Как протекает рабочий цикл четырехтактного карбюраторного двигателя: Рабочий цикл четырехтактного карбюраторного двигателя

Содержание

Как осуществляется рабочий цикл в четырехтактном карбюраторном двигателе

Содержание

  1. Рабочие циклы четырехтактных двигателей
  2. Рабочий цикл карбюраторного четырехтактного двигателя
  3. Такт впуска
  4. Такт сжатия
  5. Такт расширения
  6. Такт выпуска
  7. Рабочий цикл четырехтактного дизеля
  8. Такт впуска
  9. Такт сжатия
  10. Такт расширения
  11. Такт выпуска
  12. Рабочий цикл четырехтактного карбюраторного двигателя
  13. Устройство автомобилей
  14. Рабочие циклы двигателей
  15. Рабочий цикл четырехтактного карбюраторного двигателя
  16. Такт впуска
  17. Такт сжатия
  18. Такт расширения (рабочий ход)
  19. Такт выпуска
  20. Рабочий цикл четырехтактного дизеля
  21. Такт впуска
  22. Такт сжатия
  23. Такт расширения (рабочий ход)
  24. Такт выпуска
  25. Рабочий цикл двухтактного двигателя
  26. Видео

Рабочие циклы четырехтактных двигателей

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

Недостатки дизеля:

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Источник

Рабочий цикл четырехтактного карбюраторного двигателя

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.

Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:

четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,

двухтактные,в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

– впуск горючей смеси,

– сжатие рабочей смеси,

– выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси(рис. 8а).

Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси(рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – «степень сжатия» (например 8,5). А что это такое?

Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход(рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов(рис. 8г).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск. и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик(рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.

Рис. 9. Коленчатый вал двигателя с маховиком:1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Источник

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Источник

Видео

Рабочий цикл четырехтактного двигателя

Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3D

Рабочий цикл четырехтактного карбюраторного двигателя

Четырёхтактный двигатель. Принцип работы

Рабочие циклы четырёхтактного дизельного двигателя с наддувом

Как работает двигатель внутреннего сгорания автомобиля?

Принцип работы дизельного двигателя

Карбюратор. Принцип работы карбюратора / Carburetor. How a CV carburetor works | IzoFox Video

как работает двухтактный двигатель

Принцип работы газораспределительного механизма

Рабочий цикл четырехтактного двигателя — особенности, схема и описание. Рабочий цикл четырехкратного двигателя проходит за

Вопросы разобранные в статье

Общий принцип действия

Двигатель работает следующим образом. В камеру сгорания попадает топливная смесь, далее она сжимается под воздействием поршня. После этого смесь воспламеняется. Это приводит к расширению продуктов сгорания, они давят на поршень и выходят из цилиндра.

В двухтактных двигателях один оборот коленчатого вала совершается в два такта. Четырехтактный поршневой двигатель совершает рабочий цикл за два оборота коленчатого вала. Двигатели оснащаются ГРМ. Что это за механизм? Это элемент, который позволяет впускать топливную смесь в камеры и выпускать оттуда продукты сгорания. Обмен газов осуществляется в момент отдельного оборота коленчатого вала. Газообмен происходит за счет движения поршня.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания.
    Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

В четырёхтактном дизеле рабочие процессы происходят следующим образом.

Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.

– Такт расширения, или рабочий ход При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД). Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.

– Такт выпуска Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.

Рабочий цикл 4-х тактного бензинового двигателя

Итак, тема нашего занятия: «Рабочий цикл четырехтактного бензинового двигателя».

Цель, которая будет стоять перед нами — разобраться, из чего состоит рабочий цикл четырехтактного бензинового двигателя?

Я надеюсь, что ответ на этот вопрос вы найдете в течение нашего занятия.

«Ребята, как вы думаете, что такое рабочий цикл четырехтактного бензинового двигателя?»

Рабочий цикл четырёхтактного бензинового двигателя состоит из тактов впуска, сжатия, расширения, и выпуска (рис. 4.1).


Такт впуска. При такте впуска поршень в цилиндре перемещается от в. м.т. до н.м.т. Коленчатый вал поворачивается под действием стартера (если производится запуск двигателя) или по инерции от маховика и/или крутящего момента, создаваемого поршнями других цилиндров (если двигатель работает). Впускные клапаны при такте впуска открыты, выпускные закрыты. За счёт разрежения, создаваемого движущимся поршнем, топливно-воздушная смесь из впускного трубопровода через открытые впускные клапаны поступает в цилиндр. Разрежение в цилиндре на такте впуска может достигать 0,07 МПа. Разряжение в 0,07 МПа является существенной величиной и определяет чувствительность двигателя к негерметичности соединений, через которые в цилиндр поступает «лишний» воздух. «Лишний» воздух обедняет рабочую смесь, что приводит к неустойчивой работе двигателя, особенно на режиме холостого хода. Температура в цилиндре к концу такта впуска опускается до 130 – 100°С. Клапаны, стенки камеры сгорания и стенки цилиндров, поршни и другие детали ЦПГ охлаждаются новой порцией смеси, заполняющей цилиндр. Пройдя нижнюю мёртвую точку, поршень начинает движение к верхней мёртвой точке при такте сжатия. Такт сжатия. Поршень движется к в.м.т., но сжатие смеси начинается не тогда когда поршень начинает движение «вверх» а спустя некоторое время после этого, когда закроется впускной клапан. Время открытия и закрытия как впускных, так и выпускных клапанов, как правило, не совпадает с моментом прихода поршня в мёртвую точку. Открытие клапанов происходит раньше этого момента, а закрытие позже, что необходимо для более полного наполнения цилиндров свежей порцией горючей смеси и для лучшей очистки цилиндров от отработавших газов. Время открытия и закрытия клапанов удобно выражать в углах поворота коленчатого вала, так как угол поворота проще измерить и проконтролировать. В этом случае говорят об углах опережения открытия и углах запаздывания закрытия клапанов относительно мёртвых точек. При сжатии рабочей смеси в цилиндре растёт давление и температура, которые достигают максимума при приближении поршня к в. м.т. (8 –14 кгс/см2 и 400 — 500°С, соответственно). В конце такта сжатия (поршень не доходит до в.м.т. на 1 — 30° по углу поворота КВ) смесь в цилиндре воспламеняется от электрической искры и сгорает. Температура горения топливной смеси бензиновых двигателей может достигать 2800°С. Под воздействием температуры давление газов в цилиндре возрастает до 30 – 70 кгс/см2 и поршень начинает движение к н.м.т., совершая полезную работу, т.е. через шатун вращает коленчатый вал двигателя. Воспламенение (зажигание) рабочей смеси в камере сгорания происходит раньше прихода поршня в в.м.т. Такое зажигание называетсяранним зажиганием. Физический смысл необходимости «раннего» воспламенения смеси упрощённо сводится к следующему: Топливо необходимо сжечь к моменту прихода поршня в верхнюю мёртвую точку, для того чтобы максимальное давление газов начало действовать на поршень с началом его движения к н.м.т. В этом случае мощность двигателя будет наибольшей, а расход топлива оптимальным. Если смесь сгорает до прихода поршня в в. м.т., зажигание слишком раннее, если смесь горит при движении поршня к н.м.т. – зажигание позднее (на самом деле процесс горения смеси продолжается некоторое время при такте рабочего хода). Как при чрезмерно раннем, так и позднем зажигании, рабочие характеристики двигателя ухудшаются. Так как с увеличением оборотов коленчатого вала двигателя поршень движется быстрее, то и зажигание должно быть более ранним. Время воспламенения топливной смеси (также как и время открытия – закрытия клапанов) выражается в углах поворота коленчатого вала относительно в.м.т. и называется углом опережения зажигания. В зависимости от оборотов КВ угол опережения зажигания современных двигателей меняется в пределах от 0 до 30 и, иногда более градусов. Угол опережения зажигания, устанавливаемый для оборотов «холостого хода», называется начальным углом опережения зажигания. Такт расширения. Пройдя верхнюю мёртвую точку, поршень движется к н.м.т. под давлением расширяющихся газов. Процесс сгорания смеси начинается до прихода поршня в в. м.т. в конце предыдущего такта и длится 40 — 60° в углах поворота КВ. Впускные и выпускные клапаны закрыты, но за 45 — 60° до прихода поршня в н.м.т. начинает открываться выпускной клапан. С открытием выпускных клапанов давление в цилиндре быстро снижается до 5 – 3кгс/см2, температура к концу такта опускается до 1300 — 900°С. К моменту перехода поршнем нижней мёртвой точки выпускной клапан будет полностью открыт, а цилиндр «готов» к очистке от отработавших газов. Такт выпуска. Двигающийся к верхней мёртвой точке поршень, через выпускные клапаны, вытесняет отработавшие газы в систему выпуска двигателя. Вследствие сопротивления выпускной системы и ряда других факторов, часть отработавших газов остаётся в цилиндре и участвует при последующем такте впуска в смесеобразовании, часть газов на впуске искусственно возвращается в цилиндр (рециркулируется), с целью снижения содержания в отработавших газах окислов азота. Давление в конце такта выпуска немногим больше атмосферного, температура опускается до 400 — 300°С. За 9 — 40° до прихода поршня в в.м.т. открывается впускной клапан. Выпускной клапан при этом продолжает быть открытым вплоть до начала очередного такта впуска, и некоторое время спустя, после того как поршень начнёт движение «вниз». Угол поворота кривошипа коленчатого вала, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек, называют фазами газораспределения. Фазы газораспределения «среднестатистического» бензинового двигателя, в виде круговой диаграммы, показаны на рис. 4.2.


При дальнейшем вращении КВ, рассмотренные нами такты будут чередоваться в той же последовательности. Как мы видим, протекание того или иного такта в цилиндре двигателя зависит от положения клапанов (открыты или закрыты) и направления движения поршня. Например, такт впуска возможен, если поршень движется вниз, впускные клапаны открыты, а выпускные закрыты. За своевременное открытие – закрытие клапанов «отвечает» распределительный вал, за направление движения поршней – коленчатый вал. Для обеспечения рабочего цикла двигателя работа кривошипно-шатунного и газораспределительного механизмов должна быть синхронизирована. «Синхронизация» обеспечивается установкой коленчатого и распределительного валов в «стартовую позицию» по специальным меткам, выбитым на шкивах валов и корпусных деталях двигателя и получившим название — «метки фаз газораспределения». Если метки фаз газораспределения, по каким либо причинам не совпадают (например, при сборке двигателя механик не обеспечил правильную установку валов) двигатель будет работать неустойчиво или попросту не заведётся. В худшем случае может произойти поломка двигателя из-за «встречи» (столкновения) клапана и поршня. Типовое расположение меток на шкивах коленчатых и распределительных валов показано на рис. 4.3.

История

Первое устройство, напоминающее четырехтактный мотор, изобрели Феличче Матоци и Евгений Барсанти. Но данное изобретение невероятным образом утеряли. Лишь в 1861 году похожий агрегат запатентовали.

А первый пригодный к использованию двигатель разработал инженер из Германии Николаус Отто. Мотор получил имя изобретателя, а рабочий цикл четырехтактного двигателя также носит имя этого инженера.

Двухтактный двигатель.

Двухтактный и четырехтактный цикл схожи лишь тем, что в них присутствует сжатие и расширение рабочего тела. Такты наполнения топливом двигателя и его последующей очистки от продуктов сгорания заменены продувкой двигателя вблизи НМТ положения поршня. А весь рабочий цикл укладывается в течение одного оборота коленвала.

Если говорить о двухтактном цикле, то он делится на следующие такты: изначально, поршень поднимается вверх, сжимая рабочую смесь в цилиндре, а также создавая разрежение в кривошипной камере. Клапан впускного коллектора открывается от воздействия этого разряжения, и новая порция горючей смеси (зачастую с добавлением масла) втягивается в кривошипную камеру. При опускании поршня вниз закрывается клапан в кривошипной камере, а также повышается давление. В остальном же: поджег, сгорание топлива, и расширение рабочего тела происходят идентично, как и в четырехтактных двигателях. Но есть один нюанс, в момент, когда поршень опускается, примерно за 60° до НМТ открывается выпускное окно (поршень перестает его перекрывать). Выхлопные газы, находящиеся под большим давлением, устремляются в выпускной коллектор через это окно. Немного позже, поршень открывает и впускное окно, которое расположено со стороны впускного коллектора. Новая порция топлива из кривошипной камеры, попадает в рабочий объем цилиндра, под воздействием опускающегося поршня, и вытесняет оставшиеся отработанные газы. При этом, небольшая часть рабочей смеси попадает в выпускной коллектор, однако на обратном ходе поршня она втягивается обратно в кривошипную камеру.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Работа двигателя

Вне зависимости от типа мотора, принцип его работы аналогичен. Сегодня существуют карбюраторные моторы, дизельные, инжекторные. Во всех моделях происходит один и тот же рабочий цикл четырехтактного двигателя. Давайте подробно рассмотрим, какие же процессы работают внутри мотора и заставляют его приходить в движение.

Четырехтактный цикл – это последовательность из четырех рабочих тактов. За начало обычно принимается такт, когда в камеры сгорания попадает горючая смесь. Хоть за время его течения в двигателе проходят и другие действия, обозначаемый такт – это один рабочий процесс. К примеру, такт сжатия – это не только сжатие. В этот период смесь перемешивается в цилиндрах, начинается формирование газа, она воспламеняется.

То же самое можно сказать и о других этапах работы двигателя. Самое важное здесь то, что разные процессы для лучшего понимания и упрощения рабочего цикла четырехтактного двигателя раскладывают лишь на четыре такта.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа.
    Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Основы работы и конструкции двигателя

Рабочий цикл четырехтактного карбюраторного двигателя

В отличие от дизеля у карбюраторного двигателя воздух и топливо поступают в цилиндр одновременно в виде горючей смеси, приготовленной карбюратором.

Воспламенение горючей смеси происходит от искры, которая образуется в искровой свече зажигания, установленной в головке цилиндра.

Рабочий цикл четырехтактного карбюраторного двигателя протекает следующим образом.

Впуск. Поршень перемещается вниз. Впускной клапан открыт. Вследствие разрежения внутрь цилиндра через впускной канал поступает горючая смесь, которая перемешивается с остаточными газами, в результате чего образуется рабочая смесь.

Сжатие. Поршень движется вверх. Впускной и выпускной клапаны закрыты.

Объем над поршнем уменьшается, и рабочая смесь сжимается, благодаря чему улучшается испарение и перемешивание паров бензина с воздухом. К концу такта давление достигает 1,0… 1,2 МПа, а температура — 350… 400°С.

Рабочий ход или сгорание и расширение. Оба клапана закрыты. В конце такта сжатия рабочая смесь воспламеняется от искры.

Поршень под действием давления расширяющихся газов перемещается от в.м.т. к н.м.т. Давление газов достигает 2,5…4,0 МПа, а температура доходит до 2300°С.

Выпуск

После совершения газами полезной работы они должны выйти из цилиндра, чтобы освободилось место для новой порции горюче-воздушной смеси. Это последний такт в рабочем цикле четырехтактного двигателя.

Газы на этом этапе находятся под давлением, существенно превышающем атмосферное. Температура к концу такта снижается примерно до 700 градусов. Коленвал посредством шатуна двигает поршень к ВМТ. Далее открывается выпускной клапан, газы выталкиваются в атмосферу через выхлопную систему. Что касается давления, то оно высокое только в самом начале. В конце такта оно снижается до 0,120 МПа. Естественно, полностью избавиться от продуктов сгорания в цилиндре невозможно. Поэтому они при следующем такте впуска смешиваются с топливной смесью.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

Описание рабочего цикла четырехтактного двс

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации – Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье “как устроены бензиновые и дизельные двигатели”.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 – 0.75 МПа, а температура до 950 – 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

В отличие от бензинового двигателя, при такте “впуск” в цилиндры дизеля поступает чистый воздух. Во время такта “сжатие” воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Рабочий цикл четырехтактного карбюраторного двигателя

Рабочий цикл (рис. 2, а) совершается за два оборота коленчатого вала. Цикл состоит из пяти процессов: впуска, сжатия, горения, расширения и выпуска. Эти пять рабочих процессов происходят за четыре хода поршня и составляют четыре такта: впуск, сжатие, рабочий ход и выпуск. Рабочий ход состоит из двух рабочих процессов – горения и расширения. Остальные такты состоят каждый из одного рабочего процесса.

Впуск – это процесс заполнения цилиндра двигателя свежим зарядом (горючей смесью). Поршень движется от в. м. т. к н. м. т. Объем над поршнем увеличивается. В цилиндре создается разрежение, и через открытый впускной клапан цилиндр заполняется горючей смесью, которая внутри цилиндра смешивается с продуктами сгорания, оставшимися от предыдущего цикла. Так образуется рабочая смесь.

Когда коленчатый вал повернется на 180°, цилиндр заполнится рабочей смесью, впускной клапан закроется и впуск закончится. В конце впуска давление в цилиндре двигателя меньше атмосферного (0,70 – 0,85 кг/см 2 ). Это объясняется наличием сопротивлений, которые встречают на своем пути воздух при прохождении через воздушный фильтр и горючая смесь при прохождении через карбюратор, трубопроводы и клапаны.

При создании двигателей стремятся повысить давление рабочей смеси в конце впуска, так как, чем выше давление, тем больше вес свежего заряда, тем лучше наполнение цилиндра, тем больше развиваемая двигателем мощность. Соприкасаясь с нагретыми частями двигателя и продуктами сгорания, горючая смесь нагревается, и в конце впуска температура ее достигает 70 – 130° С. Это обеспечивает хорошее испарение бензина. Но чем выше температура рабочей смеси, тем меньше ее удельный вес. Поэтому температуру рабочей смеси нельзя чрезмерно повышать во избежание уменьшения мощности двигателя. Кроме того, повышение температуры рабочей смеси при впуске может вызвать ее самовоспламенение во время такта сжатия.

Сжатие – процесс уменьшения объема рабочей смеси в цилиндре, в результате которого быстрее и полнее сгорает рабочая смесь, повышается экономичность и мощность двигателя. Поршень движется от н. м. т. к в. м. т. при закрытых клапанах и сжимает рабочую смесь.

К концу сжатия давление в цилиндре возрастает до 7 – 12 кг/см 2 , а температура – до 350 – 400° С. Повышение температуры и давления определяется степенью сжатия. Степень сжатия – это отношение полного объема цилиндра к объему камеры сгорания. Чем выше степень сжатия, тем выше давление и температура в конце сжатия.

Но величина степени сжатия ограничивается свойствами применяемого в двигателе горючего, его антидетонационными качествами. Чем выше октановое число бензина, тем выше допускаемая степень сжатия. Современные двигатели имеют степень сжатия 6 – 7,5, и только двигатели легковых автомобилей высокого класса, работающие на специальных бензинах, имеют более высокую степень сжатия. Несоответствие степени сжатия антидетонационным качествам бензина приводит к возникновению детонации.

Некоторого повышения допустимой величины степени сжатия при том же октановом числе бензина добиваются увеличением числа оборотов коленчатого вала, выбором рациональной формы камеры сгорания и уменьшением рабочего объема цилиндров двигателя.

Горение – превращение химической энергии горючего в тепловую. Сгорание рабочей смеси в карбюраторном двигателе происходит взрьтоподобно, фронт пламени распространяется со скоростью 20 – 40 м/сек. Такая скорость сгорания обеспечивает резкое повышение давления и температуры газов в цилиндре двигателя: давление возрастает до 25 – 40 кг/см 2 , а температура – до 2200- 2500° С. В карбюраторном двигателе смесь воспламеняется от электрической искры, проскакивающей между электродами искровой зажигательной свечи.

Расширение – процесс увеличения объема продуктов сгорания в цилиндре двигателя. При этом тепловая энергия, выделившаяся при сгорании рабочей смеси, превращается в механическую работу.

При расширении поршень движется от в. м. т. к н. м. т., объем над поршнем возрастает, температура и давление газов падают. В конце расширения давление равно 3 – 5 кг/см 2 , а температура – 1200 – 1500° С.

Выпуск – процесс удаления продуктов сгорания (отработавших газов) из цилиндра двигателя. Поршень движется от н. м. т. к в. м. т., выпускной клапан открыт, и газы с большой скоростью выталкиваются из цилиндра. Давление в конце выпуска равно 1,1 – 1,2 кг/см 2 , а температура – 700 – 800° С. Избыточное давление отработавших газов объясняется сопротивлением, которое оказывают им выпускной клапан, трубопроводы и глушитель шума выпуска. Абсолютно полная очистка цилиндра невозможна, в нем всегда остается некоторое количество продуктов сгорания (в объеме камеры сгорания), смешивающихся с горючей смесью в процессе впуска.

Полезная механическая работа совершается двигателем только в течение одного такта – рабочего хода. Остальные три такта – выпуск, впуск и сжатие – называются подготовительными и совершаются за счет кинетической энергии маховика, вращающегося по инерции в промежутках между рабочими ходами. Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других цилиндрах.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Такт сжатия в дизельном двигателе

На данном этапе работы поршень в камере сгорания идет по направлению вверх к ВМТ. Оба клапана в двигателе автомобиля находятся в закрытом состоянии. В результате работы поршня воздух в цилиндре сжимается. Степень сжатия в дизельном двигателе более высокая, чем в бензиновых моторах, а давление внутри цилиндра может достигать 5 МПа.

Сжатый воздух существенно нагревается. Температуры могут достигать 700 градусов. Это нужно, чтобы воспламенилось топливо. Оно на дизельных моторах подается через форсунки, установленные на каждом цилиндре. В зимнее время в работе участвуют свечи накаливания. Они предварительно подогревают холодную смесь. Таким образом мотор легче запускается в зимнее время. Но такая система есть не на всех авто.

Источники


  • https://lom-s.ru/obuchenie/rabochij-cikl-4-taktnogo-dvigatelya.html
  • https://AvtoKart.ru/opyt-i-sovety/vpusk-szhatie-rabochij-hod-vypusk.html
  • https://dlobal.ru/rabochij-tsikl-karbyuratornogo-chetyrehtaktnogo-dvigatelya/
  • https://avto-layn.ru/obuchenie/rabochij-cikl-chetyrehtaktnogo-dvigatelya.html
  • https://garage-mo.ru/sovety/rabochij-cikl-chetyrehtaktnogo-karbyuratornogo-dvigatelya-2.html
  • https://toyota-chr2.ru/sovety/cikly-dvs.html
  • https://mbmsystems.ru/dvigatel/kak-protekaet-rabochij-tsikl-chetyrehtaktnogo-karbyuratornogo-dvigatelya. html

Давление 4 х тактного карбюраторного двигателя

Рабочим циклом двигателя внутреннего сгорания называют совокупность процессов, повторяющихся в цилиндре в такой последовательности: впуск свежего заряда, сжатие, расширение или рабочий ход, выпуск.

Цикл может быть осуществлен либо за четыре, либо за два такта. В первом случае цикл называется четырехтактным, во втором – двухтактным.

Рабочий цикл поршневого двигателя проходит по одной из двух схем, представленных на рис.1. На схеме, изображенной на рис.1,а, представлен рабочий цикл с внешним смесеобразованием (бензиновые и газовые двигатели), а на рис.1,б – рабочий цикл с внутренним смесеобразованием (дизели и бензиновые с непосредственным впрыском).

  • Рисунок 1 – Схемы рабочего цикла двигателей
  • а) с внешним смесеобразованием; б) с внутренним смесеобразованием
  • Рабочий цикл четырехтактного бензинового двигателя
  • При рассмотрении цикла условно принять, что начало рабочего цикла совпадает с ВМТ, а каждый такт начинается и заканчивается в одной из мертвых точек.
Первый такт – впуск При вращении коленчатого вала (по направлению стрелки) поршень перемещается из ВМТ в НМТ, впускной клапан открывается, выпускной клапан закрыт. Через открытый клапан цилиндр соединяется с системой впуска. Вследствие гидравлического сопротивления впускного трубопровода, впускного клапана и увеличения объема при перемещении поршня давление в цилиндре становится меньше атмосферного и воздух поступает в цилиндр.
Горючая смесь
, состоящая из паров мелкораспыленного топлива и воздуха, поступает под действием разряжения из впускного трубопровода в цилиндр, где смешивается с небольшим количеством остаточных газов, оставшихся от предыдущего цикла, и образует рабочую смесь. При подходе поршня к НМТ давление в цилиндре на 0,01…0,02 МПа меньше атмосферного, а температура смеси вследствие подогрева от контакта с нагретыми деталями двигателя и перемешивания с отработавшими газами повышается до 350…390 К.
Второй такт – сжатие Такт впуска заканчивается, когда поршень приходит в НМТ. При дальнейшем повороте коленчатого вала поршень перемещается из НМТ в ВМТ и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми. Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает (в зависимости от степени сжатия) 1,0…1,5 МПа, а температура 600…650 К. Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение топлива в бензиновых двигателях, осуществляемое электрической искрой, обычно производится до прихода поршня к ВМТ.
Третий такт – расширение или рабочий ход Оба клапана закрыты. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов, вследствие чего в цилиндре резко увеличиваются температура и давление. Под действием давления газов поршень перемещается к НМТ, газы расширяются и совершают полезную работу. В начале расширения давление составляет 3…4 МПа, температура 2300…2500 К, а при подходе поршня к НМТ, вследствие увеличения объема, давление снижается до 0,3…0,5 МПа, а температура составляет 1200…1500 К.
Четвертый такт – выпуск Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в атмосферу. При такте выпуска не достигается полная очистка цилиндра от отработавших газов, поэтому в конце выпуска давление в цилиндре составляет 0,105…0,120 МПа, а температура 700…900 К. После окончания такта выпуска рабочий цикл повторяется в рассмотренной выше последовательности.

Только при такте расширения совершается полезная работа, а остальные такты являются вспомогательными и поршень при этих тактах перемещается за счет энергии вращающегося коленчатого вала с маховиком и работы других цилиндров (в многоцилиндровых двигателя).

Рабочий цикл четырехтактного дизеля

Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного бензинового двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла бензинового двигателя.

В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура.

В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом.

Первый такт – впуск При движении поршня от ВМТ к НМТ давление в цилиндре снижается вследствие гидравлического сопротивления воздухоочистителя, впускного трубопровода и через открытый впускной клапан в цилиндр поступает очищенный воздух. Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура его повышается, но меньше, чем в бензиновом двигателе, так как количество остаточных газов в цилиндре дизеля меньше, чем в бензиновом двигателе. Кроме того, подогрев воздуха происходит и от контакта с нагретыми деталями двигателя, и в конце такта впуска температура воздуха достигает 320…350 К, а давление 0,08…0,09 МПа.
Второй такт – сжатие Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и при подходе поршня к ВМТ составляют: давление 4,0…5,5 МПа, а температура 850…1000 К. В конце такта сжатия с помощью насоса через форсунку в цилиндр под высоким давлением впрыскивается мелкораспыленное топливо. Давление впрыскивания составляет 13,0…18,5 МПа. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с воздухом и воспламеняются.
  1. Третий такт – расширение или рабочий ход
  2. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличивается давление и температура образовавшихся газов.
  3. В начале такта расширения давление газов составляет 6,0…8,0 МПа, а температура 2100…2300 К.

Под действием давления поршень из ВМТ перемещается в НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют: давление 0,2…0,4 МПа, температура 800…1200 К.

Четвертый такт – выпуск Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в атмосферу. В конце такта выпуска давление газов 0,11…0,12 МПа, температура 800…900 К. После такта выпуска рабочий цикл дизеля повторяется.

Рабочий цикл двухтактного карбюраторного двигателя

В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы впуска и выпуска совмещены по времени с процессами сжатия и расширения.

В отличие от четырехтактного двигателя очистка цилиндра от отработавших газов и наполнение его свежим зарядом происходит при положении поршня вблизи НМТ.

При этом очистка цилиндра от отработавших газов осуществляется не выталкиванием их поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью.

На рис.2 представлена схема двухтактного карбюраторного двигателя с кривошипно-камерной продувкой.

  • Рисунок 2 – Схема двухтактного карбюраторного двигателя
  • 1 – впускное окно; 2 – выпускное окно; 3 – свеча зажигания; 4 – цилиндр; 5 — поршень; 6 – перепускное окно; 7 – канал; 8 – герметичный картер

В этом двигателе нет специального механизма газораспределения. Вместо него цилиндр имеет окна: впускное окно 1, соединяющее цилиндр с карбюратором; выпускное окно 2 и перепускное окно 6, соединяющее цилиндр с герметичным картером при помощи канала 7.

Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции механизма газораспределения. В цилиндр двухтактного двигателя с кривошипно-камерной продувкой горючая смесь поступает через картер.

Для подготовки двигателя к работе необходимо сделать два подготовительных хода: первый – впуск горючей смеси в картер; второй – перепуск горючей смеси из картера в цилиндр.

Первый такт Поршень 5 перемещается снизу вверх и боковой поверхностью сначала закрывает перепускное окно 6, а затем и выпускное 2. В цилиндре происходит сжатие рабочей смеси, а в картер вследствие разряжения из карбюратора поступает горючая смесь. При подходе поршня к ВМТ между электродами свечи зажигания появляется электрическая искра, в результате чего рабочая смесь в цилиндре воспламеняется и сгорает.
Второй такт Образовавшиеся горячие газы расширяются и давят на поршень, вследствие чего он опускается вниз, совершая рабочий ход. В конце рабочего хода поршень сначала открывает выпускное окно 2, и отработавшие газы из цилиндра через глушитель выходят в атмосферу. Опускаясь ниже, поршень открывает перепускное окно 6, и горючая смесь по каналу 7 поступает в цилиндр, заполняет его и вытесняет отработавшие газы. Незначительная часть горючей смеси вместе с отработавшими газами выходит в атмосферу и не принимает участия в рабочем цикле.

Примечание: Параметры цикла (давление и температура) соответствуют параметрам четырехтактного бензинового двигателя.

Двухтактные двигатели, работающие по данной схеме газообмена, имеют сухой картер, т. е. в картере отсутствует смазочный материал. Для смазывания трущихся деталей двигателя смазочный материал добавляют к топливу в пропорции 1:20 по объему. Следовательно, горючая смесь в виде воздуха, топлива и масла обеспечивает при своем движении одновременно и смазку двигателя.

На рис.3 показан принцип действия четырех- и двухтактного двигателя внутреннего сгорания.

Четырехтактный двигатель Двухтактный двигатель

Рисунок 3 – Принцип действия двигателя внутреннего сгорания

Устройство автомобилей



Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами.

Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу.

При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом.

Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными. В головке блока цилиндров, над камерой сгорания (рис.

1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.

Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07…0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение. Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха.

Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75…125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске.

При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака). В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.

В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.

В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты).

В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.

При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.

При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду.

К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

***



Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку.

В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия. Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия.

В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.

Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2):

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08…0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД).

Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)

В конце такта сжатия, при подходе к ВМТ, оба клапана закрыты.

После впрыска топлива происходит самовоспламенение рабочей смеси и ее сгорание, при этом поршень 2 под давлением расширяющихся газов стремительно движется от ВМТ к НМТ и через шатун воздействует на коленчатый вал, совершая полезную работу.

Топливо, не успевшее сгореть в конце такта сжатия, догорает в начале такта расширения. К концу рабочего хода давление газов уменьшается до 0,2…0,4 МПа, а температура снижается до 700…900 ˚С.

Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу.

Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду.

К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600…700 ˚С. Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

***

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала. Схема двухтактного дизеля представлена на рис. 3. Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо. Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу. Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду.

К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3. Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом.

Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов .

А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е.

остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями.

Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.

Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

***

Многоцилиндровые двигатели



Главная страница

Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Специальности

Учебные дисциплины

Олимпиады и тесты

Рабочий цикл четырехтактного карбюраторного двигателя

  • Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.
  • Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
  • Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.
  • По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:
  • четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,
  • двухтактные,в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

  1. Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
  2. – впуск горючей смеси,
  3. – сжатие рабочей смеси,
  4. – рабочий ход,
  5. – выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси(рис. 8а).

Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси(рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – «степень сжатия» (например 8,5). А что это такое?

Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход(рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов(рис. 8г).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик(рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.

Рис. 9. Коленчатый вал двигателя с маховиком:1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается.

Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Рабочий цикл четырехтактного карбюраторного двигателя [1963 Вокрачко Ю.Г. — Учебник военного водителя второго класса]

Рабочий цикл (рис. 2, а) совершается за два оборота коленчатого вала. Цикл состоит из пяти процессов: впуска, сжатия, горения, расширения и выпуска. Эти пять рабочих процессов происходят за четыре хода поршня и составляют четыре такта: впуск, сжатие, рабочий ход и выпуск. Рабочий ход состоит из двух рабочих процессов — горения и расширения. Остальные такты состоят каждый из одного рабочего процесса.

Впуск — это процесс заполнения цилиндра двигателя свежим зарядом (горючей смесью). Поршень движется от в. м. т. к н. м. т. Объем над поршнем увеличивается. В цилиндре создается разрежение, и через открытый впускной клапан цилиндр заполняется горючей смесью, которая внутри цилиндра смешивается с продуктами сгорания, оставшимися от предыдущего цикла. Так образуется рабочая смесь.

Когда коленчатый вал повернется на 180°, цилиндр заполнится рабочей смесью, впускной клапан закроется и впуск закончится.

В конце впуска давление в цилиндре двигателя меньше атмосферного (0,70 — 0,85 кг/см2).

Это объясняется наличием сопротивлений, которые встречают на своем пути воздух при прохождении через воздушный фильтр и горючая смесь при прохождении через карбюратор, трубопроводы и клапаны.

При создании двигателей стремятся повысить давление рабочей смеси в конце впуска, так как, чем выше давление, тем больше вес свежего заряда, тем лучше наполнение цилиндра, тем больше развиваемая двигателем мощность.

Соприкасаясь с нагретыми частями двигателя и продуктами сгорания, горючая смесь нагревается, и в конце впуска температура ее достигает 70 — 130° С. Это обеспечивает хорошее испарение бензина. Но чем выше температура рабочей смеси, тем меньше ее удельный вес.

Поэтому температуру рабочей смеси нельзя чрезмерно повышать во избежание уменьшения мощности двигателя. Кроме того, повышение температуры рабочей смеси при впуске может вызвать ее самовоспламенение во время такта сжатия.

Сжатие — процесс уменьшения объема рабочей смеси в цилиндре, в результате которого быстрее и полнее сгорает рабочая смесь, повышается экономичность и мощность двигателя. Поршень движется от н. м. т. к в. м. т. при закрытых клапанах и сжимает рабочую смесь.

К концу сжатия давление в цилиндре возрастает до 7 — 12 кг/см2, а температура — до 350 — 400° С. Повышение температуры и давления определяется степенью сжатия. Степень сжатия — это отношение полного объема цилиндра к объему камеры сгорания. Чем выше степень сжатия, тем выше давление и температура в конце сжатия.

Рис. 2. Рабочий цикл: а — четырехтактного двигателя; б — двухтактного двигателя

Но величина степени сжатия ограничивается свойствами применяемого в двигателе горючего, его антидетонационными качествами. Чем выше октановое число бензина, тем выше допускаемая степень сжатия.

Современные двигатели имеют степень сжатия 6 — 7,5, и только двигатели легковых автомобилей высокого класса, работающие на специальных бензинах, имеют более высокую степень сжатия.

Несоответствие степени сжатия антидетонационным качествам бензина приводит к возникновению детонации.

Некоторого повышения допустимой величины степени сжатия при том же октановом числе бензина добиваются увеличением числа оборотов коленчатого вала, выбором рациональной формы камеры сгорания и уменьшением рабочего объема цилиндров двигателя.

Горение — превращение химической энергии горючего в тепловую. Сгорание рабочей смеси в карбюраторном двигателе происходит взрьтоподобно, фронт пламени распространяется со скоростью 20 — 40 м/сек.

Такая скорость сгорания обеспечивает резкое повышение давления и температуры газов в цилиндре двигателя: давление возрастает до 25 — 40 кг/см2, а температура — до 2200- 2500° С.

В карбюраторном двигателе смесь воспламеняется от электрической искры, проскакивающей между электродами искровой зажигательной свечи.

Расширение — процесс увеличения объема продуктов сгорания в цилиндре двигателя. При этом тепловая энергия, выделившаяся при сгорании рабочей смеси, превращается в механическую работу.

При расширении поршень движется от в. м. т. к н. м. т., объем над поршнем возрастает, температура и давление газов падают. В конце расширения давление равно 3 — 5 кг/см2, а температура — 1200 — 1500° С.

Выпуск — процесс удаления продуктов сгорания (отработавших газов) из цилиндра двигателя. Поршень движется от н. м. т. к в. м. т., выпускной клапан открыт, и газы с большой скоростью выталкиваются из цилиндра. Давление в конце выпуска равно 1,1 — 1,2 кг/см2, а температура — 700 — 800° С.

Избыточное давление отработавших газов объясняется сопротивлением, которое оказывают им выпускной клапан, трубопроводы и глушитель шума выпуска.

Абсолютно полная очистка цилиндра невозможна, в нем всегда остается некоторое количество продуктов сгорания (в объеме камеры сгорания), смешивающихся с горючей смесью в процессе впуска.

Полезная механическая работа совершается двигателем только в течение одного такта — рабочего хода.

Остальные три такта — выпуск, впуск и сжатие — называются подготовительными и совершаются за счет кинетической энергии маховика, вращающегося по инерции в промежутках между рабочими ходами.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других цилиндрах.

Четырехтактный карбюраторный двигатель

Устройство четырехтактного карбюраторного двигателя представлено на рис. 16.3. Его основными элементами являются картер 1, цилиндр 7 и цилиндровая крышка 8. Эти детали жестко соединены между собой и образуют остов двигателя.

В цилиндре перемещается поршень 9, соединенный шарнирно поршневым пальцем 11 с шатуном 3. В нижней части шатун соединен с кривошипом коленчатого вала 16.

Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Горючая смесь, приготовленная в карбюраторе 13, через впускной клапан 12 поступает в цилиндр двигателя.

Воспламеняется она от электрической свечи 10, получающей ток высокого напряжения от индукционной катушки через прерыватель 14.

Продукты сгорания удаляются из цилиндра через выпускной клапан 6. Впускной и выпускной клапаны открываются в требуемые моменты времени под воздействием кулачков распределительного вала 4, а закрываются под действием пружин 5.

Распределительный вал и прерыватель системы зажигания получают вращение от коленчатого вала двигателя через шестерни 15. При сгорании топлива в цилиндре создается высокое давление газов.

Поэтому во избежание их прорыва в картер поршень в цилиндре уплотняется компрессионными кольцами 17, устанавливаемыми в канавки на боковой поверхности поршня. Кольца прижимаются к цилиндру под воздействием сил упругости и давления газов р.

На конце вала двигателя установлен маховик 2, служащий для уменьшения неравномерности вращения коленчатого вала, а в четырехтактных дви-

Рис. 163. Схема четырехтактного карбюраторного двигателя гателях с числом цилиндров менее четырех — также для вывода поршня из мертвых точек.

Крайние положения поршня в цилиндре называются верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). Объем, описываемый поршнем в цилиндре при движении от верхней к нижней мертвой точке, называется рабочим объемом Vh. Рабочий объем, л, всех цилиндров двигателя определяется по формуле

  • где D — диаметр цилиндра, м; S — ход поршня, м; i — число цилиндров двигателя.
  • Объем цилиндра над поршнем при нахождении его в ВМТ называется камерой сжатия или камерой сгорания и обозначается Тс.
  • Отношение полного объема цилиндра Vc + Vh к объему камеры сгорания Рс называется степенью сжатия е:

Рабочий процесс четырехтактного карбюраторного двигателя, как и любого другого двигателя, наиболее удобно рассматривать с помощью индикаторной диаграммы. По оси абсцисс откладывают объемы, описываемые рабочим телом, а по оси ординат — давления газов в цилиндре при различных положениях поршня (рис. 16.4). Горизонтальная линия, нанесенная на диаграмме, соответствует атмосферному давлению.

Первый такт — впуск горючей смеси (линия г— а) начинается с движения поршня от ВМТ к НМТ при открытом впускном клапане. В начале такта объем камеры сжатия Vc заполнен остаточными газами при давлении 0,105—0,125 МПа (точка г).

По мере перемещения поршня давление в цилиндре понижается, становится равным атмосферному, а затем — ниже его.

Вследствие создавшегося разрежения в цилиндре атмосферный воздух поступает в карбюратор, служащий для приготовления горючей смеси, которая заполняет надпоршневое пространство.

В конце впуска (точка а) давление рабочей смеси равно 0,07—0,095 МПа, а температура — 70—100°С. Повышение температуры рабочей смеси в процессе всасывания объясняется соприкосновением ее с горячими деталями двигателя и перемешиванием с остаточными газами.

Рис. 16.4. Индикаторная диаграмма четырехтактного карбюраторного двигателя

Второй такт — сжатие рабочей смеси. Поршень движется от НМТ к ВМТ (линия а—с). На начальной стадии такта сжатия давление в цилиндре до точки 1 меньше атмосферного, поэтому на этом участке при открытом впускном клапане происходит еще заполнение цилиндра рабочей смесью.

При дальнейшем движении поршня вследствие запаздывания закрытия впускного клапана при значительной частоте вращения, а следовательно, и большом скоростном напоре рабочей смеси возможна дозарядка цилиндров. Однако следует иметь в виду, что в этот период при малой частоте вращения не исключен выброс смеси в атмосферу.

После закрытия впускного клапана начинается собственно процесс сжатия рабочей смеси в цилиндре. Давление в конце сжатия (точка с), в зависимости от степени сжатия 8, составляет 0,6—1,0 МПа, а температура — 350—450°С.

Степень сжатия в карбюраторном двигателе выбирается такой, чтобы температура в конце сжатия была ниже температуры самовоспламенения паров бензина и обеспечивалось бездетопационное сгорание топлива.

В конце такта сжатия, когда поршень подходит к ВМТ (точка 2), срабатывает прибор зажигания, в результате чего между электродами свечи образуется электрическая дуга, от которой воспламеняется рабочая смесь.

Третий такт — расширение продуктов сгорания. Оба клапана закрыты (линия с—г). Сгорание топлива сопровождается выделением большого количества тепла, что приводит к резкому повышению температуры (до 1800—2300°С) и давления (до 2—4 МПа). Образовавшиеся продукты сгорания, расширяясь, перемещают поршень от ВМТ к НМТ и совершают при этом полезную работу (линия z—b).

При расширении температура и давление газов в цилиндре понижаются. Для лучшей очистки цилиндра от отработавших газов и для уменьшения работы выталкивания выпускной клапан открывается раньше прихода поршня в НМТ.

В момент открытия выпускного клапана (точка 3) давление в цилиндре обычно составляет 0,3—0,5 МПа. Вследствие значительного перепада давлений между цилиндром и выпускным коллектором удаление газов происходит с большой скоростью. При этом давление газов в цилиндре резко снижается.

Четвертый такт — выпуск отработавших газов. Поршень движется от НМТ к ВМТ. Выпускной клапан открыт. Происходит выпуск отработавших газов из цилиндра в атмосферу (линия Ь—г). Температура отработавших газов — 650—900°С.

В рассмотренном четырехтактном карбюраторном двигателе полезная механическая работа совершается только во время расширения газов в цилиндре, поэтому третий такт называют рабочим. 5000 об/мин, что обеспечивает малые вес и габариты данного двигателя.

Четырехтактные карбюраторные двигатели применяют на автопогрузчиках, грузовых автомобилях и других передвижных установках небольшой мощности.

Рабочий цикл четырехтактного карбюраторного двигателя

Карбюраторный двигатель: описание,характеристики,фото,видео,принцип работы

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по впускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру

По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Рабочий цикл двухтактного двигателя – достоинства и недостатки

По описанному выше можно сделать вывод, что рабочий цикл двухтактного карбюраторного двигателя считается наиболее экономичным при использовании его в определенных механизмах, например, на некоторых моделях мотоциклов. В этих конструкциях цилиндр продувается при помощи воздушно-топливной смеси, а затем вместе с отработанной воздушной смесью из цилиндра удаляется топливо, которое к этому моменту не успело сгореть.

Однако по сравнению с этими двигателями, модели четырехтактных моторов обладают большим ресурсом. Благодаря высокой экономичности, они используются в большинстве машин и механизмов. Они обладают наиболее чистым выхлопом, не требующим устройства выхлопной системы повышенной сложности. Четырехтактные двигатели не требуют предварительного смешивания бензина с маслом, у них гораздо меньший уровень шума.

Исходя из достоинств, некоторые представители западного автопрома, например, SAAB, на заре своей деятельности устанавливали на свою продукцию двухтактные двигатели. Однако сегодня классический вариант этого силового агрегата попросту не выживет под натиском «экологических» требований к транспорту, поэтому его спешно заменили на четырехтактный. Однако достоинства двухтактного мотора заставили некоторые компании поработать над эффективностью сгорания топлива, и компания Ford, например, готова представить более «чистый» вариант такого двигателя.

Главная →

Обслуживание и Ремонт → Двигатель →

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Четыре такта: недостатки и достоинства

Основной и «жирный» плюс таких агрегатов – это экономичность. К тому же они не слишком шумные.

Применение вместе с ними катализаторов позволяет снизить токсичность выброса отработанных газов.

Еще одно преимущество — это, конечно же, высокая надежность. Ресурс может доходить до миллиона километров, и это далеко не предел. Ремонт четырехтактного двигателя нужно делать не так часто.

Среди недостатков – сложная конструкция, дорогое производство, требовательность в эксплуатации. Этим агрегатам обязательно нужно качественное топливо и масло. Осуществить ремонт самостоятельно практически невозможно.

Чтобы с этими моторами никогда не было проблем, «кормите» их только качественным бензином. И тогда они будут работать долго, надежно и исправно. Конструкция, которая столько лет не меняется, – это показатель надежности и эффективности.

Недостатки четырёхтактных двигателей:

Все холостые ходы (впуск, сжатие, выпуск) совершаются за счёт кинетической энергии, запасённой кривошипно шатунным механизмом и связанными с ним деталями во время рабочего хода, в процессе которого химическая энергия топлива превращается в механическую энергию движущихся частей двигателя. Поскольку сгорание происходит в доли секунд, то оно сопровождается быстрым увеличением нагрузки на крышку (головку) цилиндра, поршень и другие детали двигателя внутреннего сгорания. Наличие такой нагрузки неизбежно приводит к необходимости увеличить массу движущихся деталей (для повышения прочности), что в свою очередь сопровождается ростом инерционных нагрузок на движущиеся детали.

Количество поршней

Таким образом поршень только на третьем этапе вращал коленчатый вал, а на всех остальных наоборот коленвал перемещал поршень. Но откуда на валу возьмется энергия для вращения вала. Можно использовать не один поршень, а несколько. Пожалуй,самым логичным решением будет установка четырех поршней (хотя их может быть и 3, и 6, и 12). Если в двигателе 4 поршня, то каждый из них в один момент находится на разных этапах:

  • первый — всасывает воздух;
  • второй — сжимает смесь;
  • третий — осуществляет рабочий ход;
  • четвертый — вытесняет выхлопные газы.

Для обеспечения плавной работы на валу двигателя может быть установлен маховик.

Фильтры тонкой очистки топлива

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Ремонт бензобака своими руками

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Устройство воздушного фильтра

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом. Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Особенности настройки карбюратора 2 х тактного скутера

Карбюратор на скутере 2т немного отличается по конструкции и к мотору 4т не подходит. Вопрос, как настроить такое устройство, волнует всех обладателей двухтактников.

На большинстве китайских моделей ставится довольно простой карбюратор без лишних регулировок. Обогатитель здесь механический, хотя, если тюнинговать скутер или у вас японская модель, обогатитель может стоять и электрический. Для того чтобы пользоваться механическим вариантом, нужно сначала нажать курок на нем, а потом уже пытаться заводить технику.

Настройка карбюратора скутера 2т несложна, но требует некоторого терпения. Для того чтобы ее осуществить, потребуется карбюратор разобрать: вначале потребуется открутить верхнюю крышку. Игла в нем зафиксирована скобой, ее нужно вытащить. Качество смеси регулируется точно так же, как описано выше. Особенностью двухтактной системы является то, что игла влияет на качество смеси только в определенном положении. Если дроссельная заслонка поднята максимально, за топливную смесь будет отвечать только главный топливный жиклер. Иногда в нее вмешивается система холостого хода. В зависимости от того, какой карбюратор у вас установлен.

Для холодного пуска нужно пользоваться пусковым обогатителем, который нужно закрыть после того, как мотор прогреется; проще говоря, это подсос. В таких карбюраторах важную роль играет уровень топлива. Регулируется он тоже путем механического вмешательства в работу поплавковой камеры. Настраивается она тем же способом, что и в четырехтактной версии. По сути, от моделей для моторов на 4 тактном скутере карбюратор для 2т моторов отличается только жиклерами и некоторыми другими параметрами, но устроен похоже, поэтому и регулируется так же.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.


Смотреть галерею

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Преимущества четырёхтактных двигателей:

В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.

Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.

Что лучше бензин, солярка или дизель — преимущества

Соляровые аккумуляторы не имеют свечи зажигания. Они нуждаются в высокой степени сжатия для создания высоких температур, необходимых для автоматического зажигания горючего (чем выше цетановое число, тем лучше зажигание).

С соляровым (от 14:1 до 25:1) компрессия выше, чем с другим двигателем (от 8:1 до 12:1). Применяют низкие степени сжатия, чтобы избежать автоматического зажигания топлива (стук двигателя). Высокие коэффициенты сжатия приводят к высокой тепловой эффективности и лучшей экономии горючего. По всем техническим классификациям «солярка» имеет больше положительных сторон.

Рабочий цикл четырехтактного двигателя — особенности, схема и описание

Автолюбители должны хотя бы в общих чертах знать, как устроен и работает двигатель. В большинстве автомобилей установлен четырехтактный четырехцилиндровый мотор. Давайте рассмотрим рабочий цикл четырехтактного двигателя. Далеко не все знают, какие процессы происходят, когда автомобиль находится в движении.

Общий принцип действия

Двигатель работает следующим образом. В камеру сгорания попадает топливная смесь, далее она сжимается под воздействием поршня. После этого смесь воспламеняется. Это приводит к расширению продуктов сгорания, они давят на поршень и выходят из цилиндра.

В двухтактных двигателях один оборот коленчатого вала совершается в два такта. Четырехтактный поршневой двигатель совершает рабочий цикл за два оборота коленчатого вала. Двигатели оснащаются ГРМ. Что это за механизм? Это элемент, который позволяет впускать топливную смесь в камеры и выпускать оттуда продукты сгорания. Обмен газов осуществляется в момент отдельного оборота коленчатого вала. Газообмен происходит за счет движения поршня.

История

Первое устройство, напоминающее четырехтактный мотор, изобрели Феличче Матоци и Евгений Барсанти. Но данное изобретение невероятным образом утеряли. Лишь в 1861 году похожий агрегат запатентовали.

А первый пригодный к использованию двигатель разработал инженер из Германии Николаус Отто. Мотор получил имя изобретателя, а рабочий цикл четырехтактного двигателя также носит имя этого инженера.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Работа двигателя

Вне зависимости от типа мотора, принцип его работы аналогичен. Сегодня существуют карбюраторные моторы, дизельные, инжекторные. Во всех моделях происходит один и тот же рабочий цикл четырехтактного двигателя. Давайте подробно рассмотрим, какие же процессы работают внутри мотора и заставляют его приходить в движение.

Четырехтактный цикл – это последовательность из четырех рабочих тактов. За начало обычно принимается такт, когда в камеры сгорания попадает горючая смесь. Хоть за время его течения в двигателе проходят и другие действия, обозначаемый такт – это один рабочий процесс. К примеру, такт сжатия – это не только сжатие. В этот период смесь перемешивается в цилиндрах, начинается формирование газа, она воспламеняется.

То же самое можно сказать и о других этапах работы двигателя. Самое важное здесь то, что разные процессы для лучшего понимания и упрощения рабочего цикла четырехтактного двигателя раскладывают лишь на четыре такта.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Сжатие

После заполнения камеры сгорания горючей смесью бензиновых паров и воздуха, если коленвал производит вращательные движения, поршень начнет возвращаться в свое нижнее положение. Впускной клапан на данном этапе начнет закрываться. А выпускной будет все еще закрыт.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Выпуск

После совершения газами полезной работы они должны выйти из цилиндра, чтобы освободилось место для новой порции горюче-воздушной смеси. Это последний такт в рабочем цикле четырехтактного двигателя.

Газы на этом этапе находятся под давлением, существенно превышающем атмосферное. Температура к концу такта снижается примерно до 700 градусов. Коленвал посредством шатуна двигает поршень к ВМТ. Далее открывается выпускной клапан, газы выталкиваются в атмосферу через выхлопную систему. Что касается давления, то оно высокое только в самом начале. В конце такта оно снижается до 0,120 МПа. Естественно, полностью избавиться от продуктов сгорания в цилиндре невозможно. Поэтому они при следующем такте впуска смешиваются с топливной смесью.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Дизельные моторы

Рабочий цикл четырехтактного дизельного двигателя – это такая же последовательность процессов, как и цикл карбюраторного мотора. Разница состоит в том, как протекает цикл, а также в различиях процессов образования смеси и воспламенения.

Такт впуска на дизеле

При движении поршня по направлению вниз газораспределительный механизм открывает впускной клапан. В камеру сгорания попадает определенное количество воздуха. Температура в цилиндре при этом составляет примерно 80 градусов. В дизельных двигателях система питания значительно отличается от бензиновых карбюраторных моторов. Например, гидравлическое сопротивление в них ниже, а давление немного повышается.

Такт сжатия в дизельном двигателе

На данном этапе работы поршень в камере сгорания идет по направлению вверх к ВМТ. Оба клапана в двигателе автомобиля находятся в закрытом состоянии. В результате работы поршня воздух в цилиндре сжимается. Степень сжатия в дизельном двигателе более высокая, чем в бензиновых моторах, а давление внутри цилиндра может достигать 5 МПа. Сжатый воздух существенно нагревается. Температуры могут достигать 700 градусов. Это нужно, чтобы воспламенилось топливо. Оно на дизельных моторах подается через форсунки, установленные на каждом цилиндре. В зимнее время в работе участвуют свечи накаливания. Они предварительно подогревают холодную смесь. Таким образом мотор легче запускается в зимнее время. Но такая система есть не на всех авто.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

Выпуск в дизельном двигателе

На этом этапе выпускной клапан открыт, поршень движется к верхней точке. Из цилиндра принудительно удаляются продукты сгорания. Далее они идут на выпускной коллектор. После этого в работу включается каталитический нейтрализатор. Газы, проходя через него под высокой температурой, очищаются. В атмосферу уже выходит чистый, безвредный газ. На дизельных автомобилях дополнительно установлен сажевый фильтр. Он также способствует очистке газов.

Заключение

Мы подробно разобрали, как осуществляется рабочий цикл четырехтактного двигателя (проходит за два оборота коленчатого вала силовой установки). А сам цикл включает в себя много разных процессов.

Рабочий цикл четырехтактного карбюраторного двигателя устройство легкового автомобиля диагностика устранение неисправностей ремонт и обслуживание автомобиля

 

Глава 2. Двигатель

1. Общее устройство и рабочий цикл двигателя

Рабочий цикл четырехтактного карбюраторного двигателя

 Процесс, происходящий в цилиндре за один ход поршня, называется тактом. Таких тактов четыре: впуск бензино-воздушной смеси, ее сжатие, расширение газов при сгорании (рабочий ход), выпуск продуктов сгорания. Совокупность тактов называется рабочим циклом.

Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называют четырехтактным.

Рис. 5. Рабочий цикл четырехтактного карбюраторного двигателя: а — впуск; б — сжатие; в — рабочий ход; г — выпуск

Табл. 2. Краткие технические характеристики двигателей автомобилей ГАЗ-24 и их модификаций и УАЗ ( УМЗ — Ульяновский моторный завод)

Первый такт — впуск: поршень перемещается от ВМТ к НМТ, впускной клапан 1 (рис. 5, а) открыт, выпускной клапан 3 закрыт. В цилиндре создается разрежение (0,7-0,9 кгс/см2), и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь. Температура смеси в конце впуска 75-125° С.

Количество поступившей в цилиндр бензино-воздушной смеси определяет количество сжигаемого топлива, а следовательно, величину получаемой в цилиндре работы за цикл. Поэтому чем лучше наполнение цилиндра бензино-воздушной смесью, тем выше мощность двигателя.

Поступающая в цилиндр бензино-воздушная смесь подогревается от нагретых внутренних стенок цилиндра. Это, с одной стороны, улучшает испарение бензина, а с другой ухудшает наполнение цилиндров из-за понижения плотности смеси.

Второй такт — сжатие: поршень перемещается от НМТ к ВМТ (рис. 5, б), оба клапана закрыты. Давление в цилиндре и температура рабочей смеси повышаются. В конце такта давление достигает 9-15 кгс/см2, а температура 350-500° С.

Третий такт — расширение или рабочий ход. В конце такта, сжатия рабочая смесь воспламеняется в результате искрового разряда в свече 2 зажигания, происходит быстрое сгорание смеси (рис. 5, в). Максимальное давление при сгорании достигает 35- 50 кгс/см2, а температура 2200-2500° С. Давление газов передается на поршень 4, далее через поршневой палец 5 и шатун 6 на коленчатый вал 7, создавая крутящий момент, заставляющий вал вращаться. В конце такта открывается выпускной клапан 3, отработавшие газы начинают выходить в выпускной трубопровод, давление и температура в цилиндре снижаются.

Очистка  карбюратора, замена и промывка жиклеров, промывочные жидкости

Четвертый такт — выпуск (рис. 5, г): поршень перемещается от НМТ к ВМТ, выпускной клапан 3 открыт. Отработавшие газы из цилиндра поступают в выпускной трубопровод и далее через глушитель в атмосферу. Процесс выпуска протекает при давлении выше атмосферного. К концу такта давление в цилиндре снижается до 1,1-1,2 кгс/см2, а температура до 700-800° С.

Далее процессы, происходящие в цилиндре, повторяются в указанной выше последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными тактами, выпуск — заключительным.

При пуске двигателя его коленчатый вал вращается электродвигателем — стартером. Когда двигатель начнет работать, такты впуска, сжатия и выпуска происходят за счет энергии, накопленной маховиком двигателя при рабочем ходе.

На легковых автомобилях ГАЗ-24 «Волга», а также автомобилях УАЗ устанавливают четырехцилиндровые четырехтактные карбюраторные двигатели с вертикальным расположением цилиндров. Диаметр цилиндра и ход поршня равны 92 мм, литраж 2,445 л. Двигатели отличаются степенью сжатия и величиной наибольшей эффективной мощности, а также некоторыми конструктивными решениями (табл. 2).

Главная страница сайта

Рубрикатор статей

На предыдущую страницу  Читать книгу сначала На следующую страницу

О компании О документах О рекламе Меню Карата

 

Как работает карбюратор 4-тактного двигателя? — Ответ

Лучшие ответы

Как работает карбюратор 4-тактного двигателя? Работа карбюратора состоит в том, чтобы подавать смесь воздуха и топлива, которая обеспечивает правильное сгорание . Во время такта впуска открывается впускной клапан между карбюратором и камерой сгорания. Это позволяет атмосферному давлению нагнетать топливовоздушную смесь в отверстие цилиндра, когда поршень движется вниз.

Содержание

Как работает четырехтактный двигатель?

Четырехтактный двигатель — очень распространенная разновидность двигателя внутреннего сгорания. Во время работы двигателя поршня проходят через 4 цикла для достижения каждого рабочего цикла . Определение события — это движение поршня вверх или вниз. По завершении 4 событий цикл завершается и готов к повторному запуску.

Можно ли использовать 2-тактный карбюратор на 4-тактном двигателе?

2-тактные карбюраторы можно использовать с 4-тактным двигателем , если они имеют верхние форсунки , но вопрос в том, зачем это кому-то нужно? В современных 4-тактных мотоциклетных двигателях используется конструкция карбюратора CV для лучшей производительности, отклика и экономии топлива.

Как работает 4-тактный цикл?

Двигатель внутреннего сгорания проходит четыре такта: впуск, сжатие, сгорание (мощность) и выпуск . Когда поршень движется во время каждого такта, он вращает коленчатый вал. Encyclopædia Britannica, Inc.

Четырехтактный двигатель работает только на неэтилированном бензине?

Косилки четырехтактные используйте обычный неэтилированный бензин . Двухтактные косилки используют смесь обычного неэтилированного бензина и специального масла. Вы должны смешать их вместе, используя правильное соотношение. Поэтому, если вы собираетесь его купить, покупайте 4-тактный, потому что тогда вам не придется беспокоиться о смешивании топлива каждый раз, когда вы его используете.


Советы по теме Как работает карбюратор 4-тактного двигателя?


Как запустить четырехтактный двигатель?


Есть ли разница между двухтактным и четырехтактным карбюратором?

Большая разница между двумя типами двигателей заключается в том, что 4-тактные двигатели имеют впускной и выпускной клапаны, а не отверстия для подачи топлива и воздуха. Поршень движется вниз по цилиндру, вытягивая топливно-воздушную смесь из карбюратора.


Что такое топливо для четырехтактных двигателей?

Что касается 4-тактных двигателей, то они работают на бензине без примеси масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому они называются «4-тактными». Однако для 4-тактных двигателей требуются клапаны как для впуска, так и для выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более


Что заставляет поршень двигаться вверх и вниз?

Внутри цилиндра находится поршень. Когда топливо сгорает, оно создает взрывную силу, которая заставляет поршень двигаться вверх и вниз. Поршень прикреплен через шатун к коленчатому валу, где движение поршня вверх и вниз преобразуется в круговое движение.


Будет ли моя бензиновая газонокосилка работать на топливе E10?

Можно ли использовать бензин E10 в газонокосилке? Ваша газонокосилка будет работать на бензине E10, но это не лучший вид топлива. В идеале вы должны использовать топливо с минимальным содержанием этанола, потому что этанол притягивает воду, что со временем вызывает коррозию и возможное повреждение двигателя.


Нужно ли масло для 4-тактной газонокосилки?

Для четырехтактных двигателей требуется резервуар для моторного масла для смазки шатунов и других деталей двигателя. Поэтому проверка, доливка и замена масла производится только на четырехтактном двигателе газонокосилки.


Имеются ли 4-тактные дроссели?

Во-первых, когда дело доходит до запуска 4-тактных подвесных двигателей, двигатель EFI имеет преимущество. Без дроссельной заслонки это определенно облегчает запуск двигателя.


Как разлить 4-х тактный двигатель?


Сколько градусов нужно, чтобы совершить 4-тактный ход?

Поршень совершает два полных прохода в цилиндре, чтобы завершить один рабочий цикл. Рабочий цикл требует двух оборотов (720°) коленчатого вала. Четырехтактный двигатель является наиболее распространенным типом малогабаритного двигателя.


Как ведет себя поршень во время такта впуска?

Во время такта впуска топливно-воздушная смесь всасывается в цилиндр при закрытом выпускном клапане. Во время расширения или рабочего такта газы сгорания под высоким давлением расширяются, перемещая поршень вниз и передавая мощность.


Сколько кривошипов у 4-тактного двигателя?

Четырехтактный двигатель — это тип небольшого двигателя внутреннего сгорания, в котором для завершения одного рабочего цикла используются четыре различных хода поршня. Во время этого цикла коленчатый вал вращается дважды, а поршень дважды поднимается и опускается, чтобы зажечь свечу зажигания.


Сколько цилиндров у 4-тактного двигателя?

Все современные двигатели четырехтактные (впуск, сжатие, мощность, выпуск). С 4-цилиндровым двигателем общая балансировка идеальна. При каждом такте в 4-цилиндровом двигателе один цилиндр всегда находится в рабочем такте, а все остальные находятся в разных положениях.


Есть ли у 4-тактного двигателя карбюратор?

Четырехтактные карбюраторы имеют трос дроссельной заслонки сбоку, основной жиклер большего размера и пластиковую диафрагму, которая использует сжатие для перемещения иглы.


Как работают карбюраторы постоянной скорости?

В упрощенном виде карбюратор CV работает за счет изменения перепада давления над и под поршнем, который, в свою очередь, изменяет отверстие Вентури, как обычный золотник. Двигатель представляет собой карбюратор с вакуумом, который всасывает воздух (и / или смесь) под золотник.


Есть ли у двухтактных двигателей карбюраторы?

Карбюратор представляет собой трубку, которая регулирует подачу воздуха и бензина в двигатель. Двухтактный или двухцилиндровый карбюратор работает так же, как базовый карбюратор, за исключением того, что в двигатель можно подавать больше воздуха и бензина, потому что в нем больше цилиндров или трубок и, следовательно, больше воздушного потока.


Вам также может понравиться

Как работают двухтактные и четырехтактные подвесные моторы.

9 октября 2018 г. | Маркетинг

Evinrude Как работают двухтактные и четырехтактные подвесные моторы Отчет капитана

Узнайте, как подвесные моторы генерируют мощность, почему в разных двигателях используются разные системы и что все это значит.

Вы когда-нибудь задумывались, как на самом деле работает подвесной мотор?

В современных подвесных двигателях, подобных двигателям других продуктов, таких как автомобили или мотоциклы, используется внутреннее сгорание топлива для движения поршней, которые, в свою очередь, вращают приводной вал. Все двигатели этого типа требуют, чтобы три элемента работали вместе для сгорания и движения —

1. Воздух

2. Топливо

3. Искра

    В двигателе предусмотрены системы для определения количества каждой из них и времени их применения. В случае подвесного двигателя сгорание создает вращающую силу на коленчатом валу, который, в свою очередь, используется для вращения гребного винта.

    Для 4-тактных двигателей требуется более чем на 100 движущихся частей больше, чем для 2-тактных двигателей.

    2 Различные технологии

    В подвесных двигателях используются две основные технологии для создания энергии за счет сгорания. Каждый из них имеет сходства и различия для достижения одной и той же цели — вращения винта для создания движения.

    Один тип подвесного двигателя называется 4-тактным, а другой — 2-тактным. Причина, по которой они названы таким образом, связана с тем, как двигатель настроен на выполнение необходимых функций для осуществления сгорания.

    «Ход» — это когда один поршень движется от одного конца цилиндра к другому. Один тип двигателя, используемый в подвесных моторах, требует четырех тактов для каждого сгорания, поэтому он называется четырехтактным двигателем. Другому требуется всего два такта для каждого сгорания, поэтому он называется двухтактным двигателем.

    Четырехтактному двигателю требуется один такт для выполнения всех основных задач двигателя.

    Как работает четырехтактный двигатель

    В четырехтактном двигателе происходит сгорание в четыре этапа, каждый из которых включает перемещение поршня по длине цилиндра или выполнение «хода».

    1. Сначала поршень движется вниз в цилиндре, создавая вакуум. При этом открывается клапан, расположенный в верхней части цилиндра, впуская смесь воздуха и топлива. Это называется такт впуска . Клапан закрывается пружинным механизмом и открывается кулачком (выступом на распределительном валу), который толкает клапан и сжимает пружину. Как только кулачок проходит клапан, пружина снова закрывает клапан.

    При движении поршня вниз (указано розовой стрелкой) впускной клапан открывается (указано желтой стрелкой), впуская топливно-воздушную смесь в цилиндр.

    2. Затем поршень перемещается назад для сжатия смеси воздуха и топлива в камере сгорания. Это называется такт сжатия . Когда поршень достигает верхней части цилиндра, топливовоздушная смесь сжимается.

    При движении поршня вверх он сжимает топливно-воздушную смесь в камере сгорания в верхней части цилиндра.

    3. Когда поршень находится в верхней части цилиндра , свеча зажигания воспламеняет смесь, создавая взрыв, который толкает поршень вниз. Это когда поршень совершает свой третий проход по цилиндру. Это такт сгорания , или «рабочий» такт.

    Когда свеча зажигания воспламеняет топливно-воздушную смесь, она толкает поршень в цилиндре вниз.

    4. Четвертый такт, когда поршень снова поднимается , выпускной клапан открывается, и отработанный газ выталкивается в выпускной коллектор. Он называется такт выпуска .

    Когда поршень движется обратно вверх по цилиндру (показано розовой стрелкой), он выталкивает выхлопные газы из открытого теперь выпускного клапана (показано желтой стрелкой).

    Как работает обычный карбюраторный двухтактный двигатель

    Двухтактный двигатель проходит два этапа для осуществления сгорания, каждый из которых включает перемещение поршня по длине цилиндра или выполнение «хода».

    1. Когда поршень начинает двигаться вверх , он сжимает топливно-воздушную смесь в цилиндре и перекрывает впускной и выпускной клапаны. В 2-тактном двигателе клапаны представляют собой отверстия в стенке цилиндра, а не в верхней части цилиндра в камере сгорания, как в 4-тактном двигателе. Так, первый такт в обычном карбюраторном 2-тактном двигателе завершает как функцию впуска, так и функцию сжатия.

    Это чертеж обычного карбюраторного двухтактного двигателя. Когда поршень движется вверх, топливно-воздушная смесь в картере нагнетается в цилиндр через впускной клапан (показан желтой стрелкой). Желтая стрелка показывает выпускное отверстие, через которое выхлопные газы недавно вышли из камеры. Оба эти клапана вскоре будут заблокированы поршнем, движущимся вверх в цилиндре.
    Когда искра воспламеняет топливно-воздушную смесь, поршень движется вниз, сжимая воздух в картере.

    2. Когда поршень находится в верхней части цилиндра , свеча зажигания воспламеняет топливно-воздушную смесь, и происходит взрыв, толкающий поршень вниз в начале его второго хода. Проходя по цилиндру, поршень открывает выпускной клапан, и отработавшие газы выходят из камеры. Таким образом, этот двигатель выполняет как рабочий такт, так и выпускную функцию за один такт.

    В то же время нижняя часть поршня сжимает воздух в картере, выталкивая воздушно-топливную смесь через недавно открытый впускной клапан в цилиндр. И процесс повторяется.

    После сгорания поршень движется вниз (показано розовой стрелкой) и создает давление в картере. Это нагнетает картерный воздух в цилиндр через впускной клапан (обозначен желтыми стрелками), а также открывает выпускной клапан, чтобы газы могли выходить (обозначен оранжевой стрелкой) в выпускной коллектор.

    Посчитайте

    Все это означает, что естественная механика двухтактного двигателя внутреннего сгорания генерирует в два раза больше рабочих ходов при каждом обороте коленчатого вала. Как мы видели, у 4-тактного подвесного двигателя поршень совершает два дополнительных прохода цилиндра, один для выталкивания выхлопных газов, а другой для всасывания воздушно-топливной смеси.

    В двухтактном двигателе этапы впуска и выпуска управляются давлением поршня вниз на картерный воздух, который давит на поршень при открытии клапана на боковой стенке цилиндра.

    2000 Power Strokes vs. 1000

    Взглянем на это с другой стороны: при 2000 об/мин каждый цилиндр двухтактного двигателя срабатывает и создает энергию 2000 раз. Неважно, сколько цилиндров. Будь то один поршень, вращающий коленчатый вал двухтактного подвесного двигателя, или четыре, или шесть, или восемь, все они совершают полный цикл вверх-вниз каждый раз, когда коленчатый вал поворачивается.

    В 4-тактном двигателе, работающем при тех же 2000 об/мин, каждый цилиндр срабатывает и вырабатывает энергию 1000 раз, ровно вдвое меньше. Поршень четырехтактного двигателя должен совершить еще два прохода цилиндра без заметного увеличения мощности.

    Существует много других различий между 2-тактными и 4-тактными двигателями, но основное различие заключается в количестве тактов, необходимых для сгорания.

    Опубликовано в

    • Блог
    • СООБЩЕНИЯ В БЛОГЕ, СВЯЗАННЫЕ С МОРСКИМ ОБОРУДОВАНИЕМ
    Различия двухтактных и четырехтактных двигателей

    ? – Блог AMSOIL

    • Как
    Поделиться:

    У двухтактных и четырехтактных двигателей есть свои плюсы и минусы.

    Купить артикул

    AMSOIL DOMINATOR® Synthetic 2-Stroke Racing Oil

    SABRE® Professional Synthetic 2-Stroke Oil

    AMSOIL INTERCEPTOR® Synthetic 2-Stroke Oil

    Разница между двухтактными и четырехтактными двигателями.

    Двигатели внутреннего сгорания преобразуют химическую энергию в механическую энергию, используемую для приведения в действие транспортного средства или другого оборудования, посредством процесса сгорания, требующего воздуха, топлива и источника воспламенения.

    Термины «двухтактный» и «двухтактный» часто взаимозаменяемы, как и «четырехтактный» и «четырехтактный». Каждое движение поршня вверх или вниз в двигателе называется тактом. Принципиальное различие между двухтактными и четырехтактными двигателями заключается в том, как они подают воздух и топливо для сгорания для создания мощности, а затем удаляют выхлопные газы после каждого цикла сгорания.

    Конструкция камеры четырехтактного двигателя

    В четырехтактном двигателе впускные и выпускные отверстия расположены в верхней части камеры сгорания. Впускные и выпускные клапаны контролируют открытие и закрытие портов для управления входящими и выходящими газами. Впускное отверстие регулирует поступающий воздух, обеспечивая воздух, который вступает в реакцию с топливом при воспламенении. Выпускное отверстие выбрасывает образующиеся газы, включая водяной пар (h3O), двуокись углерода (CO2) и азот (N2), из камеры сгорания.

    Цикл сгорания четырехтактного двигателя

    В четырехтактном двигателе требуется два полных оборота коленчатого вала, то есть четыре поршневых цикла, для выполнения тактов впуска, сжатия, рабочего хода и выпуска. Во время первого оборота топливовоздушная смесь всасывается в камеру сгорания через впускное отверстие и сжимается. Во время второго оборота топливно-воздушная смесь воспламеняется для создания мощности, и все образовавшиеся газы выпускаются.

     

    Четырехтактные двигатели более долговечны, экономичны и имеют более низкий уровень выбросов.

    Процесс сгорания в четырехтактном двигателе.

    1. Такт впуска

    Когда поршень движется вниз по цилиндру, он создает вакуум в пространстве над ним и всасывает воздух в цилиндр через открытый впускной клапан.

    2. Такт сжатия

    Впускной и выпускной клапаны закрываются, когда поршень движется вверх и сжимает топливовоздушную смесь для подготовки к сгоранию.

    3. Рабочий ход

    Во время рабочего такта впускной и выпускной клапаны закрыты, так как свеча зажигания воспламеняет смесь воздуха и топлива. Взрыв толкает поршень вниз, вращая коленчатый вал.

    4. Такт выпуска

    По мере того, как поршень движется вверх, он вытесняет все газы, оставшиеся после цикла сгорания, через открытый выпускной клапан, подготавливая цилиндр к новой заправке воздухом и топливом.

    Двухтактный камерный дизайн

    В двухтактном двигателе отверстия по обеим сторонам поршня используются для регулирования газов, поступающих в цилиндр и выходящих из него. Движущийся поршень закрывает и открывает порты вместо того, чтобы использовать клапаны для открытия и закрытия портов, как в четырехтактном двигателе.

    Цикл сгорания в двухтактном двигателе

    В двухтактном двигателе требуется только один оборот коленчатого вала, то есть два цикла поршня, для завершения полного цикла сгорания. Двигатель срабатывает каждый раз, когда вращается коленчатый вал, что удваивает количество взрывов по сравнению с четырехтактным двигателем, который вырабатывает большую мощность при сравнении цилиндров одинакового размера.

     

    Двухтактные двигатели

    дешевле и легче, обеспечивая более высокое отношение мощности к весу.

    Двухтактный двигатель создает мощность с каждым оборотом коленчатого вала.

    1. Такт впуска-воспламенения

    Впускное отверстие открывается при движении поршня вверх, что создает вакуум в пространстве под поршнем, который заставляет воздух устремляться в картер. Когда воздух проходит через карбюратор, он забирает порцию топлива и масла.

    По мере движения поршня топливовоздушная смесь, уже находящаяся в цилиндре, сжимается. Когда поршень достигает верхней мертвой точки (ВМТ), свеча зажигания воспламеняется, вызывая взрыв воздушно-топливной смеси.

    2. Такт сжатия-выпуска

    Поршень прижимается взрывом топливовоздушной смеси. Топливно-масляная смесь в картере находится под давлением, когда поршень движется вниз, и проталкивается через перепускное отверстие в цилиндр. Поступающий заряд выталкивает оставшиеся газы в цилиндре через выпускное отверстие.

    Применение двухтактных и четырехтактных двигателей

    Преимущества двухтактных двигателей заключаются в меньшей стоимости изготовления, меньшем весе и более высоком соотношении мощности к весу по сравнению с четырехтактными двигателями.

    По этим причинам двухтактные двигатели идеально подходят для ручных устройств, таких как бензопилы, триммеры для струн и ранцевые воздуходувки. Двухтактные мотоциклы для бездорожья также возвращаются благодаря более удобному диапазону мощности и новым конструкциям двигателей, снижающим выбросы. Двухтактные двигатели также легче запускаются при низких температурах, что делает их идеальными для использования на снегоходах.

    Однако четырехтактные двигатели развивают больший крутящий момент при более низких оборотах, как правило, имеют большую долговечность, чем высокооборотные двухтактные двигатели, а также обеспечивают повышенную топливную экономичность и более низкий уровень выбросов. По этим причинам четырехтактные двигатели идеально подходят для таких применений, как мотоциклы, квадроциклы, морские моторы и гидроциклы.

    СИНТЕТИЧЕСКИЙ ПРОТИВ. ОБЫЧНЫЕ

    Хотя вы, возможно, знаете, что синтетические масла превосходят обычные масла, вы можете не понимать, почему. Различия начинаются на молекулярном уровне.

    Узнать больше

    Смазка для четырехтактных двигателей

    Четырехтактные двигатели смазываются маслом, находящимся в масляном поддоне. Масло распределяется по двигателю за счет смазки разбрызгиванием или насосной системы смазки под давлением; эти системы могут использоваться по отдельности или вместе.

    Смазка разбрызгиванием достигается путем частичного погружения коленчатого вала в масляный картер. Импульс вращающегося коленчатого вала разбрызгивает масло на другие компоненты двигателя, такие как кулачки распределительного вала, поршневые штифты и стенки цилиндров.

    Смазка под давлением использует масляный насос для создания смазочной пленки под давлением между движущимися частями, такими как коренные подшипники, шатунные подшипники и кулачковые подшипники. Он также перекачивает масло в направляющие клапанов двигателя и коромысла.

    Смазка для двухтактных двигателей

    Двухтактные двигатели собирают некоторое количество масла под коленчатым валом; однако в двухтактных двигателях используется система смазки с полными потерями, в которой масло и топливо сочетаются для обеспечения как энергии, так и смазки двигателя. Масло и топливо смешиваются во впускном тракте цилиндра и смазывают важные компоненты, такие как коленчатый вал, шатуны и стенки цилиндров.

    Двухтактные двигатели с впрыском масла впрыскивают масло непосредственно в двигатель, где оно смешивается с топливом, в то время как для двухтактных двигателей с предварительным смешиванием требуется топливно-масляная смесь, которая смешивается перед установкой в ​​топливный бак. Как правило, двухтактные двигатели изнашиваются быстрее, чем четырехтактные, потому что у них нет специального источника смазки; однако качественное двухтактное масло значительно снижает износ двигателя.

    Это ключевые отличия при рассмотрении конструкции четырехтактного и двухтактного двигателя и потребности в смазке. Независимо от конструкции используемого двигателя выбирайте высококачественное масло, которое поможет предотвратить износ и максимизирует производительность.

    Купить артикул

    AMSOIL DOMINATOR® Synthetic 2-Stroke Racing Oil

    SABRE® Professional 2-Stroke Oil

    AMSOIL INTERCEPTOR® Synthetic 2-Stroke Oil

    Четырехтактный двигатель — HomoFaciens



    Новости Проэкт Технологии РобоСпатиум Делать вклад Предметный указатель Скачать Ответы Игры Советы по покупкам Контакт


    <<< Перезаряжаемые элементы         Полосная структура >>>

    Видео о четырехтактных двигателях


    Вы можете найти файлы блендера, используемые для создания анимированных последовательностей, на странице загрузки колонки.

    Сайто FA-40

    Принцип работы четырехтактного двигателя со свечами накаливания будет продемонстрирован с помощью небольшой модели двигателя, используемой для радиоуправляемых самолетов. Я восстановил этот образец тонкой механики в своем конгломератном ящике, заполненном всем, что накопилось за мою карьеру моделиста. Это почти неиспользованный FA-40 компании Saito с объемом цилиндра 6,6 куб. См и выходной мощностью около 500 Вт. Разобрав и хорошо почистив, я смог реанимировать мотор, используя топливо, которое веками хранилось в моем гараже. Мне просто пришлось заменить винт смеси на временный, потому что оригинальной детали больше не было в моем чемодане.

    Карбюратор

    Рисунок 1:
    Карбюратор создает взрывоопасную смесь топлива и окружающего воздуха. Смесительный винт работает как клапан, контролируя количество жидкого топлива, поступающего в карбюратор. При выворачивании этого винта из бака высасывается больше топлива, что приводит к обогащению смеси . Вращение винта уменьшает количество топлива, поэтому создается обедненная смесь .
    Перфорированный вращающийся ствол внутри карбюратора, соединенный с рычагом дроссельной заслонки, используется для регулирования количества воздуха, проходящего через это устройство. Просверленное отверстие направлено в сторону трубки карбюратора, когда дроссельная заслонка открыта, поэтому в карбюратор поступает максимальное количество воздуха. При повороте ствола с помощью рычага дроссельной заслонки поперечное сечение уменьшается и через карбюратор проходит меньше воздуха. Второй 9Игольчатый клапан 0120 соединен непосредственно со стволом, который используется для регулирования топливовоздушной смеси при закрытой дроссельной заслонке. Этот винт холостого хода уменьшает подачу топлива при закручивании, как и винт смеси. При открытии дроссельной заслонки ствол, а также винт холостого хода слегка выдвигаются из карбюратора, приоткрывая этот клапан. Это специальное движение вызывается маленьким винтом в сочетании с направляющей на стволе.
    В карбютор поступает топливо и воздух, а из устройства выходит взрывоопасная газообразная смесь обоих компонентов. Рассеянное топливо, по крайней мере, большей частью испаряется.

    Топливо

    Топливо мотора модели состоит в основном из метанола (69%). Другими компонентами являются нитрометан (2%) и смазочные материалы. В отличие от автомобильных двигателей, в этом моторе нет отдельного масляного резервуара, поэтому эти вещества смешиваются с топливом.
    При работе метанол окисляется кислородом воздуха с образованием углекислого газа и воды:

    2CH 3 OH + 3O 2 → 2CO 2 + 4H 2 O

    Кислород и метанол реагируют в соотношении 2 : 3. Атмосфера состоит из 21% кислорода. Предполагая оптимальную смесь, одна часть (газообразного) топлива должна быть смешана с пятью частями воздуха. Как объяснялось выше, смесь, содержащая меньше воздуха, называется богатой , а смесь, содержащая больше воздуха, называется обедненной .

    Кулачковый вал

    Рисунок 2:
    В периодическом процессе цилиндр двигателя должен быть заполнен взрывоопасной топливно-воздушной смесью, а сгоревший газ должен покинуть двигатель. Этот процесс контролируется как минимум двумя клапанами, которые приводятся в действие кулачковым валом, состоящим из шпинделя с двумя выступами (=кулачок) и одной шестерни. Кулачковый вал вращается коленчатым валом с помощью второй шестерни. Два маленьких цилиндра скользят по двум кулачкам и двигаются вверх и вниз. Маленькие цилиндры перемещают два толкатели , которые циклически открывают клапаны через коромысла. Клапаны закрываются винтовыми пружинами. Небольшие цилиндры используются для получения большой опорной поверхности в штилях. Толкатели слегка скручиваются во время циклов, и если бы они скользили прямо на штилях, результатом были бы глубокие царапины.

    Головка блока цилиндров

    Рисунок 3:
    Два тарельчатых клапана и свеча накаливания являются основными конструктивными элементами, расположенными на головке блока цилиндров. Два клапана приводятся в действие кулачковым валом через толкатели и коромысла . Между коромыслами и верхней частью штока клапана должен быть небольшой зазор, когда кулачковый вал находится в положении «закрыто», чтобы клапаны были закрыты должным образом. Клапаны закрываются не толкателями, а небольшими винтовыми пружинами. Зазор называется клапанным зазором и должен регулироваться при работающем двигателе. Зазор для двигателя Saito составляет 0,1 мм. Во время работы двигателя детали нагреваются по-разному, а неодинаковое тепловое расширение различных материалов приводит к изменению зазора. Регулировка осуществляется с помощью небольшого винта на одном конце коромысла. Если отрегулирован правильный зазор, эти винты фиксируются гайкой.
    Свеча накаливания используется для воспламенения топливно-воздушной смеси, подаваемой карбюратором. Во время пуска он нагревается электрическим током напряжением 1,2В. Как только двигатель работает, свечение вызвано сгоранием топлива.
    Полусферическое внутреннее пространство головки блока цилиндров называется камерой сгорания .

    Цилиндр

    Как предполагается, это устройство имеет форму полого цилиндра, направляющего поршень при его движении вверх и вниз. гильза цилиндра , означающая внутренний полый цилиндр устройства, изготовлена ​​из специального алюминиево-кремниевого сплава и всегда должна быть покрыта масляной пленкой, иначе тепло, вызванное трением, расплавит материалы поршня и цилиндра. немедленно! Этот вид «аварии» называется задиром поршня или заеданием .
    Внутренний диаметр цилиндра, который равен (почти) диаметру поршня, называется отверстием .

    Коленчатый вал

    Коленчатый вал приводится в действие движением поршня вниз во время рабочего такта. Оба устройства соединены шатуном или штоком . Имеется смещение между точкой крепления шатуна (= шатунной шейки ) и осью вращения кривошипа. Тем самым определяется самая высокая или самая низкая точка движения поршня. Расстояние между этими двумя точками называется ходов или просто штрих и равен двойному радиусу точки крепления.
    Умножив площадь поперечного сечения цилиндра, обычно определяемую как диаметр цилиндра * 2π, на ход поршня, вы получите рабочий объем двигателя , который представляет собой объем, охватываемый поршнем за одно движение сверху вниз. Соотношение между рабочим объемом двигателя + объемом камеры сгорания и объемом камеры сгорания называется степенью сжатия :

    [6. 1]    


    Где находится:
    ε — степень сжатия, V D — объем двигателя, V C — объем камеры сгорания

    Четырехтактный цикл

    Когда двигатель работает, поршень движется вверх и вниз, а распределительный вал и коленчатый вал вращаются. Ход относится к полному перемещению поршня от его верхней до нижней точки движения. Самое дальнее или ближайшее положение между коленчатым валом и поршнем называется 9.0120 мертвая точка , потому что в этих точках движение поршня «замирает». Точка наибольшего расстояния (=верхнее положение) называется верхней мертвой точкой (ВМТ) , а точка ближайшего расстояния (=самое низкое положение) называется нижней мертвой точкой (НМТ) . За один ход коленчатый вал поворачивается вокруг своей оси на 180 градусов, а распределительный вал — на 90 градусов.
    Рис. 4:
    1. Такт впуска
    Начнем наблюдение с верхней мертвой точки поршня. впускной клапан открывается и поршень начинает движение вниз. При этом создается отрицательное давление (по сравнению с атмосферным давлением окружающей среды) за счет того, что топливно-воздушная смесь, поступающая из карбюратора, поступает в двигатель. Впускной клапан закрывается, как только поршень достигает нижней мертвой точки. Этот ход также называется индукционным ходом

    . Рис. 5:
    2. Такт сжатия
    При последующем движении поршня вверх топливно-воздушная смесь сжимается, так как к этому времени оба клапана закрыты.
    Рисунок 6:
    Состав топлива и степень сжатия двигателя должны быть подобраны таким образом, чтобы нагрев газа приводил к воспламенению газовой смеси при приближении поршня к ВМТ. Эти зажигание инициализируется свечой накаливания. При сжигании топливно-воздушной смеси газ внутри двигателя нагревается.

    Рисунок 7:
    3. Рабочий ход
    Давление горячего газа значительно выше давления холодного газа, поэтому силы, действующие на стенки защитной оболочки, выше, следовательно, поршень отталкивается обратно к НМТ с большей силой, чем требуется для сжатия топливно-воздушной смеси. во время инсульта 2.

    Рисунок 8:
    4. Такт выпуска
    Выпускной клапан открывается, и сгоревшие газы удаляются из двигателя, в то время как поршень снова движется к ВМТ. При достижении ВМТ выпускной клапан закрывается.

    Энергия выделяется для привода коленчатого вала только во время рабочего такта. Все остальные такты извлекают кинетическую энергию из вращающегося коленчатого вала и всех связанных с ним устройств (например, гребного винта). Большое количество этой кинетической энергии необходимо для сжатия топливно-воздушной смеси во время такта 2, особенно вблизи ВМТ, когда процесс зажигания начинается на свече накаливания. Чтобы получить высокий плавность хода — имеется в виду равномерная скорость вращения коленчатого вала, к коленчатому валу обычно крепится маховик . Большая масса этого маховика приводит к малому изменению скорости вращения, в то время как кинетическая энергия передается во время рабочего такта и соответственно извлекается во время других тактов.

    Детали двигателя

    Рисунок 9:
    Поршень (1)
    Шатун (2)
    Коленчатый вал (3)
    Корпус коленчатого вала (4)
    Цилиндр (5)
    Рисунок 10:
    Карбюратор (1)
    Смесительный шнек (2)
    (от другого мотора, на FA-40 не подходит)
    Уплотнительные кольца (3)
    Топливный штуцер (4)
    Холостой винт (5)
    Рычаг дроссельной заслонки (6)
    Вращающийся ствол (7)

    Рис. 11:
    Монтажная пластина для коромысла (1)
    Защитная трубка для толкателей (2)
    Прокладка (3)
    Толкатель (4)
    Ось коромысла (5)
    Коромысло (6)
    Клапан регулировки зазора (7)
    Крышка головки цилиндров (8)

    Рисунок 12:
    Головка цилиндра (1)
    Свеча накаливания (2)
    Прокладка (3)
    Клапан (4)
    Спиральная пружина (5)
    Блокирующее устройство винтовой пружины (6)

    Рисунок 13:
    Выхлоп (1)
    Впускной коллектор (2)
    Прокладка корпуса распределительного вала (3)
    Прокладка картера коленчатого вала (4)
    Прокладка крышки головки блока цилиндров (5)
    Дроссель (набор принадлежностей) (6)

    Нажмите на предварительные фотографии, чтобы увидеть более крупные фотографии, используемые для оцифровки двигателя.

    <<< Перезаряжаемые элементы         Полосная структура >>>


    Новости Проэкт Технологии РобоСпатиум Делать вклад Предметный указатель Архивы Скачать Ответы Игры Ссылки Советы по покупкам Контакт Выходные данные



    Устранение неисправностей четырехтактного подвесного двигателя

    Небольшие четырехтактные подвесные двигатели довольно просты. Макс МакХью из Marine Matters объясняет, как устранять наиболее распространенные проблемы, от забитых карбюраторов до сломанных термостатов. В СОТРУДНИЧЕСТВЕ С GJW DIRECT

    Это наше руководство по основным действиям по устранению неполадок с небольшим бензиновым четырехтактным подвесным двигателем. Если у вас возникла проблема, ознакомьтесь с нашими руководствами по поиску проблемы в дизельной топливной или электрической системе.

    Топливо

    Основной причиной того, что ваш подвесной двигатель не работает, будет топливная система, часто из-за того, что зимой в двигателе оставалось топливо. Топливо проходит химическую реакцию с образованием этанола, что препятствует работе двигателя. Также может быть грязь, блокирующая фильтр, магистрали или карбюратор. Для очистки снимите кожух маховика и кожух двигателя, а затем снимите топливный бак.

    Снимите бак и отсоедините топливопровод, сливая бак в ведро. Промойте бак чистым топливом. Убедитесь, что фильтр чистый, и при необходимости промойте его чистым топливом перед повторным подключением бака.

    Топливный бак для четырехтактного подвесного двигателя

    Карбюратор

    Затем проверьте карбюратор подвесного двигателя. Закройте топливный кран, затем откройте сливной винт сбоку карбюратора и слейте топливо в ведро. Закройте сливной винт, откройте топливный кран и добавьте чистое топливо. Если двигатель по-прежнему не работает, вам может потребоваться очистить карбюратор либо с помощью очистителя карбюратора, либо в мастерской, где есть ультразвуковая очистка.

    Сливной винт карбюратора четырехтактного подвесного двигателя

    Свеча зажигания

    Затем проверьте наличие искры на свече зажигания. Вы можете использовать тестер свечи зажигания, подключаемый между свечой и проводом зажигания (высокого напряжения). Если у вас нет тестера, снимите вилку, подключите ее к проводу, затем коснитесь им корпуса двигателя, прежде чем тянуть за шнур. Вы должны быть в состоянии обнаружить искру. Если вы не можете, вам может понадобиться новая свеча зажигания для вашего подвесного двигателя.

    Тестер свечей зажигания для четырехтактных подвесных двигателей

    Далее ниже…

    Как проверить и заменить анод

    Рекламная функция совместно с GJW Direct. Поддержание ваших анодов в хорошем состоянии предотвращает серьезные повреждения на борту, говорит Рубикон…

      Как отремонтировать гелькоут — видео инструкция

      Как справиться с крошкой гелькоута и добиться идеального соответствия цвета поверхности. Брюс Джейкобс узнает от Марка Бакетта…

        Отбойный шнур

        Если отбойный шнур установлен правильно, стоит проверить кнопку остановки. У него внутри есть пружина, но со временем она может выйти из строя, особенно если шнур отключения остался прикрепленным. Возможно, вам придется заменить кнопку в сборе, если она не втягивается обратно.

        Трос отключения четырехтактного подвесного двигателя

        Система охлаждения

        Если ваш подвесной двигатель имеет охлаждение забортной водой (некоторые из них имеют воздушное охлаждение) и вы не промывали двигатель на некоторое время, в двигателе может скапливаться соль. Запустите двигатель в бочке с пресной водой или используйте шланг и комплект промывочных наушников и убедитесь, что сигнализатор воды имеет хороший поток, прежде чем отправиться в путь. Небольшие двигатели не имеют сигнализации перегрева, но отключаются в качестве отказоустойчивой. Если вам нужно проверить термостат, выньте его и поместите в кипящую горячую воду, и вы сможете увидеть движение пружины. Если это не так, вам понадобится новый.

        Термостат для четырехтактного подвесного двигателя

        Масло

        Четырехтактные подвесные двигатели имеют масляный поддон для смазки. Там должно быть указано, сколько масла вам нужно. Наполняйте его медленно и проверяйте по смотровому стеклу, но если вы переполняете его, слейте в ведро, используя сливной винт под смотровым стеклом.

        Маслосмотровое стекло четырехтактного подвесного двигателя

        Уход в конце сезона

        В конце сезона не забудьте включить подвесной двигатель в программу зимнего обслуживания. Убедитесь, что вы слили топливо из карбюратора или прогнали его всухую, также стоит слить топливный бак и очистить его. Оставьте свечу зажигания включенной, чтобы не допустить проникновения влаги. Если вы храните его на боку, убедитесь, что он находится на правильной стороне.

         

         

        Совместно с GJW Direct

        GJW Direct предлагает одни из самых полных и конкурентоспособных полисов страхования лодок на рынке. Имея более чем 175-летний опыт морского страхования, когда вы страхуете свою яхту у нас, вы имеете дело со специалистами по страхованию лодок, что позволяет вам свободно проводить время на воде. Для получения дополнительной информации посетите: www.gjwdirect.com

         

        Подписка на ежемесячный журнал Yachting Monthly стоит примерно на 40% меньше, чем цена покрытия .

        Печатные и цифровые издания доступны через Magazines Direct, где вы также можете найти последние предложения .

        YM наполнен информацией, которая поможет вам получить максимальную отдачу от вашего времени на воде.

        • Поднимите свое морское мастерство на новый уровень с советами, советами и навыками от наших экспертов
        • Беспристрастные подробные обзоры новейших яхт и оборудования
        • Путеводители, которые помогут вам добраться до места вашей мечты

        Следуйте за нами на Facebook , Twitter и Instagram.

        2-тактные и 4-тактные | inletkeeper

        Моряки по всей Аляске используют различные способы рыбалки, отдыха и доступа к отдаленным озерам, рекам и побережью летом. Один из самых распространенных способов — на лодке, будь то с 2-тактным или 4-тактным мотором. Старые двухтактные двигатели используют либо смешанное топливо, в котором двухтактное масло сочетается с бензином в одном топливном баке, либо двигатель имеет двухтактный масляный резервуар, который позволяет смешивать масло в карбюраторе или инжекторе перед сжиганием. Для работы четырехтактного двигателя требуется только неэтилированный бензин; масло заливают только для смазки в картер, как и в автомобилях. Производитель двигателя и технология могут оказать заметное влияние на эффективность использования топлива.

        Посмотрите это видео, чтобы узнать больше о том, как работают двигатели.

        Чтобы понять, сколько нефти и газа может попасть в наши озера и реки, важно учитывать тип и мощность используемого двигателя, а также его неэффективность. Количество углеводородов, выделяемых любым двухтактным двигателем, зависит от производителя двигателя, возраста, технического обслуживания и эксплуатации. Скорость сжигания топлива и расход топлива могут увеличиваться с увеличением мощности двигателя и эксплуатации. На приведенной выше диаграмме показана скорость сгорания пяти различных типов двигателей мощностью 115 л.с.

        Расход топлива для пяти типов лодочных двигателей (источник: Popular Mechanics)

        Чтобы рассчитать количество галлонов, которое выбрасывает каждый мотор, показатель расхода топлива умножается на процент неэффективности. При неэффективности 4% (среднее значение, используемое для представления 4-тактного двигателя) на холостом ходу Yamaha выбрасывает 1/50 галлона, на крейсерской скорости 1/6 галлона, а при полностью открытом дросселе — 1/3 галлона. галлон бензина в час. При неэффективности 27% (значение, используемое для представления карбюраторного двухтактного двигателя) расход на холостом ходу составит 1/7 галлона, на крейсерской скорости 1 галлон и при полностью открытом дросселе 2,5 галлона бензина в час.

        Повышение эффективности двигателя приведет к снижению общего количества ароматических углеводородов (ТАУ) на лодку. Вот почему с точки зрения качества воды желательно иметь больше 4-тактных двигателей.

        С другой стороны, на это можно посмотреть, что в Большом озере может быть установлено больше четырехтактных двигателей, и при этом оно будет соответствовать критериям качества воды, чем если бы в озере было столько же карбюраторных двухтактных двигателей.

        КАЧЕСТВО ВОДЫ В НАШИХ ВОДНЫХ ОБЪЕКТАХ 19миль реки Кенай как «поврежденный» в 2006 году. С 2005 по 2007 год Кенайский форум водоразделов (KWF) в сотрудничестве с индейским племенем Кенайтце реализовал двухтактную программу обратного выкупа, чтобы побудить владельцев лодок модернизировать свои двигатели и удалить стареющие карбюраторные двигатели из реки. Несмотря на участие лодочников в программе обратного выкупа, продолжающееся превышение качества воды требовало от государства принятия мер по устранению источника загрязнения. В марте 2008 года Департамент парков и зон отдыха Департамента природных ресурсов штата Аляска запретил использование двухтактных двигателей, за исключением двигателей с непосредственным впрыском топлива (DFI), в особой зоне управления реки Кенай. Результаты проверки качества воды летом 2008 и 2009 гг.показали снижение общей концентрации ароматических углеводородов (ТАУ) более чем на 70% по сравнению с данными 2007 года. Хотя расход и объем воды в 2009 г. были выше, исследования показали, что снижение содержания углеводородов, скорее всего, связано с введением в 2008 г. правил ограничения движения. двигателей на реке были более старые двухтактные двигатели, в диапазоне от 10 до 60% в зависимости от дня. Мощность двигателя на Little Su варьируется в широких пределах, от 25 до 225 л.с., в среднем 65 л.с. для всех типов двигателей. Большое озеро 2009Исследования качества воды, проведенные в 2013 году, показали, что примерно 13% лодок используют карбюраторные двухтактные двигатели. Хотя это может показаться не таким уж большим количеством лодок, двухтактные двигатели составляют примерно половину нефтяных углеводородов (нефти и газа) в озере. Моряки обычно используют на Большом озере двигатели большей мощности, в среднем около 90 л.с. для обоих типов двигателей.

        ПЕРСОНАЛЬНЫЙ ПЛАТФОРМА (PWC) ИЛИ ГИДРАВЛИЧЕСКИЕ ЛЫЖИ Expand

        А что насчет гидроциклов? Использование личного гидроцикла (PWC) — еще один вариант, который лодочники могут использовать для наслаждения озерами в долине Суситна. Большое озеро — популярное место для катания на гидроциклах, где они составляют почти 25% всех плавсредств, а берега озера часто усеяны красочными гидроциклами. Гидроциклы приводятся в движение за счет того, что крыльчатка с приводом от двигателя всасывает воду из-под гидроцикла и выпускает мощную струю воды за собой. Большинство, если не все, новых сидячих PWC оснащены высокоэффективными 4-тактными двигателями с впрыском топлива. Тем не менее, многие яхтсмены в Долине по-прежнему используют более старые стоячие двухтактные PWC, которые не так экономичны и могут вытекать топливо и масло в воду. Ниже приведены несколько советов по поддержанию чистоты наших вод и предотвращению разливов топлива и масла, независимо от того, какой у вас гидроцикл.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *