Как работает тнвд дизельного двигателя: Устройство ТНВД

Содержание

ТНВД дизельного двигателя — устройство, принцип работы и ремонт

Подавляющее большинство современных автомобильных двигателей являются бензиновыми или дизельными. В первых рабочий цикл осуществляется при помощи воспламенения топливной смеси электрической искрой. Дизельный двигатель работает за счет сильного сжатия топлива и его последующего горения. Однако для этого необходимо подавать топливо в цилиндры через форсунки под большим давлением. Распределением топлива занимается специальный агрегат – топливный насос высокого давления (ТНВД) дизельного двигателя.

Содержание

Что такое ТНВД


При помощи этого устройства осуществляется подача топлива в камеры сгорания под давлением. Специальные устройства рассчитывают необходимое количество топлива в зависимости от нагрузки, температуры и оборотов двигателя. Пионером разработок топливных насосов для дизелей была фирма «Бош», которая и сейчас является лидером в этой отрасли мототехники. Аналогом такого насоса на бензиновых моторах является карбюратор либо топливная рампа с форсунками (если двигатель оснащен электронной системой впрыска).

Развитие конструкции насоса


С самого появления дизельных двигателей насос высокого давления выполнял главнейшую функцию, поэтому уже тогда, более ста лет назад, от его действия почти полностью зависела вся работа силового агрегата. Естественно, первые насосы были полностью механическими и оставались такими вплоть до 70х годов 20 века.

Чисто механический насос был сблокирован с двигателем и развивал рабочее давление при работе с ним, таким образом, обратная связь происходила через обороты двигателя, количество топлива при этом рассчитывалась автоматически. Недостатком такой системы было неоптимальное соотношение воздуха и топлива на переходных режимах, а также на холостых оборотах (меньше обороты — ниже давление). Это приводило к более грязному выхлопу и перерасходу топлива.

Многие страны в то время ужесточили нормы по выбросу вредных веществ в выхлопных газах и системы с механической топливоподачей стали постепенно вытесняться электронными блоками управления с обратной связью по нескольким параметрам. Они позволили устранить нестабильную работу на холостом ходу из-за неравномерного сгорания топлива, а также снизили токсичность выхлопа. Естественно, топливные насосы высокого давления не ограничиваются какой-то одной конструкцией, а имеют множество модификаций, в зависимости от предназначения и условий эксплуатации. В настоящее время дизели распространены повсеместно, и при желании можно даже установить дизельный двигатель на ГАЗель и многие другие отечественные автомобили.

Различные виды ТНВД


В настоящее время различают три основных типа ТНВД:

  • распределительный
  • рядный
  • магистральный

Рядный насос


Он называется так потому, что в нем плунжерные пары расположены попарно-параллельно, в два ряда. Каждая пара обслуживает один цилиндр. Плунжер приводится в движение специальным кулачковым валом. Двигаясь вверх или вниз, плунжер открывает или закрывает впускные и выпускные отверстия, при этом открывается и закрывается нагнетательный клапан, который пропускает топливо к определенной форсунке для впрыска в цилиндр.

Для корректировки количества топлива и его согласованием с текущей нагрузкой имеются корректирующие устройства, механические либо электронные. В первом случае это происходит при помощи специальной центробежной муфты на кулачковом валу. Благодаря ей при увеличении оборотов происходит смещение кулачкового вала относительно входного и впрыск топлива происходит раньше и наоборот, при снижении оборотов происходит запаздывание. Электронные системы представлены специальными электромагнитными клапанами. К самому агрегату солярка подается при помощи топливоподкачивающего насоса.

Такие насосы относительно просты и непривередливы к качеству топлива. Самым серьезным их недостатком является громоздкость, поэтому они применяются только на больших грузовиках и тракторах.

Распределительный ТНВД


Такой насос имеет одну или две плунжерную пару, в зависимости от объема двигателя и количества цилиндров.

Как понятно из названия, такое устройство распределяет топливо между цилиндрами. Существуют различные типы таких насосов в зависимости от привода, однако суть их работы одинакова: плунжер, двигаясь возвратно-поступательно (а в некоторых конструкциях – и вращаясь), открывает и закрывает все те же отверстия и нагнетательные клапаны, разводя топливо по цилиндрам к распылителям. Практически все насосы фирмы Bosch имеют именно такую конструкцию, которая устанавливается исключительно на легковые движки.

Достоинством такой конструкции является более равномерная подача топлива, а также компактность и меньший вес. Недостаток распределительных насосов – в их большей сложности и, как следствие, сниженном ресурсе.

Магистральный топливный насос


Такой агрегат применяется в особой системе подачи топлива в дизельных двигателях, где оно перед подачей к форсункам накапливается вначале в специальной рампе. Эти насосы могут иметь от одного до трех плунжеров, которые приводятся в движение кулачковой шайбой или валом.

При движении плунжера внутри втулки он создает разрежение, открывающее впускной клапан и засасывающее топливо в камеру, а при возвратном ходе (поднятии) плунжера давление, наоборот, повышается и открывается выпускной клапан, через который горючее нагнетается в топливную рампу. В таком насосе управление количеством топлива за один рабочий цикл плунжера производится посредством дозирующего электрического топливного клапана, (самый простой аналог – система принудительного холостого хода на карбюраторах).

Насосы такого типа устанавливаются в основном на большие и мощные дизельные двигатели, так как реализуют большое давление, необходимое для достижения большей мощности при невысоких рабочих оборотах.

Из чего состоит насос


На примере распределительного насоса можно рассмотреть его устройство. Он состоит из корпуса, в котором расположены плунжерные пары, обслуживающие несколько форсунок, а также редукционный клапан, дренажный штуцер для слива топлива. Дополнительно на нем установлены элементы подкачивающего устройства, насос низкого давления для подачи горючего к впускным клапанам, устройство для регулировки опережения впрыска, вспомогательные приводы.

Возможные неисправности


Как уже стало понятно, топливный насос на дизелях – одно из самых сложных и ответственных устройств двигателя. Плунжерная пара, являющаяся, по сути, сердцем агрегата, является высокоточной деталью, при малейшем износе которой сразу появляются признаки некачественной работы – повышенный шум, перерасход топлива, вибрации и неустойчивая работа на всех режимах. Самой главной и основной причиной износа является некачественное топливо.

Сама по себе солярка уже является продуктом первичной перегонки нефти, поэтому по определению по своим качествам хуже любого бензина, однако к ее очистке предъявляются очень высокие требования, но, к сожалению, не всегда и не везде. Поэтому именно грязь и тяжелые частицы в топливе, а также вода являются самой частой причиной выхода ТНВД из строя. Еще одной причиной неисправностей может быть старое масло для дизельного двигателя. К сожалению, сложность современных насосов такова, что отремонтировать его самостоятельно почти невозможно.

Ремонт ТНВД


Любому ремонту https://diesel-remont78.ru/renault/service-renault предшествует диагностика ТНВД. Ее лучше всего проводить в техцентрах, специализирующихся именно на ремонте топливного насоса высокого давления дизельного двигателя. Однако некоторые элементы диагностирования неисправностей можно провести своими руками. Вообще, следует учесть, что, вследствие более сложного устройства системы питания, на дизельном двигателе может быть больше причин неправильной работы мотора. Плавающие обороты в процессе прогрева мотора почти всегда указывают на износ плунжерной пары. Износ насосфорсунок на грузовиках также может вызвать перерасход топлива и черный выхлоп. Еще одной причиной неустойчивой работы двигателя может быть неисправность или износ электронасоса, а также перегрев двигателя вследствие недостаточной производительности водяной помпы в системе охлаждения.

Таким образом, ремонт ТНВД крайне желательно проводить на станциях техобслуживания, а диагностику, обслуживание и замену изношенных деталей при наличии необходимых знаний и опыта можно провести и самостоятельно.

Неисправности ТНВД: признаки, причины возникновения

Без дизельных двигателей сложно представить себе современные сферы машиностроение. Они пользуются огромным спросом в легковых, грузовых автомобилях и спецтехнике, в производственном оборудовании, на речных и морских судах. Причины очевидны: максимально неприхотливая конструкция, высокие тяговитость и мощность, экономный расход топлива. Несмотря на совершенность дизельного двигателя, в процессе эксплуатации некоторые узлы и комплектующие изнашиваются и выходят из строя. Как показывает практика нашего сервисного центра, одним из наиболее уязвимых узлов дизельного мотора является топливный насос высокого давления (ТНВД). Даже незначительная поломка ведет к тому, что силовой агрегат не способен вырабатывать полную мощность. Падает производительность, что в процессе заканчивается полным выходом из строя. Чтобы избежать дорогостоящей замены или ремонта топливного насоса, следует уделять повышенное внимание его диагностике и профилактике неисправностей.

Принцип действия ТНВД

В зависимости от конструкции двигателя и модели транспортного средства в них могут использоваться различные типы ТНВД. Несмотря на это, принцип работы остается одинаковым: узел отвечает за подачу в камеры сгорания дизельного топлива под высоким давлением. Количество дизтоплива может сильно отличаться, это зависит от режима работы силового агрегата и нагрузки на него.

Основными конструкционными элементами ТНВД являются плунжер и втулка цилиндр. В зависимости от принципа работы этих элементов все топливные насосы можно условно разделить на две категории: ТНВД аккумуляторного типа и насосы непосредственного действия.

Топливные насосы непосредственного действия работают по такому принципу:

  • Плунжер приводится в действие посредством механической тяги.
  • Впрыск и нагнетание топлива в камеры сгорания осуществляются одновременно.
  • Плунжер отвечает за создаваемое давление, необходимое для подачи нужного количества топлива.

Аккумуляторные ТНВД иначе называют насосами раздельного действия. Дизтопливо сначала нагнетается в специальный аккумулятор, после чего поступает в форсунки, а затем – в камеру сгорания.

Производители топливных насосов пользуются следующей классификацией:

  • Рядные насосы. В них каждый цилиндр напрямую связывается с определенной насосной секцией, которая и отвечает за его питание.
  • Распределительные насосы. Каждая из секций обеспечивает подачу топлива в один или несколько цилиндров.
  • Многосекционные модели. Устанавливаются только на высокоскоростных силовых агрегатах.

Исходя из конструкции ТНВД, можно описать принцип его работы по этапам:

  • Специальный насос нагнетает дизтопливо и подает его в ТНВД. Необходимое рабочее давление обеспечивается наличием редукционного клапана.
  • Соединенный с коленвалом кулачковый вал отвечает за приведение в движение плунжера, который и осуществляет подачу топлива в цилиндры.
  • Под воздействием вала плунжер движется вверх в полости втулки. В этот момент открываются клапаны выпуска и впуска топлива.
  • При движении плунжер создает давление, необходимое для открытия клапана нагнетания. Через него топливо направляется в распыляющие форсунки.
  • Лишнее топливо удаляется через специальные каналы и возвращается в бак с помощью дренажного штуцера.

Специалисты отмечают, что слаженная и корректная работа ТНВД возможна лишь при согласованности всех этапов. Насос очень чувствителен к режиму работу и качеству топлива, поэтому если проигнорировать хотя бы один из пунктов, это чревато серьезными неполадками.

Виды и признаки неисправностей

В процессе эксплуатации дизельных силовых агрегатов рабочие режимы и поведение могут существенно меняться под воздействием случайных факторов. Один из наиболее значимых – износ элементов ТНВД. Важно заранее знать, какие симптомы и признаки неисправностей топливного насоса:

  • Внезапные течи в топливной системе.
  • Увеличенный расход топлива.
  • Регулярное соскальзывание ремня газораспределительного механизма с приводной шестерни.
  • Усложненный запуск мотора, сопровождающийся перегревом.
  • Появление посторонних звуков со стороны двигателя.
  • Повышенная дымность при эксплуатации в обычном режиме и использовании качественного топлива.

Если вы заметили хотя бы один из вышеперечисленных признаков, обязательно запишитесь на диагностику в специализированный сервисный центр. Специалисты смогут не только выявить неисправность, но и локализовать ее, установив степень изношенности остальных важных элементов конструкции. Возможно, замена одной детали в ТНВД позволят восстановить его заводские рабочие характеристики.

Опыт работы наших механиков помог определить список самых распространенных проблем с топливными насосами дизельных двигателей:

  • Загрязнение насоса и цилиндров нагаром, пылью, внешней грязью. Засоренные каналы и клапаны препятствуют нормальной работе плунжера. Попытки добиться заданных характеристик приводят к тому, что металл устает, теряя изначальную жесткость и прочность.
  • Сбои в подаче и равномерном распределении топлива. Обычно такая неполадка возникает по причине сильного износа зубьев рейки, втулки и плунжера, нагнетательных клапанов. Еще одна причина сбоев – повреждение или загрязнение форсунок продуктами сгорания топлива.
  • Износ плунжерной пары. В результате при работе двигателя в холодном режиме наблюдаются так называемые плавающие обороты, сопровождающиеся повышенным расходом топлива. Уменьшается компрессия, что ведет к нарушению герметичности системы топливного насоса. Если проигнорировать проблему, все может закончиться повреждением плунжера, серьезными сбоями в работе силового агрегата и повышенному износу подшипников.
  • Производственный брак. Самый редкий фактор, но иногда владельцы авто с дизельным двигателем сталкиваются с тем, что алюминиевый корпус ТНВД оказывается поврежденным или имеет трещины. Исправить эту проблему невозможно, поможет только полная замена топливного насоса.
  • Чрезмерный износ подшипников. Повышение силы трения в отношении движущихся элементов влечет ухудшение рабочих характеристик мотора.
  • Заклинивание плунжерной пары. Если в рабочем режиме поршень не возвращается обратно, а застревает в полости втулки, это повреждает регулятор, шестерни и зубчатую рейку. Одна из наиболее распространенных причин такой неполадки – попадание воды в пространство между плунжером и втулкой.
  • Коррозия плунжерной пары. Возникает по причине наличия влаги в топливе. Если пытаться экономить, разводя дизтопливо водой, рано или поздно все закончится износом поршня из-за ржавчины.
  • Перегрев даже при стабильной работе системы охлаждения двигателя. Неисправность возникает из-за использования некачественного антифриза, его нехватки или засорения каналов охлаждающих механизмов.

Самый сложный случай – появление в системе охлаждения топливного насоса масляной эмульсии. Это означает нарушение целостности отдельных комплектующих, исправляется только заменой поврежденных деталей.

Причины возникновения неисправностей

Приведем несколько популярных причин, вызывающие повреждение элементов топливного насоса:

  • Естественный механический износ отдельных комплектующих. Каждая деталь имеет ограниченный ресурс работы и даже при бережной эксплуатации авто со временем изнашивается. Если при этом использовать топливо недостаточного качества, процесс ускоряется в разы.
  • Попадание в топливную систему пыли, грязи, воды. Даже минимальное количество песка или воды может привести к полному выходу из строя ТНВД.
  • Засорение топливного фильтра. Если пропускная способность нарушена, насос оказывается неспособным обеспечить нужное для нагнетания топлива давление.
  • Разгерметизация. Попавший воздух также препятствует созданию рабочего давления в системе, в результате чего топливный насос вынужден все время работать на повышенных оборотах.

Способы профилактики

Как известно, любую болезнь проще предотвратить, чем потом лечить. В случае с двигателями работает аналогичный принцип. Важно понимать, что топливный насос – очень сложный и дорогостоящий агрегат, поэтому прислушайтесь к рекомендациям по профилактике, подготовленных специалистами нашей компании:

  • Проводите промывку топливной системы минимум раз в год, при этом очищайте или меняйте засоренный топливный фильтр.
  • Сливайте остатки топлива, которые отстоялись в баке. В них может быть большое примесей и продуктов горения, что автоматически ведет к засорения фильтров и другим проблемам.
  • Оставляйте машину на стоянке только с полным баком. На голых стенках топливного бака может образовываться конденсат, который затем попадает в топливо, а через него – в форсунки.
  • Следите за уровне топлива в баке, не допускайте езду на критическом уровне.

Ключевой фактор – правильность выбора топлива осенью и зимой. Важно понимать, что летняя солярка даже при незначительном снижении температуры стремительно утрачивает текучесть. Если охлаждение продолжится, начинаются химические реакции, в результате которых топливо парафинизируется. Продукты реакции засоряют и фильтры, и каналы топливного насоса. Если при резком похолодании вы не успели заменить летнюю солярку на зимнюю, хотя бы прогрейте авто обогревателем перед запуском двигателя.

Еще один миф – эффективность смешивание летнего дизтоплива и бензина. Это не ведет к адаптации двигателя к холодной погоде, а наоборот может привести к катастрофическим последствиям для топливной системы. Вещества имеют разные физические характеристики – плотность, температура воспламенения, характер горения, взрывоопасность. Именно по этой причине не стоит доверять заправку авто непроверенным АЗС. Проверяйте качество топлива и гарантии на него. Не старайтесь экономить, обслуживаясь на дешевых заправках. Очень скоро мнимая экономия обернется серьезным ремонтом.

Почему стоит обратиться к нам?

Опыт работы на рынке обслуживания и ремонта дизельных двигателей показывает, что топливный насос – один из самых уязвимых и чувствительных элементов конструкции мотора. Важно не только следить за подозрительными симптомами со стороны силового агрегата, но и уделять должное внимание сервисному обслуживанию ТНВД. Доверить такие серьезные работы можно только опытным и проверенным специалистам. Наши мастера специализируются на ремонте и техобслуживании дизельных моторов на протяжении долгих лет. Мы хорошо знаем особенности конструкции и обслуживания агрегатов разных годов производства. В нашем наличии – высокоточная диагностическая аппаратура, которая поможет быстро выявить неисправность. Вот еще несколько аргументов в пользу обслуживания в «Дизель-Мастер»:

  • Ремонт в течение 1 дня.
  • Удобное расположение.
  • Гарантии на все виды работ.
  • Использование сертифицированного оборудования и оригинальных запчастей.

Чтобы стать нашим клиентом, заполните заявку на нашем сайте или позвоните нам по телефонам +7 (921) 932-25-54, (812) 938-56-50, 8 (800) 350-34-48 и выберите удобное время посещения. Если у вас возникли какие-либо вопросы относительно нашей работы, вы можете задать их прямо на сайте — наши специалисты свяжутся с вами в короткое время и предоставят всю необходимую информацию.

Топливная система Сommon Rail: принцип работы впрыска, двигателя

Система Сommon Rail стала огромным шагом вперед в развитии дизельных двигателей. Рассмотрим принцип работы системы впрыска, а также преимущества и недостатки двигателей с Коммон рейл.

Принципиальное отличие

В отличие от системы распределительного типа, где форсунки открываются при определенном давлении и впрыскивают строго отведенную ТНВД порцию топлива, Сommon Rail предполагает подачу дизельного горючего ко всем форсункам от общего аккумулятора – топливной рамы (common rail с англ. – общая магистраль). Основная роль ТНВД – нагнетание горючего под высоким давлением в топливную рампу, тогда как за впрыск топлива отвечает ЭБУ двигателя. Момент начала впрыска, количество подаваемого топлива и количество впрысков за цикл регулируется моментом и временем открытия форсунок.

Устройство

Желтым цветом показан контур низкого давления, красным – контур высокого давления, коричневым – обратный слив топлива в бак.

  1. Топливоподкачивающий насос.
  2. Топливный фильтр.
  3. Топливный насос высокого давления.
  4. Клапан дозировки.
  5. Датчик давлений топлива в рампе.
  6. Аккумулятор высокого давления – топливная рейка.
  7. Регулятор давления (контрольный клапан).
  8. Инжекторы.

Расширенная схема системы питания позволяет понять, какие датчики, исполнительные механизмы и агрегаты задействованы в работе двигателя с системой впрыска Сommon Rail.

Сommon Rail в действии

Топливный насос низкого давления (его роль может выполнять подкачивающая секция, расположенная в корпусе ТНВД либо электрический насос в топливном баке) подает топливо под давлением 2,6-7 бар к ТНВД, в котором и происходит нагнетание давления топлива. При прокрутке двигателя стартером ТНВД способен создавать давление 500-600 бар. После запуска двигателя эта величина вырастает до 1300-2000 бар.

В рейке постоянно поддерживается оптимальное давление, величина которого контролируется с помощью датчика давления, лишнее топливо сбрасывается регулятором в магистраль обратного слива. Регулятор может располагаться в топливной рейке либо в корпусе ТНВД. Дополнительно в рейке может быть вмонтирован клапан экстренного сброса топлива, предотвращающий разрыв рейки в случае нештатной ситуации. Также для более точной работы в некоторых системах в топливную рампу вмонтирован датчик температуры топлива. В некоторых вариантах системы можно встретить отдельную форсунку, использующуюся для увеличения дозировки топлива и прожига сажевого фильтра, в других системах работа двигателя в режиме прожига достигается изменением ЭБУ момента впрыска и количества подаваемого в цилиндры дизеля.

Форсунки

Под давлением топливо подается к форсункам, которые могут быть 2 видов.

  • Электрогидравлические. Представляют собой обычные электромагнитные форсунки, поднятие иглы распылителя и подача топлива в которых осуществляется после подачи напряжения на электромагнитный клапан. Электромагнитные форсунки очень надежные и имеют высокий уровень ремонтопригодности.
  • Пьезоэлектрические. Пьезокристалл при подаче на него напряжение очень быстро расширяется, позволяя игле подыматься в 3-4 раза быстрее, нежели в случае с электромагнитной форсункой. Это повышает быстродействие форсунки, благодаря чему за такт можно осуществить большее количество впрыска дизеля в камеру сгорания, а также точнее отмерить подаваемую порцию горючего. Но сложность конструкции оборачивается меньшим ресурсом и трудностями в ремонте.

ТНВД

Топливная система Сommon Rail была разработана специалистами компании Bosch, которой и принадлежит основная доля рынка дизельных систем впрыска. На данный момент существует 5 генераций ТНВД Bosch системы Сommon Rail.

  • СР1 – трехплунжерный ТНВД с подкачивающей секцией, расположенной в баке. Насос лишен клапана дозирование топлива, его функцию выполняет регулятор давления, вмонтированный в рейку (отличительная черта систем с СР1). Чаще всего СР1 комплектуются электромагнитными форсунками.
  • СР1Н – усовершенствованный вариант СР1. Вместо подкачивающего насоса в баке, в корпус ТНВД вмонтирована механическая подкачивающая секция. Главная особенность – наличие клапана регулировки количества топлива, нагнетаемого в рейку. По сравнению с СР1, обеспечивает большое давление – 1600-1800 бар. Также большая эффективность достигается за счет возможности принудительного отключения одного из плунжеров, когда в большом количества горючего нет необходимости.
  • СР2 – ТНВД, предназначенные для тяжелого коммерческого транспорта.
  • СР3. Отличительная черта – количество нагнетаемого топлива регулируется не в контуре высокого давления, а еще на подходе к плунжерам путем контроля объема топлива, подаваемого к насосу. СР3 имеет механическую топливоподкачивающую секцию (варианты с электронасосами крайне редки). Двигатели с ТНВД СР3 оснащались только пьезоэлектрическими форсунками CRI 3.
  • СР4. ТНВД имеет две модификации: одноплунжерный CP 4.1 (создаваемое давление – 1800 бар) и 2-плунжерный CP 4.2 (максимальное давление – 2000 бар). ТНВД имеет встроенный регулятор давления и механическую секцию низкого давления (5 бар). Большинство двигателей с СР4 оснащаются пьезофорсунками, но существуют системы и с электрогидравлическими инжекторами.

Помимо Bosch, производством компонентов и усовершенствованием системы Сommon Rail занимаются Delfi (Lukas), Densо и др.

Управление

Посредством данных, полученных от датчика положения педали газа, ЭБУ понимает желаемый водителем уровень крутящего момента. Считывая данные с ДВКВ, ДВРВ, ДМРВ, ДТОЖ, датчика наддува, датчика температуры топлива в рампе, электронный блок управления двигателем оценивает фактическую режимную нагрузку на мотор и решает, в какой момент нужно подать сигнал на форсунки и сколько топлива впрыснуть в цилиндры за цикловую подачу.

В чем секрет эффективности

Разделение цикловой подачи на такты и впрыск топлива под большим давлением – два факторы, обеспечивающие дизельным двигателям с впрыском Сommon Rail мощность, экономичность и дружелюбность к окружающей среде.

ТНВД распределительного типа с электронным управлением, не говоря уже о полностью механических насосах, подавали дизель в цилиндры большими порциями и под сравнительно малым давлением (к примеру, ТНВД Bosch VE мог выдать всего 700 бар при 2400 об/мин). Увеличение давления при распылении позволяет разбить топливо на более мелкодисперсные частицы, увеличив тем самым площадь контакта частиц дизеля с окислителем – кислородом. Чем меньше распыляемые частицы топлива, тем они быстрее нагреваются и, как следствие, эффективней сгорают. В результате мы получаем большую мощность двигателя, как так топливо сгорает практически полностью, высвобождая большее количество энергии, и меньший расход топлива. В случае с единым аккумулятором нет прямой зависимости между оборотами двигателя и давлением топлива в рампе, поэтому даже на холостых оборотах давление достаточное для качественного распыления.

Деление цикловой подачи на такты означает, что за такт впуска форсунка успевает впрыснуть топливо не один, а несколько раз (от 2 до 7 в современных системах). Различают:

  • предварительный впрыск – предназначен для поднятия температуры в камере сгорания и лучшего возгорание основного впрыска, на который и приходится большая доля дизельного топлива;
  • основной впрыск;
  • дополнительный впрыск – может быть использован для прожига сажевого фильтра.

Разделение цикловой подачи позволяет уменьшить характерный шум работы дизельного двигателя, так как давление в камере сгорания нарастает постепенно, поэтому характерный взрыв ТПВС в камере происходит мягче. Количество впрысков определяется ЭБУ и зависит от многих параметров (режима работы двигателя, нагрузки, температуры ОЖ и т.д.).

Преимущества и недостатки

Основные достоинства дизельных ДВС с впрыском Сommon Rail:

  • экономичность;
  • приемистость двигателя (эластичность), мощность;
  • уменьшение вибраций, шума;
  • экологичность.

Как бы это странно не прозвучало, но система впрыска с топливной рейкой не имеет явных недостатков, так как назвать минусом требовательность к качеству топлива было бы неправильно. Согласитесь, что это скорее проблема АЗС и контролирующих органов, нежели системы впрыска дизельного двигателя. Отрицательными моментами могут стать лишь конструктивные особенности ТНВД, форсунки или датчиков той либо иной модели. К примеру, некоторые насосы имеют довольно мягкий алюминиевый корпус, поэтому со временем они начинают гнать стружку, появление которой чрева выходом из строя форсунок и ускоренным износом ТНВД. Также всем известно, что пьезоэлектрические форсунки имеют меньший ресурс и часто не поддаются ремонту.

При эксплуатации дизельного двигателя с системой Сommon Rail следует помнить о высоких требованиях к качеству топлива и строгом соблюдении периодичности замены фильтров.

Дизельные двигатели. Устройство и принцип работы

Все больше появляется автомобилей, у которых характерное постукивание из-под капота выдает тип установленного мотора. Разберем устройство, принцип работы и особенности дизельных двигателей.

Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент и более дешевое топливо, делают его предпочтительным вариантом. Дизели последних поколений вплотную приблизились к бензиновым моторам по шумности, сохраняя при этом преимущества в экономичности и надежности.


КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия намного выше (19-24 единиц против 9-11 у бензинового мотора). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800оС, в камеру сгорания форсунками, под большим давлением впрыскивается топливо, которое почти мгновенно самовоспламеняется.

Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность и трудности холодного пуска. У современных дизелей эти проблемы не являются столь очевидными.


ТИПЫ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.

Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию. 

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).


УСТРОЙСТВО ТОПЛИВНОЙ СИСТЕМА ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Важнейшей системой дизеля является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами топливной системы дизеля являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД — топливный насос высокого давления.

ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера. 

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.

ТНВД распределительного типа. Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.


Форсунки дизеля.
Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.


Топливные фильтры дизеля.

Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.


КАК ПРОИСХОДИТ ЗАПУСК ДИЗЕЛЬНОГО ДВИГАТЕЛЯ?

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900оС, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. 

Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.


ТУРБОНАДДУВ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя и не превышает обычно 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


СИСТЕМА COMMON-RAIL ДЛЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора. 

Топливный насос высокого давления дизельного двигателя

Топливный насос высокого давления 12-цилиндрового дизельного двигателя

Топливный насос высокого давления (ТНВД) дизельного двигателя (а также бензиновых двигателей, оснащенных системой непосредственного впрыска топлива) является одним из наиболее сложных узлов системы топливоподачи дизельных двигателей.

Топливные насосы предназначены для подачи в цилиндры дизеля под определенным давлением и в определенный момент точно отмеренных порций топлива, соответствующих данной нагрузке. По способу впрыска различают топливные насосы непосредственного действия и с аккумуляторным впрыском. В топливном насосе непосредственного действия осуществляется механический привод плунжера, а процессы нагнетания и впрыска протекают одновременно. В каждый цилиндр секция топливного насоса подает необходимую порцию топлива. Требуемое давление распыливания создается движением плунжера насоса.

У топливного насоса с аккумуляторным впрыском привод рабочего плунжера осуществляется за счет сил давления сжатых газов в цилиндре двигателя или с помощью специальных пружин. На мощных тихоходных дизелях применяют аккумуляторные топливные насосы с гидравлическими аккумуляторами.


В системах с гидравлическими аккумуляторами процессы нагнетания и впрыска протекают раздельно. Предварительно топливо под высоким давлением нагнетается насосом в аккумулятор, из которого поступает к форсункам. Эта система обеспечивает качественное распыливание и смесеобразование в широком диапазоне нагрузок дизеля, но из-за сложности конструкций такой насос широкого распространения не получил. Современные дизели используют технологию с управлением электромагнитными клапанами форсунок от микропроцессорного устройства (такое сочетание называется «common rail»).

Топливные насосы высокого давления могут быть рядными, V-образными (многосекционными) и распределительными. В рядных ТНВД насосные секции располагаются друг за другом, и каждая подает топливо в определенный цилиндр двигателя. В распределительных ТНВД, которые бывают одноплунжерными и двухплунжерными, одна насосная секция подает топливо в несколько цилиндров двигателя.

Работа секции рядного ТНВД

Устройство распределительного ТНВД:

  1. редукционный клапан;
  2. всережимный регулятор;
  3. дренажный штуцер;
  4. корпус насосной секции высокого давления в сборе с плунжерной парой и нагнетательными клапанами;
  5. топливоподкачивающий насос;
  6. лючок регулятора опережения впрыска;
  7. корпус ТНВД;
  8. электромагнитный клапан выключения подачи топлива;
  9. кулачково-роликовое устройство привода плунжера.

Подачу топлива из бака в ТНВД обеспечивает топливоподкачивающий насос (5), а редукционный клапан (1) поддерживает стабильное давление на входе в насосную секцию ТНВД, которая расположена в корпусе (4).

Плунжерная пара насосной секции представляет собой золотниковое устройство, регулирующее количество впрыскиваемого топлива и распределяющее его по цилиндрам дизеля в соответствии с порядком их работы. Всережимный регулятор (2) обеспечивает устойчивую работу дизеля в любом режиме, задаваемом водителем с помощью педали акселератора, и ограничивает максимальные обороты коленчатого вала, а регулятор опережения впрыска топлива (6) изменяет момент подачи топлива в цилиндры в зависимости от частоты вращения коленвала.

Топливоподкачивающий насос подает в ТНВД топливо в гораздо большем объёме, чем требуется для работы дизеля. Излишки возвращаются в бак через дренажный штуцер (3). Что касается электромагнитного клапана (8), то он предназначен для остановки дизеля. При повороте ключа в замке зажигания в положение «выключено» электромагнитный клапан перекрывает подачу топлива к плунжерной паре, а значит, и в цилиндры дизеля, это и требуется, чтобы заглушить силовой агрегат.

В зависимости от давления и продолжительности впрыска, а также от величины цикловой подачи топлива существуют следующие модели рядных ТНВД:

— М (4…6 цилиндров, давление впрыска до 550 бар)
— А (2…12 цилиндров, давление впрыска до 950 бар)
— P3000 (4…12 цилиндров, давление впрыска до 950 бар)
— P7100 (4…12 цилиндров, давление впрыска до 1200 бар)
— P8000 (6…12 цилиндров, давление впрыска до 1300 бар)
— P8500 (4…12 цилиндров, давление впрыска до 1300 бар)
— R (4…12 цилиндров, давление впрыска до 1150 бар)
— P10 (6…12 цилиндров, давление впрыска до 1200 бар)
— ZW (M) (4…12 цилиндров, давление впрыска до 950 бар)
— P9 (6…12 цилиндров, давление впрыска до 1200 бар)
— CW (6…10 цилиндров, давление впрыска до 1000 бар)
— h2000 (5…8 цилиндров, давление впрыска до 1350 бар)

Общее устройство ТНВД

Основные части ТНВД:

  • Корпус.
  • Крышки.
  • Всережимный регулятор
  • Муфта опережения впрыска.
  • Подкачивающий насос.
  • Кулачковый вал.
  • Толкатели.
  • Плунжеры с поводками или зубчатыми втулками,
  • Гильзы плунжеров.
  • Возвратные пружины плунжеров.
  • Нагнетательные клапаны.
  • Штуцеры.
  • Рейка.

Принцип действия ТНВД: Вращение кулачковый вал получает через муфту опережения впрыска и зубчатую передачу от коленчатого вала. При вращении кулачкового вала кулачок набегает на толкатель и смещает его, а он в свою очередь, сжимая пружину, поднимает плунжер. При поднятии плунжера он вначале закрывает впускной канал, а затем начинает вытеснять топливо, находящееся над ним. Топливо вытесняется через нагнетательный клапан, открывшийся за счёт давления, и поступает к форсунке. В момент движения плунжера вверх винтовой канал, находящийся на нём, совпадает со сливным каналом в гильзе. Остатки топлива, находящиеся над плунжером, начинают уходить на слив через осевой, радиальный и винтовой каналы в плунжере и сливной в гильзе. При опускании плунжера за счёт пружины открывается впускной канал, и объём над плунжером заполняется топливом от подкачивающего насоса. Изменение количества подаваемого топлива к форсунке осуществляется поворотом плунжеров от рейки через всережимный регулятор. При повороте плунжера, если винтовой канал совпадёт со сливным раньше, то впрыснуто топлива будет меньше. При обратном повороте каналы совпадут позже, и впрыснуто топлива будет больше. На некоторых ТНВД (например, ТНВД трактора Т — 130) часть секций отключается на холостых оборотах, соответственно, отключается и часть цилиндров двигателя.

Дополнительные агрегаты ТНВД

Муфта опережения впрыска — служит для изменения угла опережения впрыска в зависимости от оборотов. По принципу действия является механизмом, использующим центробежную силу. Устройство:

  • Ведущая полумуфта.
  • Ведомая полумуфта.
  • Грузы.
  • Стяжные пружины грузов.
  • Опорные пальцы грузов

Принцип действия: При минимальных оборотах грузы за счёт пружин стянуты к центру и положение между муфтами является исходным, при этом угол опережения впрыска находится в пределах отрегулированного параметра. При увеличении оборотов центробежная сила в грузах возрастает и разводит их, преодолевая сопротивление пружин. При этом муфты поворачиваются относительно друг друга и угол опережения впрыска увеличивается.

Всережимный регулятор — служит для изменения количества подачи топлива в зависимости от режимов работы двигателя: запуск двигателя, увеличение/уменьшение оборотов, увеличение/уменьшение нагрузки, остановка двигателя. Устройство:

  • Корпус.
  • Крышки.
  • Державка.
  • Грузы.
  • Муфта.
  • Рычаги.
  • Скоба-кулисы.
  • Регулировочные винты.
  • Оттяжные пружины.

Принцип действия: Запуск двигателя — перед запуском рейка за счёт пружины находится в положении максимальной подачи топлива, поэтому при запуске в двигатель подаётся максимальное количество топлива. Это способствует быстрому запуску. Как только двигатель начнёт развивать обороты, и центробежная сила в грузах начнёт расти, они, преодолевая сопротивление пружин, начнут расходиться в стороны и внутренними своими рычагами давить на муфту, которая будет воздействовать на рычаг, а рычаг будет тянуть рейку в сторону уменьшения подачи топлива. Обороты установятся в соответствии с натягом пружин. Увеличение оборотов — при нажатии на педаль «газа» натягивается пружина, которая действует на рычаг рейки и муфту. Муфта и рейка смещается, при этом преодолевается центробежная сила в грузах. Рейка смещается в сторону увеличения подачи топлива, и обороты растут. Увеличение нагрузки — при увеличении нагрузки и неизменном положении педали «газа» обороты снижаются, центробежная сила в грузах тоже. Грузы складываются и дают возможность сместиться муфте, рычагу и рейке в сторону увеличения подачи топлива. При снижении нагрузки обороты начинают увеличиваться, центробежная сила в грузах тоже, грузы начинают расходится и внутренними рычагами смещать муфту, рычаг и рейку в сторону уменьшения подачи топлива. Обороты при этом прекращают расти. Остановка двигателя — при остановке двигателя поворачивается скоба, кулиса скобы воздействует на рычаг, а рычаг — на рейку. Рейка перемещается настолько в сторону уменьшения подачи, что подача прекращается, и двигатель останавливается

Принцип работы дизельных форсунок и частые неисправности

Начнем с того, что большинство форсунок для дизеля (за исключением насос-форсунок и систем Cоmmon Rail) устроены и работают по схожему принципу. Это значит, что их ремонт также предполагает похожие действия. Для лучшего понимания начнем с принципов работы.

Подача топлива на форсунки в дизелях реализована посредством его нагнетания под высоким давлением. Такое давление на каждую форсунку создает:

  • топливный насос высокого давления ТНВД;
  • насос-форсунки сами сжимают и впрыскивают топливо;
  • в системах Cоmmon Rail давление топлива поддерживается постоянно в специальном «аккумуляторе» высокого давления;

Теперь давайте рассмотрим работу наиболее распространенной системы питания с обычным ТНВД. Если просто, такой насос имеет механический привод и вращается от двигателя. Вращение шкива ТНВД позволяет плунжерным парам в устройстве насоса сильно сжимать дизельное топливо и выдавать давление около 300 кг/см². Затем происходит распределение дизтоплива на форсунки, что соответствует тактам работы двигателя.

Топливо поступает от насоса по магистралям высокого давления к форсунке, установленной на каждом цилиндре, после чего проходит через отдельный канал и оказывается внутри дизельной форсунки (в полости распылителя). Внутри распылителя конструктивным элементом является специальная конусная игла. Такая игла форсунки снизу притирается к седлу с очень большой точностью. Сверху иглу прижимает пружина. Указанная пружина давит на иглу через отдельную шайбу.

Шайба может иметь разную толщину, что определяет степень давления пружины на иглу. По этой причине шайбу называют регулировочной, так как от давления пружины будет зависеть и давление топлива, от которого сработает игла форсунки.

Срабатывание иглы происходит в результате того, что внутри форсунки накапливается нагнетаемое ТНВД топливо. Если иначе, когда горючее доходит до конуса иглы, дальнейший проход солярки становится невозможным, так как канал перекрыт иглой, плотно прижимаемой к седлу усилием пружины.

Однако ТНВД продолжает работать и нагнетать топливо, происходит рост давления, которое в определенный момент становится сильнее давления пружины. В результате игла приподнимается, горючее проходит в пространство между седлом и конусом иглы, попадает под высоким давлением в отверстия распылителя и далее происходит впрыск распыленного топливного заряда.

Время впрыска зависит от того, когда давление топлива внутри форсунки понизится до такой степени, чтобы пружина снова прижала иглу к седлу. Получается, канал для выхода топлива перекрывается, давление снова начнет расти и процесс повторяется.

Синхронная работа всего механизма предполагает точный впрыск топлива в цилиндре, в котором поршень приближается к ВМТ. Следующий впрыск в этом цилиндре в заданный момент будет возможен только при условии того, что игла закроется своевременно, то есть сразу после того, как давление топлива упадет.

Неисправности, которые могут привести к проблемам закрытия иглы после впрыска, не позволяют растущему давлению топлива снова открыть иглу строго в момент приближения поршня в ВМТ. В результате момент впрыска нарушается, дизельный двигатель начинает троить, функционировать с перебоями и т.д.

Например, если впрыск произойдет раньше, процесс сгорания топлива в цилиндре нарушается, дизель громко и жестко работает. Более того, значительно усиливается износ не только ДВС, но и проблемной форсунки.

Дело в том, что через неплотно закрытое седло происходит прорыв газов, механизм разрушается, подвергается сильному загрязнению от скопления нагара. На начальном этапе нагар удаляют путем промывки форсунок дизельного двигателя, то есть без ремонта.

При этом важно понимать, что нагарообразование является не причиной, а только результатом неполадок внутри самой форсунки. Другими словами, необходимо решать проблему точного срабатывания иглы, усилия пружины и эффективного перекрытия седла.

Устройство топливной системы дизельного двигателя

Дизельные двигатели изначально имели ярко выраженное «тракторное происхождение», и до сих пор поэтому ассоциируются у многих с шумностью, «львиным рычанием», повышенными показателями вибрации и детонации. Но это явно устаревшее представление. Современные дизели, благодаря применению новых автоматических систем управления и подкорректированным принципам работы топливной системы, в значительной степени избавились от пресловутых дрожи и звука. Сохранив при этом свои лучшие качества – мощную тягу и экономичность. Как эволюционировала, вместе с дизельным мотором, его топливная система, и что она из себя представляет на данный момент, рассмотрим в этой статье.

О конструктивных особенностях дизелей, в сравнении с бензомоторами

И дизель, и бензиновый мотор являются двигателями внутреннего сгорания. В глобальном смысле, по своей конструкции дизель не отличается от бензомотора: и там, и здесь – цилиндры, поршни и шатуны в них. Однако в дизелях степень сжатия гораздо выше (19-24 единицы, а у бензинового – 9-11). Потому и все детали, и клапаны в значительной степени усилены (чтобы противостоять намного более высоким нагрузкам). Потому и вес, и габариты дизельного мотора гораздо более внушительны, чем бензинового.

Главное же различие состоит в способах формирования топливно/воздушной смеси, её воспламенения и сгорания.  В бензиновых моторах смесь топлива с воздухом формируется во впускной системе, а воспламеняется она от искры свечи зажигания. В дизельных же моторах горючее и воздух подаются в рабочие полости цилиндров по отдельности. Сначала воздух. Он накаляется до семи-восьми сотен градусов и сжимается. Когда затем в камеру сгорания под большим давлением впрыскивается топливо, то оно самовоспламеняется, практически мгновенно.

Таким образом, искры никакой не требуется. А свечи накаливания, которые установлены в цилиндрической головке представляют собой нагревательные элементы, типа паяльника, и предназначены они для быстрого обогрева воздуха в камере сгорания, покуда мотор ещё не прогрелся. Это называется системой предпускового подогрева.

Когда включается зажигание, свечи накаливания за несколько мгновений разогреваются до 800-900 градусов, прогревая воздух и обеспечивая процесс самовоспламенения. Сигналы о работе данной системы подаёт водителю контрольная лампа. Электропитание снимается со свечей в автоматическом режиме, спустя 15-20 секунд после запуска непрогретого двигателя, когда его устойчивая и стабильная работа уже вполне обеспечена. Решающая же роль в обеспечении подобных показателей работы мотора принадлежит его топливной системе, об устройстве которой и пойдёт речь.

Принцип и общая схема работы топливной системы

Последовательность работы топливной системы дизельного двигателя следующая. Солярка закачивается из топливного бака при помощи топливоподкачивающего насоса (шестерёнчатого, либо помпового типа), а после фильтрации она подаётся топливным насосом высокого давления (ТНВД) на форсунки. Топливо после закачки из бака проходит сначала через фильтр грубой очистки, избавляясь от крупных включений. Далее, уже непосредственно перед топливным насосом высокого давления – сквозь фильтр тонкой очистки. В связке с ТНВД работают форсунки, через которые солярка в распылённом состоянии и впрыскивается в цилиндры.

Схему топливной системы дизельного двигателя двигателя можно не условно, а вполне чётко разделить на два отсека: высокого давления и низкого. На участке низкого давления осуществляется предварительная подготовка, фильтрация топливной смеси, перед его отправкой в отдел высокого давления. Отсек высокого давления, в свою очередь, дорабатывает смесь до конца и переводит её в рабочую камеру.

Основная функция топливной системы, описание её работы

Предназначение топливной системы дизельного двигателя состоит в том, чтобы  подавать в цилиндры чётко отмеренный объём дизтоплива, в конкретный момент времени и под определённым давлением. Поэтому, из-за необходимости обеспечения постоянно высокого давления, а также за счёт высоких требований к точности работы, топливная система дизельного двигателя будет посложнее в конструкции, чем у бензинового, и достаточно дорого стоит.

Теперь попробуем представить себе бесперебойную работу топливной системы в поэтапном режиме, а для этого разберём по порядку отдельные её составные части. Итак, топливный бак служит для размещения солярки и обеспечения бесперебойной её подачи в систему. Эту функцию выполняют трубопроводы. Вначале топливоподкачивающий насос высасывает из бака горючее и через фильтры подаёт его в распределительную магистраль низкого давления. При этом в системе поддерживается стабильное давление в три атмосферы. Топливо дважды проходит  фильтрацию, проходя через фильтры грубой и тонкой очистки.

В задачу топливных фильтров входит контроль за чистотой горючего и избавлением его от возможных посторонних примесей – от частичек грязи, воды, песчинок. Прошли те времена, когда дизели были весьма непритязательными к качеству топлива. Современные дизельные моторы требуют очень чистой солярки для сохранения достойных показателей своей работы. Чистота горючего сейчас – одно из основных и непременных условий эффективной работы двигателя. Топливо подаётся только в том случае, если в системе нет воздуха.

После фильтрации солярка попадает в магистраль высокого давления. Эта часть топливной системы обеспечивает подачу и впрыскивание необходимого количества топлива в цилиндры двигателя в определённые моменты. Топливный насос высокого давления, в соответствии с порядком работы цилиндров, по топливопроводам высокого давления подаёт солярку к форсункам.

Форсунки, размещённые в головках цилиндров, впрыскивают и распыляют горючее в камеры сгорания двигателя. Так как топливоподкачиваюший насос постоянно подаёт топливному насосу высокого давления топлива «с запасом», то есть несколько больше, чем нужно, то его избыток, а с ним – и попавший в систему воздух, по специальным дренажным трубопроводам, отводится обратно в бак.

Для обеспечения синхронного впрыска горючего устроена специальная топливная рамка, к которой и подсоединяются форсунки. Они своими головками находятся во впускной трубе и распыляют топливо, сразу же в момент его подачи.

ТНВД создаёт необходимый для впрыска показатель давления, и топливо распределяется по всем цилиндрам мотора. Количество впрыскиваемого топлива, а вместе с ним – и мощностной режим работы двигателя, варьируются нажатиями на педаль акселератора. В современных дизельных двигателях просто нажатием педали «газа» объём подаваемого топлива не увеличивается, а меняется лишь программа, по которой работают регуляторы.

Да, нажимая на педаль, водитель или механизатор уже не увеличивает этим непосредственную подачу топлива, как это было в карбюраторных движках прошлых лет. А только изменяет тем самым программы работы регуляторов, которые уже сами варьируют объём единовременной подачи горючего, по строго определённым зависимостям от числа оборотов, давления наддува, от положения рычага регулятора и т.п.

Главные составные части топливной системы дизельного двигателя

Итак, помимо топливного бака и магистральных топливопроводов, с которыми всё более или менее ясно, основными составными частями топливной системы дизельного мотора являются: топливоподкачивающий насос, фильтры грубой и тонкой очистки горючего, топливный насос высокого давления (ТНВД) и форсунки.

Топливоподкачивающий насос

Устройство подкачивающего насоса дизельного топлива довольно несложное. Оно представляет собою две находящиеся в постоянном зацеплении шестерни. Когда происходит процесс вращения, зубья этих шестерней выполняют функцию лопастей, создавая и поддерживая ток горючего по направлению к ТНВД. Главным же действующим элементом подкачивающего насоса, который и непосредственно нагнетает топливо, является поршень. Как уже было отмечено, производительность топливоподкачивающего насоса устроена превышающей производительность насоса высокого давления, поэтому и оборудованы специальные топливопроводы для слива излишков обратно в топливный бак.

Топливный насос высокого давления

ТНВД предназначается для подачи топлива к форсункам под давлением, в соответствии со строго определенной программой, в зависимости от заданных режимов работы двигателя и от управляющих действий водителя. По своей сути, современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления работой двигателя и, в то же время, главного исполнительного механизма, реагирующего на команды шофера.

Благодаря внедрению в производство топливных насосов высокого давления с электронными системами управлением, а также 2-хступенчатого впрыска топлива и оптимизации процесса сгорания, получилось добиться достаточно устойчивой работы дизеля с неразделённой камерой сгорания на оборотах до 4500 в минуту, оптимизировать его экономичность, снизить показатели шума и вибрации.

Далее: по всей длине насоса, во внутренней его полости, расположен вращающийся вал, снабжённый специальными кулачками. Этот вал ТНВД получает энергию вращения от распределительного вала двигателя. Его кулачки при движении воздействуют на толкатели, которые, в свою очередь, и стимулируют нагнетающую работу поршня-плунжера. При своём продвижении вверх этот плунжер создаёт высокое давление топлива внутри цилиндра. Сила этого давления и выталкивает горючее, которое направляется по топливной магистрали к форсункам.

Для сравнения: на участке топливной системы низкого давления, где топливоподкачивающий насос гонит солярку через фильтры к ТНВД, давление составляет 3 атмосферы. А топливный насос высокого давления толкает горючее к форсункам с силой давления до 2000 атмосфер! Это нужно для того, чтобы обеспечить качественные впрыск и распыление топливной смеси в камеры сгорания цилиндров мотора.

Внутри корпуса, или гильзы, топливного насоса высокого давления расположен плунжер, иначе – специальный поршень, обладающий диаметром, значительно меньшим, чем его длина. Это называется плунжерной парой. Её детали притёрты друг к другу таким образом, что зазор не превышает 4-х мкм.

Поскольку работа дизеля в разных режимах и на разных оборотах требует, соответственно, и разного количества горючего, устройство плунжера было немного изменено: по его поверхности «пустили» специальную спиральную выточку, позволяющую менять величину активного хода при помощи механизма поворота плунжеров.

Это сделано было для того, чтобы плунжер мог не только нагнетать топливо под давлением по направлению к форсункам, но и регулировать количество, объём этой подачи. Для этого служит подвижная часть плунжера, которая, в зависимости от изменения параметров, может открывать или закрывать канавки внутри него. Данная подвижная часть соединена с педалью «газа» в кабине механизатора.

В зависимости от того, каков угол поворота плунжера, устанавливается и соответствующая степень открытия каналов прохождения топлива, и его непосредственное количество, подаваемое на форсунки.

Форсунки

Другой важнейший элемент топливной системы дизельного двигателя – это форсунки, на каждом из его цилиндров. Они, совместно с ТНВД, обеспечивают подачу строго дозированного количества топлива в камеры сгорания. Регулировки давления открытия форсунки формируют рабочее давление в топливной системе, а типы распылителей определяют форму факела топлива, которая имеет важное значение для активизации процессов самовоспламенения и сгорания. В современных дизельных моторах обычно применяются форсунки двух типов: со шрифтовым, или с многодырчатым распределителем.

Форсункам на двигателе приходится работать в очень тяжёлых условиях: игла распылителя совершает возвратно/поступательные движения с частотою в половину меньшей, чем обороты двигателя, и при этом распылитель всё время непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из специальных, высоко-жаропрочных сплавов, делается с особой точностью и является прецизионным элементом.

Распределитель форсунок выполняет функцию равномерного поступления топлива в камеры сгорания и наиболее эффективное его воспламенение. Чем более мелко распыляется топливная смесь, тем устойчивее, в целом, получается работа силового агрегата. Не менее важный фактор – это равномерность распыления горючего, во всех возможных направлениях. Современные форсунки производятся с многочисленными мельчайшими отверстиями, как раз для того, чтобы распыление топливной смеси происходило во всех направлениях, и в равномерном режиме.

Кроме того, работа форсунок поддерживает следующие процессы, с которыми напрямую связана эффективная работа двигателя:

  • Обеспечение высокого давления и температуры в камерах сгорания;
  • Смешивание солярки с воздухом в оптимальном объёме;
  • Соответствие угла опережения впрыска частоте вращения коленчатого вала мотора.

Форсунки бывают с механическим, либо с электромагнитным управлением. В обычных форсунках открытие отверстия распылителя связано с тем давлением, которое имеется на тот момент в топливной магистрали. Отверстие форсунки перекрывается иглой, соединённой со специальным поршнем вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Когда происходит поступление топлива под давлением, поршень перемещается вверх и тянет за собою иглу. Отверстие раскрывается, и распыление начинается.

В современных дизельных двигателях используются форсунки с электромагнитной системой управления. Их работа регулируется уже не по механическому принципу, а с помощью электромагнитных импульсов, поступающих от блока управления. Каждая из форсунок снабжена электромагнитным клапаном, открывающим либо закрывающим распыление топлива.

На эти электромагнитные элементы форсунок поступают сигналы от электронного бока управления (ЭБУ), который, в соответствии с информацией от целого ряда датчиков, подаёт ту или иную команду на установку нужной степени распыления.

Несколько слов о системе «КоммонРэйл»

Говоря о топливной системе современных дизельных двигателей, нельзя не упомянуть такую её модификацию, как «Аккумуляторная топливная система CommonRail» («Общая рамка», или «Общая магистраль» в переводе с английского). Она проявляет очень хорошие показатели экономичности и эффективности, и вполне заслуженно завоёвывает всё большую популярность. В первую очередь – на дизельных двигателях коммерческого автотранспорта, разумеется.

В ней также используется ТНВД, подающий горючее в напорную магистраль, которая играет роль аккумулятора давления. Электронный блок управления регулирует производительность насоса, для поддержания необходимого давления в магистрали по мере расхода топлива.

В «КоммонРэйл» управляемые электроникой электрогидравлические форсунки с электромагнитным или пьезоэлектрическим приводом управляющих клапанов впрыскивают выверенные дозы дизельного топлива под высоким давлением в рабочие полости цилиндров.

Компьютерная система управления подачей горючего позволяет впрыскивать его в камеры сгорания цилиндров максимально точно дозированными дозами. Сначала впрыскивается микроскопическая, всего лишь в районе миллиграмма, порция, которая своим сгоранием накаляет температуру в камере, а за ней следует основной «заряд». Как результат – дизельные двигатели, оснащённые системой «КоммонРэйл», показывают лучшую экономичность (до 20 процентов). Доля новых дизельных двигателей, оснащённых системой «CommonRail», год от года неуклонно растёт.

Заключение

В целом, именно усовершенствованиям, которым подверглась топливная система дизельных двигателей в наше время, значительно укрепили позиции дизельных двигателей на рынке и в экономике. Дизели стали более экономичными и менее шумными, чем были прежде, а потому завоёвывают всё больше сегментов своего непосредственного применения на рынке.

Принцип работы топливного насоса высокого давления в дизельном двигателе

В обычных дизельных двигателях есть два типа топливных насосов: линейный насос и распределительный насос.

Мы обсуждали разницу между двумя типами насосов в предыдущей статье, вы можете получить доступ к этим 3 типам топливных насосов в дизельных двигателях.

В этой статье мы подробно поговорим о встроенном ТНВД.

Как это работает? какие компоненты? мы все это обсудим.

Определение линейного нагнетательного насоса


Встроенный впрыскивающий насос — это насос высокого давления на дизельном двигателе, который используется для индивидуального повышения давления дизельного топлива до 18 000 фунтов на квадратный дюйм.

То есть каждый инжектор будет обслуживаться плунжерным узлом.

Можно сказать, что в 4-цилиндровом дизельном двигателе 4 форсунки и 4 плунжера.

Основная характеристика линейного ТНВД заключается в конфигурации каждого плунжера. Каждый плунжер расположен на одной линии над насосом распределительного вала.

Отсюда и произошло название «встроенный насос». Помимо того, что этот тип называется встроенным насосом, этот тип также известен как индивидуальный насос, потому что, как объяснялось выше, в этом типе используется один плунжер для каждого цилиндра.

Главный компонент линейного ТНВД

В линейном ТНВД 5 основных компонентов,

  • Насос распределительного вала
  • Плунжер
  • Бочка топливная
  • Подача топлива
  • Шестерня

Насос распределительного вала используется для приведения в действие плунжера для сжатия топлива.В топливной бочке находится место для хранения топлива, которое будет прижиматься к форсунке.

Это конфигурация, плунжер расположен над распределительным валом, а топливный цилиндр расположен над плунжером.

Рейка и шестерня — это механизм для регулирования количества топлива в топливной бочке. Этот механизм будет регулировать обороты дизельного двигателя.

Подача топлива представляет собой дверцу входа-выхода топлива, имеется три входа подачи топлива
входной канал, используемый в качестве входа топлива из бака в выходной канал насоса
, используемый в качестве выхода топлива в инжектор в условиях высокого давления
возвратный канал, используется для слива оставшегося топлива, которое не вдавливается в форсунку

А как это работает?

1.Внешний механизм ТНВД

Как правило, это мини-насос, который используется для перекачки топлива из бака в ТНВД. Этот насос работает механически, то есть приводится в действие коленчатым валом двигателя.

Итак, чтобы запустить поток топлива, нам нужно провернуть двигатель.


Когда коленчатый вал вращается, мини-насос подает дизельное топливо из бака в топливный насос через впускной канал. Из входного патрубка топливо непосредственно заполняет топливную бочку, и она готова к прессованию.

2. Механизм ТНВД

Распределительный вал насоса соединен с коленчатым валом двигателя, поэтому при автоматическом проворачивании двигателя распредвал насоса вращается.


Это вращение перемещает плунжер, так что плунжер прижимается вверх, и в результате топливо, которое уже находится в топливной бочке, сжимается под высоким давлением и поступает в инжектор.

Когда кулачок закончил нажимать на плунжер, плунжер возвращается в нижнее положение. Это снова откроет камеру топливной бочки, так что топливо из впускного отверстия заполнит топливную бочку напрямую.

3. Механизм установки числа оборотов двигателя

Регулировка числа оборотов двигателя на обычном дизельном топливе осуществляется путем регулировки количества топлива, впрыскиваемого форсункой.

В этом случае регулятор находится в топливной бочке. Количество топлива в топливной бочке при нажатии влияет на частоту вращения двигателя.

это задача рейки и шестерни. Эти два компонента будут регулировать количество топлива в топливной бочке, регулируя удаление топлива через возвратную подачу.

Количество топлива меньше (низкие обороты)

Количество топлива больше (высокие обороты)

Таким образом, от топливной бочки имеется промежуточный топливный тракт, ведущий к обратной подаче.

Этот путь сделан с определенным уклоном, так что, когда угол плунжера поворачивается, это влияет на количество топлива, содержащегося в топливной бочке

Для большей ясности вы можете увидеть картинку (если смотреть сбоку)

а. при низких оборотах

Количество сжатого топлива меньше, поэтому угол плунжера можно увидеть на картинке.

2. при высоких оборотах

Количество запрессованного топлива больше, поэтому угол плунжера можно увидеть на картинке.


Впрыск дизельного топлива | HowStuffWorks

Одно большое различие между дизельным двигателем и газовым двигателем заключается в процессе впрыска. В большинстве автомобильных двигателей используется впрыск через порт или карбюратор. Система впрыска через порт впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух попадает в цилиндр.Следовательно, в двигателе автомобиля все топливо загружается в цилиндр во время такта впуска, а затем сжимается. Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя — если он слишком сильно сжимает воздух, топливно-воздушная смесь самовоспламеняется и вызывает детонацию . Детонация может привести к повреждению двигателя из-за чрезмерного нагрева.

Дизельные двигатели используют прямой впрыск топлива — дизельное топливо впрыскивается непосредственно в цилиндр.

Форсунка дизельного двигателя является его наиболее сложным компонентом и является предметом множества экспериментов — в любом конкретном двигателе он может располагаться в различных местах.Форсунка должна выдерживать температуру и давление внутри цилиндра и при этом подавать топливо в виде мелкого тумана. Обеспечение циркуляции тумана в цилиндре для его равномерного распределения также является проблемой, поэтому в некоторых дизельных двигателях используются специальные впускные клапаны, камеры предварительного сгорания или другие устройства для завихрения воздуха в камере сгорания или иного улучшения процесса зажигания и сгорания. .

Некоторые дизельные двигатели содержат свечу накаливания . Когда дизельный двигатель холодный, в процессе сжатия воздух может не подняться до температуры, достаточной для воспламенения топлива.Свеча накаливания представляет собой электрически нагреваемый провод (представьте себе горячие провода, которые вы видите в тостере), который нагревает камеры сгорания и повышает температуру воздуха, когда двигатель холодный, чтобы двигатель мог запуститься. По словам Кли Бертона, техника-подмастерья по тяжелому оборудованию:

Все функции в современном двигателе контролируются контроллером ЭСУД, который взаимодействует с тщательно продуманным набором датчиков, измеряющих все, начиная с оборотов в минуту. к температуре охлаждающей жидкости и масла двигателя и даже к положению двигателя (т.е.е. T.D.C.). Свечи накаливания сегодня редко используются на более мощных двигателях. Контроллер ЭСУД определяет температуру окружающего воздуха и замедляет синхронизацию двигателя в холодную погоду, поэтому форсунка впрыскивает топливо в более позднее время. Воздух в цилиндре сжимается сильнее, выделяя больше тепла, что способствует запуску.

В небольших двигателях и двигателях, не оснащенных таким современным компьютерным управлением, для решения проблемы холодного запуска используются свечи накаливания.

Конечно, механика — не единственное отличие дизельных двигателей от бензиновых.Еще есть проблема с топливом.

Причин, по которым ваш топливный насос форсунки выходит из строя и как это исправить

Производительность топливного насоса форсунки тесно связана с производительностью вашего двигателя. Если у вашего дизельного автомобиля проблемы с подачей топлива, он умрет от голода. Поэтому проблемы с впрыском топлива — самые сложные проблемы. Независимо от того, возникают ли у вас проблемы с двигателем или нет, полезно знать о топливных насосах форсунок, о том, как они влияют на производительность вашего двигателя и как их обслуживать, чтобы избежать проблем в будущем.

Подпишитесь на NewsGram на Quora Space, чтобы получить ответы на все свои вопросы.

Что такое ТНВД для дизельного топлива?

Насос для форсунки дизельного топлива — это механическое устройство, которое обычно нагнетает дизельное топливо в камеру внутреннего сгорания автомобильных двигателей. Это сердце дизельного двигателя, в котором он поддерживает свой ритм, чтобы обеспечить его эффективную работу на десятилетия вперед. Топливо для дизельных форсунок важно, потому что:

  • Он подает топливо в ваш двигатель, чтобы он продолжал работать.Это достигается путем сжатия топлива до высокого давления, где оно поднимается к плунжеру, а затем направляется к форсункам.
  • Регулирует количество топлива. Когда количество впрыскиваемого топлива регулируется в соответствии с частотой вращения двигателя, а время остается прежним, результат и расход топлива изменятся. Ускоритель регулируется, когда мощность двигателя прямо пропорциональна количеству впрыскиваемого топлива.
  • Используется для регулировки момента впрыска. Насосы для впрыска дизельного топлива регулируют время впрыска, воспламенения и сгорания топлива при достижении максимального сгорания.
  • Он также используется для распыления топлива для улучшения воспламенения, что обычно приводит к полному сгоранию.

Высокопроизводительные автомобили обычно имеют по одной топливной форсунке на цилиндр. Pixabay

Высокопроизводительные автомобили обычно имеют одну топливную форсунку на цилиндр, а насос впрыскивает дизельное топливо в камеру сгорания, отсюда и название топливная форсунка. Затем топливо (дизельное топливо) диспергируется из впрыскивающего насоса в камеру сгорания посредством другого процесса.Во время этого процесса топливо под давлением поступает в топливную форсунку по сигналу от клапана с электронным управлением, затем к плунжеру, который подготавливает топливо к окончательному выходу. Когда топливо выходит из топливной форсунки, распылительный наконечник распределяет топливо в виде мелкого тумана.

Насосы для впрыска дизельного топлива работают при более высоком давлении, чем десять лет назад. Типичным для топливных насосов форсунок было перерабатывать топливо в топливной системе при давлении от 10 000 до 15 000 фунтов на квадратный дюйм (фунтов на квадратный дюйм).По сравнению с тем, как работают двигатели сегодня, это лишь половина работы. Сегодня дизельные топливные насосы работают под давлением от 30 000 до 40 000 фунтов на квадратный дюйм.

Высокопроизводительные характеристики двигателя во многом объясняются тем, сколько топлива он может переработать. Это означает, что более совершенный двигатель будет обрабатывать воздух и топливо намного лучше, чем средний двигатель — это одна из причин, по которой люди также используют турбокомпрессоры для увеличения мощности. Это также объясняет более высокое давление на выходе современных топливных насосов высокого давления, чем 10–15 лет назад.

Распространенные отказы ТНВД дизельного топлива и способы их предотвращения

Есть две важные причины отказа дизельной форсунки, и 90% проблем можно отнести к качеству используемого топлива или, скорее, к некачеству и неисправным механическим проблемам в корпусе топливной форсунки. Из этих двух вещей может возникнуть несколько проблем. Давайте посмотрим на распространенные проблемы с топливным насосом-форсункой.

Грязное топливо

Использование некачественного или грязного топлива — одна из распространенных причин, по которым насосы топливных форсунок могут перестать работать эффективно или полностью.Остатки сверхурочного времени, такие как мусор и жир, могут накапливаться внутри топливной системы и засорить весь топливный насос форсунки. Область, на которую следует обратить внимание, поскольку она наиболее подвержена засорению, — это наконечник распылителя, который представляет собой область, где топливо выходит из инжектора в камеру сгорания.

Если вы замечаете, что ваш двигатель колеблется и издает брызги при попытке ускориться, это признак того, что ваши форсунки могут быть забиты.

Езда на малом топливе

Езда с почти пустым топливным баком крайне вредна для вашего дизельного двигателя.По крайней мере, вы должны стараться, чтобы все время оставалось заполненным хотя бы треть бака, поскольку топливо обеспечивает смазку топливных насосов. Когда в вашем баке достаточно дизельного топлива, подшипники топливного насоса смазываются должным образом.

Если бак работает пустой, воздух попадает в бак и может быстро изнашивать подшипники и препятствовать подаче топлива в топливный насос с надлежащим давлением.

Езда с почти пустым топливным баком крайне вредна для вашего дизельного двигателя.Pixabay

Отложения в насосе форсунки

Одна из основных причин отказа инжекторного насоса — чрезмерное накопление отложений. Есть два типа отложений — внутренние отложения инжектора и внешние отложения инжектора.

Внешние отложения в форсунках вызваны не полностью сгоревшим топливом, которое часто накапливается вокруг отверстий форсунок. Эти отложения называются отложениями коксования.

Хотя в некоторых случаях эти отложения не приводят к выходу из строя форсунок, они могут накапливаться достаточно, чтобы затруднить распыление топлива, что приведет к менее эффективному сгоранию топлива.Вы заметите это, если у вашего автомобиля заметная потеря мощности или очень высокий расход топлива. Чтобы успешно избавить ваш дизельный двигатель от этих внешних отложений, вы можете использовать моющие присадки, которые отлично подойдут. Они помогут восстановить наиболее эффективную работу вашего инжекторного насоса, восстановив как потерянную мощность, так и увеличенный расход топлива, вызванный накоплением внешних отложений.

В предыдущие годы появился новый вид отложений на насосах-форсунках — внутренние отложения в дизельных форсунках.Эти отложения не накапливаются на внешних концах инжектора, а образуются на внутренних частях, таких как пилотные клапаны и иглы инжектора. Они похожи на коксующиеся отложения, которые обычно имеют темно-коричневый и светлый или почти не совсем белый или сероватый цвет. Хотя они могут накапливаться в любом дизельном двигателе, они более склонны к образованию в более новых двигателях с высокотехнологичными системами впрыска.

По мере того, как эти внутренние отложения накапливаются, они создают те же проблемы, что и внешние отложения — потерю мощности и высокий расход топлива.В тяжелых случаях, когда форсунки начинают полностью заедать, это может привести к высоким затратам на техническое обслуживание и чрезмерному простою автомобиля.

Чрезмерный износ

Насос топливной форсунки также может выйти из строя из-за чрезмерного износа. Вплоть до 2006 года дизельное топливо, обнаруженное в Соединенных Штатах, содержало высокий уровень серы; сера поступала из очищенной сырой нефти. Сера в масле действует как смазка для топливной системы. Дизельное топливо с относительно низким содержанием серы постепенно выводилось на рынок под названием «Дизельное топливо со сверхнизким содержанием серы» (ULSD), и теперь оно используется во всех сегментах дизельного топлива, включая железные дороги, шоссейные дороги и внедорожники.

Когда нефтепереработчики удалили серу из дизельного топлива, исчезли и преимущества смазки. Теперь присадки используются для восстановления смазывающей способности дизельного топлива. Чем меньше смазки обеспечивает дизельное топливо, тем больше следы износа. Стандарт для измерения смазывающей способности дизельного топлива — это тест HFRR (High Frequency Reciprocating Rig), который измеряет размер пятна износа между двумя металлическими поверхностями, смазываемыми топливом. Многие дистрибьюторы дизельного топлива теперь добавляют дополнительные присадки, улучшающие смазывающую способность, чтобы уменьшить преждевременный износ.

Важно поддерживать точное время каждый раз, когда ремень ГРМ вашего дизельного двигателя был отрегулирован или заменен. Pixabay

Истирание

Хотя смазывающая способность топлива является жизненно важным фактором в определении чрезмерного износа топливных насосов высокого давления, это не единственная причина чрезмерного износа, связанная с топливом. Другой основной причиной преждевременного выхода из строя топливного насоса форсунки является истирание. Все виды топлива, включая дизельное топливо высочайшего качества, содержат небольшое количество примесей.

Некоторые из этих примесей могут включать микроскопические частицы, которые могут проходить даже через самые плотные бортовые топливные фильтры. Если ваше дизельное топливо содержит эти мелкие нерастворимые частицы, со временем они могут истирать форсунки при прохождении через них при нормальной работе двигателя.

В крайних случаях истирание может значительно изменить форму распыления топлива, что приведет к снижению производительности двигателя, высоким затратам на техническое обслуживание из-за сильного истирания и даже увеличению времени простоя двигателя.Безупречная уборка, проводимая поставщиком топлива, и надлежащая фильтрация топлива могут отрицательно снизить ущерб, вызванный истиранием.

Также читайте: Восстановление внутренних поездок в условиях пандемии

Неправильная синхронизация форсунок

Идеальное количество топлива и его синхронизация исключительно важны, потому что они регулируют сгорание топлива и ускорение двигателя. Важно поддерживать точное время каждый раз при регулировке или замене ремня ГРМ вашего дизельного двигателя.

Неправильная синхронизация впрыска топлива может привести к снижению производительности двигателя и вызвать пропуски зажигания. Это также может вызвать перерасход топлива, потерю мощности и избыточное дымообразование. Серьезность проблемы также будет зависеть от того, насколько далеко от графика. Если время немного отклонено, проблем может быть минимально или вообще нет. Если вам необходимо проверить топливный насос-форсунку, не делайте этого самостоятельно, а вместо этого обратитесь к профессионалам, знакомым с дизельными двигателями и насосами-форсунками для дизельного топлива, таким как Goldfarb inc.

Заключение

Отличная производительность топливного насоса высокого давления имеет решающее значение для поддержания исправного двигателя. Двигатель, который длительное время испытывал трудности с впрыском топлива, быстро выйдет из строя и в конечном итоге выйдет из строя. Имея представление об общих проблемах с топливными насосами и способах их предотвращения, вы сэкономите много денег.

[Заявление об ограничении ответственности: в статье, опубликованной выше, содержатся ссылки на коммерческие интересы.]

Что такое технология прямого впрыска и как она работает?

Что такое прямой впрыск?

Во-первых, дизельный двигатель с прямым впрыском (DI) — это основной тип системы впрыска топлива, который использовался во многих дизельных двигателях предыдущего поколения.В простых дизельных двигателях с прямым впрыском топливо впрыскивается непосредственно в камеру сгорания над поршнем. Сжатие воздуха внутри камеры сгорания повышает его температуру выше 400 o C. Затем он воспламеняет дизельное топливо, впрыскиваемое в камеру сгорания. Следовательно, дизельные двигатели также известны как двигатели « с воспламенением от сжатия, » .

Рисунок 1 — Принцип работы с прямым впрыском

Эта технология, то есть простой двигатель с прямым впрыском, отличается способом подачи дизельного топлива на форсунки и управляет ими от своего преемника с прямым впрыском Common-Rail (CRDi).Причем до появления последнего он был в моде. В настоящее время в некоторых тяжелых дизельных транспортных средствах, таких как грузовые автомобили, грузовики, автобусы и генераторы, по-прежнему используется технология DI.

Топливная система прямого впрыска состоит из следующих частей:

  1. Топливный насос высокого давления (FIP)
  2. Форсунки
  3. Линии высокого давления
  4. Насос подачи топлива
  5. Топливный фильтр
  6. Губернатор
Рисунок 2 — Принципиальная схема системы прямого впрыска топлива (DI)

Топливный насос в двигателях с прямым впрыском:

Inline FIP

Единственная функция топливного насоса высокого давления — подавать точно отмеренное количество топлива в каждый цилиндр через определенные интервалы времени в соответствии с положением поршня.

Топливный насос высокого давления сжимает топливо до высокого давления и измеряет количество впрыскиваемого топлива в соответствии с нагрузкой и скоростью двигателя. Затем он подает дизельное топливо под давлением к форсункам по отдельным топливопроводам.

Технически существует два различных типа FIP, которые широко используются в двигателях DI. Один из них представляет собой встроенный насос (плунжерного типа), а другой — роторный насос (распределительного типа) с механическим / пневматическим регулятором. Кроме того, регулятор регулирует работу двигателя на холостом ходу, а также максимальную скорость, контролируя количество подаваемого топлива.

Тип распределителя FIP, также известный как роторный топливный насос

, детали топливного насоса высокого давления обрабатываются с более узкими допусками для достижения высокой степени точности. Моторное масло, залитое в него из масляного канала, обеспечивает смазку частей рядного топливного насоса, в то время как роторный топливный насос является самосмазывающимся, работающим от дизельного топлива.

Преимущества обычного прямого впрыска:

  1. Более высокий крутящий момент на нижнем конце
  2. Прочность
  3. Меньшее обслуживание
  4. Увеличенный срок службы двигателя

Недостатки обычного прямого впрыска:

  1. Более высокие уровни шума, вибрации и резкости
  2. Медленная работа
  3. Более низкие обороты двигателя и
  4. л.с.
  5. Более тяжелые компоненты двигателя

Универсальные автомобили предыдущего поколения в Индии, такие как Mahindra Armada, Toyota Qualis, Tata Spacio и т. Д.использовал этот тип двигателя. Позже автомобили нового поколения перешли на Common Rail-Direct-Injection (CRDi) из-за более строгого контроля за выбросами.

Посмотрите, как работает дизельный двигатель с прямым впрыском:

Подробнее: Что такое прямой впрыск? >>

О компании CarBike Tech

CarBikeTech — технический блог в автомобильной сфере. Он регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBike Tech

4 признака неисправности дизельного топливного насоса или насоса-форсунки, на которые следует обратить внимание

Признаки неисправности дизельного топливного насоса / неисправного насоса-форсунки

Топливный насос является одним из наиболее важных компонентов для запуска автомобиля.Он использует давление, чтобы буквально перекачивать топливо из топливного бака в форсунки, поэтому не так уж редко его также называют инжекторным насосом. Есть два типа топливных насосов: механический (старый) и электронный (новый). Мы не будем вдаваться в подробности относительно различий, но мы расскажем вам наиболее распространенные симптомы отказа дизельного топливного насоса, а также причины отказа дизельного топливного насоса.

Давайте взглянем на четыре из наиболее распространенных симптомов неисправности насоса
1. Флэш двигателя

Самая ранняя проблема с дизельным топливным насосом предсказывается из-за разбрызгивания двигателя, особенно на высокой скорости.Чаще всего это происходит на шоссе или проселочных дорогах с чуть более высокой средней скоростью. Автомобиль может идеально проехать 10, 20 или даже 50 миль, но он будет иметь короткие периоды разбрызгивания или рывков (1-5 миль), прежде чем он вернется в свое нормальное состояние. Этот симптом может означать и другие вещи, но люди чаще всего принимают отказ инжекторного насоса с грязным газом. Когда проблема связана с топливным насосом, чаще всего это связано с отсутствием постоянного давления. Топливный насос не может постоянно поддерживать необходимое давление, поэтому возникают моменты разбрызгивания.Решение, как и для большинства следующих проблем, чаще всего будет тем же: новый топливный насос.

2. Шум двигателя при разгоне

Второй признак отказа насоса форсунки очень похож на первый, с одним заметным отличием: он возникает при разгоне. Подергивание и / или разбрызгивание по-прежнему будут присутствовать, но они будут происходить при ускорении. В частности, при ускорении с остановки. Опять же, если это топливный насос (что, скорее всего, так и есть), то это связано с неспособностью самого топливного насоса удерживать необходимое давление для подачи топлива из бака к форсункам.Топливный насос можно отремонтировать, но в большинстве случаев вы захотите заменить его новым, даже если его можно «отремонтировать».

3. Потеря мощности при нагрузке

Третья возможная причина отказа топливного насоса возникает только в определенных ситуациях и на определенных транспортных средствах. Топливный насос (даже старый) может работать так, как должен, в нормальных, низких и средних стрессовых ситуациях. Однако некоторые автомобили могут превышать эти уровни. Грузовики, пикапы и транспортные средства, которые обычно должны перевозить или буксировать значительный вес, могут подвергнуть топливный насос большей нагрузке, что приведет к выходу из строя его самых слабых компонентов.Это также подразумевает подъем на более крутые холмы или выполнение каких-либо действий в местах, где автомобиль испытывает большую нагрузку. Он характеризует и проявляется потерей силы, чаще всего большой потерей силы. Нередко наблюдается потеря мощности на 50% и более.

Что может быть опаснее машины, которая по желанию теряет мощность? Тот, который будет подниматься. Правильно, внезапная помпаж также является признаком неисправности насоса-форсунки. Из-за старости или износа топливный насос может иметь неравномерное сопротивление в двигателе.Это означает, что периоды низкого или нормального давления могут сменяться периодами высокого давления, которые наполняют двигатель большим количеством топлива, что приводит к «подпрыгиванию» транспортного средства или рывку.

4. Автомобиль не заводится

Последний частый симптом также является наиболее серьезным. Если вы проигнорируете все вышеперечисленные симптомы, вы в конечном итоге столкнетесь с одним: автомобиль, который не хочет заводиться. Определить, топливный ли это насос, довольно просто: при попытке завести автомобиль он проворачивается (пытается завестись), но не загорится сам по себе (если вы отпустите ключ).По всей видимости, это дохлый бензонасос. Совершенно новый, должен увидеть вас снова в дороге в кратчайшие сроки.

Помните, что это лишь некоторые из симптомов / причин для топливного насоса, и хотя они являются наиболее распространенными, большинство перечисленных здесь симптомов могут указывать на что-то еще, а не только на проблемы с топливным насосом, особенно если они сочетаются с другими симптомами. Мы надеемся, что эта статья помогла вам в устранении неисправностей дизельного топливного насоса.

Нужна помощь с турбокомпрессором:

Свяжитесь с нашей командой по телефону: 0490 059 316

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Что такое дизельный двигатель? Как это работает? — Welland Power

Что такое дизельный двигатель?

Дизельный двигатель — это тип двигателя внутреннего сгорания, в котором воспламенение от сжатия используется для преобразования энергии дизельного топлива в механическую энергию вращения.Дизельный двигатель был назван в честь его изобретателя Рудольфа Дизеля, который родился в Париже в 1958 году. Первый дизельный двигатель был прототипирован в 1893 году и изначально проектировался для работы на арахисовом масле.

Дизельное топливо было названо так потому, что оно использовалось для работы дизельных двигателей, дизельные двигатели не были названы в честь топлива, которое во времена первого дизельного двигателя было бесполезным побочным продуктом при извлечении парафина и керосина из сырой нефти. В 1894 году этот продукт отходов получил окончательное название «дизельное топливо».

Как работает дизельный двигатель?

Дизельный двигатель использует поршни для сжатия смеси воздуха (содержащего кислород) с дизельным топливом.Когда этот воздух сжимается в соотношении примерно 15: 1, смесь взрывается, заставляя поршень подниматься и создавая возвратно-поступательное движение. Затем это движение преобразуется коленчатым валом двигателя во вращательное.

Какие основные компоненты в дизельном двигателе?

Топливная система двигателя

Топливная система включает топливный насос высокого давления, подъемный насос, форсунки и все топливопроводы. Также будут некоторые топливные фильтры и, возможно, водоотделитель, предотвращающий повреждение дизельного двигателя некачественным топливом.

Система смазки двигателя / масляная система

Система смазки обеспечивает бесперебойную работу двигателя, предотвращая износ движущихся частей за счет использования масла под давлением для смазки и уменьшения трения. Масляная система будет иметь масляный насос и масляные фильтры, чтобы масло было чистым от загрязнений.

Система охлаждения двигателя

Система охлаждения обрабатывает охлаждающую жидкость двигателя — обычно смесь дистиллированной воды и гликоля с некоторыми дополнительными присадками для предотвращения коррозии.На некоторых двигателях также может быть фильтр охлаждающей жидкости и «водяной насос», который на самом деле является насосом охлаждающей жидкости. Насос охлаждающей жидкости используется для проталкивания охлаждающей жидкости вокруг двигателя и любого устройства, используемого для охлаждения жидкости — обычно радиатора, но иногда и теплообменника.

Выхлопная система двигателей

Очень важно избавиться от отработавших газов сгорания — отводить отработанные газы из цилиндров двигателя через выпускной коллектор в основную систему глушителя, которая снижает уровень шума.Глушитель обычно не является частью двигателя, а является дополнением для снижения шума в соответствии с требованиями клиентов. Выхлопные газы проходят через турбонагнетатель, заставляя его вращаться там, где он установлен.

Турбонагнетатель двигателей

Большинство двигателей оснащено турбонаддувом. Это устройство сжимает воздух для горения, чтобы сделать двигатель более мощным.

Дизельный двигатель состоит из сотен компонентов, но каковы основные части дизельного двигателя?

  1. Блок двигателя
  2. Поршни
  3. Вал коленчатый
  4. ТНВД и система управления двигателем
  5. Форсунки
  6. Стартер
  7. Головка
  8. Клапаны
  9. Часто Турбокомпрессор
  10. Топливные фильтры
  11. Масляные фильтры
  12. Воздушные фильтры
  13. Маховик

Система впрыска дизельного двигателя в линию — MATLAB и Simulink

Этот пример показывает рядную многоэлементную систему впрыска дизельного топлива.Он содержит кулачковый вал, подъемный насос, 4 рядных инжекторных насоса и 4 инжектора.

Модель

Описание системы впрыска

Система впрыска дизельного топлива, смоделированная этой моделью, показана на схематической диаграмме ниже.

Рисунок 1. Принципиальная схема системы впрыска

Структура системы воспроизведена из H. Heisler, Vehicle and Engine Technology (второе издание), 1999 г., и относится к категории рядных многоэлементных систем впрыска.Он состоит из следующих основных узлов:

Кулачковый вал имеет пять кулачков. Первый — эксцентриковый кулачок для приведения в действие подъемного насоса. Остальные четыре предназначены для привода плунжеров насоса. Кулачки установлены таким образом, что насосные элементы подают топливо в порядке зажигания и в нужный момент рабочего цикла двигателя. Подъемный насос подает жидкость на вход элементов насоса форсунки. Каждый элемент насоса состоит из плунжера с кулачковым приводом, нагнетательного клапана и узла регулятора.Назначение регулятора — контролировать объем топлива, подаваемого плунжером в цилиндр. Это достигается вращением плунжера с винтовой канавкой по отношению к отверстию для разлива. Более подробно все системные блоки будут описаны в следующих разделах.

Целью моделирования является исследование работы всей системы. Цель диктует степень идеализации каждой модели в системе. Если бы целью был, например, нагнетательный клапан или исследование инжектора, количество принимаемых во внимание факторов и объем рассматриваемого элемента были бы другими.

Примечание: Модель системы не представляет собой какую-либо конкретную систему впрыска. Все параметры были назначены исходя из практических соображений и не отражают каких-либо конкретных параметров производителя.

Кулачковый вал

Модель кулачкового вала состоит из пяти моделей кулачков. Есть четыре кулачка с параболическим профилем и один эксцентриковый кулачок. Каждый кулачок содержит замаскированную подсистему Simulink®, которая описывает профиль кулачка и генерирует профиль движения для источника положения, который построен из блоков Simscape ™.

Моделирование профиля кулачка

Профиль движения создается как функция угла вала, который измеряется с помощью блока Angle Sensor из библиотеки Pumps and Motors. Датчик преобразует измеренный угол в значение в диапазоне от нуля до 2 * пи. После того, как угол цикла определен, он передается в подсистему Simulink IF, которая вычисляет профиль. Кулачок, который приводит в движение плунжер насосного элемента, должен иметь параболический профиль, под которым толкатель движется вперед и назад с постоянным ускорением, как показано ниже:

В результате, при начальном угле выдвижения толкатель начинает движение вверх и достигает своего верхнего положения после того, как вал повернется на дополнительный угол выдвижения .Следящий элемент начинает обратный ход при начальном угле втягивания , и для завершения этого движения требуется угол втягивания . Разница между начальным углом втягивания и ( начальным углом выдвижения + углом выдвижения ) устанавливает угол удержания в полностью выдвинутом положении. Профиль реализован в подсистеме Simulink IF.

Предполагается, что последовательность запуска имитируемого дизельного двигателя составляет 1-3-4-2. Последовательность работы кулачка показана на рисунке ниже.Углы выдвижения и возврата установлены на pi / 4. Угол задержки при полностью выдвинутом толкателе установлен на 3 * пи / 2 рад.

Профиль эксцентрикового кулачка рассчитывается по формуле

, где e — эксцентриситет.

Источник положения

Модель источника положения, которая генерирует положение в механическом поступательном движении после сигнала Simulink на его входе, построена из блока Ideal Translational Velocity Source, блока PS Gain и установленного блока датчика поступательного движения в отрицательной обратной связи.Передаточная функция источника положения —

.

, где

T — Постоянная времени, равная 1 / Gain,

Gain — Коэффициент усиления блока PS Gain.

Коэффициент усиления установлен на 1e6, что означает, что сигналы с частотами до 160 кГц проходят практически без изменений.

Подъемный насос

Модель подъемного насоса, который представляет собой поршневой и диафрагменный насос, состоит из блока гидроцилиндров одностороннего действия и двух блоков обратных клапанов.Обратные клапаны имитируют впускной и выпускной клапаны, установленные с обеих сторон подъемного насоса (см. Рисунок 1). Контакт между роликом штока насоса и кулачком представлен блоком Translational Hard Stop. Блок «Трансляционная пружина» имитирует две пружины в насосе, которые должны поддерживать постоянный контакт между роликом и кулачком.

Впрыскивающий насос

Прямоточный впрыскивающий насос представляет собой четырехэлементный насосный агрегат. Каждый элемент подает топливо в свой цилиндр.Все четыре элемента идентичны по конструкции и параметрам и моделируются с помощью одной и той же модели, называемой элементом нагнетательного насоса. Каждый элемент нагнетательного насоса Модель элемента нагнетательного насоса содержит две подсистемы, названные, соответственно, «Насос» и «Инжектор». Насос представляет собой плунжер насоса и механизм управления насосом, а Инжектор имитирует инжектор, установленный непосредственно на цилиндре двигателя (см. Рисунок 1).

Плунжер насоса колеблется внутри цилиндра насоса, приводимого в движение кулачком (см. Рисунок 1).Плунжер моделируется с помощью блока цилиндров одностороннего действия. Блоки Translational Hard Stop и Mass представляют собой контакт между роликом плунжера и массой плунжера, соответственно. Контакт поддерживается пружиной TS.

Когда плунжер движется вниз, камера плунжера заполняется топливом под давлением, создаваемым подъемным насосом. Жидкость заполняет камеру через два отверстия, называемых впускным портом и сливным портом (см. Рисунок 2, а ниже).

Рисунок 2.Взаимодействие поршня с регулирующими отверстиями в цилиндре

После того, как поршень переместится в свое верхнее положение, достаточно высоко, чтобы отрезать оба отверстия от входной камеры, давление на выходе начинает расти. При некотором подъеме форсунка в цилиндре двигателя принудительно открывается и топливо начинает впрыскиваться в цилиндр (рис. 2, б).

Впрыск прекращается, когда спиральная канавка, образованная на боковой поверхности плунжера, достигает отверстия для разлива, которое соединяет верхнюю камеру с камерой низкого давления через отверстие, просверленное внутри плунжера (рис. 2, c).Вы можете контролировать положение винтовой канавки по отношению к отверстию для разлива, вращая плунжер с помощью управляющей вилки, регулируя таким образом объем топлива, впрыскиваемого в цилиндр.

Модель механизма управления плунжером основана на следующих предположениях:

1. В цепи управления есть три регулируемых отверстия: впускной порт, сливной порт и отверстие, образованное спиральной канавкой и сливным отверстием. Отверстия впускного и сливного отверстий зависят от движения плунжера, в то время как открытие отверстия канавка-сливное отверстие является функцией движения плунжера и вращения плунжера.Для простоты смещение, создаваемое вращением плунжера, представлено как источник линейного движения, которое сочетается со смещением плунжера.

2. На рисунке ниже показаны все размеры, необходимые для параметризации отверстий:

— Диаметр отверстия впускного порта

— Диаметр отверстия сливного порта

— Ход поршня

— Расстояние между входным отверстием и верхним положением поршня

— Расстояние между отверстием сливного порта и верхним положением поршня

— Расстояние между отверстие сливного порта и верхний край спиральной канавки

3.При назначении начальных отверстий и ориентации отверстий верхнее положение плунжера принимается за исходную точку , и движение в восходящем направлении рассматривается как движение в положительном направлении. Другими словами, ось X направлена ​​вверх. В соответствии с этими предположениями направления впускного и сливного отверстия должны быть установлены на Открывается в отрицательном направлении , в то время как отверстие сливного отверстия канавки должно быть установлено на Открывается в положительном направлении , поскольку оно открывается, когда плунжер движется вверх.В таблице ниже показаны значения, присвоенные начальным отверстиям и диаметрам отверстий.

 Обозначение Имя в файле параметров Значение Примечания
S ход 0,01 м
D_in впускной_или_диаметр 0,003 м
D_s spill_or_diameter 0,0024 м
h_in -stroke + inlet_or_diameter + 0,001 Впускное отверстие смещено вверх на 1 мм по отношению к отверстию для разлива
h_s -stroke + spill_or_diameter
h_hg spill_or_diameter Предполагается, что сливное отверстие полностью открыто в верхнем положении поршня 

4.Эффективный ход плунжера равен

. Входное отверстие обычно располагается выше разливного отверстия. В примере это расстояние установлено на 1 мм. Вращая плунжер, вы изменяете начальное открытие отверстия отверстия для слива канавки. Поскольку начальное открытие является параметром и не может быть изменено динамически, смещение начального отверстия моделируется добавлением эквивалентного линейного смещения элемента управления отверстием. Чем больше эквивалентный сигнал, тем раньше открывается сливное отверстие, тем самым уменьшая объем топлива, подаваемого в цилиндр.Максимальное значение эквивалентного сигнала равно эффективному ходу. При этом значении сливное отверстие все время остается открытым.

Инжектор

Модель инжектора основана на блоке гидроцилиндров одностороннего действия и блоке игольчатого клапана. Игольчатый клапан закрывается в исходном положении за счет усилия, создаваемого предварительно натянутой пружиной. Когда сила, развиваемая цилиндром, преодолевает силу пружины, форсунка открывается и позволяет впрыскивать топливо в цилиндр.В этом примере форсунка открывается при давлении 1000 бар.

Результаты моделирования на основе Simscape Logging

На графиках ниже показаны положения и скорости потока на выходе инжекторного насоса 1 и инжектора 1. Влияние профиля кулачка показано на смещении инжекторного насоса 1. Во второй половине кулачка во время такта топливо выходит из насоса форсунки и попадает в форсунку. Топливо выходит из форсунки через игольчатый клапан. Инжектор имеет камеру с предварительно нагруженной пружиной, которая временно удерживает жидкость из насоса и более плавно выталкивает ее из инжектора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *