Обслуживание форсунок дизельных двигателей
При обслуживании каждую форсунку необходимо отрегулировать на давление начала впрыскивания 26,5 +0,8 МПа(270+8 кГс/см2). Регулировку рекомендуется производить на специальном стенде. Давление начала впрыскивания регулируется винтом при снятом колпаке форсунки и отвернутой контргайке. При ввертывании винта давление повышается, при вывертывании — понижается.
Проверить герметичность
Проверить герметичность распылителя по запирающему конусу иглы и отсутствие течей в местах уплотнений линий высокого давления. Для этого создать в форсунке давление топлива на 1-1,5 МПа (10-15 кГс/см2) ниже давления начала впрыскивания. При этом в течение 15 секунд не должно быть подтекания топлива из распыливающих отверстий; допускается увлажнение носика распылителя без отрыва топлива в виде капли. Герметичность в местах уплотнений линии высокого давления проверить при выдержке давлением в течение 2-х минут; на верхнем торце гайки распылителя (при установке форсунки под углом 15° к горизонтальной поверхности) не должно образовываться отрывающейся капли топлива.
Подвижность иглы
Проверить прокачкой топ лива через форсунку, отрегулированную на заданное давление начала впрыскивания на опрессовочном стенде, при частоте впрыскивания 30-40 в минуту.
Допускается подвижность иглы проверять одновременно с проверкой качества распыливания.
Качество распыливания
Проверять на опрессовочном стенде прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания при частоте 60-80 впрыскиваний в минуту. Качество распыливания считается удовлетворительным, если топливо впрыскивается в атмосферу в туманообразном состоянии и равномерно распределяется как по всем струям, так и по поперечному сечению каждой струи. Начало и конец впрыскивания при этом должны быть четкими. После окончания впрыскивания допускается увлажнение носика распылителя без образования капли.
Впрыскивание топлива у новой форсунки сопровождается характерным резким звуком. Отсутствие резкого звука у бывших в эксплуатации форсунок не означает снижения качества их работы.
Герметичность
Уплотнений, соединений и наружных поверхностей полости низкого давления форсунок проверять опрессовкой воздухом давлением 0,45±0,05 МПа (4,5±0,5 кГс/см2). Пропуск воздуха в течение 10 секунд не допускается.
Герметичность соединений «распылитель — гайка распылителя» проверять опрессовкой воздухом давлением 0,5±0,1 МПа (5±1 кГс/см2) в течени е 10 секунд при подводе воздуха со стороны носика распылителя на специальном стенде. Пропуск воздуха по резьбе гайки распылителя при погружении форсунки в дизельное топливо не допускается.
При засорении
Или закоксовке одного или нескольких распыливающих отверстий распылителя форсунку разобрать, детали форсунки прочистить и тщательно промыть в профильтрованном дизельном топливе.
При негерметичности по запирающему конусу распылитель в сборе подлежит замене. Замена деталей в распылителе не допускается. Разборку форсунки выполнять в следующей последовательности:
- отвернуть колпак форсунки
- ослабить контргайку и вывернуть регулировочный винт на 3-4 оборота для разгрузки пружины
- отвернуть гайку распылителя
- снять распылитель, предохранив иглу от выпадания
Нагар с корпуса распылителя счищать металлической щеткой или шлифовальной шкуркой с зернистостью не грубее «М40». Распыливающие отверстия прочистить стальной проволокой диаметром 0,3 мм. Применять для чистки внутренних полостей корпуса распылителя и поверхностей иглы твердые материалы и шлифовальную шкурку не допускается.
Перед сборкой распылитель и иглу тщательно промыть в профильтрованном дизельном топливе. Игла должна легко перемещаться: выдвинутая из корпуса распылителя на одну треть длины направляющей, при наклоне распылителя на угол 45° от вертикали игла должна плавно, без задержек полностью опуститься под действием собственного веса. Сборку форсунки производить в последовательности обратной разборке. При затяжке гайки развернуть распылитель против направления навинчивания гайки до упора в фиксирующие штифты и, придерживая его в этом положении, навернуть гайку рукой, после чего гайку окончательно затянуть. Момент затяжки гайки распылителя 60-70 Н*м (6-7 кгс*м), штуцера форсунки — 80-100 Н*м (8-10 кгс*м). После сборки отрегулировать форсунку на давление начала впрыскивания и проверить качество распыливания топлива и четкость работы распылителя.
Давление впрыска
Эффективность рабочего процесса дизеля зависит не только от характеристики подачи и момента впрыска топлива, но и от качества распыливания. Топливо должно быть распределено по всему объему камеры сгорания. В каждой единице объема сжатого воздуха должно содержаться одинаковое количество как можно более мелких частиц впрыскиваемого топлива.
Топливо дробится и равномерно распределяется в камере сгорания топливоподающей аппаратурой и возникающими в камере воздушными вихрями. В частности, в вихрекамерных двигателях топливо дополнительно дробится потоками воздуха, перетекающего из рабочего цилиндра в камеру, и при обратном прохождении газов из камеры сгорания.
Эффективность распыливания топлива повышается с увеличением числа оборотов двигателя.
Качество распыливания топлива определяют тонкостью и однородностью, дальнобойностью и углом конуса струи, а также относительным распределением топлива по длине и в поперечном сечении струи.
Тонкость распыливания топлива оценивается средним диаметром капли. Чем меньше диаметр, тем тоньше распыливание. Однородность распыливания определяется пределами изменения величины диаметра капель: чем меньше разница между наибольшим и наименьшим диаметрами капель в струе, тем однороднее распыливание.
Под дальнобойностью струи понимается глубина проникновения конца струи в толщу воздуха в зависимости от времени.
Углом конуса называют угол между касательными к контуру струи, сходящимися у сопла форсунки.
Форма и характер разрушения струи в процессе проникновения ее в камеру сгорания зависят от давления впрыска, противодавления, т. е. плотности среды, в которую впрыскивается топливо, скорости вращения кулачкового вала, вязкости топлива и конструкции сопла.
Давлением впрыска называется давление топлива перед сопловым отверстием в момент впрыска. Величина давления впрыска зависит от величины давления начала отрыва иглы форсунки, т. е. от регулировки форсунки и скоростного режима.
Зависимость скорости Wф движения переднего фронта факела и диаметра dK капель топлпва от давления Рф впрыска.
Распределение капель разного размера в струе топлива зависит от перепада давления (рис. 6). По оси абсцисс отложен средний диаметр капель dк, по оси ординат — отношение А объема капель одинакового диаметра к объему всех капель в этой части струи в %. Чем выше перепад давлений, тем меньше диаметр капель и тем однороднее распыливание.
При уменьшении перепада давлений средний диаметр капель возрастает, ухудшается однородность распыливания и повышается дальнобойность струи. Особенно большое значение эти факторы имеют для двигателей непосредственного впрыска. Для двигателей вихрекамерного смесеобразования их влияние сказывается в меньшей степени, так как качество смесеобразования улучшается благодаря воздушным вихрям.
Если у вихрекамерных двигателей дальнобойность струи мала, то топливо распределяется в небольшом объеме камеры сгорания и на ее периферии появляются зоны с избытком воздуха, в центре же камеры может быть недостаток его. Сгорание в этом случае будет перемещаться в такт расширения. При большой дальнобойности струи топливо попадает на стенки камеры сгорания и днище поршня, что для этого типа двигателей нежелательно.
Экономичность двигателя при этом ухудшается. Дальнобойность струи для каждого типа дизелей должна представлять собой определенную величину. Однако она не является постоянной, а зависит от давления впрыска, быстроходности двигателя, величины подачи топлива.
При увеличении давления впрыска возрастает перепад давления в сопле форсунки и в камере сгорания, что и приводит к увеличению дальнобойности факела распыленного топлива.
Зависимость дальнобойности факела от давления впрыска за время 0,0025 сек при постоянном противодавлении показана на рисунке 7. С увеличением давления дальнобойность возрастает. При повышении скорости вращения кулачкового вала топливного насоса увеличивается скорость движения плунжера, а это также способствует росту дальнобойности струи (рис. 8).
Давление начала впрыска оказывает влияние на момент начала и продолжительность впрыска, тонкость и однородность распыливания топлива и резкость отсечки. Подача топлива за цикл возрастает по мере снижения давления начала впрыска (рис. 9). В этом случае игла форсунки поднимается раньте и садится в гнездо позже.
Поздняя посадка вызывается значительным снижением давления конца впрыска при малом давлении начала впрыска. При снижении давления начала впрыска ухудшается запуск двигателя.
Дизельные топливные форсунки
Система впрыска Common Rail существует уже давно, но за последнее десятилетие стала более популярной в дизельных двигателях. Чтобы двигатель работал чище, нужно сделать его более эффективным.
Одна вещь, которая была обнаружена при впрыске дизельного топлива, заключается в том, что чем выше давление впрыска, тем выше эффективность. Целью системы впрыска Common Rail является подача топлива под высоким давлением к форсунке. Топливо в системе Common Rail будет впрыскиваться в камеру сгорания через сопло форсунки под давлением до 28 000 фунтов на квадратный дюйм. Это далеко от механических систем прошлого, которые впрыскивали топливо в камеру сгорания под давлением от 2000 до 3000 фунтов на квадратный дюйм.
Когда дизельное топливо впрыскивается под высоким давлением, можно только представить разницу в распылении топлива. Распыление топлива, наряду с завихрением по левому борту, является самым большим фактором, влияющим на эффективность современных дизельных двигателей. Повышенное распыление топлива при впрыске Common Rail также привело к изменениям конструкции поршня и камеры сгорания, а также конструкции впускных каналов и клапанного механизма.
Для впрыска дизельного топлива под высоким давлением вам понадобится уникальный насос, известный как топливный насос высокого давления. Насос обычно устанавливается на двигателе и приводится в движение зубчатой передачей двигателя. Регулятор регулирует величину давления, создаваемого насосом. Регулятор, также известный как клапан дозирования топлива, регулирует количество топлива, которое всасывает топливный насос высокого давления.
Несмотря на то, что двигатель приводит в действие насос высокого давления, насос будет создавать необходимое высокое давление независимо от частоты вращения двигателя. После создания давления в насосе топливо накапливается в топливных рампах. Топливные рампы представляют собой аккумуляторы для топлива под высоким давлением, которое должно подаваться к форсункам по ответвляющимся от них трубопроводам. Топливные рампы также гасят вибрации от топливного насоса высокого давления и циклов впрыска от форсунок.
Внутри топливной рампы находится датчик давления в топливной рампе, который считывает давление в топливной рампе для модуля управления силовым агрегатом (PCM). PCM использует входной сигнал от датчика давления в топливной рампе, чтобы определить, насколько открыть топливный регулятор. Если требуется большее давление, PCM дает команду регулятору открыться для подачи большего количества топлива насосом высокого давления.
Клапан регулировки давления в топливной рампе также регулирует подачу топлива под высоким давлением в топливную рампу. Клапан регулировки давления обычно размещается в конце топливной рампы, где он будет открываться или закрываться PCM для точного контроля давления внутри топливной рампы. Это помогает поддерживать оптимальное давление топлива в топливной рампе для подачи на форсунки для различных требований, предъявляемых к двигателю.
На случай ненормального скачка давления топлива внутри топливной рампы также есть ограничитель давления в топливной рампе. Если давление топлива по какой-то странной причине выйдет из-под контроля, ограничитель откроется, позволяя избыточному давлению вернуться в топливный бак.
Когда топливо под высоким давлением проходит по рампе и магистралям, оно попадает в форсунку, которой управляет PCM. Когда PCM дает команду форсунке открыться, топливо поступает в форсунку и направляется через некоторые сложные каналы в форсунке, ведущие к наконечнику форсунки.
Наконечник форсунки имеет микроскопические отверстия, через которые топливо будет подаваться в виде очень тонкого тумана. Размер капель топлива, направляемого через наконечник, примерно в 7 раз меньше человеческого волоса. Форсунки могут приводиться в действие приводом соленоидного типа или пьезоэлектрическим устройством.
Форсунки с соленоидным приводом существуют уже некоторое время, но были заменены на пьезоэлектрические. Пьезо — это тип кристалла, который имеет тонкую пластину и обычно укладывается друг на друга. Эти стопки пьезокристаллов при подаче питания от ПКМ расширятся и откроют клапан инжектора, а его срабатывание происходит в 4 раза быстрее, чем соленоид.
PCM использует входные данные от датчиков на двигателе для управления исполнительными механизмами, которые контролируют подачу топлива. Подача топлива зависит от требований к двигателю, таких как величина наддува, положение дроссельной заслонки, температура двигателя и т. д. При использовании системы Common Rail за цикл сгорания может выполняться несколько впрысков. Это также может быть полезно при запуске в холодную погоду.
Использование системы Common Rail дало дизельному двигателю множество преимуществ. Этими преимуществами являются более высокое давление впрыска для повышенного распыления топлива, многократный впрыск за цикл сгорания и более надежное давление независимо от частоты вращения двигателя.
Что такое топливная форсунка?
Компания Bosch создала форсунку для дизельного топлива в 1920 году в ответ на рост спроса и цен на топливо. С момента введения впрыска топлива в транспортных средствах скорость и ускорение многих преувеличены, в результате чего усовершенствования в технологии сделали двигатели более экономичными, эффективными и создали более высокую мощность. Эта технология, хотя и обновленная, сегодня используется как в дизельных, так и в бензиновых двигателях.
Что такое топливная форсунка?
Топливная форсунка представляет собой устройство для распыления и впрыска топлива в двигатель внутреннего сгорания. Форсунка распыляет топливо и нагнетает его непосредственно в камеру сгорания в определенный момент цикла сгорания.
Как правило, форсунки для дизельного топлива устанавливаются в головке двигателя с наконечником внутри камеры сгорания, размер отверстий, количество отверстий и углы распыления могут варьироваться от двигателя к двигателю.
Бензиновые форсунки могут быть установлены во впускном коллекторе (многоточечный впрыск, корпус дроссельной заслонки или, в последнее время, непосредственно в камеру сгорания (GDI).
Зачем нам нужны топливные форсунки?
Топливные форсунки являются необходимыми компонентами двигателя, потому что :
· Принцип работы двигателей внутреннего сгорания гласит, что чем лучше качество топливно-воздушной смеси, тем лучше сгорание, что обеспечивает более высокий КПД двигателя и более низкий уровень выбросов. 0003
· Неэффективное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания. Это приводит к неправильному распространению пламени сгорания из-за неисправности, известной как «детонация», а также к более высоким выбросам.
· Несгоревшее топливо в виде углерода или несгоревших газов и частиц внутри камеры сгорания отрицательно влияет на эффективность (пробег) и выбросы автомобиля. Чтобы избежать этого, модернизированная технология впрыска топлива стала необходимой.
Типы топливных форсунок
Развитие технологий впрыска топлива привело к появлению различных схем впрыска топлива, таких как впрыск топлива через дроссельную заслонку, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые варьируются в зависимости от применения.
Основы впрыска топлива
Существует 2 типа топливных форсунок:
1. Форсунки для дизельного топлива
Современные форсунки для дизельного топлива используются для непосредственного распыления и впрыскивания или распыления дизельного топлива (более тяжелого топлива, чем бензин). в камеру сгорания дизельного двигателя для воспламенения от сжатия (без свечей зажигания).
Для дизельных топливных форсунок требуется гораздо более высокое давление впрыска (до 30 000 фунтов на кв. дюйм), чем для бензиновых форсунок, поскольку дизельное топливо тяжелее бензина, и для распыления топлива требуется гораздо более высокое давление.
2. Бензиновые топливные форсунки
Бензиновые топливные форсунки используются для впрыска или распыления бензина непосредственно (GDI) или через впускной коллектор (многоточечный) или корпус дроссельной заслонки в камеру сгорания для воспламенения от искры.
Конструкция бензиновых форсунок различается в зависимости от типа… в более новых форсунках GDI используется сопло с несколькими отверстиями, а в многоканальном корпусе дроссельной заслонки используется сопло с бессмысленным стилем. Давление впрыска бензина намного ниже, чем у дизеля… 3000 фунтов на квадратный дюйм для GDI и 35 фунтов на квадратный дюйм для типа Pinter.
Основы дозирования топлива — форсунки
Существует 2 типа дозирования топлива (контроль продолжительности впрыска, давления и времени подачи топлива) топливных форсунок. Современные двигатели имеют до 5 впрысков в каждом цикле сгорания… чтобы извлечь выгоду из эффективности и сокращения выбросов.
1. Топливные форсунки с механическим управлением
Механические топливные форсунки, в которых управление скоростью подачи топлива, количеством, синхронизацией и давлением осуществляется механически с использованием пружин и плунжеров. Эти детали получают сигнал от кулачка или топливного насоса высокого давления.
2. Топливные форсунки с электронным управлением
Эти топливные форсунки имеют электронное управление по количеству топлива, давлению и времени. Электронный соленоид получает данные от электронного модуля управления (ECM) автомобиля.
Конструкция топливных форсунок
Упрощенная конструкция топливной форсунки напоминает насадку садового шланга, которая используется для распыления воды на траву. Ту же задачу выполняет топливная форсунка, но разница в том, что вместо воды топливо распыляется и «распыляется» внутри двигателя, попадая в камеру сгорания.
Давайте разберемся в конструкции и работе топливной форсунки, рассмотрев топливные форсунки как с механическим, так и с электронным управлением.
Топливная форсунка с механическим управлением
Топливная форсунка с механическим управлением состоит из следующих частей:
· Корпус форсунки — внешний корпус или «оболочка», внутри которой расположены все остальные части форсунки. Внутренняя часть корпуса форсунки должна содержать точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для распыления и впрыска.
· Плунжер. В топливной форсунке может использоваться поршень, который используется для открытия или закрытия форсунки под действием давления топлива. Он управляется комбинацией пружин и прокладок.
· Пружины. Внутри топливных форсунок с механическим управлением используются одна или две пружины. К ним относятся:
1. Пружина плунжера. Движение плунжера вперед и назад управляется пружиной плунжера, которая сжимается из-за увеличения давления топлива. Когда давление топлива внутри топливной форсунки увеличивается до уровня, превышающего заданную комбинацию пружины и регулировочной шайбы, игла в форсунке поднимается, топливо распыляется и впрыскивается, а по мере снижения давления форсунка закрывается.
2. Основная пружина. Основная пружина используется для управления давлением открытия впрыска. Основная пружина действует против действия давления топлива, создаваемого топливным насосом.
Топливная форсунка с электронным управлением
Это «умный» тип топливной форсунки, которая управляется электронным блоком управления (ECM) двигателя, который также известен как мозг современных двигателей.
Топливные форсунки с электронным управлением состоят из следующих частей:
· Корпус форсунки. Так же, как и в топливной форсунке с механическим управлением, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.
· Плунжер. Как и в топливных форсунках с механическим управлением, плунжер может использоваться для открытия и закрытия форсунки, но в топливных форсунках с электронным управлением открытие форсунки управляется электронным способом с помощью электромагнитов или соленоидов.
· Пружина. Как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении до тех пор, пока не будет достигнуто давление впрыска, а затем, при необходимости, для закрытия сопла топливной форсунки.
· Электромагниты. В отличие от топливных форсунок с механическим управлением, форсунки этого типа оснащены электромагнитами или соленоидами вокруг плунжера, которые управляют открытием форсунки. Это делается путем получения электронного сигнала от электронного модуля управления двигателем через электронное соединение, соединяющее топливную форсунку с электронным модулем управления двигателем.