Как правильно установить турбину на дизельный двигатель: Установка турбины – как правильно установить турбину

Содержание

Установка турбины – как правильно установить турбину


Установка турбины требует снятия с неё всех транспортных заглушек. Внимательно нужно осмотреть места присоединения на двигателе, убедиться в отсутствии посторонних предметов в газовых, воздушных и масляных каналах.

По рекомендациям специалистов, замена турбины должна производиться на специализированных ремонтных предприятиях, имеющих лицензию на данный вид выполняемых работ. Самостоятельная установка турбокомпрессора требует выполнения определённых действий и операций.

Рекомендации по установке, после ремонта турбины:

1. турбокомпрессор подсоединяется к выпускному коллектору двигателя входным фланцем корпуса турбины. Установка турбокомпрессора должна проходить таким образом, чтобы было вертикальное положение оси фланцев подвода и слива масла. Не пытайтесь изменять конструкцию маслопроводов.

ВНИМАНИЕ! Не пользуйтесь уплотнительными замазками!

2.

В маслоподводящее отверстие турбины (входной фланец корпуса подшипников) залить 20-30 грамм чистого моторного масла той же марки, которая используется в двигателе и несколько раз провернуть ротор турбины рукой (для более равномерного распределения смазки). Ротор должен вращаться легко, без заеданий.

 

 

 

3. перед установкой турбины на двигатель проверьте, все ли трубопроводы (подача/слив масла, впуск/выпуск компрессора и турбины) чистые и в них нет никаких посторонних предметов.

4. после установки на двигатель проверить герметичность соединений воздушного тракта перед турбокомпрессором и за ним.

5. по окончании установки турбины несколько раз прокрутить двигатель стартером не запуская его (пока не погаснет индикатор давления масла) для подачи масла в турбокомпрессор.

6. после установки восстановленной (новой) турбины, запустить двигатель и дать поработать на холостом ходу 10-15 минут.

Давление масла должно быть не менее 0,8 кг/см2. Проверить отсутствие подтеканий масла в соединениях. После этого эксплуатировать двигатель в соответствии с инструкцией.

Установка турбины. Как установить турбонаддув на двигатель, схема

Установка турбины. Как установить турбонаддув на двигатель, схема

Прежде чем выполнять установку новой турбины, обязательно разберитесь и выясните причины поломки оригинального турбокомпрессора и постарайтесь их устранить. И только в том случае, если оригинальный турбокомпрессор окончательно не подлежит ремонту заменяйте его на новый.

Перед покупкой и установкой новой турбины на двигатель, обязательно убедитесь в том, что данный турбокомпрессор подходит под ваш тип двигателя. Узнать это вы можете, использовав оригинальный и серийный номер турбины и узнав, под какой конкретно тип двигателей разработан тот или иной турбокомпрессор. Этот момент очень важен, так как гарантия на турбину, установленную на неподходящий ей тип двигателя, не распространяется.

 

Установка турбокомпрессора на двигатель

 

Первым этапом работ будет подготовка двигателя для последующей установки на него новой турбины. Для этого необходимо выполнить следующие действия:

 

1) Слить масло с двигателя, после чего промыть его от остатков отработанного масла;

2) Снять сапун двигателя, тщательно промыть его, после чего установить обратно на место;

3) Отсоединить от турбокомпрессора трубки поступления и отвода масла. Хорошо промыть их и проверить на наличие закоксованности и механических повреждений, в случае обнаружения которых, заменить трубки новыми;

 

  
рис

4) Снять воздушные патрубки впускной системы и удостоверится в отсутствии на них частиц пыли, наличии масла или другого сора. В случае обнаружения повреждений, заменить их новыми;

5) Снять, промыть интеркуллер и также проверить его на наличие механических повреждений, частиц кокса, пыли или прокладок. При обнаружении повреждений обязательно заменить новым;

6) Те же действия применимы и к патрубкам выпускной системы. Их нужно снять, убедится в отсутствии масла, сора, пилы в случаи наличия таковых — почистить. При наличии видимых механических повреждений поступаем так же, как и с другими поврежденными деталями — заменяем новыми;

7) Снять старую турбину, проверить на наличие повреждений, обязательно обратить внимание и проверить состояние фланца выпускного коллектора. При обнаружении дефектов — заменить.

 

Следующий этап — установка нового турбокомпрессора и дополнительных комплектующих

 

8) Заменить старый масляный фильтр на новый, предварительно залив в него чистое масло;

9) Промыть двигатель специальными средствами от остатков отработанного масла и заполнить его чистым маслом;

 


рис 2

10) Произвести установку интеркулера и подсоединить его;

11) Произвести установку нового турбокомпрессора на выпускной коллектор. После установки убедится в том, что прокладка прижата правильно;

12) Произвести установку маслосливной трубки;

13) Медленно проворачивая вал рукой, постепенно заполнить турбокомпрессор чистым маслом;

 


рис 3

14) Установить маслоподводящую трубку;

15) Произвести замену воздушного фильтр

 


рис 4

16) Подсоединить все воздушные патрубки и удостоверится в плотности их затяжки;

17) Подсоединить выпускной патрубок и и удостоверится в плотности его затяжки;

18) Не заводя двигатель, провернуть его, это необходимо для создания необходимого давления в масляной системе и турбокомпрессоре;

19) Завести двигатель и оставить его на холостом ходе, а по истечении 5-10 минут начать постепенное увеличение нагрузки для прогрева до рабочей температуры;

20) Убедится в отсутствии течи масла, утечки воздуха и горячих газов. Также обязательно убедится в отсутствии посторонних шумов и вибраций. Для обнаружения утечек газов можете использовать мыльный раствор;

 


рис 5

21) Сделать тест-заезд с постепенным увеличением нагрузки на двигатель;

22) После пробного заезда снова проверить наличие подтеканий масла и утечки горячих газов и других не характерных признаков;

23) В случае недавнего кап. ремонта двигателя сделать ещё одну, внеплановую замену масла после 1000 км пробега.

После этих действий установка турбонаддува будет завершена и двигатель будет готов к эксплуатации.

 

Инструкция по установке турбин от фирмы Garrett

Дата публикации: 2014-05-07

Часто причиной отказа турбокомпрессора становятся досадные ошибки, допущенные при его монтаже. Как правильно установить турбину? Кто ответит на этот вопрос лучше, чем разработчики турбокомпрессоров? Вот какие рекомендации дают специалисты Honeywell Turbo Technologies. ..

Перед тем как устанавливать турбину взамен вышедшей из строя, важно выяснить причину отказа предыдущей турбины. Если сомневаетесь, обратитесь за помощью к дистрибьютору Garrett.

Важные замечания:

Прокладка, частично перекрывающая сечение масляного канала, уменьшает подвод масла к турбине или, если кусочек прокладки оторвется, может полностью прекратить подачу масла.

Правильная прокладка, не выступающая за край отверстия.

Уровень масла в порядке, но сливная трубка повреждена – это вызывает течь масла из турбины.

Уровень масла слишком высокий – это блокирует слив масла из турбины и вызывает течь масла через турбину

Уровень масла соответствует спецификации.

Повышенное давление картерных газов может остановить слив масла – это приводит к истечению масла из турбины.

  1. Игнорирование данной инструкции может привести к повреждению турбокомпрессора и прекращению действия гарантии.
  2. Изменение калибровки турбины с байпасным клапаном может повредить турбину/двигатель и аннулировать гарантию.
  3. При монтаже должны использоваться «правильные» прокладки – они не должны перекрывать отверстия. Жидкие прокладки и герметики применять не рекомендуется, особенно для подачи и слива масла. Избыток материала может оторваться, уменьшив или перекрыв подачу масла. Прокладка, частично перекрывающая сечение масляного канала, уменьшает подвод масла к турбине или, если кусочек прокладки оторвется, может полностью прекратить подачу масла.
  4. Для определения требуемого типа и количества масла, а также для уточнения значений момента затяжки и подробностей установки обратитесь к документации производителя автомобиля/двигателя.
  5. Предотвратите попадание при монтаже пыли/мусора внутрь турбокомпрессора.
  6. Перед установкой турбокомпрессора проверьте, соответствует ли его номер детали данному двигателю – установка не рекомендованной турбины может повредить турбину/двигатель и аннулировать гарантию.

Устанавливая турбину

  • Все воздуховоды, присоединяющиеся к турбине, должны быть не повреждены и тотально чистые.
  • Воздушный фильтр и его корпус должны быть абсолютно чистые и свободные от мусора.
  • Очистите систему вентиляции картера двигателя и проверьте ее работоспособность.
  • Удалите старые прокладки с выпускного коллектора и приемной трубы глушителя.
  • Перед присоединением турбины удалите с нее все пластиковые, резиновые и прочие технологические заглушки.
  • Залейте в отверстие для подачи масла турбины новое моторное масло и несколько раз рукой покрутите компрессорное колесо – оно должно вращаться свободно. Заметьте: некоторый ощутимый люфт колеса в радиальном направлении — это нормально.
  • Присоедините турбокомпрессор к коллектору или блоку двигателя (как положено), используя новую «правильную» прокладку или кольцевое уплотнение. Затем подсоедините выхлопную трубу и затяните все болты и гайки.
  • Трубки для подачи и слива масла должны быть абсолютно чистыми и неповрежденными – поток масла должен быть незатрудненным. Проверьте, чтобы все гибкие участки трубопроводов не имели изломов и перегибов, вызывающих пережатие внутреннего сечения. Проверьте, чтобы маслоподводящая трубка не проходила слишком близко от горячих частей.
  • Присоедините трубку для слива масла. Заново залейте во входное отверстие турбины новое чистое моторное масло и подсоедините маслоподводящую трубку.
  • Присоедините воздуховоды и затяните.
  • Используйте новые воздушный, масляный и топливный фильтры, заправьте двигатель новым моторным маслом.
  • Если возможно, предотвратите запуск двигателя и проворачивайте его стартером 10-15 секунд, чтобы заполнить маслоподающую магистраль. Запустите двигатель и дайте поработать в режиме холостого хода от 3 до 4 минут, прежде чем увеличить обороты. Проверьте на отсутствие утечек масла, воздуха и отработавших газов.
  • Остановите двигатель и повторно проверьте уровень масла. Имейте в виду: уровень масла не должен быть выше того места, где масло возвращается из турбины в поддон. Проверьте давление картерных газов. Повышенное давление может быть вызвано прорывом продуктов сгорания через изношенные поршневые кольца или блокированной системой вентиляции.

как установить турбину на бензиновый двигатель? ТУРБО-ТЕХ Москва

Для начала, потребуется обзавестись некоторыми деталями, без которых не установить турбокомпрессор на авто. В этот список входят: турбина, интеркулер, коллектор, патрубки, труба к ведущая к глушителю и система, предназначенная для контроля подачи топлива.

Установить турбину можно не на все виды машин. Бывают даже ситуации, когда проще приобрести новое авто с изначально установленной турбиной, чем поставить ее в бензиновый двигатель. Правильно поставить турбину сможет не каждый и поэтому ставить ее рекомендуется мастеру с солидными навыками и опытом. Если ставить турбину в стиле “как получится”, то ее эксплуатационный срок будет крайне мал.

На первом этапе потребуется снять элементы, которые отвечают за вход и выход потока воздуха в системе. Новый коллектор турбины соединяют с входом турбокомпрессора. Турбину надо установить так, чтобы можно было осуществить работы по установке патрубков. Далее, охлаждающий канал скрепляют с смазочной системой мотора, при помощи масляной трубки. Для более простого подключения, предназначается датчик, который отвечает за давление масла. Система охлаждения присоединяется к водяной помпе.
Чтобы формировалось достаточное количество воздушно-топливной смеси, необходимо установить форсунки с высоким уровнем производительности, которые будут подавать нужный объем топлива для смеси. Чтобы эта система работала, потребуется также заменить старый топливный насос, по причине того, что старый наверняка не сможет предоставить тот объём топлива для новых форсунок, которые требуется.

Все датчики, которые следят за температурой воздуха и охлаждающей жидкости, будут под контролем электронных систем. Чтобы системы работали как “часы”, следует произвести калибровку всех элементов контроля, чтобы ,например топливо впрыскивалось именно в тот момент, когда подается воздух в цилиндры. Такая переделка двигателя является достаточно сложной задачей, и чтобы ее качественно осуществить, необходимы немалые силы и средства, а также умелые руки.

Если со временем, ваша турбина вышла из строя, то сервис компании ТУРБО-ТЕХ Москва проведет диагностику турбины бензинового двигателя. В нашей компании вам восстановят турбину за 4 часа, с гарантией на 3 года! Сервис располагает собственный складом оригинальных запчастей, европейским оборудованием высокого класса и мастерами опыт работы которых, более 12 лет!

НУЖЕН РЕМОНТ ТУРБИНЫ В МОСКВЕ?

ЗВОНИТЕ В ТУРБО-ТЕХ!

8 (495) 648-65-95

Ремонт за 4 часа, гарантия 3 года, экономия до 70%!

Как поставить на атмосферный двигатель турбину: Видео

Что нужно знать при установке турбины на атмосферный двигатель

Вот что вам нужно для того, чтобы установить турбину на автомобиль с атмосферным двигателем.

 

Как-то я задумался, что нужно, для того чтобы установить турбину на свою машину, на которой стоял обычный 2.5 литровый атмосферный дизельный мотор. Поспрашивав советов у друзей и полазив по форумам, пришел к выводу, что эту затею можно реализовать, но прибавка в мощности будет совершенно не соответствовать тем денежным затратам, которые предстоят мне в реализации этой авантюры. Ну а если ставить большую турбину с большим давлением наддува, то нужен вообще воз и маленькая тележка денег, поскольку под замену автоматически попадают коробка переключения передач, элементы трансмиссии, приводов и даже тормоза.

 

С последующим появившимся во владении автомобилем, такие идеи также меня посещали, но самое главное «но» на этот раз заключалось в неминуемом снижении ресурса на этот раз бензинового 1.8 литрового мотора.

Впрочем, читая форумы в Рунете и в зарубежном сегменте интернета, можно легко прийти к выводу о том, что данная тема остается популярной у любителей тюнинга, которые не останавливаются из-за временных затрат и в связи с денежными тратами, их даже не пугает то, что двигатель может выйти из строя. Для этих парней главное скорость и создание чего-то нового на базе имеющейся технической основы. Похвальная тяга к приключениям, нечего сказать.

 

Не далее, чем четыре дня назад на сайте www.popularmechanics.com было опубликовано видео Engineering Explained с Джейсоном Фенске, в котором были объяснены азы установки турбины на атмосферный двигатель.

 

Сегодня мы не будем углубляться в технические подробности этого мероприятия, а лишь опубликуем видео (инструкцию по включению переведенных на русский язык субтитров разместим в конце новости), для тех, кто хочет подробнее узнать, как установить турбину на атмосферный двигатель в следующую пятницу мы напишем подробную статью.

 

 

А пока повторим пять основных моментов, которые нужно учитывать при установке турбины на нетурбированный двигатель:

  1. 1. Приобрести турбину, подходящую по характеристикам к данному типу двигателя
  2. 2. Установить новые топливные компоненты питания двигателя, в которые входят топливный насос, насос высокого давления, если таковой есть, более производительные топливные форсунки. Также в видео рассуждают о необходимости использования высокооктанового топлива, если предполагается значительно поднимать мощность двигателя.
  3. 3. При наличии блока управления двигателем ECU (ЭБУ) он также будет подлежать замене или рекалибровке для правильного питания двигателя.
  4. 4. Дополнительно нужно будет заменить датчики, отвечающие за работу мотора в тех или иных режимах работы, установить интеркулер, заменить свечи на другой тип, установить проставку между головкой и блоком мотора для снижения компрессии или использовать специальные поршни, также разработанные для снижения компрессии.
  5. 5. И наконец, пятый основной пункт, требуется найти хороших опытных мастеров, профессионалов, которые все это добро установят и правильно откалибруют.

Кратко- это были основные советы, прозвучавшие в видео. Подробнее об установке турбины мы напишем на следующей неделе. До скорых встреч!

 

Как включить субтитры.

 

1. Откройте настройки в правом нижнем углу и включите английские субтитры

2. Повторно зайдите в настройки- субтитры и нажмите «Перевести»

➤ Замена турбины от 2-х часов

Уважаемые автолюбители! 

Компания не занимается установкой турбокомпрессоров на нетурбированные двигатели. Установка турбин производится только на автомобили, имеющие турбину в штатной комплектации.

Установка турбокомпрессора (турбонаддува)

Желаете поставить турбину? Компания «Турбомагия» предлагает вам услугу снятия и установки турбонагнетателей на авто. Быстро, качественно, с гарантией.

Виды работ:

  • снятие и установка турбокомпрессора на дизельный двигатель,
  • снятие и установка турбокомпрессора на бензиновый двигатель,
  • замена картриджа турбины,
  • снятие и установка турбин после тюнинга,
  • замена турбокомпрессора и многое др.

Снятие и установка турбины: цена

Сколько стоит поставить турбину?
 

Цена на установку турбины может отличаться в зависимости от типа автомобиля на который устанавливается турбина и сложности ремонта самого турбокомпрессора. 

Цены на ремонт турбины варьируются от 300-1000 грн. (базовый ремонт) до 4000 грн. (капитальный ремонт турбины).

Стоимость новой турбины составляет 300-800 евро.

 

Желаете узнать подробности замены турбины?

Оставьте заявку и мы свяжеимся с вами, что-бы уточнить детали установки/замены турбины.

Почему установку турбонагнетателя нужно доверить нам?

Потому, что мы занимаемся ремонтом и заменой турбин с 1996 года. И мы знаем, чего стоит малейшая ошибка или небрежность при замене и установке турбонаддува на двигатель. Цена этой ошибки может быть гораздо выше стоимости самой турбины.

Вся работа выполняется нами строго по инструкции. Перед тем, как поставить турбину на бензиновый (дизельный) двигатель, мы обязательно выясняем, по какой причине турбонагнетатель вышел из строя. И только после этого выполняем замену турбокомпрессора

Наши преимущества при замене турбин

Помимо 20-летнего опыта и нескольких тысяч отремонтированных агрегатов, мы располагаем:

  • Профессиональным современным оборудованием, которое обеспечивает безупречное качество сборки и балансировки.
  • Качественным диагностическим оборудованием. Мы не просто выполняем замену и установку турбины. Наша цель – бесперебойная работа вашего автомобиля. Поэтому вы получаете диагностику турбины и рекомендации, на какие узлы автомобиля следует обратить внимание, чтобы избежать поломок и ремонта турбины в дальнейшем.

Чем мы отличаемся от конкурентов?

 

Цена — низкая стоимость ремонта от 300 грн — при отменно высоком качестве ремонта. Если вы найдете цену ниже — задайте вопрос о качестве.

 

Оборудование — используем современное польское цифровое оборудование. Балансировочные станки практически не имеют аналогов в Украине.

 

Гарантии — даем официальную реальную гарантию 1 год. Бесплатно проводим донастройку или другие работы с турбиной в гарантийный период.

 

Опыт — более 20 лет. Качественно, быстро и виртуозно ремонтируем турбины, проводим безупречную балансировку.

 

Сроки — от 2 до 8 часов. За это время вы получаете новую турбину с заводскими параметрами.

 

Расположение — находимся в центре Киева и к нам удобно добираться. При этом, мы работаем с любыми городами Украины, Белоруссии, Молдовы и ближайших государств.

Установка турбины сгоряча. Цена ошибки механика

На днях на наш сервис заехал клиент. На лице печаль, в руках турбина – залатанная, грязная, но видно, что новая.

«Я владелец интернет-магазина, занимаемся запчастями. Отправили новую турбину заказчику, а он ее выслал обратно. Говорит, что она бракованная. После установки стала выть, как сбитый самолет. Посмотрите, что с ней?»

Проверяем: турбина качественная, но на фланце следы герметика. Крыльчатка согнута, каналы забиты силиконом, опорный подшипник имеет износ. Яркий пример неправильной установки. Результат – безнадежно угробленная турбина.

А сколько таких турбин нам приносят после подобной «профессиональной» установки! Изуродованные фланцы, погнутые валы, мусор в фильтре – продолжать список можно бесконечно долго. Вот только страдает от этого кошелек клиента, который в придачу к поломанной турбине получает еще кучу проблем с авто.

Казалось бы, что может быть проще – поставить турбину на двигатель. Это действительно так, но лишь в том случае, если этим занимается мастер, который понимает, что и как он делает.

Наше оборудование для установки турбин

  • Станок для финишной балансировки CMT-48 VSRTwin

    Станок CMT-48 VSR Twin — для точной балансировки картриджей турбин легкового и грузового транспорта. В процессе балансировки вал, приводящийся в движение потоком воздуха, работает в условиях приближенным к условиям эксплуатации.

  • Балансировочный станок CMT-47TRPolymer

    Один из немногих на рынке, станок работает с геометрическими параметрами валов турбин и имеет калибровку производителя.

  • Станок для финишной настройки турбины TurboTest

    Это единственный в Украине станок по настройке клапанов турбины. В его основе лежит точнейшее измерение расхода воздуха на турбокомпрессоре.

  • ЧПУ-установка

    ЧПУ-оборудование с программным обеспечением, при помощи которого можно с легкостью изготовить любую деталь.

  • Микрометры японского производителя

    Микрометры и нутромеры ведущего японского производителя. Без качественного инструмента нельзя сделать качественный ремонт турбокомпрессора.

Работаем по Украине, Белоруссии, Молдове

Нам доверяет замену и установку турбин вся Украина, а так-же Белоруссия и Молдова. Вы можете заказать ремонт турбин в городах: Киев, Ровно, Львов, Харьков, Одесса и других городах.

Просто отправьте заявку, заполнив форму ниже или звоните: (067) 910-92-93, (050) 984-75-71.

Замена и установка турбины. Как установить турбину

Подробности
Создано 27.11.2012 09:59

Прежде чем устанавливать новую турбину обязательно выясните причины выхода из строя оригинального турбокомпрессора, и только в том случае, если он окончательно не подлежит ремонту или восстановлению, производите его замену.

Непосредственно перед покупкой запчасти обязательно удостоверьтесь в том, что эта турбина подходит под тот тип двигателя, на который она будет установлена. Для того, чтобы определить это соответствие используйте серийный и оригинальный номера турбины, с помощью которых, вы сможете узнать под какой тип двигателя разработана данная запчасть. Также необходимо обратить внимание на то, что гарантия не распространяется на турбины, которые были установлены на двигатели, не соответствующих параметров и характеристик.

Важно! Для того, чтобы правильно подобрать новую турбину к вашему двигателю, рекомендуем Вам обратиться с этим вопросом к нашим специалистам. После того, как менджеры нашей компании подберут соответствующую всем необходимым характеристикам и параметрам вашего двигателя турбину, вы сможете купить её, указав при этом свои контактные данные нашим менеджерам.

Замена турбины. Как правильно установить новую турбину на двигатель?

Перед тем как поставить новую турбину, необходимо провести комплекс работ по подготовке двигателя и демонтажу оригинальной турбины.

1.  Слить отработанное масло с двигателя и при помощи специальных средств, промыть его от остатков масла.
2.  Отсоединить сапун, промыть, осмотреть на наличие повреждений, в случае обнаружения которых, заменить новым и установить на место.
3. Снять трубки, которые отвечают за поступление и отвод масла от турбины. Промыть, в случае обнаружения закоксованности или повреждений заменить на новые.

  
рис 1

4.  Снять воздушные патрубки, очистить от остатков масла, частиц пыли и сора. При наличии повреждений заменить новыми. 
5.  Снять интеркуллер. Проверить на наличие повреждений и дефектов. В случае их отсутствия промыть и очистить от пыли, масла и мелкого сора.
6.  Те же действия необходимо применить и к патрубкам выпускной системы. Убедится в отсутствии повреждений и очистить от остатков масла, пыли и прочего сора.

7.  Извлечь оригинальную турбину. Проверить фланец выпускной системы в случае обнаружения механических повреждений (трещин, сколов) заменить новым. Если повреждений не обнаружено, очистить от масла, пыли и частиц прокладок.

После того как демонтаж был завершен, можно переходить к следующему этапу — установке новой турбины

8.  Установленный масляный фильтр нужно снять и установить новый, в который перед этим необходимо залить чистое масло.

9.  В ранее очищенный от остатков масла двигатель нужно залить новое, чистое масло

рис 2

10.   На подготовленный двигатель необходимо установить интеркулер, после чего подсоединить к нему все необходимые элементы.
11.  На выпускной коллектор необходимо установить новый турбокомпрессор. После окончательного закрепления, убедится в качественном прилегании прокладки.
12.  Подсоединить трубку слива масла с турбокомпрессора
13.  Заполнить турбину маслом и при этом медленно проворачивая вал турбокомпрессора, постепенно доливая масло через маслоподводящее отверстие.


рис 3

14.  Подсоединить трубку подвода масла к турбине
15.  Установить новый воздушный фильтр


рис 4

16.  Закрепить воздушные патрубки и проверить качество их прилегания
17.  Закрепить выпускной патрубок и проверить качество его прилегания
18.  Для создания давления в турбокомпрессоре и масляной системе необходимо провернуть двигатель, при этом не заводя его.
19.  Запустить двигатель и на протяжении 10 минут прогреть его на холостом ходе. По истечении первых 5 минут работы двигателя, постепенно увеличивать нагрузку для прогрева до нормального температурного рабочего режима
20.   Проверить наличие или отсутствие подтеканий масла и утечки горячих выхлопных газов и других нехарактерноых признаков работы турбодвигателя.


рис 5

21.  Совершить пробный, тестовый заезд в ходе которого определить отсутствие скрежета и прочих шумов. Убедившись в нормальной работе двигателя и турбины постепенно увеличить нагрузку.
22.  После поездки снова проверить наличие утечки горячих газов и подтеканий масла.

После выполнения данных инструкций замена турбины будет завершена. Единственное, что ещё стоит отметить, так это то, что в первое время не стоит сильно нагружать турбокомпрессор и доводить его до больших оборотов! Это правило следует соблюдать для того, чтобы все детали «притерлись» и вошли в рабочее состояние. Для этого достаточно соблюдать спокойный режим езды на протяжении первых 300-500 км!

Если данные инструкции не помогли вам разобраться в том, как установить турбину самостоятельно, то вы всегда можете обратится за помощью к нашим спецалистам, которые дадут вам советы и рекомендации исходя из вашего конкретного случая!

А также советуем Вам изучить рекомендации по установке турбины!


Установка турбокомпрессора на дизельный двигатель

# 190: Инструкция по установке турбокомпрессора

Благодарим вас за покупку турбокомпрессора для дизельного двигателя Deutz, Perkins или John Deere. Вот несколько полезных советов.

  1. Общие
    1. При установке турбонагнетателя убедитесь, что в воздухоочистителе и в трубопроводе, ведущем к впускному отверстию компрессора или в выпускном коллекторе, нет посторонних материалов. Даже небольшие или мягкие предметы могут серьезно повредить колеса турбокомпрессора.
    2. Следите за тем, чтобы грязь или мусор не попали в отверстия турбонагнетателя, особенно на измельчителях пней и пилах по бетону Deutz.
    3. Момент затяжки болтов на корпусе компрессора и турбины установлен производителем надлежащим образом. Любая перестановка торцевого корпуса путем ослабления этих болтов строго запрещена.
  2. Установка и предварительная смазка турбокомпрессоров
    1. Снимите старую прокладку с монтажного фланца выпускного коллектора, осмотрите фланец на предмет эрозии и плоскостности и при необходимости установите новую прокладку.
    2. Осмотрите линии слива и подачи масла на предмет перегибов, засоров, ограничений и других признаков износа. Уберите весь мусор из турбо-зоны. Это особенно важно для дизелей Deutz, используемых в пилах по бетону, и дизелей Perkins для измельчителей древесины.
    3. Установите турбокомпрессор на двигатель, используя все новые прокладки и уплотнительные кольца (при необходимости), но не подсоединяйте впускной патрубок компрессора и линию подачи масла. Затяните гайки или болты, которыми турбонагнетатель крепится к выпускному коллектору. Для этих резьб рекомендуется использовать высокотемпературную смазку.
    4. Заполните впускное отверстие для масла чистым моторным маслом и несколько раз прокрутите крыльчатку компрессора, чтобы покрыть подшипники маслом. Долейте масло через впускное отверстие и подсоедините линию подачи масла.
    5. Если колесо компрессора не может свободно вращаться вручную или если есть какие-либо признаки трения или царапания, проверьте турбонагнетатель перед запуском двигателя. Одна из причин трения колеса — взведенный компрессор или корпус турбины. Подсоедините трубу или шланг от выхода воздушного фильтра к входу компрессора.
    6. Проверить уровень смазки в картере двигателя. грамм. Если меняли масляный фильтр, сначала залейте его.
  3. Запуск двигателя
    1. Перед попыткой запуска двигателя проверните двигатель с отключенным топливом на 10–15 секунд или до тех пор, пока приборы не покажут повышение давления масла.
    2. Запустите двигатель и дайте ему поработать на холостом ходу в течение 3-4 минут перед ускорением.
    3. Проверить утечку масла.

Эксплуатация и техническое обслуживание

ОПЕРАЦИОННАЯ

  1. Начиная с
    1. Давление масла в турбонагнетателе должно отображаться в течение 3 секунд после запуска двигателя.В противном случае турбокомпрессор может быть поврежден из-за отсутствия смазочного масла.
    2. Двигатель должен поработать на холостом ходу более 3 минут после пуска. После этого давление и температура масла должны достичь нормального значения. Чем ниже температура окружающей среды, тем дольше двигатель должен работать на холостом ходу.
    3. Заполните масляный фильтр смазочным маслом, если он был заменен или очищен, снимите маслозаборный соединитель и залейте смазочное масло через впускное отверстие для масла на центральном корпусе.Залейте свежее смазочное масло в турбонагнетатель, если двигатель не работает более одной недели.
  2. Рабочий
    1. Давление масла на входе должно поддерживаться от 40 до 70 фунтов при работающем двигателе.
    2. Немедленно проверьте наличие ненормального шума и вибрации турбонагнетателя.
    3. Давление смазочного масла, температура, температура воздуха на впуске и частота вращения турбокомпрессора не должны превышать заданное значение, указанное в спецификации. Если это так, остановите двигатель и устраните проблему.
  3. Остановите двигатель
    1. Не останавливайте двигатель внезапно, если двигатель работает с полной нагрузкой, если только не возникнет аварийная ситуация. Постепенно заглушайте двигатель после того, как он разгружается и работает на холостом ходу в течение 5 минут.
    2. Для механических транспортных средств запрещены методы разгона, отключения и таксации. Если двигатель не работает, значит, масляный насос тоже не работает. Если это произойдет, и турбокомпрессор будет иметь высокую температуру, он может быть поврежден без смазочного масла.

Ежедневное обслуживание

Турбонагнетатель и турбонагнетатель необходимо обслуживать постоянно.

  1. Проверьте состояние трубопроводной системы впуска или выпуска воздуха компрессора. Если нет, немедленно устраните неисправность или утечку. Если система воздухозаборников компрессора сломана, воздух попадет в компрессор из разрыва, а частицы примесей могут повредить рабочее колесо. Если система воздуховыпускных труб сломана, в цилиндр будет поступать недостаточно воздуха.
  2. Убедитесь, что система маслозаборных или маслотрубных труб турбонагнетателя находится в хорошем состоянии. Если нет, немедленно устраните проблему утечки.
  3. Затяните все болты и гайки, особенно болты впускного фланца корпуса турбины. Если они не затянуты, вибрация может повредить турбокомпрессор.
  4. Если шум турбокомпрессора является ненормальным, двигатель следует проверить и не запускать, пока проблема не будет решена.
  5. Своевременно заменяйте смазочное масло в соответствии с руководством по эксплуатации двигателя.

Рабочие требования турбокомпрессора с заслонкой для отработанных газов

Для повышения производительности турбокомпрессора, когда он работает в условиях низких и высоких оборотов, используется турбокомпрессор с меньшей площадью проходного сечения и перепускным клапаном. Когда двигатель работает на высоких оборотах, турбонагнетатель также работает на высоких оборотах. Давление воздуха в компрессоре становится высоким, что может открыть перепускной клапан, чтобы выпустить выхлопной газ перед входом в корпус турбины, скорость турбонагнетателя и давление воздуха также уменьшатся. Когда двигатель работает на низкой скорости, перепускной клапан закрыт, и весь выхлопной газ используется для приведения в действие турбины, не отпускаясь, и заставляет турбокомпрессор по-прежнему работать на высокой скорости для увеличения степени давления воздуха. Перепускной клапан значительно улучшит работу турбокомпрессора. Особенно это касается дизелей Perkins.

Помимо всех требований по монтажу и эксплуатации, указанных выше, пользователи должны знать особые требования, которые предъявляются к турбокомпрессору с перепускным клапаном.

  1. Производитель отрегулировал давление открытия турбокомпрессора на правильную настройку. Регулировка запрещена.
  2. Привод перепускного клапана и компрессор должны находиться далеко от выхлопной трубы и других источников тепла.
  3. Резиновый шланг, соединяющий перепускной клапан и компрессор, должен находиться вдали от двигателя и других источников тепла.
  4. Не регулируйте длину дышла перепускного клапана. Это может повлиять на давление открытия.
  5. Не регулируйте угол наклона компрессора к корпусу турбины.
  6. Не используйте перепускной клапан в качестве ступеньки или ручки во время ремонта двигателя.
  7. Шток привода не выдерживает никакой вес. Не переносите турбокомпрессор за его использование и не сгибайте его.
  8. Перепускной клапан не подлежит ремонту, его необходимо заменить.

Для получения дополнительной информации об установке турбонагнетателя см. Форму № 24: Руководство по установке турбокомпрессора компании «Доктор Дизель».

Знание — сила. Способность налаживать связи с пользователями двигателей. Чтобы построить отношения с нашими клиентами, мы делимся с вами нашими 105-летними знаниями во многих отношениях. У нас есть специальный раздел под названием «Спросите доктора Дизеля ™», где вы можете задать вопросы о двигателях, трансмиссиях, промышленных ручных сцеплениях, очистителях выхлопных газов и т. Д.

Установка турбо-комплекта — Пошаговые инструкции

Для некоторых турбо-кит стал синонимом скорости и мощности.Не имеет значения, что кто-то обсуждает; когда кто-то упоминает турбо-комплекты, все думают, что производительность и машины одинаковы. Для многих марок и моделей версия с турбонаддувом имеет лучшее соотношение мощности и веса. Но как быть с автомобилями, которые не оснащены турбонагнетателем? Можно вытащить двигатель и заменить его на двигатель с турбонаддувом, но это может занять много времени и дорого. Другой вариант — просто добавить турбо-комплект к существующему двигателю.Это требует времени и некоторых специальных знаний, но это один из лучших способов увеличить мощность любого автомобиля.

Установка турбонагнетателя

Установить турбонагнетатель несложно для любого человека, у которого есть время и необходимые инструменты, но это требует значительных временных затрат и тщательной подготовки перед началом процесса.

Первый шаг к установке турбонагнетателя — найти тот, который идеально подходит для автомобиля и его двигателя. Среди других подходов к этому выделяется использование турбо-комплекта.Огромным преимуществом турбонагнетателя является то, что он, как правило, предназначен для работы с определенным двигателем, поэтому домашние механики могут быть уверены, что турбонагнетатель в комплекте совместим с двигателем в автомобиле. Хотя возможно установить турбонагнетатель без использования комплекта, это не рекомендуется, если установщик не сделал это раньше и не имеет доступа к полной механической мастерской.

Настройка Turbo для установки

Перед установкой турбонагнетателя необходимо подготовить его к установке.Это подразумевает установку всех прокладок, а также подшипников и смазки. В большинстве случаев это включает сначала удаление турбо из жатки. Затем убедитесь, что все внутренние детали тщательно очищены, прежде чем снова прикрепить корпус к коллектору и подготовить его к установке. Это также время, чтобы установить перепускной клапан и убедиться, что он работает без сбоев.

Настройка двигателя для турбонаддува

Действительно, даже с турбонаддувом не рекомендуется просто прикручивать турбонагнетатель к двигателю.Двигатель должен быть подготовлен к работе с турбонаддувом так же, как турбо необходимо подготовить перед установкой. Если в турбине используется жидкостный подшипник, как в большинстве случаев, масляный поддон обычно необходимо заменять на тот, который имеет соответствующий масляный фитинг для подключения турбонагнетателя. В жидкостных подшипниках используется масло из поддона для поддержки и охлаждения турбины. Это означает, что они не только требуют подключения к масляному поддону, но также могут потребовать дополнительных фильтров и в некоторых случаях дополнительного маслоохладителя. Это также время для установки интеркулера, если он используется.Установщик должен также удалить существующий выхлоп, так как турбонагнетатель обычно устанавливается на выпускной коллектор.

Установите Turbo

После подготовки турбонагнетателя и двигателя узел турбонагнетателя должен быть установлен на выхлопе, а затем подсоединен к впускному коллектору или промежуточному охладителю, если он установлен. Когда это будет сделано и установка настроена, подсоедините турбонагнетатель к корпусу воздушного фильтра. Во всех случаях важно убедиться, что все шланги и прокладки правильно подсоединены и установлены для обеспечения минимальных утечек.

Установка турбонаддува — один из самых экономичных способов увеличения мощности автомобиля без турбонаддува. С турбонаддувом становится просто подготовить турбо и двигатель, а затем соединить их вместе. После этого все, что нужно сделать владельцу, — это настроить турбонаддув, заправить автомобиль бензином премиум-класса и наслаждаться повышенной производительностью, которую приносит турбо.

Руководство по установке турбокомпрессора Garrett — шаги по правильной установке турбокомпрессора

В нашей предыдущей статье мы описали строгие правила, которым должен следовать любой механик при установке турбокомпрессора Garrett, и то, как руководство по диагностике системы турбокомпрессора Garrett может помочь вам определить наиболее распространенные проблемы.

В этой статье мы перечислим шаги, которые необходимо выполнить до и после процесса установки.

Шаги к правильной установке турбонагнетателя

  • Начните установку турбонагнетателя, удалив старый прокладочный материал с выпускного коллектора и трубы. Поверхности фланца должны быть чистыми и не иметь повреждений.
  • Снимите с турбонагнетателя все заглушки из пластмассы или пенопласта.
  • Установите турбонагнетатель на коллектор или блок двигателя, используя подходящую новую прокладку или уплотнительное кольцо, а затем снова подсоедините выхлопную трубу.
  • Затяните все гайки и болты с правильным моментом.
  • Обратите особое внимание на линии подачи и слива масла, которые должны быть полностью чистыми и не иметь повреждений, чтобы обеспечить беспрепятственный поток масла.
  • Убедитесь, что гибкие шланговые вкладыши не сложились внутри, и что линия подачи масла не находится слишком близко к любому источнику тепла, который мог повредить линию подачи масла изнутри. Это обычное явление на некоторых автомобилях, и его трудно обнаружить, не перерезав трубу! При установке нового турбонагнетателя мы рекомендуем установить новый впускной маслопровод.
  • Установите сливной маслопровод на турбонагнетатель, затем залейте новое моторное масло во впускное отверстие для масла турбонагнетателя и установите маслопровод. Несколько раз покрутите вручную крыльчатку компрессора — она ​​должна вращаться свободно. Обратите внимание, что это нормально, когда колеса двигаются вверх и вниз. Подсоедините впускной и выпускной воздушные шланги к корпусу компрессора турбонагнетателя и убедитесь, что соединение герметично.

После установки

  • Для проверки проверните двигатель на 10–15 секунд, чтобы залить масло, не запуская двигатель.
  • Запустите двигатель и дайте ему поработать на холостом ходу от 3 до 4 минут, чтобы убедиться в отсутствии утечек масла, газа и воздуха.
  • Если при запуске двигателя обнаружена утечка, немедленно устраните проблему.
  • Для турбин VNT: убедитесь, что привод работает правильно после запуска. Во время включения транспортного средства и запуска турбонагнетатели VNT обычно показывают движение в приводе, лопаточном рычаге и лопаточном механизме, и также нормально слышать высокий шум от электрических приводов.
  • Если движение не обнаружено, выясните причину на транспортном средстве, так как действия привода были настроены и проверены перед тем, как он покинул наш завод.

Важное примечание: Шестерни в наших электронных приводах являются «самоблокирующимися», это означает, что невозможно перемещать рабочий рычаг привода или шатун вручную. Попытка переместить эти части с помощью инструмента или вручную может сломать шестерни и сделать турбонагнетатель непригодным для использования. На такие повреждения гарантия не распространяется.

Наконец, остановите двигатель и еще раз проверьте уровень масла в двигателе. Важно убедиться, что уровень масла находится между минимально допустимым и максимальным уровнями.

Чтобы получить больше информации о технологии турбокомпрессора, вы можете присоединиться к сообществу Installer Connect, пройти онлайн-курсы и получить сертификаты Garrett Installer Connect. Бесплатно!

Как спроектировать и установить систему турбонагнетателя: пошаговое руководство

До этого момента мы обсуждали турбонагнетатель отдельно от двигателя.Однако добавление турбонагнетателя к двигателю — это больше, чем просто выбор турбонагнетателя для вашей прогнозируемой выходной мощности. «Система» турбонаддува включает в себя все вспомогательные компоненты, которые адаптируют турбонагнетатель, чтобы он стал «единым целым с двигателем». Это философский подход, который вы должны использовать при создании собственного проекта турбо-системы. Наше обсуждение будет сосредоточено на компонентах, которые управляют потоком воздуха к турбонагнетателю и от него (часто называемым «водопроводом»). Добавление топлива и управление системой впрыска топлива рассматриваются в главе 8.


Этот технический совет взят из полной книги TURBO: НАСТОЯЩИЕ МИРОВЫЕ ВЫСОКОПРОИЗВОДИТЕЛЬНЫЕ СИСТЕМЫ ТУРБОКОМПЕНСАТОРА. Подробное руководство по этой теме вы можете найти по этой ссылке:
УЗНАТЬ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ

ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ: Пожалуйста, не стесняйтесь поделиться этой статьей на Facebook, на форумах или в любых клубах, в которых вы участвуете. Вы можете скопировать и вставить эту ссылку, чтобы поделиться: https://musclecardiy.com/performance/design -установить-турбокомпрессор-система-пошаговое руководство /


Сегодня доступны турбо-комплекты, разработанные для вашего конкретного применения.Для большинства уличных транспортных средств, где требуется увеличение мощности на 50–100 процентов и не планируется внутренняя модификация двигателя, эти комплекты, как правило, работают очень хорошо. В конце этой главы есть список некоторых из самых популярных производителей турбо-комплектов. Однако может не быть набора для вашего приложения, или вы можете искать настройки гонки, поэтому доступные наборы слишком мягкие или слишком простые для ваших нужд. В этой главе мы рассмотрим различные компоненты турбо-системы и необходимые соображения.


Показанная 7,3-литровая система турбонаддува Banks, вероятно, является одним из самых продаваемых комплектов для модернизации турбонагнетателей, которые когда-либо существовали. Этот макет иллюстрирует уровень детализации хорошей турбо-системы. (Предоставлено Gale Banks Engineering)

Термин «турбо-задержка» — это широкий термин, который требует некоторого обсуждения. В самом простом определении турбо-задержка — это время отклика между нажатием на педаль газа и моментом, когда турбонаддув действительно начинает увеличиваться.Есть много экспертов по турбо-режимам, которые предполагают, что турбо-лаг не должен существовать с хорошо подобранной турбо-системой и хорошо спроектированной системой, и я в основном согласен.

Турбо лаг существует; он должен. Когда вы нажимаете на дроссельную заслонку, вы просите двигатель ускориться, запустить турбину, которая, в свою очередь, приводит в движение компрессор для создания наддува. Даже двигатель имеет некоторую задержку в зависимости от того, насколько быстро он разгоняется до скорости. Таким образом, нет никакого способа полностью устранить задержку, но плавное, сильное ускорение будет вашим, если все будет хорошо с вашим турбо-матчем и конструкцией системы.

Качество проектирования и настройки системы позволяет минимизировать отставание до незаметного уровня. Соответственно, точно так же, как плохо подобранный турбонаддув вызывает «турбо-лаг», плохо спроектированная система может вызвать «системное отставание». Совокупный эффект множества мелких ошибок в конструкции системы вызывает запаздывание системы, что может быть неверно интерпретировано как турбо-запаздывание. Разницу между турбо-задержкой и системной задержкой бывает сложно разобраться.

Основная цель этого раздела книги — предположить, что турбонагнетатель, выбранный для вашего двигателя, хорошо подходит, и теперь вам нужно выбрать правильные компоненты системы, чтобы сумма их воздействия помогала сделать турбонагнетатель единым с двигатель.

Понимание конструктивных соображений, учтенных в других успешных турбо-системах, поможет в разработке вашего конкретного проекта. Если ваш проект сводится к фактической покупке послепродажной турбо-системы или компонентов, уже сделанных для вашего двигателя, этот раздел также потенциально поможет вам определить лучшую спроектированную систему и / или компоненты за ваши деньги. Высокоэффективная система турбонагнетателя — это система, в которой учтены все относительно небольшие соображения и переменные, касающиеся воздушного потока.Сумма соображений становится значительной, когда ожидается, что двигатель и турбо-система будут действовать как одно целое.

Размещение

Первой целью при проектировании системы турбонагнетателя является размещение. Куда подеваться турбо? Этот ответ содержит несколько соображений, которые действительно необходимо хорошо продумать в самом начале проекта. От этого решения будет зависеть много часов времени и труда, а также разработка других компонентов системы. В автомобилях для соревнований вполне возможно, что, если позволяет пространство, наилучшее размещение может быть продиктовано тем, как на управляемость автомобиля влияет расположение дополнительного веса.Но это конкретное соображение, хотя и потенциально важно, выходит за рамки этой книги.


Специалисты динамометрического зала Banks готовятся к тестированию последних модификаций системы Twin-Turbo. Хотя Бэнкс продает этот комплект более 25 лет, они постоянно совершенствуют его и обновляют, чтобы включить в него все новейшие конструктивные особенности турбонаддува, элементы электронной настройки и модификации двигателей, разработанные в рамках их текущих гоночных программ. Бэнкс знает, что если вы не управляете технологиями, они заставят вас играть в догонялки.


В поперечном двигателе расположение 4-цилиндрового двигателя дает много места для размещения турбонагнетателя спереди и по центру.

объема данной книги. С турбо-комплектом на вторичном рынке производитель уже принял решение за вас. Для большинства уличных комплектов все зависит от того, где они все поместятся. Если вы создаете свою собственную систему, примите во внимание следующие моменты, которые помогут вам определить оптимальное место для вашей турбины:

1) Будет ли это система с двойным или одинарным турбонаддувом?



2) Какие термочувствительные компоненты или материалы двигателя могут находиться поблизости? (Учитывайте ремни, шланги, генератор, топливопроводы, окрашенные детали кузова и т. Д.)

3) Будете ли вы использовать дополнительный охладитель?

4) Можно ли легко направить слив масла из турбонагнетателя в место в масляном поддоне для правильного слива и сохранения достаточных углов сливного отверстия корпуса подшипника. (См. стр.96)

5) Есть ли свободный путь для трубок наддува, ведущих от нагнетания компрессора к впуску двигателя или до охладителя, без резких изгибов, которые могли бы добавить ограничения?

6) Есть ли свободный путь для выхлопного коллектора в турбину и из нее, который после запуска не приведет к чрезмерному нагреву материалов или компонентов, вызывающих преждевременный выход из строя или создающих проблемы с безопасностью?

7) Если направление выхлопных газов становится потенциальной проблемой, потому что для наилучшего расположения турбонагнетателя требуется нежелательный тракт выхлопа, можно ли решить эту проблему с помощью тепловой защиты?

8) С какого места вы будете отбивать масляную систему двигателя, чтобы смазать турбокомпрессор?

После определения местоположения вы можете приступить к проектированию остальных компонентов турбо-системы.

Одиночный двигатель против двойного турбонаддува

Важным решением при проектировании вашей системы турбонаддува является использование схемы с одним или двумя турбинами. Помимо косметики, одна из первых проблем — это размер и конфигурация двигателя. В моторном отсеке с 4-цилиндровым или рядным 6-цилиндровым двигателем обычно достаточно места для размещения одной большой турбины. Если у вас есть одна из этих конфигураций двигателя, выбор относительно прост. Напротив, расположение двигателя V-типа может потребовать других соображений.

Запуск одного турбонагнетателя на Vengine потребует от вас направления выхлопа с одной стороны на другую, если ваш автомобиль, как автомобили Indy, не имеет достаточно места для размещения турбонаддува за двигателем. Длина трубы коллектора и общее увеличение тепловой нагрузки, вероятно, потребуют использования компенсаторов для устранения трещин от теплового расширения и сжатия. Также может возникнуть серьезная проблема с размещением одного достаточно большого турбонагнетателя в моторном отсеке. Установка двух небольших блоков решит большинство этих проблем с сантехникой и установкой.


Машинное отделение в Gale Banks, проектирование и сборка еще одной системы с двойным турбонаддувом и двигателя.

Исторически сложилось так, что основной интерес к использованию двойных двигателей заключался в том, чтобы помочь уменьшить турбо-лаг во время разгона двигателя. Это особенно актуально для уличных двигателей с высокими эксплуатационными характеристиками. Две маленькие турбины имеют меньший общий полярный момент инерции, чем одна большая турбина. Момент инерции — это сопротивление тела изменению скорости вверх или вниз.Запомните основную физику: движущееся тело имеет тенденцию оставаться в движении, а тело в состоянии покоя стремится оставаться в покое (также определение «кушетки»).

I = K²M

Момент инерции представлен буквой «I», буква «K» представляет радиус вращения, а буква «M» — это масса тела. Радиус вращения — это расстояние от оси вращения до точки тела, которая будет иметь то же I, что и само тело. Это не будет равно радиусу диаметра вращения турбинного колеса, поскольку турбины спроектированы так, чтобы максимально приближать свою массу к оси вращения. Ступица турбинного колеса намного массивнее наружных поверхностей лопаток. Следовательно, K почти всегда будет меньше половины диаметра вращения.

Для хорошего ускорения ротора турбины важно разработать минимально возможный момент инерции турбинного колеса. Формула демонстрирует ценность сохранения материала турбинного колеса около внешнего диаметра до минимума для уменьшения K, поскольку момент инерции изменяется пропорционально квадрату K. Функционально это можно проиллюстрировать, применив формулу, чтобы увидеть, как две турбины будут сокращаться. момент инерции более чем на половину, что указывает на выигрыш в потенциальном ускорении ротора, поскольку каждая из двух турбонагнетателей будет иметь ровно половину энергии выхлопных газов по сравнению с тем, что один турбоагрегат будет видеть на том же двигателе.

Например, допустим, пара турбин, каждая из которых имеет 1-фунтовое турбинное колесо диаметром 3,125 дюйма, где K = 1,1 дюйма.

K²M = I K²

Вт / г = I

«G» — это ускорение свободного падения, а «W» — это вес.

1,1² x 1/386 = 0,00313 фунт-сек²

Если бы альтернативное наиболее подходящее колесо турбины одного блока имело диаметр 3,75 дюйма, вес около 1,6 фунта, где K = 1,3 дюйма, момент инерции был бы:

К² Вт / Г = I

1.3² x 1,6 / 386 = 0,00701 фунт-сек²

Это будет в 2,24 раза больше момента инерции (даже две турбины меньшего размера означают 0,00313 + 0,00313 = 0,00616), что предполагает, что сдвоенные турбины будут ускоряться быстрее и обеспечивать лучший отклик турбо-системы.

Есть много факторов, помимо момента инерции, которые влияют на время отклика турбо-системы. КПД турбины — еще одно важное соображение. Концепция, которую часто упускают из виду и редко признают, заключается в том, что рабочий зазор рабочего колеса турбины (пространство между колесом и корпусом) снижает эффективность турбины.В приведенных выше примерах оба турбинных колеса, вероятно, будут иметь одинаковый контурный зазор турбинного колеса между корпусом турбины и турбинным колесом. Таким образом, общий зазор турбинного колеса, содержащийся в двух турбинах, будет составлять более высокий процент от общего потока турбины, тем самым потенциально снижая общий КПД турбины в компоновке с двумя блоками. Современные турбины имеют более высокий КПД, но уменьшение общего зазора между колесами в системе по-прежнему помогает.

Не говоря уже об упаковке и абстрактных обсуждениях эффективности, для предполагаемого использования транспортного средства может оказаться наиболее целесообразным сделать выбор между большим синглом и близнецами.Если это в первую очередь уличный проект, близнецы с V-образным двигателем, скорее всего, будут лучше, учитывая все обстоятельства, просто потому, что они быстрее развивают ускорение, обеспечивая лучшую реакцию. В транспортных средствах для дрэг-рейсинга сегодня хорошо используются функции настройки, такие как системы противодействия задержкам (ALS), которые более подробно обсуждаются в главе 8. Как только автомобиль с большим одиночным блоком запускается с использованием таких механизмов настройки, более высокая эффективность системы вступает во владение и единая единица будет выплачивать дивиденды в более низких ET.

Впускной воздух

Независимо от того, планируете ли вы создать соревновательную или высокопроизводительную уличную машину, воздухозаборник является чрезвычайно важным фактором. В любом случае вы должны быть уверены, что ввели воздух, который сначала не прошел через радиатор двигателя, дополнительный охладитель, или воздух, нагретый лучистым теплом, создаваемым подкапотными температурами. Помните, что более холодный воздух плотнее, и, поскольку плотность воздуха вас беспокоит уже из-за того, что вы используете турбокомпрессор, не работайте против себя, начиная с более горячего воздуха, чем нужно.


Чемпион NHRA Modified National Джастина Хамфриса 2005 года использует две турбины Garrett GT40. Обратите внимание, что Lexus GS300 получает всасываемый воздух прямо через капот. В этой системе нет воздухозаборника через решетку. Тот факт, что он оснащен турбонаддувом, не означает, что холодный всасываемый воздух не нужен.


Профессиональный задний привод Мэтта Скрэнтона Toyota имеет то, что может показаться турбонаддувом, слишком большим для ее 6-цилиндрового двигателя. Тем не менее, этот автомобиль уезжает так же сложно, как любой NHRA Pro-Stock, разгоняя Garrett GT55 с очень агрессивной стратегией борьбы с задержками.


Рон Бергенхольц из Bergenholtz Racing вносит корректировки между раундами в Инглиштауне, штат Нью-Джерси, на своей Mazda 6. Обратите внимание на то, как перепускная заслонка плавно опускается параллельно выходному пути турбины.

Если вы собираете автомобиль для соревнований, это так же просто, как создать индивидуальный воздухозаборник, который будет пропускать холодный воздух через капот. Однако, если ваш автомобиль требует воздушного фильтра, например внедорожник или трамвай, у вас есть еще несколько соображений.Передняя кромка, откуда вы получаете воздух, такая же, как в спортивном автомобиле, но у вас есть два других основных аспекта: фильтрация мелких частиц грязи и дождя. В случае дождя, ударяющая поверхность в точке входа воздуха поможет отделить тяжелые капли влаги от попадания в вашу систему фильтрации и блокировки воздуха.

Не используйте бумажные элементы воздушного фильтра в автомобиле с турбонаддувом. Они просто не пропускают достаточно воздуха, если они не намного больше, чем у вас есть место, а если они намокнут, они, как правило, закрывают путь воздушного потока.Единственные фильтры, которые вам следует учитывать, — это те, которые сделаны из хирургической марли, например, те, которые продаются K&N и другими. Хотя многие компании продают системы впуска, уже разработанные для вашего автомобиля, будьте осторожны, потому что у них есть фильтрующий элемент, размер которого соответствует его стандартному атмосферному состоянию. Скорее всего, он будет меньше размера для вашего двигателя с турбонаддувом и может вызвать проблемы. Дело не только в том, будет ли свободно проточный фильтр пропускать достаточно воздуха в чистом виде, но и в том, чтобы воздух проходил через фильтр медленнее, чем когда он попадает в трубопровод всасываемого воздуха.Это сводит к минимуму падение давления и связанные с этим потери насоса во время всасывания. Он также создает избыточную пропускную способность, позволяющую более легко отделять грязь от воздушного потока и захватывать ее, сохраняя при этом способность пропускать достаточно воздуха для желаемой производительности.

Используйте эту формулу, чтобы вычислить, сколько квадратных дюймов фильтра K & Nstyle вам нужно. Формула любезно предоставлена ​​K&N filtering.

Требуемый квадратный дюйм фильтра = (фунт наддува / 14,7) + 1 x CID x Макс.об / мин / 20 839

Например: при 10 фунтах наддува 3-литровому двигателю (183 кубических дюйма), который разработан для создания максимальной мощности при 6000 об / мин, потребуется 88.5 квадратных дюймов фильтра.

(10 / 14,7) + 1 x 183 x 6,000 / 20839 = 88,53 дюйма²

Фильтры имеют складки, чтобы обеспечить большую площадь поверхности в пределах заданного диаметра для упаковки.

Теперь, чтобы помочь вам выбрать фильтр, определите диаметр, который будет соответствовать вашей установке, а затем используйте следующую формулу для определения длины фильтра (или высоты, в зависимости от ориентации). (Обратите внимание, что это вычисление для круглых фильтров. Для конических фильтров просто оцените средний диаметр, который должен составлять примерно 1/2 большего диаметра плюс меньший диаметр.)

Следовательно, в приведенном выше примере, если у вас есть место для фильтра диаметром 12 дюймов, потребуется высота фильтра около 3 дюймов.

88,5 / 12 x 3,14 + 0,75 = 3,1 дюйма

Если это кажется вам большим, то теперь вы понимаете ценность узла воздушного фильтра правильного размера и ценность знания того, как спроектировать свою собственную турбо-систему.

Как только вы поймали воздух, пора направить его ко входу компрессора. Если вам нужно пройти несколько футов, старайтесь, чтобы диаметр трубки был таким большим, насколько позволяет комната.Это снижает потери в трубопроводе. К сожалению, воздух любит замедляться, прежде чем он перенаправляется, а это значит, что вам понадобится плавный трек с как можно меньшим количеством изгибов.

Дополнительный охладитель

Существует некоторая путаница в терминологии между промежуточным охладителем, промежуточным охладителем и охладителем наддувочного воздуха. Раньше в авиационных двигателях турбокомпрессоры запускались поэтапно, когда компрессор первой ступени питал вход компрессора второй ступени, что дополнительно сжимало воздух перед его поступлением в двигатель.Из-за чрезвычайно высокого давления наддува между компрессорами первой и второй ступени был установлен воздухоохладитель. Этот кулер назывался интеркулер. Другой охладитель будет расположен после второй ступени, которая являлась последней ступенью компрессора и называлось промежуточным охладителем. Дополнительный охладитель был охладителем, выход которого питал двигатель. Охладитель наддувочного воздуха — это просто охладитель наддувочного воздуха, который обычно представляет собой воздухоохладитель, что означает, что он использует внешний окружающий воздух для охлаждения нагнетаемого (нагнетаемого) воздуха турбонагнетателя перед его направлением в двигатель.


В 6,6-литровом дизельном гоночном грузовике Duramax с двойным турбонаддувом Banks используется фронтальный воздухозаборник для максимального поступления холодного и плотного воздуха перед теплообменниками. Обратите внимание на то, что впускные трубы имеют чрезвычайно большой 6-дюймовый диаметр, они горлышком опускаются вниз только тогда, когда они находятся в пределах 12 дюймов от индуктора компрессора. (Предоставлено Gale Banks Engineering)

Хотя многоступенчатые системы турбонаддува все еще используются в некоторых тяговых классах тракторов, некоторых высокопроизводительных дизелях и коммерческих дизелях последних моделей, термины промежуточный охладитель и дополнительный охладитель сегодня используются как синонимы.Термин промежуточный охладитель используется сегодня для обозначения охладителя между турбонаддувом и двигателем. Так что не стесняйтесь использовать любой термин, который вам удобен.

Тема доохладителей может занять целую книгу. Первый вопрос, который обычно задают: «Нужен ли мне дополнительный охладитель для моего приложения?» Ответ в том, что это зависит от обстоятельств. Если вы набираете только 5–7 фунтов наддува, вы, вероятно, сможете обойтись без затрат, но это спорный вопрос. И действительно ли кто-нибудь придерживается давления всего 7 фунтов на квадратный дюйм? Хотя увеличение плотности воздуха не так существенно на этом умеренном уровне наддува, более холодный заряд воздуха все равно повысит порог детонации топлива и сохранит вашу безопасность.


Доохладители «воздух-воздух» всегда располагаются перед радиатором охлаждающей жидкости двигателя, как показано, как на бензине, так и на дизельном топливе. Дополнительный охладитель в коммерческом применении, таком как это, может снизить температуру всасываемого воздуха на 300 градусов по Фаренгейту.

Однако, выше этого уровня наддува от 5 до 7 фунтов преимущества действительно того стоят. В дополнение к резкому увеличению плотности воздуха, дополнительный охладитель устраняет значительную тепловую нагрузку, которая в противном случае была бы заметна двигателю.Но, пожалуй, самым большим преимуществом является то, что остаточный заряд с меньшей вероятностью взорвется, что резко снизит мощность и может быстро вывести из строя ваш двигатель. Детонация — это когда воздушно-топливная смесь настолько нестабильна, как правило, из-за тепла, что она воспламеняется до того, как наступит надлежащий момент для воспламенения, что может вызвать сильный перегрев в цилиндре, и взрыв пытается направить поршень обратно в цилиндр в неправильном направлении вызывая значительную потерю мощности. Охладитель поддерживает более низкую температуру нагнетаемого воздуха без потери теплового КПД двигателя.Как правило, снижение температуры всасываемого воздуха на каждый градус F также снижает температуру выхлопных газов на один градус F. Это не оказывает вредного воздействия на BMEP, то есть силу, которая заставляет поршень опускаться по цилиндру для выработки мощности.

Прежде чем мы зайдем слишком далеко, давайте поговорим о том, что такое дополнительный охладитель и для чего он нужен. Дополнительный охладитель — это не что иное, как теплообменник. Воздух, выходящий из турбокомпрессора, горячий. Чем выше давление наддува, тем сильнее сжимается воздух и тем больше тепла переносится во всасываемый воздух.

Когда воздух поступает в промежуточный охладитель, он проходит через ряд труб, которые физически соединены с несколькими тонкими ребрами, которые увеличивают общую площадь поверхности для отвода тепла от нагнетаемого воздуха. Вы можете повысить эффективность интеркулера, поместив его в лобовой воздушный поток автомобиля, что приведет к более холодному окружающему воздуху над охлаждающими ребрами. Это похоже на ваш радиатор, только вы пропускаете через эти трубки сжатый воздух, а не воду.

Давайте поговорим подробнее о том, что на самом деле делает дополнительный охладитель.Его основная функция — дальнейшее увеличение плотности воздуха сверх той, которую производит турбокомпрессор. Его второстепенные функции — снижение тепловой нагрузки и снижение порога детонации. Целью вашей системы турбонагнетателя не является создание чрезмерного давления наддува — вам нужна повышенная плотность воздуха для повышения производительности двигателя. Давление наддува важно для повышения VE, но чрезмерное давление может возникнуть из-за перегретого воздуха, если компрессор работает за пределами своего диапазона эффективности. Отсутствие промежуточного охладителя вызовет чрезмерное тепловое напряжение и детонацию.Во время охлаждения воздуха дополнительный охладитель должен фактически немного снизить давление наддува, примерно на 1-2 фунта, из-за требований закона об идеальном газе.

Большинство хорошо сделанных охладителей доохладителя имеют КПД от 60 до 75 процентов. Эффективность доохладителя в основном измеряется путем сравнения тепла, отводимого доохладителем, в зависимости от тепла, добавляемого при сжатии. Другими словами, если компрессор турбонагнетателя повысит температуру воздуха на 200 градусов по Фаренгейту по сравнению с окружающей средой, то охладитель вернет эти 200 градусов назад, он будет эффективен на 100 процентов.Если вы установили дополнительный охладитель и правильно настроили двигатель, вы можете рассчитать эффективность дополнительного охладителя (Пример 1). Если вы в конечном итоге получите эффективность менее 60 процентов, возможно, пришло время для обновления. С другой стороны, если вы уверены в эффективности своего нового кулера, вы можете предсказать свое потенциальное значение T3, если у вас есть зарегистрированные данные о температуре окружающей среды, T1, и температуре нагнетания компрессора, T2 (Пример 2).

T2 — T3 / T2 — T1 = КПД доохладителя

Где:

T1 = Температура окружающего воздуха

T2 = температура нагнетания компрессора

T3 = температура нагнетания доохладителя

Пример 1:

Предположим, что температура окружающей среды составляет 75 градусов F (T1), нагнетание компрессора — 275 градусов F (T2), а температура нагнетания промежуточного охладителя — 135 градусов F (T3).

275 — 135/275 — 75 = 0,7 или 70% КПД

В примере 1 you’re cooler хорошо выполняет свою работу.

Пример 2:

Теперь давайте спрогнозируем T3 для приложения без последующего охлаждения. Возможно, у вас не было денег или вы не чувствовали необходимости в дополнительном охладителе. Но теперь вы используете более высокий наддув, чем предполагалось изначально, и слышите детонацию. Это формула для прогнозирования T3 (температура нагнетания доохладителя) при добавлении доохладителя с известной эффективностью.

T3 = T2 — ([T2 — T1] x 0,7)

Предположим, что температура нагнетания компрессора составляет 275 градусов F (T2), эффективность доохладителя составляет 70 процентов, а температура окружающей среды составляет 75 градусов F (T1).

T3 = 275 — ([275 — 75] x 0,7)

T3 = 275 — (200 х 0,7)

T3 = 135 градусов F

В этом примере температура вашего впускного коллектора упала с 275 до 135 градусов, что на 140 градусов больше. Это снизит температуру выхлопных газов примерно на такую ​​же величину и, вероятно, устранит проблему детонации.Предполагая, что соотношение давлений составляет примерно 2: 1 или 15 фунтов наддува, вместе с КПД компрессора 70 процентов, можно ожидать, что вы сможете производить примерно на 15–18 процентов больше мощности при той же частоте вращения двигателя, делая при этом наддув примерно на один фунт на квадратный дюйм меньше.

Одним из важных соображений относительно модернизации охладителя является то, что значительно более низкий EGT в Примере 2 может снизить доступную энергию, приводящую в движение турбину. Это замедлит работу турбины, что еще больше снизит наддув (эффективность охладителя и снижение температуры также снизят наддув).Когда это происходит, может возникнуть необходимость в использовании корпуса турбины немного меньшего размера для поддержания желаемого уровня наддува. Однако, если корпус вашей турбины был немного маловат, а привод наддува был настроен на очень раннее срабатывание, ваш матч может не потребовать изменений. Не интерпретируйте большое падение давления в коллекторе как признак того, что ваш промежуточный охладитель слишком мал, особенно если он получен из авторитетного источника, который оценил его как хорошо в пределах вашего диапазона мощности. Это еще одна причина, по которой важно покупать детали у надежных поставщиков.


Диаграмма комбинированного отношения плотности показывает соотношение плотностей как без охлаждения, так и без охлаждения после охлаждения для одинаковой эффективности компрессора. Обратите внимание, как две группы линий расходятся при повышении давления наддува. Температура воздуха повышается в зависимости от давления наддува; чем выше давление наддува, тем больше дополнительный охладитель способствует повышению плотности воздуха. (С любезного разрешения Honeywell Turbo Technologies)

Теперь, когда мы рассмотрели эти примеры, давайте вернемся к вопросу: «Вам нужен дополнительный охладитель?» Если вы планируете пробежать более 7 фунтов наддува, ответ всегда положительный! Ознакомьтесь с таблицей соотношения плотностей на странице 87.Прежде всего, обратите внимание, что значения после и без охлаждения расходятся в зависимости от наддува. Чем выше наддув, тем больше выделяется тепла и тем важнее становится дополнительный охладитель. По мере увеличения наддува становится очевидным, как охладитель начинает добавлять измеримое значение к плотности воздуха.

Однако обратите внимание, что две группы линий, каждая из которых представляет одинаковый КПД компрессора, имеют разные относительные разбросы. Линии в группе без дополнительного охлаждения расположены намного дальше друг от друга, чем линии в линиях с дополнительным охлаждением. Из этого можно понять, что эффективность компрессора не так важна в системах с дополнительным охлаждением, но это было бы ошибкой. Помните, что турбокомпрессор становится неотъемлемой частью двигателя, и менее эффективный компрессор потребует больше работы от турбины, что создаст большее противодавление на выхлопной стороне двигателя и снизит общую производительность. Турбина приводит в движение компрессор, который еще не видел промежуточного охладителя. Компрессор даже не подозревает, что в системе есть промежуточный охладитель.Таким образом, в любой ситуации, чем эффективнее компрессор, тем проще для ступени турбины.

Я слышал, как некоторые говорили, что интеркулеры не производят энергии, они только увеличивают плотность воздуха. Хотя отчасти это правда, это кажется излишне академическим аргументом. Ничто не создает только энергию, большее количество воздуха не дает энергии без топлива, а топливо не дает энергии без воздуха. Дело в том, что отдельные компоненты, такие как интеркулер, поддерживают более высокую мощность, и это действительно ключ. Естественно, вам понадобится больше топлива с установленным кулером, потому что у вас будет более плотный всасываемый заряд, поэтому, если вы его правильно сожжете, вы получите больше энергии.

Выбор промежуточного охладителя

Дополнительный охладитель

является чрезвычайно важным компонентом всей системы турбонагнетателя, но не все они одинаковы. В автомобильных охладителях используются два основных типа конструкции: трубка и ребро и стержень и пластина. В большинстве коммерческих дизельных двигателей используются доохладители с трубчатыми и ребристыми трубами.Такая конструкция обеспечивает более рентабельные методы производства, в то время как конструкция стержней и пластин, как правило, более трудозатратна и содержит больший вес материала.

Дополнительный охладитель по самой своей природе имеет тенденцию быть чем-то вроде инженерной дихотомии. Это одновременно сосуд высокого давления и теплообменник. Ему нужна сила, чтобы противостоять как давлению наддува, так и нагрузкам от термоциклирования. Это означает, что он должен быть достаточно прочным, чтобы выдерживать рабочее давление, а также должен быть изготовлен из материала, который очень хорошо проводит тепло и использует тонкие площади поперечного сечения для максимального отвода тепла.


Полный турбонагнетатель

Turbonetics для Scion tC с 2004 по 2006 год поставляется с дополнительным охладителем от Spearco, подразделения Turbonetics. Турбо-система развивает 8 фунтов наддува и доводит заводскую мощность 160 л.с. до 300 л.с. при использовании 94-октанового топлива. Обратите внимание на расположение промежуточного охладителя и трубопровода наддува для устранения препятствий в моторном отсеке. (Предоставлено Turbonetics)


Поперечный разрез секции труб и ребер доохладителя. Обратите внимание на пластину коллектора с изгибами на 90 градусов, которые образуют точку соединения для сварки с коллекторами доохладителя.Трубки припаиваются в печи к плите коллектора с использованием покрытия, которое скрепляет узел. (Предоставлено компанией Diesel Injection Service Company, Inc.)


В конструкции трубы и ребра используются отдельные трубы, которые вставляются в высеченную пластину коллектора и припаиваются в печи к пластине коллектора для обеспечения герметичности и прочности. (Предоставлено компанией Diesel Injection Service Company, Inc.)


Вид с торца воздуховода из экструдированного алюминия. Обратите внимание на более толстые области стен на концах.(Предоставлено компанией Diesel Injection Service Company, Inc.)


Конструкция стержневого и пластинчатого типа является наиболее прочной конструкцией, способной выдерживать более высокие давления, чем конструкции из труб и ребер. Обратите внимание на ряд стержней, уложенных друг на друга, чтобы сформировать раму охладителя, и пересечение этих стержней, образующих область, где должен быть прикреплен коллектор. Не так очевиден ряд плоских пластин, которые окружают каждую планку, образуя трубки для воздушного потока. (Предоставлено Vibrant Performance)


Это воздушная трубка промежуточного охладителя из трубчатого и ребристого охладителя с рядом показанных турбулизаторов.Секция турбулизатора просто скользит внутри воздушной трубки и прерывает ламинарный поток, увеличивая при этом емкость теплоотвода, обеспечивая большую массу для нагрева воздуха. (Предоставлено компанией Diesel Injection Service Company, Inc.)

Есть даже разные конструкции труб и ребер, о которых следует знать. В недорогих конструкциях с низким давлением будут использоваться трубы, сформированные из плоских пластин, которые будут сварены швом, а в более качественных конструкциях с более высоким давлением будут использоваться экструдированные алюминиевые трубы. Конструкция трубы и ребра может быть очень прочной для высоких давлений, но толщина коллектора должна быть увеличена, а экструдированные трубы являются обязательными.При выборе дополнительного охладителя маловероятно, что поставщик поделится с вами эффективностью, но вы можете определить, совместим ли тип конструкции с вашим приложением. Если вы собираетесь нагнетать давление наддува более 20 фунтов с помощью кулера с трубчатой ​​и ребристой конструкцией, убедитесь, что воздушные трубки изготовлены из экструдированного алюминия.

Конструкция стержневого и пластинчатого типа буквально использует ряд стержней и пластин, уложенных друг на друга, чтобы сформировать воздушные трубы. Эта конструкция намного дороже из-за требуемых трудозатрат, но способна выдерживать более высокие давления, чем даже конструкции из труб и ребер из экструдированного алюминия.Для обеспечения надежной работы в приложениях с экстремальным наддувом следует использовать исключительно конструкцию стержня и пластины.


В турбонагнетателе Nissan 350Z / G35 от Turbonetics используется передний дополнительный охладитель с электрическим вентилятором для охлаждения. Этот комплект имеет 10 различных номеров деталей, которые подходят как для Nissan 350Z, так и для Infiniti G35 с 2003 по 2005 гг. Как для автоматической, так и для 6-ступенчатой ​​трансмиссии. (Предоставлено Turbonetics)


Ламинарный поток через открытую трубу, представленный векторами воздушного потока, показывает, как это не позволяет обеспечить хороший отвод тепла в доохладителе.


Использование турбулизаторов преобразует ламинарный поток в турбулентный поток, чтобы обеспечить тепловое перемешивание, плюс турбулизаторы обеспечивают увеличенную теплоотводящую способность для передачи большего количества энергии к поверхности для увеличения отвода тепла.

Еще одним преимуществом конструкции стержня и пластины является гибкость толщины охладителя. Конструкция трубы и ребра ограничена шириной коллектора и конструктивной шириной трубы. Изготовление более широкого промежуточного охладителя для повышения производительности, хотя и является дорогостоящим, более возможно в конструкции стержневой и пластинчатой ​​конструкции; вы просто делаете тарелки шире.Это обеспечивает увеличенную площадь поверхности для большей способности отвода тепла. Если у вас есть комната, это преимущество.

Оба типа охладителей должны использовать турбулизаторы внутри воздушных трубок, чтобы помочь повысить эффективность отвода тепла охладителем. Воздух, протекающий через трубку, не движется с одинаковой скоростью по всей площади поперечного сечения трубки. Воздух по направлению к поверхности трубы имеет тенденцию двигаться медленнее из-за того, что называется ламинарным потоком в пограничном слое. Пограничный слой в физике и механике жидкости — это слой жидкости или воздуха в непосредственной близости от ограничивающей поверхности.В атмосфере пограничный слой — это воздух, ближайший к земле. Вот почему скорость ветра увеличивается с увеличением высоты. Если бы мы жили в трубе, воздух замедлялся бы, когда мы приближались к другой границе на максимальной высоте.


Vibrant Performance предлагает полированные промежуточные охладители для двигателей от 350 до 875 л.с. (Предоставлено Vibrant Performance)


Подразделение Turbonetics Spearco, как и многие другие, предлагает коллекторы доохладителя (иногда называемые резервуарами) для различных применений. Они сочетаются с центральными секциями теплообменника для индивидуальной подгонки в уникальных приложениях, где готовый охладитель может быть недоступен. (Предоставлено Turbonetics)


Центральный вход Spearco для центральных секций теплообменника толстого охладителя. (Предоставлено Turbonetics)


Большой впускной коллектор охладителя на конце Spearco. (Предоставлено Turbonetics)


Комплект для проверки герметичности Quick Check от Av-Tekk, коммерческого поставщика охладителей наддувочного воздуха для дизельных двигателей, представляет собой универсальный набор для проверки доохладителя, который подходит практически для всех диаметров впуска и выпуска охладителя.Обратите внимание на комбинацию клапана сброса давления / манометра и положительные ограничители, которые зажимают буртик шланга охладителя для безопасности оператора во время испытания. (Предоставлено Av-Tekk)

Людвиг Прандтль впервые определил принцип аэродинамического пограничного слоя в статье, представленной в 1904 году в Гейдельберге, Германия. Понимание этого принципа стало чрезвычайно важным в областях турбин, конструкции крыла самолетов, метеорологии и теплопередачи. Пограничные слои бывают ламинарными (слоистыми) или турбулентными (неупорядоченными).При передаче тепла большая часть передачи тепла к телу и от тела происходит в пограничном слое. Следовательно, доохладитель с полностью открытыми воздушными трубками будет иметь гораздо меньшую способность отводить тепло из-за ламинарного потока, где пограничный слой позволит удерживать тепло в более высокоскоростном внешнем потоке. Внешний поток — это конкретная ссылка на ту часть воздушного потока, которая наиболее удалена от ограничивающего слоя, которая в нашем случае будет ближе к середине трубки. На рисунках ниже показано, как воздух проходит через открытую трубу и как использование турбулизаторов преобразует ламинарный поток в турбулентный поток для увеличения отвода тепла.

лошадиных сил для дополнительных охладителей. Поскольку вы уже знаете свою цель в лошадиных силах из упражнений на подбор компрессоров (видите, насколько ценны ваши реалистичные цели в лошадиных силах?), Тогда у вас будет хорошее представление о том, что вам понадобится. Однако необходимо учитывать доступное пространство. При расчете номинальной мощности дополнительного охладителя учитываются несколько факторов, включая площадь поверхности и толщину. Все дело в кубических дюймах емкости теплообменника, которую можно просто вычислить по основанию x ширина x высота.Однако вы можете себе представить, что кулер того же кубического дюйма с большей фронтальной площадью будет немного эффективнее. С учетом сказанного, просто выберите кулер с хорошей конструкцией, рассчитанный на ваш уровень мощности, который использует всю доступную фронтальную поверхность. Будьте осторожны, чтобы не переборщить с толщиной.

Если вы проектируете уличный автомобиль с ограниченной площадью лобовой части, добавление большого промежуточного охладителя может создать проблемы с системой охлаждения за счет значительного уменьшения потока холодного воздуха к радиатору охлаждающей жидкости двигателя.Радиатор двигателя проектировался не с расчетом на дополнительный охладитель. Более высокая тепловая нагрузка также может повлиять на биметаллическую ленту или змеевик вязкостной муфты вентилятора, которая регулирует, когда она включается (если у вас нет электрического вентилятора). Обычно биметаллическая пружина на муфте вентилятора откалибрована на температуру воздуха, которая напрямую коррелирует с температурой охлаждающей жидкости в этом конкретном автомобиле. Дополнительный охладитель может вызвать более высокую тепловую нагрузку и заставить муфту вентилятора думать, что двигатель слишком теплый, и рано включить вентилятор.Поскольку вентилятор с приводом от двигателя обычно является самым потребляющим мощность устройством в передней части двигателя, это может иметь большое значение.

Если в вашем автомобиле есть вентилятор с электрическим приводом, он термостатически контролируется датчиком, расположенным в водяной рубашке. Следите за адекватным охлаждением с помощью датчика температуры; может не хватить резерва охлаждения, чтобы должным образом охладить автомобиль в теплую погоду с вашей новой мощностью. Если это окажется проблемой, вы можете решить эту проблему, добавив вентиляторы с электрическим приводом перед кулером, чтобы уменьшить падение давления на обоих кулерах, промежуточном охладителе и радиаторе.

Если вы вообще можете отказаться от вентилятора с приводом от двигателя, это даже лучше. Вентилятор потребляет огромное количество лошадиных сил, хотя в мире природы нет бесплатного обеда. Вентилятор с электрическим приводом по-прежнему менее эффективен, чем вентилятор, установленный на двигателе, из-за потерь, присущих генератору переменного тока для производства электроэнергии и электродвигателю, приводящему в действие вентилятор. Самым важным моментом здесь является контроль. Мощность, необходимая для приведения в действие вентилятора с приводом от двигателя, увеличивается пропорционально увеличению скорости.Например, для вентилятора мощностью 5 л.с. при 3000 об / мин потребуется 40 л.с. при 6000 об / мин!

Скорость увеличивается в 2 раза (она увеличилась вдвое, с 3000 до 6000), поэтому: (5 x 2³) = 40.

Это всего лишь одна причина для устранения вентилятора, а другая — безопасность. Как правило, болельщики не умеют вращаться с такой скоростью, с которой работают гоночные автомобили. Разрыв лопастей вентилятора может привести к летальному исходу, поэтому примите меры предосторожности в этой области.

На рынке послепродажного обслуживания высокопроизводительных охладителей есть много источников для получения дополнительных охладителей с хорошей конструкцией.Они бывают всех размеров и форм и имеют номинальную мощность в лошадиных силах. Vibrant Performance даже предлагает кулеры с полированными резервуарами, чтобы завершить изысканный внешний вид, который дополняет их линейку полированных наддувных труб. Turbonetics также предлагает широкий спектр кулеров, продаваемых под их брендом Spearco. Spearco — это давнее имя в области технологий охлаждения и, возможно, одна из самых полных линейок охлаждающих продуктов для бензиновых автомобильных двигателей с наддувом. В дополнение к готовым охладителям Spearco также предлагает широкий спектр охладителей воды и воздуха для гоночных применений.Вы также можете приобрести охладители нестандартного размера с конструкцией планки и пластины. Spearco также предлагает коллекторы охладителей для самостоятельных производителей.

Установка дополнительного охладителя является важным аспектом сохранения целостности охладителя. Кулер может протечь, и утечка действительно приведет к снижению производительности. Утечки буста никогда не бывает хорошими. Помните, что дополнительный охладитель устанавливается на шасси и сильно нагревается во время экстремальных термических циклов. Скручивания на кручении в раме автомобиля — это часть мощного ресурса, учитывайте это.Поверхность для установки кулера должна позволять кулеру располагаться перпендикулярно или заподлицо с точками крепления, а не заедать. Если ваши резьбовые крепежные детали неровно натянут охладитель на его крепление и скрепят его связкой, это приведет к скручиванию всей конструкции, которое при нагревании может вызвать преждевременный выход из строя сердечника теплообменника и привести к пайке трубок к поверхности. пластина коллектора до разрыва. Также рекомендуется установить охладитель в резиновые втулки высокой плотности, чтобы обеспечить изоляцию охладителя от скручивания рамы.

Промежуточные охладители

по большей части не должны пропускать воздух, но во многих коммерческих охладителях есть утечка, называемая стравливанием. Может быть трудно определить, течет ли ваш охладитель, потому что ничего не выходит на землю (например, масло или трансмиссионная жидкость). Кроме того, на холостом ходу нет наддува, поэтому измерение утечки на холостом ходу также невозможно.

Метод проверки охладителя заключается в использовании подходящего комплекта для проверки герметичности. В коммерческих транспортных средствах приемлемый слив определяется как потеря давления не более 5 фунтов за 15 секунд из-за заряда статического давления с использованием рабочего воздуха с общим давлением 30 фунтов.Если у вас есть основания полагать, что в вашем кулере может быть течь, проверка целостности кулера — хорошая идея. Но будьте осторожны! Не делайте самодельный прибор! Существуют профессиональные тестовые наборы, в которых используются специальные резиновые заглушки и ограничители положительных заглушек, которые механически удерживают заглушки на месте.

Большинство высокопроизводительных охладителей наддувочного воздуха изготавливаются с большей тщательностью, чем обычные коммерческие охладители дизельного топлива, и в них не будет утечек, что означает отсутствие стравливания воздуха. Если вы обнаружите, что утечка может измерять небольшое кровотечение, скажем, наполовину фунта давления в течение 15-секундного теста, не думайте, что вы обнаружили проблему.Устраните утечку, но если у вас возникла проблема с настройкой, вам, вероятно, придется поискать в другом месте.

ВНИМАНИЕ: Объем воздуха, содержащийся в промежуточном охладителе, и давление, используемое при испытаниях, могут запустить ракету весом 3 фунта (заглушка и зажимная пластина) со скоростью более 75 миль в час на расстояние более 50 футов! Эта сила смертельна! Используйте только оборудование, специально предназначенное для этой цели, чтобы избежать телесных повреждений.

Хомуты и шланги

Хомуты и шланги нельзя упускать из виду при сборке турбо-системы. Использование надлежащего оборудования может защитить вас от серьезной головной боли, связанной с утечкой в ​​будущем. Зажимы, используемые в системе турбонагнетателя, должны быть «постоянного крутящего момента». Большинство хомутов для шлангов в автомобильной промышленности являются стандартными червячными передачами. Их можно легко перетянуть и сломать и / или привести к разрыву шланга.

Шланговые соединения в турбо-системе подвергаются множеству циклов нагрева и охлаждения, которые включают постоянное расширение и сжатие соединения. Зажимы с постоянным крутящим моментом предназначены для автоматической регулировки их диаметра, чтобы компенсировать нормальное расширение и сжатие соединений.Не менее важно, чтобы внутренний диаметр шланга точно соответствовал внешнему диаметру трубки. Не используйте зажим для исправления несоответствия размеров между трубкой и внутренним диаметром шланга. В приложениях с очень высоким давлением наддува, например, более 20 фунтов, двойной зажим иногда используется в сочетании с ремнями наддува. Усиливающие ремни (или повышающие скобы) — это просто стальные ремни, которые механически ограничивают перемещение между концом трубки и, следовательно, снимают линейное напряжение на стыке шланга и оставляют их для герметизации.


Обычный зажим с червячной передачей слева никогда не должен использоваться в турбо-системе.Зажим справа — это зажим с постоянным крутящим моментом, в котором используются либо пружинные шайбы Бельвилля, либо винтовые пружины, обеспечивающие надлежащий и постоянный крутящий момент.


Это зажим с Т-образным болтом. Это очень прочный зажим, намного более прочный, чем зажимы червячного типа. Эти хомуты с Т-образным болтом от Turbonetics используют внутреннюю ленту, которая защищает шланг от выдавливания при затягивании хомута. (Предоставлено Turbonetics)


Этот Buick Grand National имеет подъемную силу около 28 фунтов.Обратите внимание на ремешок наддува, который усиливает соединение повышающего шланга между наддувной трубкой, ведущее от промежуточного охладителя к корпусу дроссельной заслонки Holley.


Эта повышающая скоба от Vibrant Performance отполирована и оснащена парой монтажных ножек для приваривания к бустерной трубке и быстросъемным. Он изготовлен как из алюминия (P / N 12640), так и из нержавеющей стали (P / N 12641). (Предоставлено Vibrant Performance)


Гофрированные шланги различных размеров для соединения компонентов, установленных на двигателе и на шасси.Избыток материала в выступе позволяет двигаться, не вызывая усталости шланга. (Предоставлено Vibrant Performance)


Vibrant Technologies предлагает широкий выбор типов и размеров шлангов. Прямые силиконовые шланги можно отрезать до нужной длины. Также доступны различные размеры изгибов под 45 и 90 градусов, а также переходные шланговые соединения для увеличения или уменьшения размера. (Предоставлено Vibrant Performance)

Существует ряд типов, размеров и марок силиконовых шлангов (нельзя использовать резиновые шланги).Вы даже можете получить их в цвете для хот-роддера с косметическим складом ума. С точки зрения стоимости шланги обычно имеют обозначение холодного и горячего концов. Убедитесь, что используемые вами шланги рассчитаны на ожидаемую температуру. Самыми горячими точками будут соединение нагнетания компрессора с трубкой наддува, ведущей к доохладителю, и впускное соединение доохладителя. На всякий случай может быть разумным использовать шланги, рассчитанные на горячую сторону, по всей системе. Хорошие шланги должны выдерживать 400 градусов по Фаренгейту или более.



При подключении компонента, установленного на двигателе, такого как наддувная труба турбонагнетателя, к компоненту, установленному на шасси, например, охладителю наддувочного воздуха, распознайте, что эти компоненты будут перемещаться относительно друг друга. В этих случаях обычно используются горбинные шланги, когда шланги отформованы с одним или несколькими выступами на длине шланга, что позволяет иметь избыток материала для данной длины, что позволяет перемещаться без нагрузки на шланг или соединение. связь.

Прокладка труб наддува от турбонагнетателя до охладителя и обратно к двигателю может стать кошмаром для сантехников. Не отчаивайтесь. Многие специальные шланги выпускаются такими компаниями, как Turbonetics и Vibrant Performance, именно для этих целей.

Трубки наддува

Сборка наддувных трубок может быть очень простой или сложной в зависимости от конкретного применения. Если вы прокладываете достаточно прямые трубки, они должны быть лишь немного больше диаметра на выходе компрессора, когда вы проводите их к доохладителю.Если ваше приложение не охлаждается до охлаждения и вы направляете выпуск компрессора на впуск, вы можете увеличить трубку наддува перед изгибом, который входит в камеру статического давления. Это помогает замедлить движение воздуха и помогает в диффузии преобразовывать воздух из высокоскоростного потока в статическое давление, что является целью диффузора турбины с самого начала.


В этой системе с двойным турбонаддувом используются все полированные алюминиевые трубки наддува, идущие к промежуточному охладителю и от него, что придает очень красивый вид. Обратите внимание на расположение турбонагнетателей сразу за передними колесами для обеспечения зазора на капоте и распределения веса, а также гораздо более крупный воздухозаборник черного цвета, проходящий параллельно трубкам наддува, ведущим от нагнетания компрессора к доохладителю. (Предоставлено Vibrant Performance)


Vibrant Performance предлагает полный спектр бустерных трубок с прямыми секциями, а также с изгибами на 180, 90 и 45 градусов в полированных и натуральных алюминиевых профилях для самостоятельного изготовления.(Предоставлено Vibrant Performance)


Эти детали с коротким радиусом могут избавить от головной боли с трубками. Показаны U-образное колено с внешним диаметром 2,25 дюйма и колено с коротким радиусом 90 градусов с внешним диаметром 3 дюйма, оба от Turbonetics. (Предоставлено Turbonetics)


Эти отводы из литого алюминия доступны в 2, 2,25, 2,5 и 3 дюйма от Turbonetics и других компаний. (Предоставлено Turbonetics)

Несмотря на то, что существуют плюсы и минусы воздуховодов и прокачки нагнетаемого воздуха для минимизации потерь в трубопроводе, также будет реальность того, где именно вам нужно проложить трубки, чтобы соответствовать вашему применению. Существует множество успешных применений, в которых трубы наддува прокладывают не самым оптимальным образом, но они необходимы для данной комбинации автомобиля и двигателя. Есть много источников для предварительно изогнутых труб с оправкой, которые упрощают изготовление, и даже некоторые источники для прогонов труб, которые уже хромированы, или полированного алюминия, если для вас важна эстетика.

По возможности следует избегать чрезмерно крутых изгибов, но, если они действительно необходимы, может оказаться целесообразным использование литого изгиба.Плотные изгибы можно отливать более успешно, чем в НКТ. Однако вы редко увидите, как это делается на маршруте приема, потому что обычно достаточно места для лучших вариантов.

Пленумы

Камера статического давления — это часть системы, которая соединяет трубку наддува, ведущую от выпускного отверстия компрессора или выпускного отверстия доохладителя, к впускному коллектору. В зависимости от типа вашего двигателя и предполагаемого использования существуют некоторые особенности конструкции. В высокопроизводительном двигателе с гоночным двигателем камера статического давления обычно небольшая и выполняет основную функцию по адаптации корпуса дроссельной заслонки к трубке наддува. В таких случаях камера статического давления просто обеспечивает плавный переход воздуха в коллектор.


На рисунке изображена впускная камера с турбонаддувом Banks GM объемом 6,2 литра. Квадратная водоотводящая камера создает статический напор над коллектором, который помогает решить проблемы с управляемостью при модернизации, когда положение дроссельной заслонки несколько меняется во время движения.(Предоставлено Gale Banks Engineering)


Этот впускной патрубок от Precision Turbo and Engine на самом деле больше похож на переходник / переходник, чем на камеру статического давления. Он предназначен для соревнований, где есть только два положения дроссельной заслонки.

Для многих уличных транспортных средств впускной коллектор был разработан как компонент двигателя без наддува. На улице бывает много ситуаций, когда вы будете переходить с одной скорости на другую и вам потребуется плавный переходный отклик.В этих обстоятельствах Гейл Бэнкс любит наращивать то, что он называет «емкостью глотка». Это кратковременный резерв мощности слегка увеличенной подачи воздуха для уменьшения задержки системы. Во время мягких ускорений, таких как ускорение с 30 до 55 миль в час, когда вы выезжаете на шоссе, увеличенный объем нагнетаемого воздуха в камере статического давления поможет двигателю переключиться, потому что есть объем воздуха, который нужно немедленно использовать. В отличие от автомобиля для дрэг-рейсинга, где единственной проблемой является полное ускорение, избыточная пропускная способность воздухозаборника может увеличить пропускную способность системы впуска сверх того, что уже добавляет дополнительный охладитель, и увеличить время отклика системы, поскольку для заполнения его в гонке потребуется больше машина идет с нуля на тотальный разгон.Следовательно, при проектировании пленума необходимо учитывать ваше применение и использование, как и многие другие факторы. Если это гоночный автомобиль, подойдет пленум небольшого объема. Если вы строите уличное транспортное средство, где вы ожидаете внезапных изменений положения дроссельной заслонки с частичной нагрузки на полную для обгона и ускорения на рампе, то следует учитывать дополнительную пропускную способность, как показано в дизельной системе Banks 6.2.

При прокладывании трубы наддува к любой камере статического давления в коллекторе точка входа должна обеспечивать учет завихрения воздуха и распределения давления.Турбосистема Banks sidewinder на раннем дизельном двигателе 6.2 является хорошим примером как мощности залпа, так и диффузии воздуха, которая обеспечивает равномерную подачу давления в коллектор, обеспечивая равномерное распределение воздуха по всем цилиндрам. Напротив, пленум от Precision Turbo и Engine — это соревновательный элемент, в котором емкость глотка не является основной проблемой, а плавный переход имеет значение. Многие типы пленумов готовы для большинства применений.

Крепление

Turbo для правильного слива масла

Надеюсь, вы рассмотрели возможность слива масла до того, как выбрали место установки турбокомпрессора.Для обеспечения надлежащего слива масла корпус подшипника должен быть правильно ориентирован (см. Фото). Крышка компрессора и корпус турбины обычно вращаются независимо от корпуса подшипника в соответствии с требованиями к выпускному отверстию компрессора и впускному отверстию для выпуска отработавших газов.


При прокладке линий впуска и слива масла обязательно следуйте правилу 20 градусов. Представьте себе центральную линию, которая проходит через впускное отверстие и слив масла. Эта линия по сравнению с вертикальной линией не должна образовывать угол более 20 градусов.(С любезного разрешения Honeywell Turbo Technologies)

При прокладке возвратной линии слива масла к масляному поддону убедитесь, что точка входа в нее находится значительно выше уровня масла в поддоне, и что сливная линия всегда проходит под уклон. Вы никогда не хотите, чтобы масло поднималось вверх, когда оно вытекает из турбонагнетателя. Если масло попытается стечь ниже уровня масла в поддоне, оно вернется назад и затопит сливную полость в турбонагнетателе. Это приведет к затоплению участков уплотнительного кольца и вызовет утечку масла из компрессора или турбины, либо из того и другого.

Выпускные коллекторы

Выпускные коллекторы для уличных турбо-систем обычно используются как в трубчатых, так и в литых коллекторах. Пусть вас не смущает мысль, что коллекторы, которые выглядят как коллекторы, лучше, точно так же, как коллекторы труб лучше, чем старые литые выпускные коллекторы. В установке турбокомпрессора я бы предпочел отливку для долговечности и прочности крепления. Просто во многих случаях не хватает клиентов, чтобы купить определенный тип коллектора, чтобы любой производитель пошел на создание литейного инструмента для производства выпускного коллектора с турбонаддувом.Поэтому не следует путать трубки и литые коллекторы в отношении того, какой из них лучше. Если вы строите уличный проект и к вашему двигателю подходит литой коллектор, вам повезло!


Эта деталь 4-в-1 от Vibrant Performance избавит вас от головной боли при создании собственных выпускных коллекторов. (Предоставлено Vibrant Performance)


Vibrant Performance также создает коллектор 6-в-1, наряду с различными другими конфигурациями.Создавать собственный турбо-коллектор определенно не для слабонервных или начинающих сварщиков! (Предоставлено Vibrant Performance)


Многие компании также предлагают специально отлитые выпускные коллекторы для популярных применений. У этого от Turbonetics уже отлито и обработано крепление перепускного клапана, чтобы упростить ваш проект. (Предоставлено Turbonetics)


Укомплектованный трубчатый выпускной коллектор может быть сконструирован с режущими изгибами, секциями труб и использованием готовых фланцев таких компаний, как Vibrant Performance и Turbonetics. (Предоставлено Vibrant Performance)

Сейчас существует множество литых выпускных коллекторов для популярных турбо-приложений, но в гоночных автомобилях обычно используются трубчатые коллекторы. Если вы достаточно амбициозны, чтобы построить свои собственные трубчатые коллекторы, вам следует убедиться, что вы не используете трубы из мягкой стали. В качестве минимальной спецификации материала используйте нержавеющую сталь 304 с минимальной толщиной стенки 0,065 дюйма. Как правило, самой сложной частью при изготовлении собственных трубчатых коллекторов является изготовление шарнира четыре в один для 4-цилиндровых двигателей или двигателей V-8 или соединения шесть в один для рядных 6-цилиндровых двигателей.Популярность турбонаддува на современном рынке тоже пришла на помощь! Vibrant Performance предлагает специальные соединения, которые упрощают изготовление коллектора на заказ. Если вы будете использовать эти готовые соединения, ваша работа станет намного проще, и вы все равно сможете заявить, что сделали их сами!

В двигателе с турбонаддувом сохранение одинаковой длины первичных трубок не представляет такой большой проблемы, как в двигателе без наддува. Есть мнение, что необходимо обеспечить некоторую длину, чтобы обеспечить лучшую продувку цилиндра, дав газам куда-нибудь уйти.Однако более важным является диаметр первичной трубки. В двигателе без наддува обычно существует оптимальный первичный размер, который обеспечивает достаточное расширение выхлопных газов, чтобы помочь снизить давление за выхлопным импульсом, чтобы помочь уловить следующий импульс, но не настолько большой, чтобы вызвать водопроводные кошмары или чрезмерно ослабить энергию импульса. где первичные частицы сходятся в коллектор для соседнего первичного ассистента очистки. В двигателе с турбонаддувом скорость выхлопных газов может превышать 2000 футов в секунду.Конечная скорость турбинного колеса диаметром 3 дюйма, которое вращается со скоростью 120000 об / мин, составляет около 1600 футов в секунду. Если размер первичных труб совпадает с диаметром выхлопного отверстия, то водопровод вашей системы не будет вызывать замедление выхлопных газов, а только для того, чтобы ускориться обратно по мере приближения к турбине. Лучше поддерживать диаметр первичной трубы постоянным, пока он не достигнет турбины, для улучшения смешивания. По этой причине не рекомендуются выпускные коллекторы очень большого размера.


Турбокомпрессор серии GT от Garrett имеет конический диффузор, залитый прямо в выпускной патрубок корпуса турбины, и угол наклона около 30 градусов.

Поскольку выхлопные газы выходят из эксдуктора турбины, в идеале они должны течь в осевом направлении, но это не так. Газ будет закручиваться. Вихревой газ не так быстро выходит. По этой причине корпус турбины может иметь форму конического диффузора или раструба, когда он переходит в свое выхлопное соединение.Диффузор стремится преобразовать закрученный поток в более турбулентный осевой поток. Эта функция, встроенная в корпус турбины, может занимать место для установки плотно прилегающих моторных отсеков. Для достижения этой диффузии все, что нужно, — это трубка большего диаметра длиной примерно от 1 1/2 до 2 футов перед переходом в выхлопную систему (если вы ее используете!). В спортивном автомобиле длина сливной трубы 2 фута, скорее всего, будет всем, что нужно. Если диаметр нагнетания турбины составляет 3 дюйма, подойдет переходник конической формы от 3-дюймового соединения к выпускному патрубку 4 или 5 дюймов.Однако для большинства производительных уличных приложений эта особенность конструкции будет иметь очень ограниченное влияние.

Тепловые сильфоны и компенсаторы

Сильный нагрев турбо-системы может привести к расширению и сжатию выпускных коллекторов трубчатого типа, что приведет к растрескиванию и разрыву. Это особенно верно в приложениях с высокой мощностью, наблюдаемых на двигателях V-6 и V-8, где используются коллекторы «шесть в один» или «восемь в один». Размещение компенсатора в конце коллектора, на входе в турбину и на воздуховоде перепускной заслонки может помочь вашему коллектору прожить долгую и счастливую жизнь.


Turbonetics предлагает хороший выбор гибких трубок и компенсаторов для домашних мастеров. Правильно расположенные компенсаторы могут заставить ваш выпускной коллектор выдержать быстрое нагревание в лошадиных силах двигателестроения. (Предоставлено Turbonetics)

Теплозащитное покрытие

Тема защиты от тепла является довольно спорной. Поскольку турбины извлекают свою энергию из тепла, многие считают, что обертывание трубки в коллекторе трубчатого типа или переходной трубе создаст (или сохранит) больше тепловой энергии, доступной для турбины.Было проведено несколько тестов, чтобы попытаться количественно оценить этот эффект. Хотя теоретически это кажется разумным, при этом практически нет ощутимого прироста производительности. Практическая проблема здесь заключается в том, что поток выхлопных газов при полностью открытой дроссельной заслонке, где вас больше всего беспокоит эффективность, движется так быстро, и тот факт, что поток, вероятно, будет ламинарным по своей природе, что практически не теряется значительная тепловая энергия.


Основной целью тепловой защиты является защита других компонентов подкапотного пространства от тепла турбины и дополнительных коллекторов, задействованных в турбо-системе. (Предоставлено Turbonetics)

Основной целью тепловой защиты является защита других компонентов подкапотного пространства от тепла турбины и дополнительных коллекторов, задействованных в турбо-системе. (Предоставлено Turbonetics)

Основная причина добавления теплозащиты либо к корпусу турбины, либо к трубопроводу выпускного коллектора заключается в защите других компонентов от излучаемого лучистого тепла. Большинство OEM-автомобилей с турбонаддувом имеют обширную тепловую защиту, так как производители должны защитить остальные компоненты, чтобы они пережили гарантийный период.Чтобы помочь вам, Turbonetics предлагает предварительно отформованные тепловые экраны корпуса турбины, а также плоские поверхности из центрифугированной керамической изоляции, обернутые в гофрированный алюминий, которые могут принимать любую форму для изоляции компонентов и тепловой защиты. Другие компании на вторичном рынке также предлагают термостойкие одеяла и рукава для защиты таких вещей, как стартеры, резиновые шланги и провода свечей зажигания.

Если близость к чувствительным к температуре компонентам не является проблемой, вам, скорее всего, лучше не обматывать трубку.При правильных условиях это может вызвать деформацию изгибов и ускоренную коррозию.

Написано Джеем К. Миллером и опубликовано с разрешения CarTechBooks

ПОЛУЧИТЕ СДЕЛКУ НА ЭТУ КНИГУ!

Если вам понравилась эта статья, вам понравится вся книга. Нажмите кнопку ниже, и мы отправим вам эксклюзивное предложение на эту книгу.

7 способов убить турбо — и как их избежать

Хотя они никогда не выходили из моды, не секрет, что турбины сейчас «в ходу».Вы можете найти его буквально во всем, от Honda с 10000 об / мин и дизельных пикапов до больших уличных автомобилей и заводских Ford Mustang. Но с таким количеством различных типов транспортных средств, извлекающих выгоду из этой блаженной формы принудительной индукции, неизбежны неудачи. А в некоторых экстремальных условиях эксплуатации даже элементы страховки, такие как вестгейты, продувочные клапаны, центральные картриджи шарикоподшипников или узлы упорных подшипников с поворотом на 360 градусов, не могут помешать турбине достичь предела прочности.

Итак, если вы раскачиваете автомобиль с турбонаддувом, грузовик, внедорожник или что-нибудь еще на колесах, мы покажем вам эти критические моменты, чтобы вы могли их обойти.

1. Повреждение посторонним предметом

Каждый раз, когда турбокомпрессор что-то проглатывает — будь то грязь, пыль, тряпка или болт, оставшийся во впускном отверстии — это может привести к катастрофе. К сожалению, внешний мусор, пробивающийся через лопасти компрессорного колеса (сторона впуска), составляет 80 процентов всех отказов турбонагнетателя. Когда происходит этот отказ, передняя кромка лопастей крыльчатки компрессора будет указывать на любой удар от объекта (ов), а отверстие индуктора (в котором находится колесо компрессора) может иметь следы контакта или царапины.На фото ниже турбина IHI от дизельного двигателя LB7 Duramax стала жертвой болта, оставленного во впускном отверстии.

Наиболее частая причина попадания мусора в турбину? Грязный воздушный фильтр. Совершенно верно, отсутствие технического обслуживания одного из самых основных компонентов вашего автомобиля может стоить вам четырехзначной цифры (турбо) и, возможно, пятизначной цифры, если в двигатель попадет какая-либо шрапнель. К счастью, поскольку в большинстве современных систем с турбонаддувом используется промежуточный охладитель (теплообменник, расположенный между турбонаддувом и двигателем) для охлаждения температуры впуска, он часто становится уловителем для фрагментов крыльчатки компрессора.

РЕШЕНИЕ:

Используйте качественный воздушный фильтр с верхней одеждой, содержите его в чистоте, если он многоразовый, или устанавливайте новый через надлежащие интервалы времени, если он заменяемый.

2. Превышение скорости

Как только турбонагнетатель выталкивается из своей компрессорной карты, он не всегда может производить больший наддув, но он почти всегда создает избыточное давление привода, заставляя вал видеть большую скорость, чем он был разработан. Когда происходит превышение скорости, турбинное (выхлопное) колесо обычно первым уступает дорогу, и мы даже видели, как некоторые части расходятся и выходят из выхлопной трубы со скоростью света (страшно!).В частности, сценарии превышения скорости несколько обычны для высокопроизводительных дизелей. Даже в полностью стандартном виде современный дизельный пикап может выдерживать давление 30 фунтов на квадратный дюйм или более, и с точки зрения сумматоров мощности не требуется много усилий, чтобы превысить ограничения OEM-зарядного устройства (а именно, программаторов и / или более крупных форсунок).

На вторичном рынке дизельных двигателей (где катание на салазках и дрэг-рейсинг чрезвычайно популярны) один турбокомпрессор может дать давление до 100 psi. Когда турбокомпрессор BorgWarner ниже на базе S400 был подвергнут воздействию наддува более 70 фунтов на квадратный дюйм, за которым последовал большой выброс закиси азота и внешний перепускной клапан, который не открылся, произошло катастрофическое превышение скорости.Упорный подшипник был проверен, что привело к чрезмерному люфту вала, после чего рабочее колесо компрессора соприкоснулось с корпусом и фактически заклинило сбоку в отверстии индуктора.

РЕШЕНИЕ:

Поддерживайте соотношение давления наддува и привода турбонагнетателя как можно ближе к 1: 1 (1: 1,5 в большинстве случаев в порядке), что может повлечь за собой использование перепускного клапана для стравливания избыточного давления привода или открытия потока выхлопных газов через корпус турбины большего размера.

3.Проблемы с смазкой

Отсутствие надлежащей смазки (подачи масла) приведет к быстрому выходу из строя подшипников опорного подшипника турбонагнетателя. При отсутствии подачи масла в течение продолжительных периодов времени опорные подшипники в конечном итоге начинают допускать люфт вала, после чего колесо компрессора и / или турбины соприкасается с соответствующим корпусом. Недостаточная подача масла может также порезать упорный подшипник, а также вызвать чрезмерное нагревание центральной секции.На турбинах с большей рамой рекомендуется использовать линию подачи масла -6 AN (как минимум), чтобы обеспечить постоянный поток масла.

Загрязнение масла — будь то из-за отсутствия технического обслуживания, охлаждающей жидкости или топлива в моторном масле или мусора из-за поломки внутренних компонентов двигателя — также может нанести ущерб турбокомпрессору. Поврежденное моторное масло может вызвать все проблемы, упомянутые выше (изношенные опорные подшипники, повреждение упорного подшипника или задир на валу), за исключением перегрева подшипников турбонагнетателя.На валу турбины Garrett TP38 с зазубринами (из-за загрязненного моторного масла) показаны зазубрины.

РЕШЕНИЕ:

Запустите линию подачи масла не менее -6 AN, убедитесь, что моторное масло меняют регулярно и всегда на нем нет загрязнений.

4. Утечки через уплотнение

В большинстве современных турбокомпрессоров используются динамические уплотнения (по сравнению с углеродными), которые предотвращают попадание масла, подаваемого в центральную часть, во впускную (компрессор) или выпускную (турбину) сторону.Однако такие вещи, как чрезмерное давление в картере в двигателях большой мощности, эксплуатационный износ уплотнений или неправильно проложенный (или недостаточный) возвратный маслопровод, могут привести к утечкам масла. Как только центральная секция становится чрезмерно сжатой, она может подтолкнуть масло к впускной и / или выпускной стороне турбонагнетателя.

РЕШЕНИЕ:

Если вы работаете с чрезмерным давлением в картере или давлением масла из-за применения большой мощности, следует изучить лучшую систему вентиляции картера или систему смазки с сухим картером.Если вы сливаете масло из старого турбокомпрессора, возможно, пришло время его отремонтировать.

5. Отказ упорного подшипника

Упорный подшипник расположен ближе всего к крыльчатке компрессора. Его задача — ограничить осевой люфт (и мы заметим, что типичный осевой люфт должен составлять от 0,002 до 0,004 дюйма). Поскольку этот подшипник скользит по тонкой масляной пленке между ним и валом, очень важно, чтобы подшипник не соприкасался с валом. Как только происходит контакт (например, при установке упорного подшипника на 270 градусов во время ремонта, показанного ниже), отказ упорного подшипника обычно неизбежен.И как только упорный подшипник выйдет из строя, вскоре произойдет контакт колеса с корпусом. Каждый раз, когда турбонагнетатель оснащается вторичным (часто большим и тяжелым) колесом компрессора, срок службы упорного подшипника с углом наклона 270 градусов значительно сокращается.

Один из лучших способов повысить долговечность турбокомпрессора — это добавить упорный подшипник с углом поворота 360 градусов (справа), который обеспечивает полный цикл смазки маслом вокруг вала (по сравнению с 75 процентами с узлом с углом поворота 270 градусов, слева). ).Подшипник с поворотом на 360 градусов, изображенный ниже, входит в стандартную комплектацию всех турбокомпрессоров с кованым фрезерованным колесом (FMW) High Tech Turbo S365, которые основаны на агрегате S366, предлагаемом BorgWarner. Компания разбирает коробки с турбонаддувом и отказывается от заводской 3-контактной 270-градусной тяги в пользу 6-ступенчатого блока, изображенного справа.

РЕШЕНИЕ:

Для страховки (и по возможности) добавьте к турбонагнетателю упорный подшипник с углом поворота 360 градусов или укажите опцию осевого усилия на 360 градусов при покупке нового агрегата.

6. Пульсирующий

Также называемый турбо лаем или чириканьем, помпаж компрессора возникает, когда всасываемый воздух фактически возвращается обратно из компрессора. Чаще всего это происходит, когда повышенный наддув создается, а затем резко отключается (т. Е. Вы резко отпускаете дроссельную заслонку). Шум, который вы слышите, — это сжатый воздух, застрявший во впускном отверстии, которому больше некуда идти, кроме как назад, как он вошел в турбо. Помпаж очень сильно сказывается на компрессорной стороне турбонагнетателя, и продолжительный помпаж в конечном итоге приведет к смерти упорного подшипника.Продувочные клапаны обычно используются в системах с сильным помпажем. Если он достаточно сильный, помпаж может буквально взорвать крыльчатку компрессора (см. Ниже).

Наихудшие случаи турбонаддува обычны для автомобилей с избыточным турбонаддувом (т. Е. Приложений, в которых турбокомпрессор был неправильно определен). Например, 12-клапанный 5,9-литровый Dodge Ram с двигателем Cummins и 71-мм BorgWarner S400. Поскольку этот двигатель был разработан для использования турбонагнетателя от 54 до 56 мм, агрегат с гораздо большим колесом компрессора (и турбины) будет испытывать значительный помпаж при более низких оборотах двигателя.В этой конфигурации турбонагнетатель почти всегда будет находиться в самом центре линии перенапряжения и никогда не будет иметь длительного срока службы.

РЕШЕНИЕ:

Установите турбонагнетатель подходящего размера для вашего двигателя (т. Е. Не слишком большой), чтобы вы оставались выше линии помпажа на низких оборотах и ​​вне зоны превышения скорости на верхнем конце.

7. Экстремальная жара

Сильная жара может убить что угодно, верно? То же самое и с турбокомпрессорами. Продолжительное воздействие температуры 2000 градусов по Фаренгейту в конечном итоге скажется на турбине (выхлопе) турбонагнетателя.Типичными точками отказа из-за нагрева являются: трещины из-за напряжения на входном фланце турбины, эродированные края входных спиралей турбины (на фото ниже) и деформация кончиков лопаток турбинного колеса.

Общие причины генерирования избыточного тепла включают: высокую производительность, ограниченную систему выпуска, треснувший промежуточный охладитель или даже забитый воздушный фильтр. По нашему опыту, тепло может повредить что-то внутри двигателя (клапан, поршень и т. Д.), Прежде чем оно сможет нанести значительный ущерб турбинному колесу из материала Inconel.Тем не менее, время от времени такое случается.

РЕШЕНИЕ:

Установите пирометр, чтобы следить за температурой выхлопных газов и оставаться в пределах рекомендуемого порога нагрева для вашего конкретного двигателя / приложения.

Как это работает: турбонаддув | Вождение

Раньше турбокомпрессоры использовались в основном на мощных спортивных автомобилях. Они по-прежнему дают быстроходным автомобилям дополнительный прирост мощности, но автопроизводители все чаще используют их на двигателях меньшего размера для увеличения мощности, когда это необходимо, но с лучшей общей экономией топлива.Они также используются практически во всех дизельных двигателях для увеличения мощности.

Турбокомпрессор — это, по сути, воздушный насос, нагнетающий дополнительный кислород в двигатель по мере необходимости, чтобы он мог сжигать больше топлива для получения большей мощности.

Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они вращают тяжелый центральный коленчатый вал так же, как ваши ноги двигаются вверх и вниз, чтобы привести в движение велосипед. Вращение коленчатого вала используется для поворота колес автомобиля.

Двигатель Audi 3,0 л V6 с двумя последовательно расположенными турбонагнетателями.

Все это движется паром воздуха и бензина в верхней части поршня. Когда он воспламеняется свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть кривошип. Сгоревшие газы затем удаляются как выхлопные газы.

Каждый поршень скользит вниз в начале своего цикла, создавая вакуум. В двигатель без турбонаддува, известный как безнаддувный, воздух врывается внутрь при открытии впускного клапана, но он может заполнить цилиндр только при атмосферном давлении. Сжигание большего количества топлива дает больше мощности, но поскольку смесь топлива и воздуха должна быть точной для правильной работы двигателя, добавление большего количества бензина не сработает, и цилиндр не сможет втянуть лишний воздух.

В двигателе с турбонаддувом турбонагнетатель нагнетает больший объем воздуха под давлением, и компьютер транспортного средства отвечает, добавляя правильное количество дополнительного топлива.

Турбина приводится в движение выхлопными газами. Одна сторона турбонагнетателя расположена у выпускного коллектора, другая — у воздухозаборника двигателя, и он содержит два небольших вентилятора, соединенных валом. Когда выхлоп проходит через турбонагнетатель, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, вращает второй вентилятор, называемый компрессором, который всасывает свежий воздух, нагнетает его и нагнетает в двигатель.Разница между атмосферным давлением и давлением воздуха, обеспечиваемым турбонаддувом, называется наддувом и измеряется в фунтах на квадратный дюйм (psi).

Вместо турбонагнетателя в некоторых транспортных средствах используется нагнетатель, который также нагнетает воздух, но механически работает от коленчатого вала двигателя, а не от выхлопных газов.

В разрезе турбокомпрессор показаны вентиляторы турбины и компрессора, соединенные валом.

Одна из проблем с турбонаддувом заключается в том, что воздух нагревается при сжатии, а это противоположно тому, что вы хотите.Холодный воздух более насыщен кислородом, поэтому его можно смешивать с большим количеством топлива и при этом правильно сгорать в цилиндре. Автопроизводители добавляют к турбо-системе теплообменник, называемый промежуточным охладителем, который поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.

Вентиляторы турбонагнетателя вращаются очень быстро — до 250 000 оборотов в минуту или больше — и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке. В этом случае открывается клапан, называемый перепускным клапаном, который отводит часть выхлопных газов от турбины.

Турбокомпрессор не нагнетает двигатель постоянно. Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как безнаддувный. Когда вы нажимаете на дроссельную заслонку, двигатель работает сильнее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, увеличивает мощность двигателя, который, в свою очередь, получает больше топлива — вот почему эти малолитражные двигатели могут внезапно стать намного более жаждущими, чем ожидалось, когда вы их сильно водите.(Положительным моментом является то, что дополнительный кислород имеет тенденцию более полно сжигать топливо в цилиндре, повышая эффективность двигателя и уменьшая вредные выбросы.)

Турбокомпрессор также создает головную боль для инженеров, поскольку он не сразу работает на полную мощность. . Существует небольшая задержка между моментом, когда вы опускаете ногу, и тем, когда турбокомпрессор набирает скорость, достаточную для обеспечения наддува и желаемого ускорения. Это известно как турбо-задержка.

Раньше он был гораздо более заметен в старых автомобилях, но сегодня автопроизводители используют другие методы, чтобы уменьшить его.Используются легкие лопатки турбины, поэтому для их вращения требуется меньшее давление. Турбокомпрессоры меньшего размера раскручиваются быстрее, и некоторые автопроизводители устанавливают два из них на двигатель, комбинируя маленький для быстрого начального наддува с более крупным, который может обеспечить большую мощность при более высоких оборотах двигателя. Некоторые автопроизводители, в том числе Volvo, для достижения этой цели используют в двигателе как нагнетатель с механическим приводом, так и турбонагнетатель с приводом от выхлопных газов.

Другая технология — это изменяемая геометрия, которая автоматически регулирует направление потока выхлопных газов в турбинное колесо в зависимости от частоты вращения двигателя и требований к мощности.

Двигатели с турбонаддувом, как правило, не требуют какого-либо дополнительного обслуживания, кроме рекомендованной замены масла в автомобиле и замены свечей зажигания. Некоторые более новые двигатели с турбонаддувом отлично работают на бензине обычного качества, но проверьте руководство пользователя на предмет любых требований к бензину премиум-класса.

Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют собственные названия, такие как Audi TFSI (для стратифицированного впрыска топлива с турбонаддувом) или Ford EcoBoost. Если вы не уверены, перед покупкой поинтересуйтесь, турбовый ли это.

Дизельный турбокомпрессор Cummins 6,7 л — знайте свои запчасти

В 2007 году грузовики Dodge начали использовать 6,7-литровый дизельный двигатель Cummins с турбонаддувом Common Rail, в котором используется турбонагнетатель с изменяемой геометрией (VGT). На 6.7L VGT имеет запатентованное цельное скользящее сопло, которое непрерывно перемещается для изменения мощности турбины и количества воздуха, подаваемого в двигатель. Перемещение позволяет настроить мощность турбины, чтобы обеспечить достаточную энергию для приведения в действие компрессора на желаемом уровне наддува во всех режимах работы двигателя.

Изменения уровня мощности турбины достигаются путем изменения положения соплового кольца относительно набора направляющих лопаток, которые регулируют поток через турбину. Другие конструкции VGT поворачивают лопатки для достижения других объемов турбины. Однако в этом турбокомпрессоре лопатки не поворачиваются. Привод с электронным управлением устанавливает скользящее сопловое кольцо над направляющими лопатками. Выхлопные газы попадают в турбинную часть турбокомпрессора, когда они выходят из выпускного коллектора.Давление выхлопных газов заставляет турбину вращаться. Турбина соединена валом с компрессорной частью турбокомпрессора. Вращающийся компрессор всасывает всасываемый воздух, сжимает его и направляет сжатый воздух через промежуточный охладитель в двигатель.

Установленный на корпусе турбонагнетателя привод с электронным управлением состоит из встроенного контроллера и зубчатой ​​передачи, которая регулирует положение скользящего соплового кольца. Привод использует сигнал от контроллера ЭСУД для управления соотношением между скользящим кольцом сопла и лопатками турбины.Перемещение кольца форсунки назад или вперед перенаправляет поток выхлопных газов, поэтому турбинное колесо вращается быстрее или медленнее по мере необходимости. Если кольцо перемещается назад, турбонагнетатель создает большее давление (колесо движется быстрее). Если кольцо сдвинуто вперед, турбонагнетатель создает меньшее давление (колесо движется медленнее).

Не снимайте привод с турбонагнетателя, если вы не уверены, что ваш диагностический прибор может выполнить процедуру определения местоположения, необходимую для правильной сборки.

Привод VGT на 6.7 л с водяным охлаждением. Охлаждающая жидкость подается через канал в корпусе подшипника. Водяное охлаждение повышает надежность и долговечность привода. При замене вышедшего из строя турбонагнетателя важно проверить эти трубопроводы на наличие достаточного потока охлаждающей жидкости.

Power Tip: Накопление углерода внутри турбонагнетателя может помешать правильному движению сопла и часто приводит к установке кода недостаточного наддува P2262.
При замене турбонагнетателя важно сделать следующее:

  • Проверить поток масла и охлаждающей жидкости к турбокомпрессору
  • Проверить и / или заменить воздушный фильтр
  • Убедитесь, что масло чистое и прошло техобслуживание
  • Отключите подачу топлива и проверните двигатель, чтобы прокачать турбонагнетатель и маслопровод
  • Запустите двигатель и дайте ему поработать несколько минут на холостом ходу, прежде чем запускать турбонагнетатель.
  • Дайте турбине остыть, поработав двигатель на холостом ходу в течение нескольких минут

Дополнительные советы по замене турбонагнетателя см.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *