Как работает бензиновый двигатель: Бензиновый двигатель: устройство, принцип действия, достоинства и недостатки

Содержание

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную.

Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

— такт впуска;

— такт сжатия;

— рабочий такт;

— такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра.

Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок.

Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Бензиновые двигатели: виды, принцип работы, преимущества бензиновых двигателей

Бензиновые двигательные агрегаты представляют собой особую разновидность двигателей внутреннего сгорания. В них изначально сжатая топливовоздушная смесь поджигается электроискрой, что приводит к ее воспламенению и расширению.

Практически все крупные автопроизводители (и модели, представленные в ГК Favorit Motors — не исключение) сегодня оснащают часть моделей (или комплектаций одной модели) именно двигателями, работающим на бензине класса А-92 или А-95.

Двигательная установка, потребляющая бензиновое топливо, состоит из следующих компонентов:

  • искровые свечи зажигания;
  • цилиндры;
  • клапаны;
  • поршень;
  • шатун;
  • коленвал.

Основным узлом бензинового двигателя является блок цилиндров с поршнями. Количество цилиндров зависит от модификации двигателя, их может быть четыре, шесть, восемь и более. Поршень, находящийся в каждом цилиндре, через шатун присоединяется к коленчатому валу. Сверху блок цилиндров закрыт головкой, в ней расположены впускные и выпускные клапаны – по паре на каждый цилиндр. Через них осуществляется подача топливовоздушной смеси и отвод отработанных газов.

Искровая свеча зажигания отвечает за воспламенение горючей смеси. При сгорании газы расширяются и приводят поршень вместе с головкой шатуна в поступательное движение «вверх-вниз». А головка шатуна, прикрепленная к коленвалу, осуществляет при этом вращательные движения по часовой стрелке.

Коленвал проворачивается на 360 градусов за два хода поршня в цилиндре (вверх и вниз). К коленвалу жестко крепится маховик, а к нему корзина сцепления – через нее крутящий момент мотора передается на коробку передач.

Мощностью бензинового двигателя управляют при помощи специальной дроссельной заслонки (дросселя). Дроссель регулирует подачу воздуха в цилиндры и образование воздушно-топливной смеси.

В старых автомобилях управление заслонкой осуществляется при помощи педали газа. А вот современные бензиновые силовые агрегаты – это высокотехнологичные механизмы, работой которых «руководит» электронный блок управления (в народе известный, как «мозги»). Дроссельная заслонка в таких авто изменяет свое положение при помощи электромотора, которым управляет электронный блок. А в педальном блоке имеется потенциометр, который изменяет силу сопротивления в зависимости от силы нажатия на педаль газа и посылает соответствующий сигнал на блок управления двигателем.

Особенности бензиновых двигателей

Автомобили, оснащенные бензиновыми силовыми агрегатами, имеют множество достоинств:

  • отменные динамические характеристики;
  • устойчивость к низким температурам;
  • низкий уровень вибраций и шума;
  • экономичность обслуживания;
  • долговечность моторов.

При одном и том же объеме мощность бензинового двигателя будет, как правило, выше, чем у дизельного мотора. Поэтому авто, работающее на бензине, станет отличным выбором для тех, кто любит чувствовать себя королем автострады. Кстати, недаром спорткары в подавляющем большинстве оснащаются именно бензиновыми моторами.

Бензиновые агрегаты дешевле в обслуживании, чем дизельные моторы. Периодичность ТО у них реже, чем у дизелей. И, кроме того, расходные материалы стоят дешевле.

Силовые агрегаты, работающие на бензине, менее требовательны к качеству топлива, чем дизели. Конечно, от низкокачественного горючего ухудшится динамика, но авто будет ехать. В худшем случае, придется через некоторое время чистить форсунки.

К особенностям современных бензиновых двигателей можно отнести еще и установку электропривода для повышения/понижения мощности вместо классического тросика на педали. Эта опция устанавливается практически на все модели с круиз-контролем и позволяет распределять топливо в оптимальном варианте.

Современная история бензиновых двигателей

Бензиновые двигатели нового поколения отличаются большим разнообразием – от самых простых до мощнейших. На моделях — как новых, так и б/у, — представленных в автосалоне ГК Favorit Motors, можно встретить силовые агрегаты различного объема и мощности, работающие на бензине. Каждый из них основывается на выработке механической энергии посредством поглощения топливовоздушной смеси.

Стоит заметить, что мощность и объем силового агрегата могут значительно различаться в зависимости от того, какие цели ставил перед собой завод-изготовитель. К примеру, Kia Venga оснащена бензиновым двигателем 1.4 литра мощностью в 90 лошадиных сил. Для городского компактного хэтчбэка этой мощности вполне хватит, чтобы владелец авто уверенно чувствовал себя на дорогах мегаполиса. А дорогостоящий Chevrolet Corvette имеет очень мощный силовой агрегат в 466 л.с., объемом 6.2 литра. Это позволяет ему не только брать быстрый старт, но и быть лидером на трассах.

Подборка б/у автомобилей Chevrolet

Как сохранить работоспособность бензинового двигателя при многолетней эксплуатации?

Надежность и износостойкость бензинового агрегата практически во всех случаях определяются применяемыми на производстве технологиями. Однако не все зависит от производителя.

Автовладелец должен внимательно следить за состоянием двигателя:

  • своевременно проводить техническое обслуживание;
  • контролировать качество потребляемого бензина и заливаемых в мотор расходных материалов;
  • выбирать умеренный стиль езды;
  • выполнять профилактические работы, предупреждающие появление дефектов.

Внешне неисправности бензинового силового агрегата могут проявляться следующим образом:

  • появление посторонних звуков и вибрации;
  • ухудшение динамических характеристик;
  • увеличение расхода топлива;
  • повышенный расход масла;
  • быстрое падение уровня охлаждающей жидкости;
  • изменение цвета выхлопа;
  • неустойчивая работа;
  • отказ запуска.

Сегодня в интернете достаточно информации, чтобы автолюбитель получил минимальные знания о своем двигателе и мог своевременно замечать начавшиеся неполадки. Разумеется, самостоятельно производить ремонтные работы не рекомендуется, так как можно только усугубить положение. Вне зависимости от того способа, по которому образуется топливовоздушная смесь (то есть карбюраторный двигатель или инжекторный), можно быстро и без ущерба для своего кошелька выполнить диагностику и ремонт руками профессионалов.

Никаких проблем с проведением диагностики и ремонта бензинового двигателя не возникнет, если обратиться в ГК Favorit Motors. Специалисты компании обладают необходимым опытом работы, а также сертификацией, подтверждающий уровень их компетенции. Доверив нам автомобиль, можно не беспокоиться о грамотности и качестве любой проводимой операции — от стандартной диагностики до сложных ремонтных работ на двигателе. Все работы выполняются в строгом соответствии с регламентом производителей.

В зависимости от типа повреждений, после проведения диагностических работ выбирается методика ремонта или корректировки текущих настроек в двигателе. Как уже было сказано, бензиновые двигатели изначально обладают более простым устройством, чем дизельные, а потому восстановительные работы не затянутся надолго и не обернутся большими затратами.

Услуги, предоставляемые ГК Favorit Motors, полностью соответствуют золотому правилу «цена-качество», благодаря чему можно провести необходимые работы выгодно и в максимально короткий срок.


Как работает бензиновый двигатель

Бензиновые двигатели используют в автомобилях, маленьких летательных аппаратах, мопедах, мотоциклах, скутерах, катерах и лодках. Такое широкое распространение объясняется их дешевизной, простотой обслуживания, надёжностью и доступностью. 

Мощность бензинового двигателя составляет от 1 лошадиной силы для газонокосилок до 1 500 лошадиных сил для спортивных самолётов. Дальнейшее увеличение максимального числа нецелесообразно: возрастают изнашивание двигателя, его детонационные свойства и расход бензина. Особо мощные двигатели на бензине существуют, однако они имеют очень сложную в изготовлении и использовании структуру из цилиндров со звёздообразной компоновкой.

Рассмотрим работу четырехтактного бензинового двигателя. Каждый цилиндр оснащён впускным и выпускным клапанами, а внутри него с небольшим зазором движется поршень. Для перекрытия зазора в верхней части поршня устанавливаются компрессионные кольца, прижатые к поверхности цилиндра за счёт своей упругости.

 

Такт 1. Впуск

Первый такт работы двигателя называется впуск. Впускной клапан открывается, поршень движется вниз и создаёт в цилиндре пониженное давление, которое впускает воздух. Специальный инжектор впрыскивает расчётное количество топлива: это количество регулирует водитель через положение педали акселератора. Чем больше в цилиндр подаётся топлива, тем быстрее движется автомобиль: газы сгорания с повышенными скоростью и мощностью толкают поршень, возрастает мощность двигателя и скорость вращения коленчатого вала (обороты). После того, как поршень достигает нижней точки вращения, начинается второй такт – сжатие.

 

Такт 2. Сжатие

При сжатии выпускной клапан закрывается, и поршень сжимает топливно-воздушную смесь, двигаясь вверх. От сжатия смесь нагревается и бензин испаряется. Когда поршень достигает верхней точки движения (верхней метровой точки), в камере сгорания, между электродами свечи зажигания, создаётся высокое напряжение и мощная искра. Топливно-воздушная смесь воспламеняется, начиная третий такт работы бензинового двигателя – рабочий ход.

 

Такт 3. Рабочий ход

При такте рабочего хода нарастающая температура увеличивает давление над поршнем, двигая его вниз и передавая крутящий момент через шатун на коленчатый вал двигателя. Когда поршень достигает нижней метровой точки, начинается заключительный такт – выпуск.

 

Такт 4. Выпуск

В такте выпуска открывается выпускной клапан, поршень движется вверх, выдавливая отработавшие газы сгорания в выпускной коллектор. Достигая верхней точки вращения, поршень возвращается к первому такту работы двигателя – впуску – и цикл повторяется.

Бензиновые двигатели – классический вид тепловых двигателей. Их КПД определяется зависимостью давления от объёма (цикла Карно). Желание увеличить КПД ведёт к увеличению степени сжатия топливно-воздушной смеси, что приводит к ужесточению требований к детонационной стойкости бензинов.

Для увеличения КПД двигателей изобретены четырёхклапанные системы впуска и выпуска газов, маловязкие энергосберегающие масла, поршни из композитных материалов с малым коэффицентом теплового расширения. Главные достижения – это компьютеризированные системы управления впрыском топлива в цилиндры. Именно развитие таких систем и рост качества бензинов позволяет ужесточать требования к экологическим характеристикам бензиновых двигателей.

 

Двигатель внутреннего сгорания — устройство и принцип работы ДВС

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:


Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Видео: как устроен двигатель внутреннего сгорания

Принцип работы 2х тактного и 4х тактного двигателей

При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.

Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.

Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.

Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.

Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.

Четырехтактные двигатели — выбор компании Honda

Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя.   Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.

Принцип работы двухтактного двигателя

Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.

Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.

Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.

Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство — в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение. 

Принцип работы четырехтактного двигателя

Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.

Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.

При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.

Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.

Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.

За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны — ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.

Как работает бензиновый двигатель | Энергия

Преимущества бензинового двигателя связаны с тем, что бензин является легковоспламеняющимся веществом, и это его свойство используется для того, чтобы обеспечить генерацию механической энергии. Основной принцип работы бензинового двигателя очень упрощенно иллюстрируется функциональной схемой. Бензин смешивается с воздухом в карбюраторе так, чтобы образовался бензино-воздушный «туман» (смесь). Эта смесь впрыскивается в закрытый цилиндр, в котором находится подвижный поршень. Электрическая искра от свечи зажигания воспламеняет смесь, вызывая мини взрыв, что приводит к сильному расширению продуктов сгорания в цилиндре, вследствие чего поршень опускается. Искра и вызванный ею мини-взрыв называются зажиганием. Поршень соединен с вращающимся коленчатым валом с помощью шатуна и подшипников. Конец шатуна, соединенный с поршнем, движется вниз в результате опускания поршня, а другой конец шатуна, соединенный с коленчатым валом, заставляет его начать вращение. Узел шатун -коленчатый вал обладает крутящим моментом, поэтому даже после того, как цилиндр и шатун достигли нижней точки, вал продолжает вращение, увлекая за собой соединенный с ним конец шатуна, который в результате описывает полный оборот. При этом конец шатуна, соединенный с поршнем, толкает его вверх, в результате чего поршень поднимается в цилиндре обратно в верхнее положение. Каждое движение поршня вверх или вниз называется тактом. Когда поршень находится возле верхнего положения в каждом цикле возвратно-поступательного движения, снова бензино-воздушная смесь впрыскиваются в цилиндр, и в этот самый момент очередная искра поджигает их. В двухтактном двигателе зажигание происходит каждый раз, когда поршень поднимается в верхнее положение, поэтому двум ходам поршня (вниз-вверх) соответствует одно зажигание. В четырехтактном двигателе зажигание происходит через раз, так что одно зажигание соответствует четырем ходам поршня (вниз-вверх и снова вниз-вверх).

Если впрыск бензино-воздушной смеси и ее воспламенение происходят ритмично и если во времени повторяются согласованно все описанные действия, то коленчатый вал вращается с достаточным крутящим моментом для того, чтобы с помощью редуктора или ременной передачи заставить вращаться колесо, пропеллер, вал электрического генератора или другое вращающееся устройство. Согласованный временной цикл важен для того, чтобы двигатель работал с оптимальным коэффициентом полезного действия. В двигателях коэффициент полезного действия — это отношение реальной механической энергии на выходе к полной потенциальной энергии, полученной от сжигания топлива. Нарушение временного цикла уменьшает коэффициент полезного действия и может привести к возрастанию механического напряжения в деталях двигателя. Но это; в конечном счете, может стать причиной его поломки.

Большинство двигателей внутреннего сгорания имеют более одного цилиндра. Такты чередуются друг за другом со сдвигом во времени, чтобы обеспечить более плавную работу двигателя, чем это происходит при использовании одного цилиндра. Поэтому созданы двухцилиндровые, четырехцилиндровые, шестицилиндровые и восьмицилиндровые двигатели. Вы можете услышать и о двигателях с более чем восемью цилиндрами. Вообще говоря, с увеличением числа цилиндров растет и механическая энергия, которую может вырабатывать двигатель внутреннего сгорания.

Как работают 4-тактные двигатели | Briggs & Stratton

Хотите знать, как работает двигатель малого объема? В этом видеоролике подробно описывается то, как работают 4-тактные двигатели Briggs & Stratton для обеспечения максимальной мощности ваших газонокосилок & наружного оборудования.

Четырехтактные двигатели Briggs & Stratton являются лучшими в мире с точки зрения производительности и качества. Это связано с верхним расположением клапанов в 4-тактных двигателях. Она максимально увеличивает мощность вашего двигателя Briggs & Stratton, что в свою очередь повышает производительность вашей газонокосилки или другого наружного силового оборудования.

Процесс работы 4-тактного двигателя

  • Этап 1: Такт впуска
    Во время такта впуска воздух и топливо проходят через карбюратор и попадают в поршень при открытии впускного клапана. Клапан закрывается, отсекая подачу воздушно-топливной смеси, когда поршень достигает нижней части такта.
  • Этап 2: Такт компрессии
    Теперь, когда топливо находится в камере компрессии, двигатель максимизирует создаваемую мощность, сжимая это топливо в меньшем пространстве. Поршень возвращается наверх в верхнюю точку, захватывая воздушно-топливную смесь между поршнем и головкой цилиндров. Эффективность четырехтактных двигателей Briggs & Stratton обеспечивается за счет максимальной компрессии на этом этапе.
  • Этап 3: Рабочий ход
    Теперь, когда воздушно-топливная смесь сжата, самое время добавить искру. Катушка зажигания создает высокое напряжение, которое разряжается в камере свечей зажигания. Как только воздушно-топливная смесь загорается, горячий воздух заставляет поршень опуститься вниз цилиндра.
  • Этап 4: Такт выхлопа
    Последним этапом в четырехтактном двигателе является такт выхлопа. Когда поршень выталкивает отработанные газы из камеры, открывается выпускной клапан. Как только этот процесс завершается, закрывается выпускной клапан и открывается впускной клапан, чтобы снова запустить процесс.

Для повторения каждого цикла требуется два оборота коленчатого вала. Интересно, как двигатель малого объема продолжает работать, когда только один из 4-х тактов создает мощность? Во время рабочего хода маховик получает толчок. Создаваемые импульс и инерция поддерживают его движение между рабочими тактами.

Как работает двигатель?

Вы уже знаете, что завести машину так же просто, как повернуть ключ, но задумывались ли вы, что на самом деле происходит под капотом?

Когда вашему телу нужно топливо, вы кормите его пищей. Когда вашему автомобилю нужно топливо, вы «кормите» его бензином. Точно так же, как ваше тело преобразует пищу в энергию, автомобильный двигатель преобразует газ в движение. Некоторые новые автомобили, известные как гибриды, также используют электричество от аккумуляторов для приведения в движение автомобиля.

Процесс преобразования бензина в движение называется «внутренним сгоранием».«Двигатели внутреннего сгорания используют небольшие контролируемые взрывы для выработки энергии, необходимой для перемещения вашего автомобиля во все места, куда ему нужно ехать.

Если вы создадите взрыв в крошечном замкнутом пространстве, таком как поршень в двигателе, огромное количество энергии будет выпущено в виде расширяющегося газа. Типичный автомобильный двигатель производит такие взрывы сотни раз в минуту. Двигатель использует энергию и приводит в движение ваш автомобиль.

Взрывы заставляют поршни двигателя двигаться. Когда энергия первого взрыва почти иссякает, происходит еще один взрыв.Это заставляет поршни снова двигаться. Цикл повторяется снова и снова, давая автомобилю мощность, необходимую для движения.

В автомобильных двигателях используется четырехтактный цикл сгорания. Четыре такта — это впуск, сжатие, сгорание и выпуск. Удары повторяются снова и снова, генерируя энергию. Давайте подробнее рассмотрим, что происходит на каждой фазе цикла сгорания.

Впускной: Во время впускного цикла впускной клапан открывается, и поршень перемещается вниз. Цикл начинается с подачи воздуха и газа в двигатель.

Сжатие: В начале цикла сжатия поршень перемещается вверх и выталкивает воздух и газ в меньшее пространство. Меньшее пространство означает более мощный взрыв.

Сжигание: Затем свеча зажигания создает искру, которая воспламеняет и взрывает газ. Сила взрыва заставляет поршень снова опускаться.

Выхлоп: Во время последней части цикла выпускной клапан открывается для выпуска отработанного газа, образовавшегося в результате взрыва.Этот газ перемещается в каталитический нейтрализатор, где он очищается, а затем через глушитель, прежде чем он выходит из автомобиля через выхлопную трубу.

Как работает бензиновый двигатель

Последнее обновление 5 мая 2020 г.

Газовый (или бензиновый) двигатель — это стандартный четырехтактный двигатель, который используется в большинстве автомобилей, работающих на бензине. По сути, это машина, которая вырабатывает энергию для транспортного средства путем преобразования энергии топлива в тепловую, которая, в свою очередь, заставляет транспортное средство двигаться. Процесс довольно увлекательный, потому что двигатель вырабатывает энергию из топлива, а затем также работает на своей собственной мощности. Эта энергия создается путем сжигания топлива, которое вы заливаете в автомобиль, например, бензина, который вы заправляете в него на заправочной станции. Это топливо сжигается в процессе саморегулируемого сгорания, что позволяет двигателю работать плавно.

Ищете хорошее онлайн-руководство по ремонту? Щелкните здесь, чтобы увидеть 5 лучших вариантов.

Бензиновый двигатель Принцип работы

Газовый двигатель называется четырехтактным двигателем, потому что он проходит через четыре уникальных процесса сгорания.Во-первых, это процесс всасывания воздуха, который в основном представляет собой вдыхание или дыхание двигателя. Во-вторых, когда топливо смешивается с воздухом, в результате чего топливо превращается в туманную форму, которая сильно распыляется. После этого топливно-воздушная смесь воспламеняется от искры газового двигателя. Наконец, сильно распыленные частицы топлива сгорают, что приводит к высвобождению тепловой энергии. Это процесс сгорания, который происходит каждый раз, когда вы заводите свой автомобиль и едете на нем.

Процесс четырехтактного двигателя также известен как цикл Отто. Немецкий инженер Николаус Отто был первым, кто изобрел и запатентовал четырехтактный газовый двигатель. Каждый шаг в этом процессе назван словом «штрих»; Ход всасывания, ход сжатия, рабочий ход и ход выпуска. Важно понимать термин «цикл Отто», потому что он отличается от цикла сгорания в дизельных двигателях, известного как «дизельный цикл». Этот цикл также является четырехтактным, но детали того, как работает каждый процесс, отличаются от цикла Отто.

В старых газовых двигателях раньше был установлен карбюратор для смешивания воздуха с жидким топливом. Теперь есть технология, называемая «впрыском топлива», которая представляет собой сложную систему управления двигателем, которая помогает лучше выполнять этот процесс, одновременно снижая количество производимых выбросов углерода. Но для зажигания по-прежнему нужна свеча зажигания, чтобы правильно сжечь топливо. Свеча зажигания — это один из компонентов газового двигателя, который используется на протяжении многих поколений.

Принцип работы 4-тактных бензиновых двигателей

Как бензин работает в двигателе

  1. Esso
  2. Дом
  3. Как работает наше топливо

Все функции веб-сайта могут быть недоступны в зависимости от вашего согласия на использование файлов cookie.Щелкните здесь, чтобы обновить настройки.

Как работает наше топливо

Превращая энергию в движение.

Узнайте подробнее, как работает топливо Esso

Каждая деталь вашего двигателя должна работать с абсолютной точностью. Узнайте, как топлива Esso разрабатываются на молекулярном уровне для поддержания чистоты жизненно важных деталей двигателя. Пройдитесь по двигателю, чтобы увидеть, как работает наш бензин, помогая вашему двигателю работать бесперебойно.

  • Топливные форсунки

    • Каждый импульс впрыска смешивает топливо с воздухом
    • Грязные форсунки могут мешать смешиванию топлива с воздухом
    • Наше топливо помогает поддерживать чистоту этих жизненно важных частей двигателя *
  • Впускные клапаны

    • Впускные клапаны открываются точно в тот момент, когда топливно-воздушная смесь поступает в цилиндр
    • Наш бензин разработан на молекулярном уровне, чтобы помочь очистить эту жизненно важную деталь двигателя *
    • Очистители клапанов обеспечивают более плавный воздушный поток и топливную смесь

  • Камера сгорания

    • Это одна из самых важных частей двигателя
    • Для хорошей работы все должно идеально сочетаться
  • Молекулярный вид

    • Наш бензин разработан на молекулярном уровне, чтобы поддерживать ваш двигатель в чистоте *
  • Выпускные клапаны

    • Выпускной клапан — это место отвода продуктов сгорания
    • Высококачественное топливо помогает снизить выбросы вашего автомобиля. *
  • Качественное топливо, чтобы доставить вас туда, куда вы собираетесь

    Узнайте, какие шаги мы предпринимаем для обеспечения качества нашего топлива.

    Узнать больше
  • Правильное топливо для вашего автомобиля

    Получите больше от вашего двигателя и вашего путешествия с бензином Synergy ™.

    Узнать больше
  • Получайте больше от каждой поездки

    Ознакомьтесь с нашим исчерпывающим списком советов, которые помогут вам повысить топливную экономичность и получить больше от каждой поездки.

    Узнать больше
  • Бензин TOP TIER Synergy ™

    Узнайте больше о бензине Synergy, в том числе о том, что делает его TOP TIER® и какие марки мы предлагаем.

    Узнать больше

Esso и Esso Extra являются товарными знаками Imperial Oil Limited. Imperial Oil, лицензиат.
* Относится к бензину марки Esso по сравнению с бензином, отвечающим минимальным канадским правительственным стандартам моющих средств, где это применимо.Фактические выгоды зависят от таких факторов, как тип автомобиля, стиль вождения и ранее использованный бензин.

ДВИГАТЕЛЬ И ДВИГАТЕЛЬ

ДВИГАТЕЛЬ И ДВИГАТЕЛЬ
ДВИГАТЕЛЬ И ДВИГАТЕЛЬ Фред Лэндис

Автономные устройства, преобразующие электрические, химические, или ядерная энергия в механическую, называются двигателями и двигатели. Во многих регионах мира они заменили людей и сила животных, обеспечивающая энергией для транспортировки и вождения все виды машин.Химическая энергия топлива может быть преобразована путем сгорания в тепловую или тепловую энергию в тепловом двигателе. Двигатель, в свою очередь, преобразует тепловую энергию в механическую. энергия, как в двигателях с приводными валами. Когда происходит возгорание в той же единице, которая производит механическую энергию, устройство называется двигателем внутреннего сгорания. Автомобильный бензин или дизельные двигатели — это двигатели внутреннего сгорания. Паровой двигатель, с другой стороны, это двигатель внешнего сгорания котел отдельно от двигателя.Электродвигатели преобразуют электрические энергия в механическую энергию.

Тепловые двигатели

Термин тепловой двигатель включает все двигатели, производящие работа или передача энергии, работая между высокими и низкие температуры и часто между высоким и низким давлением также. Самыми распространенными тепловыми двигателями являются двигатели внутреннего сгорания. двигатели, особенно бензиновые.

Бензиновые двигатели работают на смесь воздуха и паров бензина, которая обычно попадает в поршневой механизм и сжатый поршнем.Как объем камеры уменьшается, давление и температура внутри него увеличиваются. Вблизи точки максимального сжатия пары топлива воспламеняются от искры. Горячие газы расширяются и заставляют поршень опускается в так называемом рабочем ходе, обеспечивая работать через шток поршня к коленчатому валу. Остаточные газы затем изгоняются, и процесс повторяется.

В обычно используемом четырехтактном двигателе компрессия и процесс расширения происходит за один оборот коленчатого вала.Первый ход называется тактом впуска, второй — тактом сжатия. Инсульт. Во время второго оборота следует рабочий ход. тактом выпуска, когда отработанные газы выбрасываются. потом втягивается смесь свежего воздуха и паров бензина. В двухтактных двигателях выхлоп происходит в конце рабочего такта, в то время как смесь свежего воздуха с бензином вводится вначале такта сжатия. Большинство двухтактных двигателей ограничены к небольшим двигателям, таким как те, которые используются в газонокосилках и некоторых небольших мотоциклы.Двигатели инжекторного типа впрыскивают бензин в штраф распылить непосредственно перед горением. Другой тип бензинового двигателя это вращающийся двигатель Ванкеля. Он состоит из треугольного ротора. в почти эллиптическом корпусе. Формируются воздушные камеры в форме полумесяца между ротором и корпусом служат камеры сгорания.

Дизельные двигатели Первоначально сжимать воздух до гораздо более высокого давления и температуры, чем бензиновые двигатели. Затем впрыскивается топливо и зажигается без Искра.Требуемые более высокие давления делают дизельные двигатели тяжелее. и дороже бензиновых двигателей; однако они обычно более эффективным. Они используются в основном в автобусах, грузовиках, локомотивах, и на некоторых электростанциях.

Газотурбинные двигатели использование роторный компрессор для сжатия непрерывного потока входящего воздух, тем самым повышая температуру воздуха. Затем воздух проходит через камеру сгорания, куда впрыскивается и сжигается топливо.Газ, находящийся под высоким давлением и температурой, расширяется. через турбину, обеспечивая мощность для привода компрессора. На выходе из турбины газы все еще имеют температуру и давление. выше наружного воздуха. В авиационном реактивном двигателе оставшиеся газ расширяется через сопло, образуя высокоскоростную струю, которая создает тягу для приведения в движение самолета. В качестве альтернативы газ, выходящий из первой турбины, может расширяться через вторую турбина, которая затем может приводить в действие электрогенератор или, в корпус реактивного двигателя, воздушный винт.Газотурбинные двигатели менее эффективны, чем дизели, но могут производить больше мощности для заданного размера. Таким образом, они часто используются для резервного питания от электрических коммунальные услуги.

Ракетные двигатели используют два химические вещества, которые при сочетании выделяют химическую энергию, которая увеличивает температура и давление в ракетной камере. Горячие газы затем позволяют расширяться через сопло для создания тяги. Топливо может быть жидким или твердым. Потому что ракетные двигатели могут работать вне атмосферы Земли, они являются двигательными установками используется в космических кораблях.

Двигатели паровые двигатели внешнего сгорания двигатели, которые сжигают топливо в отдельном котле для производства пара на высокое давление и температура. Затем пар расширяется возвратно-поступательно. двигатель или турбина. Пар низкого давления обычно конденсируется. поливать перед закачкой обратно в бойлер. В паре локомотив, однако, расширенный пар сдувается.

Паровые двигатели медленные, тяжелые, неэффективные и сегодня используются редко.Вместо этого современные крупные паровые электростанции использовать паровые турбины, которые могут работать при гораздо более высоких температурах и давления и может обрабатывать больше пара. Паровые турбины могут поставлять больше мощности, чем у больших дизелей при меньших затратах.

Ионные двигатели были предлагается к космическому полету. Их источником топлива было бы легко ионизируемое вещество, такое как металлический цезий, для доставки ионов или заряженные частицы. Генератор или солнечные батареи произведут электрическое поле, которое достаточно сильно отталкивает ионы выбрасывать их из двигателя, создавая тягу. Такие двигатели будут производить очень небольшую тягу, но они должны быть в состоянии длительное время работать в межзвездном полете.

Электродвигатели

Электродвигатели состоят из двух механических частей: статор, или неподвижная часть, и ротор, или вращающаяся часть, и два набора электрических обмоток возбуждения и якоря. Электромагнитный поля, созданные через воздушный зазор между статором и ротором взаимодействуют друг с другом и создают крутящий момент или вращающую силу, который вращает мотор.Выходная мощность является продуктом крутящий момент и скорость вращения. Двигатель классифицируется как двигатель постоянного тока (прямой ток) или AC (переменный ток), в зависимости от источника питания.

Асинхронные двигатели Наиболее широко используются двигатели переменного тока. Обмотка возбуждения обычно намотана в прорези, расположенные вокруг железного статора для образования магнитных полюсов. В обмотках статора создается вращающееся электрическое поле. наводит токи в обмотках ротора.Взаимодействие между эти два поля создают крутящий момент для вращения двигателя. Мотора скорость меняется в зависимости от нагрузки.

Двигатели синхронные работают с фиксированной скоростью независимо от нагрузки. Однофазный гистерезис двигатели используются в небольших устройствах с постоянной скоростью, таких как электрические часы и фонографы. Обмотки статора соответствуют обмоткам Индукционный двигатель. Источник поля предоставляется либо прямым током или постоянным магнитом.

Двигатели постоянного тока обеспечивают крутящий момент и управление скоростью по более низкой цене, чем блоки переменного тока, и механически более сложный. Обмотка полюсного поля на статоре состоит из магнитных полюсов, каждый из которых имеет множество витков, по которым проходит небольшой ток. Обмотка якоря размещается на роторе концами каждой катушка подключена к противоположным стержням. Когда ротор вращается, удельный катушка, по которой течет ток, изменяется, но ее расположение относительно стационарное поле остается фиксированным.


Источник: Интерактивная энциклопедия Комптона.

ЗОИЛ | Основы дизельного двигателя


Дизельный двигатель — это двигатель внутреннего сгорания , который использует воспламенение от сжатия для воспламенения топлива при его впрыске в двигатель.

Чтобы понять, как работают дизельные двигатели, полезно сравнить различия между дизельным двигателем и бензиновым двигателем. Основные отличия бензинового двигателя от дизельного:

  • Бензиновый двигатель принимает смесь газа и воздуха, сжимает ее и воспламеняет смесь с помощью искры.Дизельный двигатель забирает воздух, сжимает его, а затем впрыскивает топливо в сжатый воздух. Тепло сжатого воздуха самопроизвольно воспламеняет топливо. Дизельный двигатель не имеет свечи зажигания.
  • Бензиновый двигатель сжимает в соотношении от 8: 1 до 12: 1, а дизельный двигатель сжимает в соотношении от 14: 1 до 25: 1. Более высокая степень сжатия дизельного двигателя приводит к повышению эффективности.
  • Бензиновые двигатели обычно используют либо карбюрацию, при которой воздух и топливо смешиваются задолго до того, как воздух поступает в цилиндр, либо впрыск топлива через порт, при котором топливо впрыскивается непосредственно перед тактом впуска (вне цилиндра).Следовательно, в бензиновом двигателе все топливо загружается в цилиндр во время такта впуска, а затем сжимается. Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя — если он слишком сильно сжимает воздух, топливно-воздушная смесь самопроизвольно воспламеняется и вызывает детонацию. В дизельных двигателях используется прямой впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в цилиндр. Дизельный двигатель сжимает только воздух, поэтому степень сжатия может быть намного выше. Чем выше степень сжатия, тем больше генерируется мощность.
  • Форсунки для дизельного топлива, в отличие от бензиновых, должны выдерживать температуру и давление внутри цилиндра и при этом подавать топливо в виде мелкого тумана. Чтобы туман равномерно распределялся по цилиндру, некоторые дизельные двигатели оснащены специальными впускными клапанами или камерами предварительного сгорания. Более новые дизельные двигатели оснащены топливными системами Common Rail высокого давления. См. «Основы дизельной топливной системы» для получения дополнительной информации об этом типе топливной системы.
  • Дизельные двигатели могут быть оснащены свечой накаливания. Когда дизельный двигатель холодный, в процессе сжатия температура воздуха может не повыситься настолько, чтобы воспламениться топливо. Свеча накаливания представляет собой электрически нагреваемую проволоку, которая способствует зажиганию топлива при холодном двигателе. Свечи накаливания обычно устанавливаются на небольших дизельных двигателях. Бензиновые двигатели не требуют свечей накаливания, поскольку они не зависят от самовозгорания.

ШАГ


1

ВПУСКНОЙ (ВНИЗ) ХОД 1 |
Поршень движется вниз, всасывая воздух в цилиндр

.

ШАГ


2

ХОД СЖАТИЯ (ВВЕРХ) 1 |
Поршень движется вверх, сжимая вновь втянутый воздух в цилиндр
Прежде чем поршень достигнет верхней мертвой точки (ВМТ), дизельное топливо впрыскивается непосредственно в цилиндр
Это результат сжигания дизельного топлива

ШАГ


3

ВПУСКНОЙ ХОД (ВНИЗ) 2 |
Поршень опускается, но впускной и выпускной клапаны не открываются

ШАГ


4

СТУПЕНЬ КОМПРЕССИИ (ВВЕРХ) 2 |
Поршень движется вверх, вытесняя сгоревшее дизельное топливо из цилиндра в виде выхлопа

.

ШАГ


5

Процесс повторяется

Дизельный двигатель предлагает эффективный способ выработки энергии. Он основан на сжатии для сгорания, что приводит к повышению топливной экономичности по сравнению с другими типами двигателей. E-ZOIL производит различные присадки к дизельному топливу, специально разработанные для дизельных двигателей. К ним относятся:

Как работает дизельный двигатель

Традиционно, дизельные двигатели всегда считались шумными, вонючими и слабый двигатели мало пользы, кроме грузовиков, такси и фургонов. Но дизельные двигатели и их система впрыска стали более совершенными, В 80-е годы эта ситуация изменилась.В Великобритании в 1985 г. было почти Продано 65000 дизельных автомобилей (около 3,5% от общего количества проданных автомобилей), по сравнению с 5380 в 1980 году.

Двигатель воспламенения от сжатия

Многие автомобильные дизели основаны на существующих конструкциях бензиновых двигателей, но с усилением основных компонентов, чтобы они могли выдерживать более высокое давление. Топливо подается с помощью ТНВД и дозатора, которые обычно устанавливаются сбоку от блока цилиндров.Никакой системы электрического зажигания не требуется.

Основным преимуществом дизельных двигателей перед бензиновыми двигателями является их более низкая эксплуатационные расходы. Отчасти это связано с большей эффективностью высоких коэффициент сжатия дизельный двигатель и отчасти из-за более низкой цены на дизель топливо — хотя разница в цене варьируется, поэтому преимущество использования дизельный автомобиль будет немного дешевле, если вы живете в районе с дорогими дизельное топливо Межсервисные интервалы тоже часто длиннее, но многие дизельные модели требуют более частой замены масла, чем их бензиновые аналоги.

Повышение мощности

Главный недостаток дизельного автомобиля — меньшая производительность по сравнению с бензиновые двигатели эквивалентной мощности. Один из способов решения проблемы — просто увеличить размер двигателя, но это часто приводит к значительному увеличению веса. Некоторые производители добавляют турбокомпрессоры к их двигателям, чтобы заставить их конкурентоспособны с точки зрения производительности; Среди них Rover, Mercedes, Audi и VW. производители турбодизелей.

Как работают дизельные двигатели

Индукция

Когда поршень начинает двигаться вниз по каналу, впускной клапан открывается, и воздух всасывается.

Сжатие

Впускной клапан закрывается в конце хода. Поршень поднимается, чтобы сжать воздух.

Зажигание

Топливо впрыскивается в верхней части такта.Он воспламеняется и заставляет поршень опускаться.

Выхлоп

При движении поршня вверх выпускной клапан открывается, и сгоревший газ выходит.

Дизельный двигатель работает иначе, чем бензиновый, даже если они общие основные компоненты, и оба работают на четырехтактном цикл . Главный различия заключаются в способе воспламенения топлива и в том, как регулируется.

В бензиновом двигателе смесь топлива и воздуха воспламеняется от искра .В дизеле двигатель зажигание достигается сжатие только воздуха. Типичное сжатие соотношение для дизельного двигателя это 20: 1 по сравнению с 9: 1 для бензинового двигателя. При таком сильном сжатии воздух нагревается до температуры, достаточно высокой, чтобы воспламенять топливо самопроизвольно, без искры и, следовательно, система зажигания.

Бензиновый двигатель всасывает переменное количество воздуха на одно всасывание Инсульт , то точное количество в зависимости от открытия дроссельной заслонки. С другой стороны, дизельный двигатель рука всегда втягивает одинаковое количество воздуха (при каждой частоте вращения двигателя) через нерегулируемый впускной тракт, который открывается и закрывается только впуском клапан (нет ни карбюратор ни дроссельной заслонки).

Когда поршень достигает эффективного конца своего индукция ход, вход клапан закрывается. Поршень, приводимый в движение силой других поршней и импульс маховик , поднимается на вершину цилиндр , сжимая воздух примерно в двадцатую часть своего первоначального объем .

Когда поршень достигает максимума своего хода, точно отмеренное количество дизельное топливо впрыскивается в камера сгорания . Тепло от сжатия немедленно воспламеняет топливно-воздушную смесь, вызывая ее возгорание и расширение.Эта силы поршень вниз, поворачивая коленчатый вал .

По мере продвижения поршня вверх цилиндр на ход выпуска , выпускной клапан открывается и позволяет сгоревшим и расширенным газам проходить по выхлопная труба . В конце такта выпуска цилиндр готов к новому плата из воздуха.

Конструкция двигателя

Основные компоненты дизельного двигателя похожи на компоненты бензинового двигателя. и выполнять ту же работу. Однако деталей дизельного двигателя приходится производить много сильнее, чем их аналоги с бензиновым двигателем, из-за гораздо более высоких нагрузок участвует.

Стены дизеля Блок двигателя обычно намного толще блока разработаны для бензинового двигателя, и у них есть больше распорок, чтобы обеспечить дополнительные прочность и поглощение стрессов. Помимо большей прочности, сверхмощный block также может более эффективно снижать шум.

Поршни, шатуны , коленчатые валы и подшипник шапки должны быть сделаны сильнее своих собратьев с бензиновым двигателем. В крышка цилиндра дизайн должен сильно отличаться из-за топливные форсунки а также из-за формы своего горение и вихревые камеры.

Инъекция

Прямой впрыск

Прямой впрыск означает, что топливо впрыскивается непосредственно в камеру сгорания в верхней части днища поршня. Форма камеры лучше, но труднее заставить топливо правильно смешиваться с воздухом и гореть без резкого, характерного дизельного «стука».

Для любого двигатель внутреннего сгорания для бесперебойной и эффективной работы топливо и воздух необходимо тщательно перемешать. Проблемы смешивания топлива и воздуха являются особенно хорош в дизельном двигателе, где воздух и топливо вводятся на разное время в течение цикла и должны перемешиваться внутри цилиндров.

Существует два основных подхода: прямой и непрямой впрыск. Традиционно использовалась непрямая инъекция, потому что это самый простой способ введения турбулентность так что впрыскиваемый топливный спрей хорошо смешивается с сжатый воздух в камере сгорания.

В двигателе с непрямым впрыском имеется небольшая спиральная вихревая камера (также называется камерой предварительного сгорания), в которую инжектор впрыскивает топливо прежде, чем он достигнет самой основной камеры сгорания.Вихревая камера создает турбулентность в топливе, чтобы оно лучше смешивалось с воздухом при горении камера.

Недостатком этой системы является то, что вихревая камера эффективно становится часть камеры сгорания. Это означает, что камера сгорания как в целом неправильной формы, что вызывает проблемы с горением и затрудняет эффективность.

Непосредственный впрыск

Непрямой впрыск

Непрямой впрыск означает, что топливо впрыскивается в небольшую камеру предварительного сгорания.Это приводит к основной камере сгорания. Такая конструкция нарушает идеальную форму камеры сгорания.

Двигатель с прямым впрыском не имеет вихревой камеры, в которую подается топливо. впрыскивается — топливо попадает прямо в камеру сгорания. Инженеры должны очень внимательно относиться к конструкции камеры сгорания. в головке поршня, чтобы обеспечить достаточную турбулентность.

Контроль скорости

Свечи накаливания

Для предварительного нагрева головки цилиндров и блока цилиндров перед холодным запуском в дизельном топливе используются свечи накаливания.Они выглядят как короткие короткие свечи зажигания и подключены к электрической системе автомобиля. Элементы внутри очень быстро нагреваются после подачи питания. Свечи накаливания активируются либо вспомогательным положением переключателя на рулевой колонке, либо отдельным переключателем. На последних моделях они автоматически отключаются, когда двигатель запускается и разгоняется до скорости выше холостого хода.

Дизельный двигатель не дросселируется, как бензиновый двигатель, поэтому количество воздуха всасывается при любой частоте вращения двигателя всегда одинаково.Обороты двигателя регулируется исключительно количеством топлива, впрыснутого в камеру сгорания — чем больше топлива в камере, тем интенсивнее сгорание и произведено.

ускоритель педаль соединена с дозатором двигателя система впрыска, а не дроссельная заслонка, как на бензине двигатель.

Остановка дизеля по-прежнему включает выключение ключа зажигания, но, скорее, чем отсечение искр, это закрывает электрический соленоид что отсекает подача топлива на форсунку насос узла учета и распределения топлива. В этом случае двигателю необходимо использовать небольшое количество топлива, прежде чем он начнет работать. остановка. На самом деле, дизельные двигатели останавливаются быстрее, чем бензиновые. потому что гораздо более сильное сжатие оказывает большее замедляющее действие на двигатель.

Запуск дизеля

Как и в случае с бензиновыми двигателями, дизельные двигатели запускаются включением электрический мотор , с которого начинается воспламенение от сжатия цикл. Когда холодно, однако дизельные двигатели сложно запустить просто потому, что.сжатие воздух не приводит к температуре, достаточно высокой для воспламенения топлива.

Чтобы обойти проблему, производители поместиться свечи накаливания . Это маленькие электронагреватели, питаемые от автомобильной аккумулятор , которые включены несколько секунд перед попыткой запуска двигателя.

Дизельное топливо

Топливо, используемое в дизельных двигателях, сильно отличается от бензина. это немного менее очищенный, что приводит к более тяжелому, более вязкому и менее летучий жидкость .Эти физические характеристики часто приводят к тому, что именуется «дизельное топливо» или «мазут». На дизельных насосах в гараже АЗС его часто называют «дерв», сокращенно от «дизельная дорога». транспортных средств.

Дизельное топливо может немного затвердеть или даже затвердеть на очень холоде. Погода. Это усугубляется тем фактом, что он может поглощать очень маленькие количество воды, которая может замерзнуть. Все виды топлива поглощают крошечные количества вода из атмосферы и утечка в подземные резервуары довольно часто.Дизельное топливо выдерживает содержание воды до 50 или 60. частей на миллион без проблем — чтобы представить это в перспективе, это примерно четверть кружки воды на каждые десять галлонов топлива.

Замерзание или восковая депиляция могут блокировать топливопроводы и форсунки и предотвратить двигатель не работает. Вот почему в очень холодную погоду вы будете время от времени можно увидеть людей, играющих в паяльные лампы на топливных магистралях своих грузовиков.

Двигатель внутреннего сгорания для выработки электроэнергии — Введение

Двигатель внутреннего сгорания с искровым зажиганием во время такта сжатия

В дизельных двигателях топливо впрыскивается в цилиндр ближе к концу такта сжатия, когда воздух сжат достаточно, чтобы достичь температура самовоспламенения.Сгорание топливовоздушной смеси вызывает ускоренное расширение газов под высоким давлением, которые толкают поршень к нижней части цилиндра во время рабочего хода, сообщая вращение коленчатому валу. Горение происходит периодически — только во время рабочего такта — тогда как в газовых турбинах горение происходит непрерывно. Когда поршень возвращается в верхнюю часть цилиндра во время такта выпуска, продукты сгорания (выхлопные газы) выталкиваются через выпускной клапан. К коленчатому валу подключено несколько цилиндров, ориентированных таким образом, что, в то время как одни поршни сообщают коленчатому валу вращение во время рабочего хода, другие поршни выталкиваются обратно в верхнюю часть цилиндров во время их тактов выпуска.

Размер и мощность двигателя внутреннего сгорания зависят от объема сожженного топлива и воздуха. Таким образом, размер цилиндра, количество цилиндров и частота вращения двигателя определяют количество мощности, генерируемой двигателем. Увеличивая приток воздуха к двигателю с помощью вентилятора или компрессора — так называемый наддув, — можно увеличить выходную мощность двигателя. Обычно используемый нагнетатель представляет собой турбонагнетатель, в котором в тракте выхлопных газов используется небольшая турбина для извлечения энергии для привода центробежного компрессора.

Гибкость топлива
Двигатели внутреннего сгорания могут работать на различных видах топлива, включая природный газ, легкое жидкое топливо, тяжелое жидкое топливо, биодизель, биотопливо и сырую нефть. Дизельные двигатели обычно более эффективны, чем двигатели SG, но также производят больше оксидов азота (NOx), диоксида серы (SO2) и твердых частиц (PM). Образование SO2 и ТЧ зависит от топлива, при этом выбросы природного газа низкие. Образование NOx связано с температурой горения.В двигателях SG предварительное смешивание воздуха с топливом для создания «обедненных» условий (больше воздуха, чем требуется для сгорания) снижает температуру сгорания и препятствует образованию NOx. Разработаны новые конструкции двигателей, позволяющие использовать преимущества дизельного процесса при сохранении преимуществ сжигания обедненной смеси. Двухтопливные двигатели (DF) спроектированы с возможностью сжигания как жидкого, так и газообразного топлива. При работе в газовом режиме газообразное топливо предварительно смешивается с воздухом, впрыскивается сразу после такта сжатия и воспламеняется пламенем запального топлива.В этом процессе пламя пилотного топлива действует как «свеча зажигания», воспламеняя обедненную газо-воздушную смесь. Двигатели DF сохраняют возможность использования резервного жидкого топлива при прерывании подачи газа. В газодизельных двигателях используется сильно сжатый газ, который впрыскивается после воспламенения жидкого пилотного топлива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *