турбину и связанный генератор для производства электричества. Горячие газы покидают HRSG при температуре около 140 градусов по Цельсию и выбрасываются в атмосферу.

Система конденсации пара и воды такая же, как на паровой электростанции.


Типичный размер и конфигурация установок ПГУ

Система комбинированного цикла включает в себя одновальных и многовальных конфигураций . Одновальная система состоит из одной газовой турбины, одной паровой турбины, одного генератора и одного парогенератора с рекуперацией тепла (HRSG), причем газовая турбина и паровая турбина соединены с одним генератором на одном валу.

Многооборотные системы имеют один или несколько газотурбинных генераторов и HRSG, которые подают пар через общий коллектор в отдельный одиночный паровой турбогенератор. С точки зрения общих инвестиций стоимость многооборотной системы примерно на 5% выше.

Главным недостатком многоступенчатой ​​электростанции с комбинированным циклом является то, что число паровых турбин, конденсаторов и конденсатных систем и, возможно, градирен и систем оборотной воды увеличивается в соответствии с количеством газовых турбин.


Эффективность установки ПГУ

Примерно в цикле паровой турбины вырабатывается одна треть мощности , а в цикле газовой турбины вырабатывается две трети выходной мощности CCPP. Комбинируя газовый и паровой циклы, можно достичь высоких входных и низких выходных температур. Эффективность циклов добавляет, потому что они питаются от одного и того же источника топлива.

Для повышения эффективности энергосистемы необходимо оптимизировать HRSG, который служит критической связью между циклом газовой турбины и циклом паровой турбины с целью увеличения производительности паровой турбины.Работа HRSG оказывает большое влияние на общую производительность электростанции с комбинированным циклом.

Электрический КПД электростанции с комбинированным циклом может достигать 58 процентов при работе на новой и с непрерывной мощностью, которые являются идеальными условиями. Как и в случае единичных тепловых блоков, комбинированные циклы могут также поставлять низкотемпературную тепловую энергию для промышленных процессов, централизованного теплоснабжения и других целей. Это называется когенерацией, и такие электростанции часто называют комбинированными теплоэлектростанциями (ТЭЦ).

Эффективность CCPT увеличивается за счет дополнительного обжига и охлаждения лезвий. Дополнительная стрельба устроена в HRSG и в газовой турбине, часть потока сжатого воздуха обходит и используется, чтобы охладить лопатки турбины. Необходимо использовать часть энергии выхлопных газов через газ для рекуперации газа. Рекуперация может еще больше повысить эффективность установки, особенно когда газовая турбина работает при частичной нагрузке.


Топливо для установок CCPT

Турбины, используемые в установках с комбинированным циклом, обычно работают на природном газе, и они более универсальны, чем уголь или нефть, и могут использоваться в 90% энергетических применений.Установки с комбинированным циклом обычно работают на природном газе, хотя можно использовать мазут, синтез-газ или другие виды топлива.


Контроль выбросов

Селективное каталитическое восстановление (SCR):

  • Для контроля выбросов в выхлопных газах, чтобы они оставались в пределах допустимых уровней при поступлении в атмосферу, выхлопные газы проходят через два катализатора, расположенных в HRSG.
  • Один катализатор контролирует выбросы окиси углерода (CO), а другой катализатор контролирует выбросы оксидов азота (NOx).Водный аммиак - В дополнение к SCR, водный аммиак (смесь 22% аммиака и 78% воды) впрыскивается в систему для еще большего снижения уровня NOx.

заслуги

Топливная эффективность

В обычных электростанциях турбины имеют эффективность преобразования топлива 33% , что означает две трети топлива, сгоревшего, чтобы привести турбину в действие. Турбины в электростанции с комбинированным циклом имеют эффективность преобразования топлива 50% или более , что означает, что они сжигают около половины количества топлива, как обычная установка, для выработки такого же количества электроэнергии.


Низкие капитальные затраты

Капитальные затраты на строительство установки комбинированного цикла составляют две трети капитальных затрат на сопоставимый угольный завод.


коммерческая доступность

Агрегаты комбинированного цикла имеются в продаже у поставщиков в любой точке мира. Они легко изготавливаются, отправляются и транспортируются.


Обильные источники топлива

Турбины, используемые в парогазовых установках, работают на природном газе, который более универсален, чем уголь или нефть, и может использоваться в 90% энергетических публикаций.Чтобы удовлетворить потребность в энергии, сегодня однодневные заводы используют не только природный газ, но и другие альтернативы, такие как биогаз, получаемый из сельского хозяйства.


Снижение выбросов и потребления топлива

Установки с комбинированным циклом потребляют меньше топлива на кВтч и производят меньше выбросов, чем обычные тепловые электростанции, тем самым уменьшая ущерб окружающей среде, вызванный производством электроэнергии. По сравнению с угольной электростанцией сжигание природного газа в CCPT намного чище.


потенциальных приложений в развивающихся странах

Потенциал для парогазовой установки связан с отраслями, которые требуют электричества и тепла или стебляНапример, обеспечение электричеством и паром сахарного завода.


Недостатки

  1. Газовая турбина может использовать только природный газ или высококачественные масла, такие как дизельное топливо.
  2. Из-за этого комбинированный цикл может работать только в местах, где эти виды топлива доступны и экономически эффективны.

Выводы

Электростанции с комбинированным циклом отвечают растущим потребностям в энергии, и, следовательно, особое внимание должно быть уделено оптимизации всей системы .Разработки по газификации угля и использованию в газовой турбине находятся на продвинутой стадии.

Как только это будет доказано, уголь как основное топливо может также использовать электростанции с комбинированным циклом для удовлетворения растущих потребностей в энергии, которые будут использоваться на электростанции с комбинированным циклом.

Достижения в области когенерации - процесс одновременного производства полезного тепла и электроэнергии из одного и того же источника топлива - который повышает эффективность сжигания топлива с 30% до 90%, тем самым уменьшая ущерб окружающей среде и увеличивая экономическую производительность за счет более эффективного использования Ресурсы.

,Двигатель внутреннего сгорания
против газовой турбины - преимущества модульности
  • Домой
  • морской
  • энергии
    • На пути к 100% возобновляемой энергии
    • Исследуйте решения
    • Работать и поддерживать
    • Решения по отраслям
    • Выучить больше
      • Технические сравнения
      • Ссылки
        • Независимые производители электроэнергии
        • Горное дело и цемент
        • Нефтяной газ
          • Tornio Manga LNG Terminal, Торнио, Финляндия
        • Другие промышленные
        • коммунальные услуги
          • Alteo Group, Венгрия
          • Станция Антилопы, Техас, США
          • Арун, Суматра, Индонезия
          • Centrica, Великобритания
          • ДРЕВАГ, Германия
          • Станция генерации Эклутна Палмер, Аляска, США
          • Калум 5, Гвинейская Республика
          • Kiisa ERPP I & II
          • Кипеву II-III, Кения
          • Крафтверке Майнц-Висбаден АГ
          • Макухари, Япония
          • Маркетт Энерджи Центр, США
          • Станция Пирсолл, Техас, США
          • Песанггаран, Бали
          • Port Westward Unit 2, Портленд, штат Орегон, США
          • Восточный Тимор, Индонезия
          • Woodland 3 Generation Station, Модесто, Калифорния, США
          • Пуэнт Монье, Маврикий
          • Pivot Power, Великобритания
          • Бенндейл, Миссисипи, США
          • AGL Energy Limited, Австралия Электростанция Barker Inlet, Австралия
          • Грасиоза, Азорские острова, Португалия
          • Бремен, Германия
      • Электростанция селектор
      • Загрузки
      • Записи вебинара
  • Служба поддержки
  • Около
  • Карьера
  • инвесторы
  • СМИ
  • устойчивость
.

Отправить ответ

avatar
  Подписаться  
Уведомление о