Какое давление в топливной системе инжекторного двигателя: Как проверить давление в топливной системе инжектора

Содержание

Замер давления топлива на автомобиле

Измерение давления топлива

Информация о материале
Автор: Владимир Бекренёв
Просмотров: 13508

Топливная система современного инжекторного двигателя автомобиля состоит из топливного насоса, фильтра, инжектора и подводящих трубопроводов. Топливный насос в зависимости от типа впрыска создает давление в системе от 2.2 до 4.5 кг. Топливо под таким давлением поступает к электроклапану (инжектору). Инжектор, управляемый микропроцессором, в нужный момент впрыскивает топливо во впускной коллектор.

Давление в топливной системе должно быть постоянным. Это необходимо для того, что бы инжектор правильно распылил топливо в коллектор для образования однородной топливной смеси. При изменениях рабочего давления топлива возникают различные сбои в работе мотора. Теряется мощность, затрудняется пуск мотора, возникают обратные вспышки (прострелы) детонация и остановки двигателя.

Причины понижения давления разные. Но в основном, причиной понижения давления является грязное или некачественное топливо. Регулярное обслуживание автомобиля (смена фильтров и использование чистого топлива) почти наверняка снимает проблемы с топливной системой. Но все же исключить человеческий фактор жизни в России нельзя. Даже на проверенных заправках можно залить топливо с водой или с грязью. Защититься от этого факта практически невозможно, если только не заправляться через канистру с суточным отстоем, но в современном мире это невозможно. Поэтому следует регулярно, особенно перед зимой, производить диагностику и обслуживание систем автомобиля.

    

Автокомплекс «Южный» предлагает своим клиентам услугу по замеру давления топлива. Стоимость услуги договорная и составляет от 500р до 2500р. Стоимость зависит от сложности подключения к топливной системе и марки автомобиля. При диагностике проблем потери мощности услуга замера топливного давления входит в стоимость диагностики.

Записаться на диагностику автомобиля +7(4212)28-78-01

Добавлять комментарии могут только зарегистрированные пользователи.У вас нет прав оставлять комментарии.

Замер давления топлива ВАЗ, проверка регулятора давления, схема, датчики, манометр.

Вступление

Топливная система автомобиля довольно сложный и капризный механизм. При появлении каких-либо симптомов неисправности автомобиля первым делом следует делать диагностику топливной системы.

Существует большое количество различных неисправностей топливной системы зависящих от многих факторов. В этой статье подробно рассказывается обо всех симптомах неисправности топливной системы, а так же ее диагностики. Подробно описываются различия топливной системы двигателей объемом  1,5 и 1,6 литра.

Основные элементы топливной системы инжекторного двигателя

Инжектор сложный механизм подачи топлива в цилиндры. Весь процесс подачи топлива регулируется электронным блоком управления двигателя (ЭБУ). В системе подачи топлива так же используется параллельно подача воздуха.

Стакан бензонасоса

Стакан бензонасоса – это совокупность основных элементов топливной системы собранных на одной площадке.

В стакан бензонасоса входит:

  • Бензонасос
  • Фильтр грубой очистки
  • Датчик уровня топлива
  • Регулятор давления топлива (только в 1,6 литровых версиях двигателя)

Бензонасос

Является одним из основных элементов топливной системы. Служит для подачи топлива к блоку цилиндров под давлением. Бензонасос – это своего рода электрический двигатель. Работа его основана на принципе действия центробежной силе. Под воздействием магнитного поля образованного в статоре электрического двигателя его якорю придается вращение. На волу якоря установлена улитка насоса которая непосредственно накачивает давление в топливную систему.

Бензонасос очень капризен и прихотлив к чистоте потребляемого топлива. Чаще всего бензонасос выходит из строя по причине некачественного топлива или его нехватки в баке. Чтобы бензонасос прослужил как можно дольше, необходимо заправляется на проверенных АЗС и держать в баке автомобиля не менее 25% от объема бака. Если ездить на «горящей лампочке» бака, то скорее всего бензонасос выйдет из строя намного быстрее, так как при неровностях бензин в баке будет хлюпать из стороны в сторону и бензонасос будет хапать воздух.

Форсунки и топливная рампа

Топливная рампа служит своего рода кейсом для форсунок, именно в нее они устанавливаются.

Топливная рампа с форсунками

Форсунки инжекторного двигателя тоже один из самых важных элементов топливной системы. Предназначены для подачи топлива в блок цилиндров двигателя под давлением. Форсунка распыляет топливо на мелкие капельки для лучшего и легкого воспламенения в цилиндре.

Форсунки

Форсунка устанавливается непосредственно на двигателе автомобиля, а именно в головке блока цилиндров. Количество форсунок зависит от количества цилиндров автомобиля. На автомобилях Лада 4 цилиндра, следовательно, и форсунки будет тоже 4.

Форсунки так же очень чувствительны к топливу, но менее подвержены повреждением так как топливо подаваемое на них фильтруется через 2 фильтра: фильтр грубой очистки и фильтр тонкой очистки. Но о них немного позже.

Регулятор давления топлива

Регулятор давления топлива 1,5 литрового двигателя

Регулятор давления топлива (РДТ) датчик установленный на топливной рампе в версиях двигателя с объемом 1,5 литра и установленный в баке на стакане бензонасоса в версии двигателя с объемом 1,6 литра. Он служит для обеспечения необходимого давления топлива в системе, регулирует давление топлива путем сбрасывания излишнего давления топлива в обратку.

РДТ очень надежный элемент и выходит из строя крайне редко. Причиной его поломки может послужить так же не качественное топливо или фактор старения.

Топливная магистраль

Демонтированная топливная магистраль

Топливная магистраль — это совокупность топливных трубок предназначенная для транспортировки топлива из бака к двигателю внутреннего сгорания. Магистраль в Ладе расположена под днищем автомобиля и защищена пластиковыми кожухами.

Датчик уровня топлива

Датчик уровня топлива устанавливается в баке на стакане бензонасоса. Служит для указания объема топлива в баке, выводя информацию на панель приборов.

Фильтра топливной системы

Фильтра топливной системы инжекторного двигателя служат для защиты от поломки основных элементов топливной системы.

Фильтр тонкой очистки

Фильтр тонкой очистки устанавливается вне бака автомобиля. На автомобилях лада с инжекторными двигателями фильтр тонкой очистки установлен под днищем в задней части в районе балки, прикреплен хомутом. Данный фильтр подготавливает топливо для форсунок.   Отличия фильтров тонкой очистки в зависимости от двигателя.

В 1,5 литровых версиях двигателя фильтр подключается в топливную систему по средствам  металлического штуцера на резьбе.

В 1,6 литровых версиях двигателя фильтр подключается в топливную систему по средствам быстросъёмных пластиковых штуцеров.

Фильтр грубой очистки

Данный вид фильтр устанавливается в баке автомобиля. Подключается фильтр грубой очистки непосредственно к бензонасосу и крепится в стакане бензонасоса. Служит для грубой очистки топлива и подготовке топлива для фильтра тонкой очистки.

Абсорбер и его система

В некоторых автомобилях лада устанавливается топливная система с абсорбером. Абсорбер незаменимая вещь в настоящее время. Служит он для уменьшения выбросов топливных паров в окружающую среду.

Абсорбер

Абсорбер представляет собой колбу, наполненную специальным углем который испаряет пары топлива и подает их в ресивер автомобиля. Устанавливается в моторном щите автомобиля.

Датчик абсорбера

Датчик абсорбера регулирует открытие и закрытие подачи воздуха в абсорбер для регулирования паров. Устанавливается на крышке двигателя в версиях двигателей с объемом 1,6 литра, в версиях двигателя с объемом 1,5 литра устанавливается непосредственно на колбе абсорбера.

Сепаратор

Сепаратор в автомобилях Лада устанавливается под задним левым крылом возле стойки амортизатора и служит для расширения паров топлива образовавшихся в баке вследствие перепада температур. Внешне сепаратор похож на расширительный бачок охлаждающей жидкости.

Клапан опрокидывания

Такой клапан устанавливается рядом с сепаратором под задним левым крылом автомобиля. Служит клапан для того чтобы во время ДТП в перевёрнутый автомобиль не поступало топливо. То есть при переворачивании клапана он перекрывает топливную систему, защищая машину, попавшую в ДТП от возгорания.

Различия топливной системы двигателей Лада

Существует несколько видов исполнения двигателей Лада. Двигателя Лада бывают 1,5 и 1,6 литровыми, 16 клапанные и 8 клапанные. Различий в топливной системе этих двигателей практически нет. Но есть небольшие доработки заводом изготовителем.

Основные различия топливных систем

  • Топливная рампа в двигателях 1,6 круглая и металлическая, в двигателях 1,5 алюминиевая и в виде трапеции.
Топливная рампа 1,5 литрового двигателя
  • Регулятор давления топлива (РДТ)в двигатели 1,6 литра  установлен в баке, а в двигатели 1,5 литра на топливной рампе.
  • Рабочее давления топлива в двигателях 1,5 литра равно 2,8-3,2 бар. В двигателя 1,6 литра до равно до 4 бар.
  • Обратка в двигателе 1,5 литра идет от топливной рампы и обратно в бак, в двигателе 1,6 обратка циркулирует вокруг бака.

Диагностика и проверка топливной системы своими руками

Диагностику топливной системы можно сделать практически на любом СТО, но кому хочется переплачивать за столь плевое дело? Поэтому давайте разберемся, как провести диагностику своими руками. Начинать проводить диагностику топливной системы необходимо с замера давления топлива в топливной рампе. На результатах замеров будет, вынес диагноз и выявлен виновник.

Проверка давления топлива своими руками

Что понадобится для проверки давления топлива:

  • Манометр со шкалой до 10 атм.
  • Шланг диаметром 10 мм.
  • Два хомута 20 мм.

Собираем прибор для проверки давления топлива своими руками необходимо.  Одеваем шланг на штуцер манометра и закрепляем хомутом, так чтобы шланг плотно сидел на штуцере и не слетел при появлении давления.

Проверка Давления топлива осуществляется в нескольких режимах:

  • При включении зажигания.
  • При работе на холостом ходу.
  • При перегазовках.

Итак, приступаем непосредственно к проверки.

Перед началом проверки давления топлива в рампе, необходимо сбросить остаточное давление в рампе.

Сброс давления топлива в топливной рампе, способы:

Первый способ:

Снять штекер питания стакана бензонасоса (находится под задним сидением). Завести автомобиль со снятым штекером и дать ему поработать до того момента пока автомобиль не заглохнет.

Второй способ:

Вынуть предохранитель бензонасоса (находится под центральной панелью F3 (15A)). Завести автомобиль со снятым предохранителем и дать ему поработать до того момента пока автомобиль не заглохнет.

Под пластиковой крышкой предохранитель F3

После того как давление в топливной рампе сброшено можно приступать к замеру давления топлива.

Для безопасности следует прикрыть генератор плотной тряпочкой возлежания попадания топлива на генератора и его возможного возгорания.  

  • Замер давления топлива начинают со скручивания пластиковой крышки штуцера рампы.
  • Выкручиванием из рампы золотникового клапана.
  • Подключаем прибор для измерения давления топлива к штуцеру рампы и надежно стягиваем шланг хомутом.
  • Включаем зажигание на автомобиле и ждем пока бензонасос накачает топливо. Манометр должен показать давление не менее 3,6 бар ( для двигателя 1,5 литра  не менее 2,8 бар).
  • Запускаем двигатель, показания манометра должны остаться на том же уровне или увеличиться.
  • Перегазовываем двигатель, показания манометра должны держаться на месте или увеличиваться.
  • Останавливаем двигатель, показания манометра должны немного упасть или не измениться, а так же допускается незначительное падение давления в рампе. Полностью давление в исправной топливной системе уходит в течение нескольких часов.

Замер давления топлива окончен, для быстрого сброса давления и установки золотникового клапана на место можно воспользоваться советами для сброса давления топлива в рампе.

Определение неисправностей

 При выключении зажигания  насос не набирает нужного давления

Если при включении зажигания манометр показывает значения ниже допустимых, то виновниками этого могут быть, сам бензонасос, форсунки, РДТ, топливные фильтры и порыв в топливной магистрали.

 Первым делом необходимо заменить все фильтрующие элементы для того чтобы исключить их, благо стоят они не дорого. При замене топливного фильтра грубой очистки следует обратить внимание на гофрированную трубку соединяющую стакан бензонасоса с бензонасосом на предмет трещин и порывов.  После чего произвести повторный замер давления топлива. Если замена фильтрующих элементов не помогла, идем дальше.

Проверка бензонасоса и РДТ

Не снимая с бака

Необходимо подключиться прибором для измерения давления топлива напрямую к стакану бензонасоса (так можно сделать в двигателях объемом 1,6 литра) либо пережать обратку топливной системы ( двигателя объемом  1,5 литра). Показания манометра должны возрасти до 6-8 бар. Если показания остается такими же, то виновник бензонасос. Если показания манометра возросли, то следует менять регулятор давления топлива.

Со снятием с бака

Сняв стакан бензонасоса из бака, необходимо демонтировать бензонасос и проверить его на предмет давления в «стенку». Исправный насос должен выдавать 6-8 бар. Если насос выдает виновник найдет, если нет и насос давит 6-8 бар то идем дальше и заменяем РДТ.

После замены РДТ устанавливаем стакан на место и проверяем давления топлива снова. В трех режимах. Показания манометра должны быть в норме. Если при установки на авто показания манометра снова упали, то идем дальше и скорее всего это форсунки.

Форсунки

Форсунки это последний вариант нестабильности давления топливной системы. Из-за износа или загрязнения они могут не держать давления топлива. Форсунки необходимо промыть. Как правильно и быстро промыть форсунки своими руками можно подробно ознакомиться в нашей статье. Если промывка форсунок не помогает — их следует заменить.

Видео о замере давления топлива

Вот и все полная диагностика топливной системы автомобиля Лада сделана. Надеемся, наша статья была вам полезна.

← Установка подогрева сидений Промывка форсунок →

Диагностика топливной системы путем измерения давления в топливной рампе

Кроме прочих, одним из популярных видов процедур диагностики работы систем инжекторного двигателя, является — измерение давления топлива в топливной рампе. Указанным путем, возможно выявить такие неисправности элементов системы питания двигателя, как: засорение или пропуск форсунок, загрязнение топливной магистрали, состояние бензонасоса, отказ регулятора давления топлива и т.д. Схематично, принципы работы ДВС определенного типа одинаковы на всех машинах. Следовательно и прицип диагностирования неисправностей двигателя имеет общие основания. Рассмотрим порядок измерения давления топлива в топливной рампе на примере двигателей ВАЗ 2113 2114 2115. Из инструмента, в большинстве случаев достаточно иметь соотвествующий манометр для измерения давления в топливной рампе и обыкновенный колпачек от колеса, которым затягиваются золотники в колесах.

Возымев указанный инструмент, первым делом необходимо снять колпачок с топливной рампы (в большинстве случаев он должен открутиться от руки, но если давно не трогали, могут потребоваться плоскогубцы).

Следует учесть (особенно если автомобиль был заглушен только что), что бензин в рампе находится под давлением. В этой связи для начала рекомендуется стравить давление, нажимая на золотник и подставив тряпку или пластиковую «баклашку» с обрезанным горлышком. Стравливать удобнее колпачком от колеса.

Откручиваем колпачком ниппель. Он аналогичен ниппелю колеса:

Надеваем на резьбовую часть шланг с манометром:

Следующим этапом переходим непосредственно к диагностике. Заводим машину и первым делом убеждаемся в отсутствии подтекания бензина из соединений. После смотрим на показания манометра.

Для топливных систем с «обраткой» (на топливной рампе установлен регулятор давления, из которого уходит трубка обратно в бак) нормальным считается давление 2,7 атм (при перегазовке должно подпрыгивать до 3-х атмосфер). Однако давление 2,5 атм тоже допустимо. Если давление меньше, то топливная система неисправна. Пульсация давления (0,2 атм) свидетельствует о забитости сетки грубой очистки (находится в баке с топливным насосом).

Далее проверяем регулятор давления топлива. Для проверки отсоединяем шланг, идущий от регулятора к впускному коллектору. Давление топлива должно увеличиться до 3,2 атм (при 2,7 начальных). До 3,0 атм тоже допустимо. Если давление не изменилось или изменилось не значительно (0,1-0,2 атм), то требуется проверить топливный насос.

Проверяется максимальное давление, развиваемое насосом. Для этого плоскогубцами пережимается обратный топливопровод (идет от регулятора). Разные насосы показывают разное давление, но у нового должно быть не менее 6 атм. Давление в 5 атм свидетельствует о сильном износе, но еще послужит. При давлении менее 4,0 атм насос неисправен или забит трубопровод с фильтром тонкой очистки. Если топливный насос исправен, а давление в рампе падает после восстановления «обратки» менее 2,5 атм, и/или не изменяется при отсоединении шланга регулятора, то неисправен регулятор. Если при пережатой обратной магистрали давление поднялось незначительно, а работа двигателя сильно ухудшилась, то велика вероятность пропуска форсунок.

Чтобы исключить влияние форсунок, лучше еще измерить давление на самой подающей магистрали, отсоединив ее от рампы и вставив в шланг с манометром. Если давление поднялось до 5-6 атм, а с пережатой «обраткой» оно значительно меньше, то пропускают форсунки. Требуется снимать рампу и проверять состояние каждой в отдельности.

Проверить на забитость трубопровод можно следующим образом. Снимаем заднее сидение и откручиваем лючок. Видим под ним узел бензонасоса. Подключаем его к выходу насоса, а на другой конец одеваем шланг с манометром. Проверяем давление еще раз. Если показания манометра увеличились до нормальных 6 атм (после нескольких накачек бензина поворотом ключа), то меняем топливный фильтр тонкой очистки и продуваем (или проливаем всю систему).

Замена топливного фильтра показана здесь: замена топливного фильтра на ВАЗ 2113 ВАЗ 2114 ВАЗ 2115. Единственным отличием будет то, что после снятия фильтра направляем шланг подачи топлива в пластиковую бутылку (лучше прозрачную) и ключом включаем зажигание (включается топливный насос и топливо проливается в бутылку). Осматриваем состояние топлива в бутылке. Потом устанавливаем новый фильтр, снимаем шланг с рампы и направляем его в бутылку. Несколько раз включаем зажигание и проливаем бензин. Снова осматриваем топливо в «баклашке». Если была обнаружена грязь после фильтра, то требуется еще и промывка форсунок. Собираем всю систему и измеряем показания давления еще раз. Если показания не изменились, то проверьте правильность пережима «обратки» (можно попробовать подключить манометр к выходу из регулятора). Если это не помогло, то, возможно, засорение серьезное и требуется продувка воздухом под большим давлением. Нелишним будет проверить весь трубопровод от бака на механические повреждения (вмятины, перегибы).

Топливная система двигателя ВАЗ-21114

Топливо подается из бака, установленного под днищем в районе заднего сиденья

Топливный бак состоит из двух сваренных между собой стальных штампованных частей.

Наливная труба соединена с баком бензостойким резиновым шлангом.

В верхнюю часть наливной трубы вварена вентиляционная трубка, соединенная с баком пластмассовым шлангом.

Вентиляционная трубка служит для отвода воздуха, вытесняемого из бака при его заправке топливом.

В пробке заливной горловины встроены впускной и выпускной клапаны вентиляции топливного бака.

Топливный модуль, включающий топливный насос, регулятор давления топлива и датчик указателя уровня топлива, установлен в топливном баке.

Для грубой очистки топлива на входе модуля имеется сетчатый фильтр.

Для доступа к топливному модулю под подушкой заднего сиденья в днище автомобиля выполнен лючок.

Датчик указателя уровня топлива управляет работой стрелочного прибора и сигнализатора, расположенных в комбинации приборов.

Топливный насос— электрически погружной, роторный.

Топливный насос включается по команде электронного блока управления (контроллера) при включении зажигания через реле.

Насос создает в системе давление, превышающее рабочее давление в топливной рампе.

Из насоса топливо под давлением подается к топливному фильтру.

Топливный фильтр тонкой очистки неразборный, с бумажным фильтрующим элементом.

Фильтр закреплен на кронштейне топливного бака, справа.

На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

После фильтра в нагнетающую топливную магистраль встроен тройник, через который топливо подводится к топливной рампе и регулятору давления топлива, расположенному в топливном модуле.

Регулятор давления топлива представляет собой клапан, который открывается при превышении давления топлива в магистрали, стравливая часть топлива в бак.

Регулятор давления неразборный, при выходе из строя подлежит замене.

Давление топлива в топливной рампе при включенном зажигании и неработающем двигателе должно составлять от 3.6 до 4.0 бар.

Топливная рампа представляет собой трубу с установленными на ней форсунками.

Рампа прикреплена к впускной трубе двумя винтами.

Топливо под давлением подается во внутреннюю полость рампы, а оттуда — через форсунки во впускную трубу.

Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения и запирающийся под действием возвратной пружины при обесточивании.

На выходе форсунки выполнен распылитель, через который топливо впрыскивается во впускной тракт.

Управляет работой форсунок контроллер.

Форсунки уплотняются в рампе и впускной трубе резиновыми кольцами и фиксируются на рампе металлическими скобами.

При обрыве или замыкании обмотки форсунку следует заменить.

Если форсунки засорились, их можно промыть без демонтажа на специальном стенде.

Воздух подводится к дроссельному узлу двигателя через воздухозаборник, воздушный фильтр и гофрированный резиновый шланг.

Воздушный фильтр установлен в передней левой части моторного отсека на трех резиновых держателях (опорах).

Фильтрующий элемент — бумажный.

После фильтра воздух проходит через датчик массового расхода воздуха.

Дроссельный узел представляет собой корпус дроссельной заслонки (с выполненными в нем каналами), на котором установлены регулятор холостого хода и датчик положения дроссельной заслонки.

Дроссельный узел закреплен на впускной трубе.

Во избежание обмерзания дроссельного узла при низкой температуре и высокой влажности окружающего воздуха в узел встроен блок подогрева, через который циркулирует жидкость системы охлаждения.

При нажатии педали «газа» дроссельная заслонка открывается, изменяя количество поступающего в двигатель воздуха (подача топлива рассчитывается контроллером в зависимости от расхода воздуха).

При работе двигателя на холостом ходу (дроссельная заслонка закрыта) контроллер управляет подачей воздуха с помощью регулятора холостого хода (РХХ).

Регулятор холостого ходапредставляет собой шаговый электродвигатель, который перемещает клапан. Запорный элемент клапана (игла) изменяет проходное сечение канала и обеспечивает регулирование расхода воздуха в обход дроссельной заслонки.

Для увеличения частоты вращения коленчатого вала на холостом ходу контроллер подает управляющий сигнал на открытие клапана, увеличивая подачу воздуха в обход дроссельной заслонки, и, наоборот, для уменьшения частоты вращения подается команда на закрытие клапана.

Кроме управления частотой вращения коленчатого вала на холостом ходу контроллер управляет РХХ, снижая токсичность отработавших газов:

— при торможении двигателем происходит резкое закрытие дроссельной заслонки.

В этом случае РХХ увеличивает подачу воздуха в обход дроссельной заслонки, в результате чего происходит обеднение топливной смеси.

Это способствует снижению выбросов углеводородов и окиси углерода. Регулятор холостого хода неразборный и при выходе из строя подлежит замене.

Система улавливания паров топлива, применяемая в системе питания, включает сепаратор, адсорбер, электромагнитный клапан продувки адсорбера, соединительные трубки и шланги.

Сепараторустановлен в арке правого заднего колеса.

Пары топлива из бака частично конденсируются в сепараторе, из которого конденсат через шланг и наливную трубу сливается обратно в бак.

В сепараторе установлен гравитационный клапан, предотвращающий вытекание топлива из бака при опрокидывании автомобиля.

Из сепаратора пары топлива попадают в адсорбер (установленный на топливном баке сверху, с левой стороны) через штуцер с надписью «TANK», где поглощаются активированным углем.

Второй штуцер адсорбера с надписью «PURGE» соединен через электромагнитный клапан продувки адсорбера с дроссельным узлом, а третий с надписью «AIR» — с атмосферой.

Электромагнитный клапан продувки адсорбера установлен на кронштейне, закрепленном на корпусе воздушного фильтра.

При остановленном двигателе электромагнитный клапан продувки закрыт, и в этом случае адсорбер не сообщается с дроссельным узлом.

Контроллер, управляя электромагнитным клапаном, осуществляет продувку адсорбера, после того как двигатель проработает заданный период времени с момента перехода на режим управления топливоподачей по замкнутому контуру (управляющий датчик кислорода должен быть прогрет до необходимой температуры).

Клапан сообщает полость адсорбера с дроссельным узлом — и происходит продувка сорбента: пары топлива смешиваются с воздухом и отводятся через дроссельный узел во впускной тракт и далее в цилиндры двигателя.

Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов контроллера и тем интенсивнее продувка.

Давление топлива

⏰Время чтения: 10 мин.

Рассмотрим такую интересную тему, как давление топлива в инжекторных автомобилях и его влияние на работу двигателя в разных режимах. Так что же такое давление топлива?

Не всё так просто, как кажется на первый взгляд!

Любая диагностика двигателя должна начинаться с грамотного замера давления топлива. Это аксиома.

Не буду голословно описывать влияние давления топлива на работу двигателя, думаю это и так понятно, а пойдём дальше к фактам и законам физики.

К системе подачи топлива относятся все те элементы, которые необходимы для перемещения топлива из топливного бака к форсункам.

Топливо забирается из бака электрическим топливным насосом и под избыточным давлением подаётся в топливную рампу. Рабочее давление и производительность топливного насоса подобраны таким образом, чтобы обеспечить надежную работу двигателя на всех режимах работы. Регулятор давления топлива обеспечивает отвод некоторого количества топлива назад в топливный бак, что позволяет поддерживать необходимое давление топлива для работы топливных форсунок.

В нашем с Вами мире существует два основных способа доставлять топливо из бензобака к инжекторному двигателю – рециркуляционного и тупикового типа (с обраткой и без обратки). На большинстве автомобилей применяется система топливоподачи рециркуляционного типа, а в меньшей степени используется система тупикового типа. Именно система тупикового типа служит на автомобилях Шевроле Лачетти, Nubira, Daewoo Gentra, Ravon Gentra, Chevrolet Klan, Авео и т.д.

А вообще, почти каждый автопроизводитель имеет в своём ряду модели как с системой рециркуляционного типа, так и с системой тупикового типа, будь-то Ваз или Mitsubishi.

Система рециркуляционного типа топливоподачи

1 – штуцер для проверки давления топлива, 2 – топливная рампа, 3 – крепление трубопровода, 4 – регулятор давления топлива, 5 – топливный модуль, 6 – топливный фильтр, 7 – возвратная магистраль, 8 – подающая магистраль, 9 – форсунки

В этой системе топливо из бака подаётся топливным насосом через фильтр к топливной рампе, а излишки через регулятор давления отводятся по возвратной магистрали обратно в бак. Регулятор поддерживает давление в пределах 2,8  – 3,2 бар (1 бар = 0,98692 атм.). Именно в пределах! Дальше это обсудим.

Система тупикового типа топливоподачи

1 – штуцер для проверки давления топлива, 2 – топливная рампа, 3 – форсунки, 4 – топливопровод, 5 – топливный бак, 6 – топливный насос, 7 – топливный фильтр

Как видно из рисунка, в системе тупикового типа топливоподачи нет обратной сливной магистрали. Казалось бы, на этом все различия закончились, но это не так. Эти две системы кардинально различаются по принципу работы. В том числе и по регулированию давления топлива. В данной системе регулятор давления установлен в топливном модуле внутри бензобака и поддерживает постоянное давление топлива, равное 4-ём барам. Без каких-либо пределов, а ровно 4 бара! Об этом дальше.

Регулятор давления топлива

Зачем регулировать давление топлива? Именно регулировать?

Забегая вперёд, скажу, что настоящий регулятор давления топлива устанавливается только в системах рециркуляционного типа! В системах тупикового типа, он хоть и называется регулятором, но на самом деле ничего не регулирует. Я бы его назвал ограничителем с обратным клапаном.

Ну пока разберёмся, зачем же всё-таки регулировать давление топлива.

Самое большое влияние регулирование давления топлива оказывает на работу двигателя в переходных режимах, особенно в момент нажатия педали газа и переходе с режима холостого хода в режим нагрузок. Некоторые скажут, что это и так понятно, мол, нагрузка возрастает и, соответственно, нужно больше топлива. Это утверждение верно только от части и никак не относится к регулированию давления топлива. Ведь можно влупить 4 атмосферы и форсункам хватит давления на любых режимах. Зачем же тогда регулировать? Давайте разберёмся.

Для правильного смесеобразования ЭБУ управляет временем открытия форсунок, но никак не количеством топлива. ЭБУ просто физически не может видеть этого количества. Из этого следует, что, как хочешь, но нужно сделать постоянную зависимость между временем открытия форсунки и количеством топлива, прошедшим через форсунку за это время. Другими словами, за одну миллисекунду всегда и при любых условиях через форсунку должно пройти одно и тоже количество топлива! А что этому мешает?

А мешает этому постоянно меняющееся давление во впускном коллекторе. Ведь форсунка подаёт топливо именно во впускной коллектор.

Все мы знаем, что на холостом ходу в коллекторе очень сильно падает давление – до 30 кПа. А нормальное атмосферное давление составляет 100 кПа. Иными словами, в коллекторе создаётся очень большое разрежение.

А теперь представим такую ситуацию. Двигатель работает на холостом ходу, ЭБУ открывает форсунку на 2 мс. Из-за того, что в коллекторе большое разрежение, то топливо из форсунки буквально высасывает! При нажатии на педаль газа, давление в коллекторе резко возрастает и топливо из форсунки уже не высасывает, а просто брызгает под давлением. Давление и время открытия форсунки, допустим, в обоих случаях одинаковое. Что же получается? А получается то, что на холостом ходу топливо из форсунки выходит под действием разрежения + давление в рампе, а при открытой дроссельной заслонке – только под давлением в рампе.

Очевидно, что при одном и том же времени открытия форсунки, на холостом ходу через неё пройдёт большее количество топлива, чем при открытой дроссельной заслонке. Это как открыть водопроводный кран на одну минуту, но в одном случае просто набирать воду в ведро, а во втором сделать это при помощи мощного насоса. Естественно, во втором случае воды мы наберём больше за одно и то же время. Думаю понятно.

Так вот, как это отразится на работе двигателя? При нажатии на педаль акселератора, двигателю необходимо больше топлива для развития мощности, а мы даём ему, наоборот, меньше и получается провал при нажатии педали газа!

Что же делать? Выход в том, что нужно регулировать давление топлива относительно давления во впускном коллекторе. То есть, разница между давлением во впускном коллекторе и топливной рампе должна быть всегда и при любых условиях постоянной! Регулятор давления топлива поддерживает постоянный перепад давления на форсунках (разницу между давлением топлива и разряжением во впускном коллекторе) при изменении разряжения во впускном коллекторе. В противном случае, если эта разница будет меняться, то при одном и том же времени открытия форсунки количество топлива будет изменяться, в соответствии с величиной разрежения во впускном коллекторе двигателя.

Как видно, давление топлива меняется, но всегда остаётся одинаковым по отношению к разрежению во впускном коллекторе! Другими словами, вместо стрелок можно представить форсунки и получается, что на них всегда одинаковый перепад давления.

Вот тут и играют роль пределы давления топлива 2,8  – 3,2 бар. Некоторые их путают с допустимыми пределами. И при измерении давления топлива, получая, допустим, 3,2 бара при работе двигателя на холостом ходу, считают, что улаживаются в допустимые “пределы”. Хотя на холостом ходу должно быть 2,8 бар, при резком нажатии педали газа должно быть 3,2 бар, так как разрежение перестаёт действовать на форсунку и нужно это компенсировать увеличением давления.

Вот поэтому он и называется – регулятор давления топлива.

Внутреннее пространство регулятора давления топлива обычно разделено диафрагмой на две камеры: воздушную камеру с пружиной и топливную камеру. Топливо, подаваемое топливным насосом, поступает в топливную камеру регулятора давления. Под действием давления топлива на диафрагму, клапан перемещается вверх до тех пор, пока не наступит равновесие между давлением топлива с одной стороны и силой упругости пружины и давления воздуха во впускном коллекторе с другой стороны. Избыточное топливо возвращается в бак через клапан. Камера с пружиной соединяется вакуумным шлангом с впускным коллектором двигателя.

Как регулируется давление  в системах топливоподачи тупикового типа (без обратки)?

А никак. Здесь применено другое решение.

В топливном модуле внутри топливного бака находится обратный клапан с ограничителем давления до 4 бар

В пособиях по ремонту и авто литературе почему-то упускают этот факт, а чаще, вообще, пишут неправду, вводя в заблуждение автовладельцев. В системе тупикового типа давление всегда выше, чем в системах с рециркуляцией и у него нет “пределов” – оно всегда постоянно!

Зачем выше давление? В системах с рециркуляцией топливо перекачивается по кругу и бензин циркулирует постоянно, охлаждая топливную рампу. Если не будет охлаждения, тогда топливо в рампе может закипеть!

А как мы знаем из уроков физики, при повышении давления – у жидкостей повышается температура кипения. Вот для этого и повышают давление в системах топливоподачи “без обратки”.

Поэтому, если в сервисе замерили давление топлива на Вашем автомобиле с системой тупикового типа и оно составило 3 атм., а Вам рассказывают, что давление в норме и топлива хватит, то уматывайте с этого сервиса, как можно быстрее.

Важно понимать, что такое давление необходимо не столько для достаточности топлива (двигатель и при 2,5 атм. будет работать), сколько для предотвращения его закипания! А если топливо закипит, то о нормальной работе двигателя можно забыть.

Какое давление топлива у Шевроле Лачетти

В литературе и на сайтах по ремонту Шевроле Лачетти указывается, что давление топлива в данном автомобиле составляет 2,8  – 3,2 бар. Я не знаю, как и чем они измеряют, а может и не измеряют вовсе, а перепечатывают друг у друга, но в моих измерениях на всех авто всегда норма – 4 бара и никак иначе.

Такое же давление топлива и на других авто с тупиковой системой топливоподачи, например, Шевроле Авео и многих других, включая ВАЗы с системой без обратки. И на разных режимах работы двигателя оно не изменяется!

А как же тогда быть с разрежением во впускном коллекторе и количеством топлива?

Для этих целей в прошивку электронного блока управления двигателем вводится дополнительный параметр – коррекция времени впрыска

Как только мы нажимаем на педаль газа и в коллекторе возрастает давление, ЭБУ мгновенно применяет коррекцию. В этот момент впрыск рассчитывается уже по формуле длительность впрыска + коррекция времени впрыска. В нашем примере это 2мс + 0,7мс = 2,7мс.

То есть, за счёт небольшого увеличения времени впрыска в этот момент, количество топлива через форсунку пройдёт одинаковое, что в режиме холостого хода, что во время нажатия педали газа.

Некоторые путают этот параметр и считают, что так ЭБУ добавляет топлива при разгоне. Это в корне не так. Коррекцией времени впрыска ЭБУ на самом деле не даёт уменьшится количеству топлива, проходящему через форсунку за 1мс из-за резкого повышения давления во впускном коллекторе!

Проблемы с давлением топлива

Представим, что топливный насос износился и не может создать давление в 4 бара или ограничитель давления прохудился и также не держит давление в 4 бара. Допустим, давление не поднимается выше 2,5 бар. В таблицах прошивки ЭБУ есть чёткий алгоритм действий, при каких условиях производить ту или иную коррекцию времени впрыска. Но ЭБУ не видит, что давление не 4 бара, а всего 2,5 и продолжает делать свою работу по вписанным в таблицы алгоритмам. А из-за пониженного давления в рампе через форсунки проходит меньшее количество топлива, чем положено. Соответственно, и во время коррекции времени впрыска, топлива будет проходить недостаточно за то время, которое даёт ЭБУ. Так мы получим провал во время нажатия педали газа.

Представим обратную ситуацию. Регулятор или ограничитель давления заклинили в открытом положении. Давление возросло и стало выше положенного. Это тоже не есть хорошо. Это приведёт к рывкам в переходных режимах, перерасходу топлива и, возможно, подтеканию форсунок

Как замерить давление топлива

Замерить давление топлива совсем не сложно. Те, кто не любит пачкать руки, может это сделать на проверенном СТО с адекватными специалистами.

А те, кто любит всё делать сам, может собрать устройство из обычного манометра и шлангов или купить специальный комплект для измерения давления топлива, давления масла и ещё много чего

В нём имеется много переходников под различные автомобили. Но под Шевроле Лачетти нет ни в одном комплекте. Почему? Потому что и здесь экономия на мелочах взяла верх. Сэкономили на регуляторе давления, сэкономили на датчике массового расхода воздуха, поставив более дешёвую систему на основе давления во впускном коллекторе, сэкономили и здесь, не установив копеечный штуцер с золотником для проверки давления топлива.

Поэтому, чтобы замерить давление топлива на Шевроле Лачетти и его же, но по-другому названных – Nubira III, Daewoo Gentra, Ravon Gentra, Chevrolet Klan и т.д., необходимо врезаться через тройник либо на входе в рампу

Либо в возвратную магистраль на топливном модуле под задним диваном

В качестве тройника можно использовать тройник топливной системы инжекторных ВАЗов

Сбрасываем давление топлива. Как это сделать подробно изложено в статье Замена топливного фильтра Шевроле

Снимаем топливопровод со штуцера топливного модуля.

На штуцер одеваем тройник. К центральному штуцеру тройника подключаем шланг от манометра, а к боковому штуцеру нужно подключить отключенный топливопровод возвратной магистрали.

Топливопровод просто так к боковому штуцеру не подключишь. Для этого нужен переходник. Его роль отлично играет штуцер от топливного фильтра. Его необходимо отрезать и шлангом соединить с боковым штуцером тройника

Получается что-то типа такого

1 – к манометру, 2 – возвратная топливная магистраль

Необходимо несколько раз включить/выключить зажигание, чтобы насос накачал необходимое давление и запустить двигатель. Давление должно быть 4 бара и не изменяться, чтобы Вы не делали с двигателем

Более подробно про замер давления топлива на Шевроле Лачетти изложено на странице Замер давления топлива. Там также подробно описан процесс изготовления устройства для измерения давления и замер производился возле рампы.

Также стоит отметить, что после остановки двигателя, давление не должно сразу падать. Это значит, что обратный клапан исправный. Если у Вас двигатель не всегда запускается с первого раза, тогда уделите обратному клапану особое внимание. Бывает такое, что после его замены, давление всё-равно не держит после остановки насоса. Всё дело в том, что в самом насосе также имеется свой обратный клапан и он тоже может выйти из строя. Поэтому перед заменой ограничителя давления стоит его проверить хотя бы насосом или компрессором

А на автомобилях с рециркуляцией и регулятором давления топлива, значения манометра должны изменятся с 2,8 бар на холостом ходу до 3,2 бара при нажатии на педаль газа или при снятии вакуумного шланга с регулятора давления. При остановке двигателя, давление также не должно сразу падать.

К слову, манометр можно купить в любом строительном магазине. Лучше брать со шкалой от 6-ти до 12- ти бар.

Вывод. Необходимо периодически контролировать давление топлива в рампе. Это позволит предотвратить возможные проблемы в работе двигателя на ранних стадиях.

А если у автомобиля уже есть признаки неисправности – провалы, потеря мощности, перерасход топлива и т.д., тогда первым делом необходимо произвести грамотное измерение давления топлива.

А учитывая небольшую себестоимость данного самодельного устройства, то считаю, что оно должно быть в гараже любого автолюбителя-самоделкина.

Вот моё видео на эту тему

Всем Мира и ровных дорог!!!

По теме:

 

Какое давление в топливной системе инжекторного двигателя

Главная » Разное » Какое давление в топливной системе инжекторного двигателя

Диагностика давления топлива. Способы промывки инжектора.

Если бензиновый двигатель, при работе на холостом ходу “тупит” или “подтраивает”, скачет стрелка тахометра, то сразу трудно определить в чем проблема. Самые вероятные причины: неисправность в топливной аппаратуре или сильный износ ЦПГ двигателя (падение компрессии). Эти два параметра обычно и диагностируют друг за другом. Для оценки компрессии в двигателе у нас есть своя статья, эта же рассказывает о том, как диагностика давления топлива позволяет выявить неисправность  топливного насоса (бензонасоса), регулятора давления, проверить работу инжектора. А также видам и способам проведения промывки инжектора при его загрязнении.

Любая топливная система автомобиля представляет из себя замкнутый круг. Бензин под давлением, нагнетаемым насосом, поступает из бака через топливный фильтр в топливную рампу: к инжекторам и регулятору давления топлива, а неиспользованное топливо возвращается обратно в бак. На каждом из элементов, связанным с прохождением через него бензина возможно изменение давления в ту или иную сторону.

Количество впрыскиваемого бензина зависит от времени работы инжектора, от давления внутри топливной рампы и давления (разряжения) внутри впускного коллектора. Для того чтобы учесть три этих фактора и точнее рассчитать количество впрыскиваемого топлива, в топливной рампе устанавливается регулятор давления топлива. Он поддерживает разницу давлений: давление бензина на форсунке и давление воздуха во впускном коллекторе, излишки бензина направляются обратно в бак по обратной магистрали.

Из-за износа или неправильной работы регулятор может уменьшать или увеличивать давление в топливной рампе. В итоге имеем: недостаток или перелив топлива и потеря мощности в двигателе. Также может происходить подклинивание клапана, в этом случае давление в топливной рампе будет меняться не закономерно, вследствие чего может наблюдаться не устойчивая работа двигателя, дерганье при разгоне.

Диагностика давления топлива в рампе важный параметр в диагностике неисправностей топливной аппаратуры двигателя. Ведь от него зависит состав топливной смеси, соответственно и поведение автомобиля в различных режимах эксплуатации. Поэтому диагностика системы впрыска бензинового двигателя важная составляющая в общей диагностике двигателя.

Виды манометров давления топлива

Для диагностики давления в топливной рампе потребуется манометр давления топлива. Шкала у манометра должна быть не менее 7 бар.  Самый лучший вариант по цене и качеству подходящий для личного применения или небольшого автосервиса прибор HS-1013 (TU-113).  Он позволяет оценить состояние следующих систем: давление насоса, производительность насоса, утечки, засоренность топливного фильтра, проверить работоспособность регулятора давления. Набор адаптеров входящий в комплект позволяет производить измерение давления в топливной системе на всех автомобилях отечественного и многих импортных авто.  Диагностика им довольно проста, ее можно сделать самостоятельно.

В автосервисе для измерения давления топлива используют уже более профессиональные наборы типа: Манометр давления топлива TU-114 (HS-0020), ATZ-602 или TU-443 (HS-1011) и ATZ-600набор адаптеров в которых, позволяет подключиться в различных точках к системе питания авто на большинстве марок автомобилей.

Перед диагностикой необходимо тщательно осмотреть всю топливную магистраль, убедится в ее целостности, отсутствию подтеков и коррозии. Необходимо также проверить работоспособность электрических элементов топливной аппаратуры.

На заведенном двигателе давление в топливной рампе должно соответствовать паспортным данным для соответствующей марки автомобиля. Для примера: нормальное давление топлива для ВАЗ, ГАЗ, УАЗ составляет 2,8-3,2 бар. Причина низкого давления, как правило, связана с проблемами в подающей магистрали, а причина высокого давления – с проблемами в обратной.

Диагностика и промывка инжектора

Инжектор — простой электромагнитный клапан, созданный для точного дозирования подачи бензина и его распыления в камере сгорания. В процессе эксплуатации автомобиля из топлива выделяются компоненты, напоминающие битумы и лаки. Чем менее качественно топливо, тем больше этих примесей. Они накапливаются внутри инжектора (на сетке фильтра), так и в топливной рампе.

К топливным отложениям тут добавляются отложения от моторного масла, попадающего во впускную систему двигателя через систему вентиляции картера, особенно сильно у изношенного двигателя. За счет этих отложений происходит уменьшение проходных сечений и уменьшается регулировка топливо-воздушной смеси в сторону ее обеднения.

Чтобы вывести инжектор из нормального рабочего состояния нужно не много. Использование некачественного топлива, движение в городском цикле или на короткие дистанции с недостаточно прогретым двигателем приводит к тому, что отложения в инжекторах  формируются быстрее, чем растворяются моющими присадками, содержащимися в бензине. Снижение пропускной способности одного инжектора на 8-10% вполне достаточно для начала пропусков в зажигании. Если это происходит, не сгоревший кислород попадает в выхлопную систему и выводит из строя датчик кислорода.

Ещё одним компонентом, на который в обязательном порядке необходимо обращать внимание является дроссель. Пары топлива поднимающиеся из впускного коллектора обычно оседают на дроссельной заслонке и прилегающих к ней деталях. Результат – изменение пропорций воздушно-топливной смеси. Обнаружить это загрязнение довольно сложно. Для чистки дроссельной заслонки очень хорошо подходит аэрозольный растворитель.

Проверка работоспособности инжектора

Для диагностики инжектора применяют тестеры и мотор-тестеры. Простой и удобный прибор для тестирования инжектора — Тестер топливных форсунок ADD260. Он предназначен для проверки работоспособности форсунок бензиновых автомобилей.

Тестер позволяет проверить производительность и состояние инжекторов, а затем и помочь почистить их в ультразвуковой ванне благодаря специальному программному обеспечению, которое позволяет создавать различную пульсацию, имитируя работу форсунки. Тестер инжектора ADD260  подключается к форсунке и проверяет ее работоспособность на различных режимах пульсации. Его используют совместно с манометром топливной рампы, например HS-0020, TU-443 или ATZ603 и ATZ-600.

Сначала создают номинальное давление в топливной рампе, выключают двигатель и включая тестер инжекторов на различных режимах пульсации засекают падение давления в топливной рампе. Такую операцию проводят на каждом инжекторе и каждом режиме пульсации. Диагностика инжектора тестером позволяет определить работоспособность форсунки на различных режимах, что позволяет сделать вывод о состоянии инжектора (чистый инжектор, засоренный, нерабочий инжектор).

Если тестер показал, что форсунка засорена, то необходимо ее промыть. Сейчас применяются 2 основных способа очистки форсунок: 1. Промывка инжектора жидкостью без снятия форсунок с двигателя и 2. Промывка снятых форсунок на стенде с очисткой инжектора в ультразвуковой ванне.

Промывка инжектора на двигателе

Это наиболее простой вариант, так как демонтаж их особенно в последних моделях двигателей может представлять собой существенную проблему. Ее обычно проводят периодически с интервалом в 15-25 тыс. км пробега автомобиля. Прохождение растворителя сквозь инжектор также вполне эффективно очищает клапаны и внутренние поверхности камеры сгорания. Сама процедура занимает в этом случае от 30 минут до 1 часа.

Для проведения промывки можно воспользоваться профессиональным оборудованием, а можно изготовить самому (в интернете довольно много статей и роликов на тему “как самостоятельно произвести промывку инжектора”).

При такой промывке инжекторов следует знать: сильно засоренные инжекторы препятствуют проникновению достаточного количества растворителя, то же касается и спекшихся отложений. В этих случаях время промывки увеличивается. Если даже после нескольких десятков минут промывки двигатель не начинает работать лучше, инжекторы следует извлечь из двигателя и промыть более радикальным способом.

Рекомендуем заменить или по крайней мере выкрутить и почистить свечи зажигания после процедуры промывки инжекторов. Т.к. в процессе чистки образуется большое количество несвязанных частиц сажи, которая оседает на свечах и существенно ухудшает их качество. Можно также произвести замену масла и фильтров, так как растворитель может попасть через кольца в масло и снизить его качества.

Из большого разнообразия установок мы выбрали 2 ПНЕВМАТИЧЕСКИЕ СТАНЦИИ ДЛЯ ПРОМЫВКИ ИНЖЕКТОРА: E-100 и С-100. По своим техническим характеристикам и входящим в их комплектацию адаптерам для подключения к топливным магистралям разных марок автомобилей и приспособлений для удобства работы они лучшие из имеющихся на рынке по качеству и дешевле по стоимости.

Установки работают от стационарного компрессора, пневмолинии в автосервисе, или обычного  автомобильного компрессора для подкачки шин. Давление регулируется с помощью входящего в комплект регулятора с манометром.

Этот способ промывки инжекторов начали рекомендовать и производители топливной аппаратуры. Т.к. в последнее время форсунки стали производить с керамическими корпусами и этот вариант промывки для них самый безопасный по сравнению с ультразвуком.

Промывка инжектора со снятием с двигателя

Более качественный способ промыть инжектор, применяется при сильном загрязнении форсунок. Форсунки снимают, устанавливают на стенд (его можно изготовить самостоятельно приспособив б/у топливную рампу и тестер для управления впрыском инжекторов типа ADD260 или мотор-тестер), для проверки распыла и производительности.

Задавая различные режимы работы форсунки (частоту и длительность импульсов) с применением чистящего раствора можно хорошо почистить каждый инжектор. Рекомендуем после окончания промывки перевернуть форсунку на 180 градусов, соплом распылителя установив ее в топливную рампу и заново произвести промывку на различных режимах. Таким способом чистящий раствор будет прокачиваться в обратном направлении, что намного эффективнее промывает сетчатый фильтр в инжекторе. Через 5-10 мин форсунка полностью очищается.

Для усиления чистящего эффекта форсунку нужно поместить на некоторое время в ультразвуковую ванну, наполненную слабым щелочным раствором.  Можно опять подключить тестер инжекторов ADD260 для имитации работы электромагнитного клапана форсунки.  В динамике он лучше очищается от углеродистых отложений.

Какую жидкость использовать для промывки инжектора

На данный момент производителей жидкости для промывки инжектора очень много. Самые распространенные бренды: Wynn’s (Винс) (обычно применяется для сильно загрязненных инжекторов, когда форсунки не мыли не менее 30 т. км пробега), LIQUI MOLY (Ликви Моли), Лавр (средние по эффективности и очистке реагенты), Carbon Clean (предназначен больше для профилактической промывки каждые 15-20 км пробега). Для экономии средств можно воспользоваться нашей АКТИВНОЙ ПРОМЫВКОЙ ТОПЛИВНОЙ СИСТЕМЫ ЭДИАЛ для бензиновых двигателей. 

Непосредственный впрыск топлива бензиновых ДВС. — DRIVE2

Система непосредственного впрыска топлива является самой современной и совершенной, с точки зрения экономия топлива и экологии, системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей.

Toyota — D4
Mercedes-benz — CGI
Mitsubishi — GDI
Nissan — NEO DI
Renault — IDE
Alfa Romeo — JTS
PSA Peugeot Citroën — HPi
Mazda — DISI; SkyActive
General Motors — Ecotec
Ford — TwinForce, SCTi, EcoBoost
Volkswagen, Audi, Skoda — FSI, TSI, TFSI
Opel — SIDI (Spark Ignition Direct Injection)

Применение системы непосредственного впрыска позволяет достичь до 5-15% экономии топлива в режиме холостого хода и частичных нагрузок, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива.

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI Fuel Stratified Injection – послойный впрыск топлива. Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

1. топливный бак
2. топливный насос
3. топливный фильтр
4. перепускной клапан
5. регулятор давления топлива
6. топливный насос высокого давления
7. трубопровод высокого давления
8. распределительный трубопровод
9. датчик высокого давления
10. предохранительный клапан
11. форсунки впрыска
12. адсорбер
13. электромагнитный запорный клапан продувки адсорбера

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПа) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

Послойное
Стехиометрическое гомогенное
Гомогенное

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, мгновенный отклик на педаль акселератора) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя — режим макисмальной мощности или больших нагрузках — режим максимального момента. На бедной гомогенной смеси двигатель работает в промежуточных режимах и на холостом ходу, когда нужно обеспичить максимальную экономию топлива. При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия, для этого поршень имеет специальную форму днища. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%, что снижает количество кислорода в камере сгорания.

На практике непосредственный впрыск приносит много головной боли своим владельцам, вся экономия топлива рассыпается в труху о стоимость ремонта и обслуживания.

1. Необходимо следить за чистотой бензина от механических примесей. Что попало (самый дешевый) в эти двигатели не пойдет. Только самый дорогой из доступных, причем АИ-98-100.

Полный размер

2. Приходится часто менять топливные фильтры (обычно 30-60т.км.), причем только оригинальные. Использование неоригингальных топливных фильтров чревато быстрым износом ТНВД и забитыми форсунками, со всеми прелестями их замены или ремонта. Можно конечно рисковать, но в случае чего — выйдет раком очень дорого.

3. При температурах ниже -25-30С ТНВД из-за ухода тепловых зазоров не может развить номинальное давление, с прогревом он конечно довольно быстро приходит в норму. Но с увеличением пробега все становится хуже. Двигатель трясется, пытается — и не заводится нормально. Кроме того, запуск при таких температурах быстро изнашивает ТНВД и форсунки.

4. Каждые 30-60т.км. необходимо обслуживать всю топливную систему — промывать форсунки, менять уплотнительные колечки, проверять все насосы и при необходимости менять (насос низкого давления) либо ремонтировать (насос высокого давления). Иначе можно «встать» колом.

Полный размер

5. Нужно подбирать масло так, чтобы оно не сильно загаживало камеру сгорания и впускные клапана (а значит зола не больше 1,15%, а в некоторых случаях и все 0,8-1% что явно не способствует стойкости масла и сроку жизни ДВС до износа), но так чтобы предотвратить износ распредвалов, цепей, шестерен и прочего. Подобрать такое масло — не так то просто, даже сами автопроизводители в своих допусках уже запутались…и даже придумали новую страшилку — проблема LSPI. Несите ваши денежки за новые масла…только это вам не поможет. Выбирайте — повышенный износ всего двигателя, но чистые от нагара клапана и каналы, либо — низкий износ и все заросшее нагаром, с опасностью клина. Хороший выбор, не правда ли? Что в лоб, что по лбу…особенно печально в свете того, что многие двигатели с непосредственным впрыском имеют пластинчатую цепь Морзе, либо кулачки распредвалов непосредственно скользят по толкателям клапанов без роликовых механизмов, имеющую крайне высокие требования к противозадирным и противоизносным компонентам ZDDP и ZP, содержание которых приходится постоянно снижать, с все ужесточающимися экологическими нормами. Сюда нужны исключительно полнозольники…иначе износ к 150т.км. будет критическим. Раз в пару-тройку лет — обязательная чистка.

Полный размер

6. Самое веселое — каждые 50-100т.км. необходимо очищать одним из способов (чаще всего — механически, с разборкой) впускные клапана и впускные окна головки блока, из-за того что они не омываются бензином — зарастают нагарами, отложениями, сажей. «Спасибо» системам EGR и принудительной вентиляции картера. Все это дерьмо прилетает именно оттуда и налипает повсюду. В противном случае двигатель сначала теряет мощность (обычно чуть больше 100т.км.), в некоторых случаях смесь обогащается (воздуха мало) и двигатель начинает под нагрузкой коптить, в особо тяжелых случаях (когда владелец — у меня 150-180тыщ ниче не делал по движку — машина огонь!) возможно повреждение клапанов (клинит и гнет…) либо даже отрыв тарелок, с крайне тяжелыми последствиями…а эти двигатели нихрена не простые в сборке-разборке. И еще более тяжелые в капремонте. Если делать самостоятельно — довольно сложно и трудоемко, если ехать в автосервис — неприлично дорого и велик риск что ничего путем не очистят, а протрут тряпочкой впускные каналы и ОК — ждем на капиталочку, лох подготовлен, счетчик запущен…

7. Очень распространенная проблема двигателей с непосредственным впрыском — низкое тепловыделение на холостых и медленном движении по пробкам, в режиме бедной смеси. Экономия она конечно хорошо, но когда за окном -25-35С двигатель натурально остывает, из печки начин

топливная система — DRIVE2

Следуя логике, начнем мы это дело с теории. Вообще традиционная топливно-воздушная система инжекторных двигателей идентична у всех производителей, в рамках поколения. Поэтому, большая часть данной темы будет применима к большинству автомобилей, разумеется, с некоторыми различиями в месторасположении компонентов и другими особенностями конструкции конкретного автомобиля. Обзор будем проводить на примере Honda Civic 1996-2000 годов выпуска.

Итак, топливная система. Задача топливно-воздушной системы доставить в двигатель смесь топлива и воздуха в нужном количестве и в нужной пропорции. И это едва ли не самая важная составляющая автомобиля или, по крайней мере, одна из них. Так что же происходит после того, как мы заводим двигатель и как топливо перемешиваясь с воздухом попадает в двигатель?

Начнем с того, что источник и место хранения топлива – топливный бак, который как правило, находится в задней части автомобиля. Воздух для смеси берется с атмосферы. Отметим, что и топливо и воздух предварительно фильтруются. За очистку топлива отвечает топливный фильтр, а за очистку воздуха – воздушный фильтр.

Место встречи топлива и воздуха – впускной коллектор, установленный на блоке двигателя непосредственно перед впускными клапанами. Воздух во впускной коллектор подается посредством дроссельной заслонки, а топливо впрыскивается дозировано с помощью электромагнитных топливных форсунок, в тот же впускной коллектор. Получается, что воздух доходит до впускных клапанов и только там встречает струю бензина, уже непосредственно перед цилиндром и даже в самом цилиндре. Это снижает расход топлива, сокращает содержание вредных выбросов и даже немного повышает мощность и крутящий момент
ТОПЛИВО

Чтобы проделать путь от топливного бака к топливным форсункам на топливо со стороны бака должно воздействовать определенное давление. Давление, которого будет достаточно, чтобы топливо доходило в нужном количестве с бака до форсунок при любых условиях эксплуатации (спокойная езда, резкое ускорение). Эту функцию выполняет топливный насос с электроприводом, который у Honda Civic погружен в топливный бак (погружной).

Чтобы подавать на каждую форсунку топливо в одинаковом количестве и с одинаковым давлением, топливо подается на форсунки через топливную рейку (рампу). Топливная рейка не что иное как литая пустотелая деталь с боковыми отверстиями под каждую форсунку для установки последних и подачи на них топлива. Получается, что с одной стороны форсунки насажены на топливную рейку, а другой стороной (которая распыляет) вставляются в отверстия во впускном коллекторе.

Топливная форсунка

Работа форсунки достаточно проста – при подаче на нее электрического импульса форсунка открывается и топливо начинает впрыскиваться в воздух. Процесс впрыскивания топлива в воздух происходит во впускном коллекторе непосредственно перед впускными клапанами. В момент смесеобразования топливно-воздушная смесь всасывается через впускные клапана в цилиндр за счет движения поршня вниз. Момент и длительность впрыска каждой форсунки определяет ECU, подавая на них электрические импульсы.

Поддерживать необходимое давление в топливной системе, в конечном итоге в топливной рейке, нужно на постоянной основе, а на это топливный насос не способен, т.к. качает только в одну сторону. Как быть, если насос накачает топлива больше чем требуется? Форсунки по команде ECU закроются в требуемый момент, а чтобы нормализовать повышенное давление в системе необходимо слить излишек топлива обратно в бак. Кроме того, откуда узнать какое давление необходимо системе в конкретной ситуации? Эту работу выполняет регулятор топливного давления.

Как правило, регулятор топливного давления расположен на топливной рейке с противоположной стороны от подачи топлива. Т.е если подача топлива в рейку осуществлена с левой стороны, то регулятор топливного давления находится в правой части, после форсунок.

Топливная рейка в сборе с форсунками

Принцип действия регулятора достаточно прост. Как только давление в топливной рейке превышает необходимый уровень клапан открывается и пропускает излишек топлива обратно в топливный бак («обратка»).

Однако, кроме связи с топливом регулятор давления топлива посредством вакуумного шланга подсоединяется и к впускному коллектору. Сделано это для того, чтобы регулятор топливного давления определял давление не только в топливной рейке, но и во впускном коллекторе и на основе полученных данных при необходимости корректировал давление в топливной рейке. Предполагается, что чем выше давление (меньше разрежения) во впускном коллекторе, тем больше нагрузка на двигатель, а чем больше нагрузка, тем большее давление необходимо обеспечить в топливной рампе.

Последняя составляющая топливной системы абсорбер паров топлива. Малозначимый в техническом плане, однако вносящий значимый вклад в чистоту воздуха и экологию. Назначения абсорбера – поглощать (абсорбировать) пары бензина с бака и передавать в необходимый момент времени во впускной коллектор, тем самым не выпуская вредные пары в атмосферу, дожигая их.

Абсорбер паров топлива (EVAP canister) выполнен в виде канистры заполненной углем и находится в моторном отсеке. С топливным баком абсорбер сообщается напрямую, а вот с впускным коллектором через клапан абсорбера, который открывается и пропускает пары бензина во впускной коллектор после того как двигатель прогреется до рабочей температуры, разбавляя топливно-воздушную смесь во впускном коллекторе накопившимися парами из бака. При каких именно режимах эксплуатации автомобиля клапан абсрбера открывается сказать затрудняюсь. В конечном итоге пары бензина замещают воздух, тем самым обогащая смесь. Хочется верить в то, что в этот момент ECU учитывает «лишнее» топливо с абсорбера и уменьшает подачу топлива с форсунок, чтобы удержать смесь в оптимальной пропорции. Следуя логике можно сказать, что в момент подачи паров бензина с абсорбера во впускной коллектор отдача от двигателя уменьшается, т.к. объем чистого воздуха уменьшается за счет замещения его парами и топлива, соостветсвенно, тоже.
ВОЗДУХ

Воздушная система несколько проще топливной, однако от этого не менее важная. И главенствующую роль в ней играет дроссельная заслонка (корпус дроссельной заслонки в сборе). Сама система состоит из дроссельной заслонки (в нашем случае электро-механическая, на новых автомобилях — электронные), короба с воздушным фильтром и рукавов (гофр, патрубков), подающих отфильтрованный воздух от воздушного фильтра к дроссельной заслонке.

Дроссельная заслонка

Дроссельная заслонка расположена непосредственно перед впускным коллектором. Принцип работы механической дроссельной заслонки очень прост — чем больше открыта заслонка, тем больше проходное сечение, соответственно в еденицу времени через нее проходит больше воздуха во впускной коллектор. Больше воздуха — больше топлива, больше топливно-воздушной смеси в камере сгорания — выше мощность. Управляет открытием и закрытием дроссельной заслонки водитель, нажимая на педаль газа. Педаль газа имеет прямое соединение с дроссельной заслонкой и при нажатии на нее дроссель открывается. Чем глубже вжимать педаль, тем больше открывается дроссель. Педаль до упора – дроссель находится в максимально открытом состоянии.

На холостом ходу двигателя дроссельная заслонка полностью закрыта. Воздух поступает в обход заслонки, через клапан холостого хода. Клапан холостого хода обычно расположен, либо на корпусе дроссельной заслонки, либо на впускном коллекторе. А для предотвращения обледенения дроссельной заслонки в холодную погоду к корпусу заслонки подводится охлаждающая жидкость из системы охлаждения двигателя.

Блок дроссельной заслонки в сборе

Педаль газа связана с механическим приводом дроссельной заслонки через тросик газа. Механический привод дроссельной заслонки жестко закреплен с дроссельной заслонкой таким образом, что при воздействии на него механический привод передает вращательное движение на саму заслонку, открывая или закрывая ее, в зависимости от степени натяжения тросика (силы нажатия на педаль газа).

Надеюсь, общий принцип работы системы теперь разобран — водитель при помощи педали газа определяет сколько воздуха «всосет» впускной коллектор, а ECU автомобиля «подливает» необходимое количество топлива. Но как ECU узнает, сколько вошло воздуха и сколько нужно подлить топлива, когда именно? Ответ прост – множество датчиков и ECU.
ДАТЧИКИ

MAPы-шмапы, лямбды-шлямбды

Всё, как мы выяснили начинается с открытия дроссельной заслонки. ECU узнает с помощью датчика положения дроссельной заслонки (TPS — Throttle position sensor) на сколько открыта дроссельная заслонка и определяет сколько воздуха способно пройти во впускной коллектор при данном положении заслонки. В соответствии с оптимальным соотношением топливно-воздушной смеси ECU должен послать команду форсункам впрыснуть необходимое количество топлива. Однако, не все так просто.

В одиночку датчик положения дроссельной заслонки (TPS) не способен определить какой объем воздуха в действительности попал во впускной коллектор. Ведь объем и, соответственно, количество поступаемого воздуха имеет прямую зависимость от ее температуры и давления. Температуру ECU узнает благодаря показаниям датчика температуры поступаемого воздуха (IAT). Расположен этот датчик непосредственно перед дроссельной заслонкой, на гофре.

Давление же измеряет датчик абсолютного давления — MAP сенсор (Manifold Absolute Pressure). Абсолютное давление рассчитывается по формуле: абсолютное давление = атмосферное давление — давление во впускном коллекторе.
Чем прохладнее воздух тем больше его помещается во впускной коллектор и тем больше он проходит через дроссельную заслонку за еденицу времени при прочих равных условиях.

Основываясь на показаниях датчиков TPS, MAP и IAT компьютер вычисляет массу поступаемого воздуха и на основе этих данных дает команду форсункам впрыскнуть нужное количество топлива. Ну как именно ECU определяет сколько топлива нужно?

Оптимальный состав топливо-воздушной смеси, при котором топливо максимально полно и эффективно сгорает, когда на 14.7 части воздуха приходится 1 часть топлива. ECU узнает с помощью трех вышеупомянутых датчиков сколько поступило воздуха и в соответствии с пропорцией 14.7:1 добавляет топливо.

Последним звеном этой системы является кислородный датчик – лямда-зонд, который расположен на выпускном коллекторе и проверяет качество приготовленной смеси. При излишне-обогащенной (много топлива) или обедненной (много воздуха) топливно-воздушной смеси, ECU корректирует ее приготовление. Именно лямбда-зонд передает информацию «мозгу» (ECU) о наличии бедной или обогащенной смеси, на основе вычисления количества кислорода в выхлопных газах. Если количество кислорода в выхлопных газах превышает норму или наоборот, лямбда-зонд говорит об этом «мозгу». Понятно, что если лямбда-зонд неисправен, то ECU начнет корректировать смесь по неверным данным. Тоже касается всех остальных датчиков. Они все важны для правильного смесеобразования. Не менее значимое влияние на смесеобразование оказывают топливные карты, но что это такое и как работает рассмотрим отдельной статьей.
ТЮНИНГ ТОПЛИВНО-ВОЗДУШНОЙ СИСТЕМЫ

Теперь, когда мы выяснили как работает система в целом можно предположить, что замена любого рассмотренного компонента на «тюнинг» даст эффект в плане увеличения мощностных характеристик двигателя. Справедливо, но только для воздушной системы. Например, фильтр нулевого сопротивления с короткой трубой или трубой, осуществяющущей забор холодного воздуха из вне подкапотного пространства. Увеличение диаметра дроссельной заслонки.

Тюнинговые комплектующие

Замена впускного коллектора на модифицированный тоже способствует увеличению мощности. Небольшим дополнением к тюнингу «впуска» можно считать улучшенную, утолщенную прокладку между впускным коллектором и блоком двигателя, изготовленной из специального состава (прокладка Hondata). Мощности это не увеличивает, но позволяет сохранить имеющуюся за счет предотвращения передачи тепла от блока двигателя к впускному коллектору.

Конечно, впускной коллектор, в любом случае, будет греться за счет температуры подкапотного пространства. Однако, исключение основного источника тепла позволяет значительно снизить температуру корпуса впускного коллектора и, как следствие, температуру внутри него. Чем холоднее впускной колллектор, тем больше мощности в конечном итоге выдаст двигатель.

Все вышеперечисленное и подразумевают, когда говорят о тюнинге «впуска». Хотелось бы отметить, что потенциал тюнинга «впуска» раскроется в полной мере с тюнингом выпускной системы (увеличение диаметра выхлопной системы, равнодлинный выпускный коллектор 4-2-1 или 4-1, прямоточные резонаторы и глушитель, спортивный катализатор).

Тюнинг же топливной системы без серьезного увеличения общей мощности (на

4 способа как проверить регулятор давления топлива на дизеле и инжекторе

Вопросом о том, как проверить регулятор давления топливазадаются владельцы машин как с бензиновым, так и с дизельным двигателем. Данный узел устанавливается в топливную рампу тех и других моторов. В некоторых случаях их может быть два — для контура низкого и высокого давления. Конструктивно датчик давления топлива (или сокращенно ДДТ) состоит из двух частей — металлической мембраны и тензорезисторов, которые способны изменять свое электрическое напряжение. По сути, проверка регулятора давления топлива и сводится к тому, чтобы замерить выдаваемое им напряжение/сопротивление.

Содержание:

Описание работы регулятора давления топлива

Перед тем как перейти к вопросу о том, как проверить датчик давления топлива, необходимо разобраться с принципом его работы. Это даст полноту понимания данного процесса. Как указывалось выше, ДДТ состоит из двух частей — механической и электрической. Механическая часть — это металлическая мембрана, которая прогибается под воздействием усилия, вызванного давлением в топливной системе. Следует отметить, что на датчиках, рассчитанных под разное давление, толщина мембраны также будет разной. В частности, чем толще мембрана — тем на большее давление рассчитан датчик. Также стоит отметить, что в некоторых машинах используется два датчика — в контуре высокого давления и в контуре низкого давления. Называются они соответственно.

Электрическая часть датчика давления топлива состоит из четырех тензорезисторов, которые изменяют значение своего электрического сопротивления в зависимости от оказываемого на них механического давления. Тензорезисторы соединены по электрической схеме «мостик Уинстона», и к ним через усилитель к ним подается напряжение. Соответственно, его выходное значение будет меняться в зависимости от того, как сильно изогнется мембрана. По сути, проверка датчика давления топлива заключается в измерение выходного напряжения из датчика давления топлива.

По информации от датчика ЭБУ дает команду на открывание топливного клапана, в результате чего его давление сбрасывается за счет того, что оно перепускается из рейки. Это актуально как бензиновых двигателей с инжектором, так и для современных дизельных систем Common Rail, которые управляются с помощью электронных систем.

Топливо подается под давлением в рампу, элементом которой является и датчик с мембраной. При этом мембрана изгибается, вследствие чего изменяется сопротивление резисторов. Указанное входное напряжение может колебаться в пределах от 0 до 80 мВ (соответственно, 0 показывает, что давления нет вовсе, а 80 мВ указывают, что значение давления является максимально допустимым). С помощью электронного усилителя диапазон выходного напряжения увеличивается до 0…5 Вольта, которые и передаются на электронный блок управления двигателем (ЭБУ).

Значение выходного напряжения одинаково, однако давление у бензиновых и дизельных двигателей, как известно, различаются. Для справки:

  • У дизельного двигателя значение выходного напряжения составляет 1,3 Вольта при давлении 250 Бар, и оно увеличивается до 4,5 Вольта при давлении 2500 Бар (1 Бар = 100 кПа).
  • У бензиновых двигателей напряжение 1,3 Вольта будет при давлении 50 Бар, а значение 4,5 Вольта при давлении 200 Бар.

Приведенные данные являются приблизительными, и взяты в качестве примера для датчика от компании BOSCH, устанавливаемые на некоторые модели автопроизводителей BMW, Alfa Romeo и многих других. Аналогичные характеристики могут отличаться у конкретных марок автомобилей, в том числе использующих различные регуляторы давления топлива.

На старых дизельных двигателях используется механический регулятор давления топлива. Однако в силу того, что на современных автомобилях он практически не используется, рассматривать его устройство мы не станем.

Признаки поломки датчика

К признакам неисправности относится:

  • Активация на приборной панели контрольной лампы Check Engine. При сканировании ошибок диагностическим прибором будут показаны одна или несколько ошибок с номерами P0190, P0191, P0192, P0193, P0194. Все они сигнализируют о проблемах в цепи управления датчика давления топлива.
  • Падение мощности двигателя. При этом машина теряет свои динамические характеристики (плохо разгоняется), не тянет, особенно, если она груженная. Причиной этого становится тот факт, что электронный блок управления при получении некорректной информации от датчика (или отсутствия сигнала от него) попросту подставляет стандартные количественные значения топлива и воздуха. Из-за этого и получается топливовоздушная смесь с неоптимальными параметрами.
  • Перерасход топлива. В зависимости от мощности двигателя это значение также меняется.
  • Машина плохо заводится как «на горячую», так и «на холодную».
  • При работе двигателя на высоких оборотах возможно возникновение так называемых «провалов», когда обороты резко изменяются, а машина не слушается педали акселератора.

Вообще, ездить на машине с неисправным регулятором давления топлива нежелательно. И выражает это не только в том, что машина потеряла свои динамические характеристики, но и в том, что топливный насос будет работать, что называется «на износ», поскольку он не может длительное время поддерживать значительное давление. А это естественным образом приводит к снижению его ресурса и возможному преждевременному выходу из строя.

Также имеет смысл проверить датчик давления топлива в дизельных двигателях в случае, если с помощью диагностического прибора была выявлена ошибка Р1181, сигнализирующая о том, что система не может обеспечить герметичность в топливной рампе. Одной из причин этого как раз может быть неисправный регулятор давления топлива.

Причины поломки датчика давления топлива

Причин выхода из строя датчика давления топлива на самом деле немного. Это либо повреждение внутренних частей датчика, либо его проводки. В первом случае это может быть механическое повреждение корпуса, его ржавление из-за механического повреждения или банальной старости. Также может повредить какой-либо электрический контакт внутри датчика. Как правило, ремонт его невозможен, и он подлежит замене.

Однако чаще повреждается не сам датчик, а его сигнальная проводка либо разъем для подключения (так называемая «фишка»). В некоторых случаях отмечается, что под воздействием вибрации перетираются провода, портится их изоляция, даже возможно возникновение короткого замыкания, из-за чего двигатель может заглохнуть прямо на ходу. В этом случае необходимо выполнить дополнительную диагностику и выполнить замену проводки и/или разъема, который одевается на датчик.

Отмечается, что на некоторых автомобилях при замене датчика на новый необходимо «прописать» его в памяти электронного блока управления двигателем. Особенно это касается неоригинальных датчиков. Для этого необходимо использовать дополнительные аппаратные и программные средства, поэтому лучше обратиться за помощью в специализированный сервисный центр.

Что касается механического клапана регулировки давления топлива, то он может банально пропускать некоторое количество топлива, из-за чего в системе будет присутствовать низкое давление со всеми вытекающими последствиями, в частности, падением мощности двигателя, «подергиванием» машины и прочими неприятностями.

Причинами поломки также может быть засорение сеточки на регуляторе. Засорение может быть вызвано попаданием мусора в топливо в случае, если топливный фильтр не справляется с возложенными на него задачами или он попросту забит сам и мусор из него проходит в топливную магистраль. Что касается дизельных двигателей, то в холодную погоду солярка может замерзать, и в ней образуются твердые частицы парафина. В этом случае имеет смысл воспользоваться размораживателями дизельного топлива.

Еще одна причина — износ или заклинивание запирающего элемента внутри корпуса регулятора давления. Очередная причина неисправности — неплотное прилегание конуса регулятора внутри рейки. Также причиной неисправности может быть электронная система управления (катушка, микросхема с тензорезисторами).

Как проверить исправность датчика давления топлива

Проверить исправность регулятора давления топлива можно двумя методами — с демонтажом топливной рейки вместе с регулятором или без такового. Первый метод более сложный, однако с его помощью можно проверить не только работу регулятора давления, но и других элементов топливной системы. Кроме этого, для такой проверки необходим специальный стенд, который есть только в специализированных автомастерских, в частности, у официальных представителей конкретного автопроизводителя. Хотя некоторые автолюбители собирают подобные самодельные у себя в гараже.

Проверка датчиков старого образца

Упомянутые выше регуляторы давления топлива старого образца можно было проверить, просто пережав на непродолжительное время «обратку» топлива. Этот метод старый, и соответственно, подойдет для автомобилей старой конструкции. Такую проверку необходимо выполнять обязательно «на холодную», когда двигатель еще не прогрелся. Лучше всего это делать приблизительно в течение одной минуты после запуска двигателя. Актуально для бензиновых двигателей.

Основное действие в данном случае — пережать с помощью плоскогубцев шланг обратной подачи топлива на несколько секунд. Если при этом троящий и плохо работающий мотор восстановил обороты и стал нормально работать, значит, вышел из строя именно регулятор давления топлива. Однако помните, что на длительное время пережимать шланг нельзя, поскольку это чревато износом топливного насоса вплоть до его выхода из строя или срыванием какого-либо хомута на месте крепления топливных шлангов. Тем не менее такой метод подходит лишь для тех машин, у которых в обратной топливной магистрали используются длинные резиновые шланги. А на многих современных иномарках эти элементы выполнены из металла, соответственно, механически пережать их не получится.

Проверка с помощью мультиметра

Проверку электронного датчика давления топлива, установленного на рампе, необходимо с проверки наличия питания на нем. Для этого нужно снять «фишку» с него и с помощью электронного мультиметра, переведенного в режим измерения напряжения, проверить соответствующие значение. Черный щуп устанавливается на любой «минус», а красный — на ножку на «фишке». Если все исправно, то на экране мультиметра должно быть значение 5 Вольт постоянного тока. Следующий шаг проверки заключается в том, что красный щуп устанавливается на «плюс» аккумулятора (или ближайшей точки, где можно взять напряжение), а черный щуп — на минусовую ножку на «фишке». В исправном состоянии значение должно быть -12,3 Вольта (или просто 12 Вольт). Если все так, значит, проводка датчика целая. Можно возвращать «фишку» на ее посадочное место на датчике.

Следующий шаг — проверка уровня сигнала от датчика. Для этого черный провод мультиметра необходимо поместить на минусовую клемму аккумулятора, а красную — на третий сигнальный провод (обычно он находится посередине). Далее нужно запустить двигатель и дать поработать ему на холостых оборотах (минимальных). При этом выходное напряжение также должно быть минимальным. Как указывалось выше, это значение будет приблизительно 1,3 Вольта. При нажатии на педаль акселератора (увеличении оборотов двигателя) соответствующее значение будет расти вплоть до 4,5…5 Вольт (на максимальных оборотах). Это изменение можно отследить в динамике. Если изменение напряжения происходит — регулятор исправен. Если значение напряжения не меняется — его нужно менять на новый.

Однако после проверки «фишки» необходимо еще проверить провод, который идет непосредственно на электронный блок управления. Делается это также с помощью мультиметра. Если в процессе изменения оборотов двигателя соответствующее значение динамически меняется, значит регулятор давления исправен. В очень редких случаях возможны ситуации, когда проблемой становится сам ЭБУ, в частности, так называемые «глюки» в его программном обеспечении.

Проверка с помощью манометра

В настоящее время для проверки исправности регулятора давления топлива используют манометр — прибор для измерения давления в топливной системе (и не только). Подсоединяется манометр между топливным шлангом и штуцером. Предварительно необходимо отсоединить вакуумный шланг.

Рабочее давление бензинового двигателя будет около 2,5…3 атмосфер, перед измерением это значение необходимо обязательно дополнительно уточнить по мануалу или в интернете. При перегазовке давление немного опускается (на несколько десятых долей атмосферы). После этого клапан некоторое время должен держать давление в системе, что можно наблюдать по показаниям манометра. Далее с помощью плоскогубцев необходимо пережать обратный топливопровод, что способствует возрастанию давления до 2,5…3,5 атмосфер.

Проверка регулятора давления ТНВД Common Rail

В первую очередь необходимо проверить значение сопротивления индуктивной катушки управления. Точные данные необходимо взять в дополнительной справочной литературе, однако в большинстве случаев соответствующее значение будет находится около 8 Ом. Измерение значения сопротивления проводят все тем же электронным мультиметром, переведенным однако в соответствующий режим работы. Если измеренное значение существенно отличается в ту или иную сторону — датчик заведомо неисправен, и его нужно заменить.

Для более детальной диагностики применяется дополнительное дорогостоящее оборудование, используемое лишь в автосервисах, поскольку рядовому автовладельцу оно попросту не нужно. С его помощью проверяется не только герметичность клапана регулятора, но и линейность его управления. Если с герметичностью все понятно, то линейность управления обеспечивает его плавное закрывание/открывание, которое способствует нормальному перетоку дизельного топлива по магистрали в обратку. Если же будут иметь место механические заедания, то и характеристика управления будет нелинейной. Для ее построения используется специальное аппаратное и программное обеспечение.

В большинстве случаев ремонт непосредственно датчика давления топлива вряд ли возможен, поэтому его попросту меняют на новый. Однако для многих автомобилей стоимость этого узла достаточно высока (даже для отечественных ВАЗов и их бюджетных аналогов). Поэтому перед заменой этого узла необходимо точно убедиться, что вышел из строя именно датчик давления топлива, иначе в противном случае это будет лишняя трата немалых денег.

Заключение

Регулятор давления топлива — несложный, однако важный узел топливной системы, который напрямую влияет на работу двигателя. Это касается как бензиновых, так и дизельных моторов. Стоит учитывать, что при его выходе из строя движок начинает работать не в оптимальном режиме, из-за чего создается топливовоздушная смесь с неправильным составом, а топливный насос начинает работать «на износ», что приводит к снижению его общего ресурса. Поэтому при возникновении подозрения на выход из строя датчика давления топлива необходимо как можно быстрее выполнить диагностику с тем, чтобы вернуть работе двигателя оптимальные параметры работы.

Спрашивайте в комментариях. Ответим обязательно!

🔧 Топливная система автомобиля — DRIVE2

📖 Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для автомобильных двигателей. Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск. Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная. В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.

🔎 Устройство топливной системы

Все cистемы питания двигателя похожи, отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:

1) Топливный бак, предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.

2) Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.

3)Устройства смесеобразования (карбюратор, моновпрыск, инжектор) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в такт работы двигателя (такт впуска).

4) Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.

5)Топливный насос, обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя. В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.

6) Дополнительные фильтры грубой и тонкой очистки. Установленные фильтрующие элементы в цепь подачи топлива.

🔎 Принцип работы топливной системы

Рассмотрим работу всей системы в целом. Топливо из бака всасывается насосом и по топливопроводу через фильтры очистки подается в устройство смесеобразования. В карбюраторе топливо попадает в поплавковую камеру, где потом через калиброванные жиклеры подается в камеру смесеобразования. Смешавшись с воздухом смесь через дроссельную заслонку поступает в впускной коллектор. После открытия впускного клапана подается в цилиндр. В системе моно впрыска топливо подается на форсунку, которая управляется электронным блоком. В нужное время форсунка открывается, и топливо попадает в камеру смесеобразования, где, как и в карбюраторной системе смешивается с воздухом. Дальше процесс такой же, как и в карбюраторе.

В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.

Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).

Диагностика топливной системы. *Процесс пошел* — Chery QQ, 0.8 л., 2005 года на DRIVE2

Итак, первоочередной проблемой автомобиля является протекание бензина в картер.

Немного теории на уровне моей имхи:
Путей для него не очень много и основной из них — это сток по стенке цилиндра. По стенке бензин может течь в том случае, если в камере сгорания его сильно дофига. Сильно дофига его может быть из-за постоянно открытой форсунки, повышенного давления топлива в магистрали либо из-за «отсутсвия» колец вместе с компрессией.

Постоянно открытая форсунка — это очень неприятная вещь. Выявить ее можно методом снятия и проверки на стенде, либо измерением статического давления в топливной системе.
Повышенное давление топлива может быть обусловлено неработающей системой возврата топлива в бак автомобиля либо неработающим регулятором давления топлива.
Ну а «отсутствующие» кольца пока исключаем ввиду недавнего «капремонта» двигателя. Были установлены новые кольца и шатунные вкладыши, правда с 472 мотора, а у меня мотор 382, но вроде как отличаются они только количеством цилиндров, а не их геометрией.

Начинаем диагностику:
Первым делом пытаюсь выкрутить свечи и благополучно разламываю свой свечной ключ, служивший мне верой и правдой почти 3 года на первой же свече =)))
Но я не огорчаюсь, а прыгаю в авто и еду в Эпицентр за нужными мне штуками )
В Эпицентре я приобрел 5 металлических хомутов 12-20мм, аллюминиевую трубку диаметром 8мм, металлический тройник со штуцерами 10мм и свечную головку на 16мм.

Приобретения )

Манометр на 7 бар я приобрел неделей ранее, а достаточный кусочек бензостойкого шланга у меня был.

Манометр

Бензостойкий шланг

Сочленил =)

В итоге собрал вот такую конструкцию для проверки давления перед топливной рампой

Приблуда

Но прежде, чем заняться измерениями я выкрутил свечи. Они оказались адски залиты вероятнее всего бензиново-масляной смесью

1й циллиндр

2й циллиндр

3й циллиндр

При этом авто заводилось практически с пол оборота.
На место снятых свечей ввернул свои предыдущие свечи с Джили, они еще живые, и убить их уже не жалко.

Ну а теперь можно и давлением заняться. Напомню, что моей задачей было выявить либо повышенное или пониженное давление в топливной системе при работающем двигателе, либо быстро спадающее давление при выключенном зажигании. Первое свидетельствовало бы о неработающем регуляторе давления топлива, а второе об утечке бензина, или о постоянно льющей форсунке.
Снимаю с аккумулятора клемму, ставлю ключ зажигания в третье положение и иду к двигателю. Монтирую изготовленную приблуду на место

Приблуда под капотом

И накидываю обратно клемму на аккумулятор, чтобы бензонасос начал нагнетать топливо, а сам внимательно слежу, чтобы бензин нигде не протекал. В итоге бензонасос создал давление 2,4-2,5 бар и отключился, что является нормой.

Давление перед пуском двигателя.

После этого иду и завожу двигатель. На холостых оборотах давление поднялось до 2,9-3,0 бар, что так же вписывается в нормальные показатели.

Давление топлива на холостых оборотах

После 15 секунд работы двигателя глушу его и оставляю систему в таком положении. Решил выждать и посмотреть как будет меняться давление.
А чтобы не скучно было ждать, решил замерить сопротивление ВВ-проводов.
В итоге получил 2,36кОм, 2,77кОм и 1,54кОм на первом, втором и третьем цилиндрах соответственно. Сдается мне, что на третьем цилиндре ВВ-провод имеет пониженное сопротивление, или я ошибаюсь?
Потом выкрутил свечи и увидел, что все они мокрые, пахнут бензином, что свидетельствует либо о том, что не все топливо сгорает, либо после остановки двигателя из форсунок продолжает бежать бензин.
Через 30 минут ожидания давление топлива перед рампой упало с 3,0 до 2,3 бар. Не знаю сильное это понижение давления за такое время или нет.

На этом сегодня закончил. Из выводов известно, что бензонасос и регулятор давления топлива работают в штатном режиме. Следующим этапом хочу заменить масло и замерить компрессию. После чего вероятнее всего придется снимать форсунки и проверять их на утечку.

Основные моменты для ровной работы двигателя и системы в целом. Нива 21214. — DRIVE2

ВСЕ ЧТО Я ТУТ ОПИШУ-НАПИШУ, ЭТО КОНКРЕТНО МОЙ ОПЫТ С РЕМОНТОМ МАШИНЫ.
ИНФОРМАЦИЯ ЧИСТО РЕКОМЕНДАТЕЛЬНОГО ХАРАКТЕРА.
1. Первое с чего надо начать, это проверка массы ЭБУ ( это два коричневых провода, которые закреплены на шпильке лобовой крышке движка слева от блока зажигания.)
2. Основной массовый толстый силовой провод, который закреплен на шпильку помпы и далее на аккумулятор.
3. Малая перемычка от аккумулятора на корпус кузова-крыла около аккумулятора.
РЕКОМЕНДАЦИЯ ОТ МЕНЯ ЛИЧНО ПО ЭТИМ ТРЕМ ПУНКТАМ:
1. Так как все эти провода обычно зажаты в своих наконечниках, поэтому рекомендую зачистить открытые части и пропаять, соединить физически провод и сам наконечник. Со временем, медь окисляется, между наконечником и проводом нет такого качественного контакта, само собой появляются потери, а в других случаях и нагрев.

ВСЕ ЗНАЮТ ЧТО ТАКОЕ АДСОРБЕР.
1. Многие могут сказать, что это не нужная коробочка цилиндрической формы с каким то клапаном.
Но на самом деле, очень даже нужный. Мало того, что он фильтрует пары бензина с бензобака, снимает разряжение, чтобы бак не вздувался, от активной работы бензонасоса, так еще и влияет на стабильную работу холостого хода. Как бы это смешно не казалось, именно так и есть! Проверено лично !

РЕГУЛЯТОР ХОЛОСТОГО ХОДА, ОН ЖЕ ШАГОВЫЙ ДВИГАТЕЛЬ.
1. От его правильного выбора, зависит как точно он будет позиционироваться откликаясь на команды ЭБУ.

ФОРСУНКИ.
1. Перед снятием форсунок и их прочисткой, обязательно купить резиново-графитовые колечки, которые не просто идеально удерживают форсунку в своих посадочных местах, но и не нужно смазывать маслом, чтобы вставить форсунку обратно.
2. Далее, необходимо взять -купить ремонтный комплект для форсунок, но самое главное в этом комплекте, это фильтры и колпачки распылителей форсунок и как крайняк пластмассовые колечки, все остальное можно забыть.
Уплотнительные резиновые колечки не применять от комплектов, форсунка болтается и не держится как надо.
Удалять фильтры форсунок можно пилкой от лобзика, первым зубом, который в виде крючка. Пилка по дереву.
После промывки форсунок установить новые фильтры, новые колечки и обратно на место.

БЕНЗОФИЛЬТР ТОНКОЙ ОЧИСТКИ.
1. Не забываем менять его, чтобы в форсунки и их фильтр меньше засорялся.

РЕСИВЕР
1. От его чистого вида внутри, зависит что будет лететь в камеру сгорания . Это не просто блестящая штукенция, это смешиватель, завихритель и распределитель воздушного потока, потока картерных газов и конечно же паров бензина через дроссельный узел, и пары бензина которые прошуршали через адсорбер. Поэтому, если вам не все равно, то желательно чтобы все что стоит перед ресивером, также должно работать нормально.
— уровень масла должен быть между отметкой максимум и минимум, если будет на много больше, то с парами картерных газов вылетит и само масло ( в виде капелек), которое достанет до регулятора холостого хода, ресивера и конечно форсунка.

РЕГУЛЯТОР ДАВЛЕНИЯ ТОПЛИВА.
1. От выбора этого не сложного устройства, зависит работа двигателя, как правильно, а точней качественно форсунки будут распылять топливо .
2. Выбирать нужно именно те модели регуляторов, которые можно назвать цельнометаллические или сварные, но не как не вставные и не ввинченные. Это касается самого корпуса!
3. При обратной сборке топливной системы, вставляем в регулятор алюминиевую трубочку, которая должна мягко и одновременно плотно вставляться в регулятор. ЕСЛИ ЭТОГО НА МЕСТЕ НЕ ПРОИЗОШЛО, СРОЧНО МЕНЯЕМ РЕГУЛЯТОР. Поясняю : одной частью регулятор вставляется в топливную рампу, а в другую часть, вставляется трубочка обратки. Именно эта трубочка с большой гайкой, должна вставляться достаточно плотно, но без больших усилий!

БЕНЗОНАСОС И ЕГО ФИЛЬТР
1. От его качественной работы и правильной работы, зависит динамика машины, качественная наполняемость топливной рампы . И не забываем про фильтр, от чистоты которого зависит производительность самого бензонасоса.
2. Хотя бы два раза в год, проверяем давление в топливной рампе. Оно должно соответствовать заявленным характеристикам бензонасоса, и каждого насоса оно может быть разным.
3. Хотя бы раз в год, чистим или заменяем бензофильтр.
4. Периодически наблюдаем за рабочим шумом бензонасоса при запуске и во время работы двигателя. Если он становится отличным от того, что слышали ранее, т.е стал более писклявый или очень тихий, то это износ или засорен фильтр.
5. Если при жаркой погоде замечаете падение мощности, но при этом все нормально, то тут нужно задуматься о проверке давления в топливной рампе и проверка самого насоса и его производительность. Акцентировал на этом потому, что в жарких условиях, изношенный насос будет давать просадку по давлению.

Какое давление в топливной системе инжекторного двигателя — Защита имущества

Как работает топливная система

Топливо подается в рампу под избыточным давлением (6 атмосфер), которое создает бензонасос. С помощью регулятора давления на форсунке поддерживается постоянный перепад давления, равный 3 атмосферам. При постоянном давлении и линейной характеристике форсунок количество впрыскиваемого топлива определяется длительностью импульса управления форсунками.

Как проверить?

Подключим манометр к топливной рампе. При включенном бензонасосе и неработающем двигателе давление должно составлять 2,8—3,2 атмосферы. Если двигатель работает на холостом ходу, давление должно снизиться до 2,2—2,5 атмосферы. При перегазовках стрелка манометра должна отклоняться в зону 2,8—3,2 атмосферы.

Теперь проверим работу форсунок. На неработающем двигателе создадим необходимое давление в рампе (2,8—3,2 атмосферы), после чего с помощью диагностического оборудования подадим серию тестовых импульсов на первую форсунку, контролируя изменение давления. Вышеописанную процедуру необходимо провести для всех форсунок. Перепад давления во всех случаях должен быть одинаков. Если результаты проверки давления топлива соответствуют вышеописанным — система подачи топлива исправна.

Что будет происходить, если давление топлива в рампе окажется пониженным (менее 2 атм.) или повышенным (более 4 атм.)? Количество впрыскиваемого топлива изменится пропорционально отклонению давления от нормы. Другими словами, произойдет обеднение или обогащение топливовоздушной смеси.

Особенно болезненным оно будет в системах управления двигателем без обратной связи по датчику кислорода, так как контроллер не знает о неисправности и продолжает рассчитывать топливоподачу для нормального значения давления топлива. В системах управления с датчиком кислорода контроллер может компенсировать изменение состава топливовоздушной смеси, но только в разумных пределах.

Поиск неисправности

Вспомним состав системы топливоподачи. В нее входят: топливный бак с установленным погружным бензонасосом, топливный фильтр, топливопроводы (подающая и сливная магистрали), рампа форсунок и регулятор давления. Неисправность любого компонента может стать причиной неверного давления топлива. Попробуем перечислить часто встречающиеся неисправности для каждого компонента.

Бензобак. Через специальные трубопроводы бензобак сообщается с атмосферой, что предотвращает его деформацию (сплющивание). Если связь с атмосферой нарушена, внутри бензобака создается разрежение. В этом случае давление в топливной рампе может быть пониженным.

Бензонасос. Неисправностей бывает несколько:

  • бензонасос не развивает нужного давления, как следствие — пониженное давление топлива;
  • обратный клапан бензонасоса не держит давление, как следствие — быстрое падение давления после выключения зажигания;
  • загрязнение сеточки-фильтра бензонасоса, как следствие — пониженная производительность насоса, сказывающаяся в динамических режимах работы двигателя.
  • Что такое бензонасос. Принцип работы

Топливопроводы могут быть пережаты. Если это случилось с подающей магистралью, то давление топлива будет пониженным, если со сливной магистралью — повышенным. Кроме того, к снижению пропускной способности топливных магистралей может приводить использование некачественного бензина с повышенным содержанием смол.

Регулятор давления топлива. Встречаются регуляторы с подклинившей диафрагмой в открытом или закрытом положении. В первом случае давление топлива в системе будет пониженным, во втором — повышенным.

Форсунки. Характерны следующие виды неисправностей:

  • Не открывается, как следствие — обедненная топливовоздушная смесь;
  • Постоянно открыта, как следствие — обогащенная топливовоздушная смесь;
  • Форсунка работает, но ее характеристика «уплыла», как следствие — некорректная топливовоздушная смесь.
Бортовая диагностика для определения неисправности

Неисправность топливной системы приводит к отклонению давления в топливной рампе. Вследствие этого количество топлива, подаваемого в цилиндры, отличается от рассчитанного, происходит обеднение или обогащение топливовоздушной смеси. В системах управления двигателем с датчиком кислорода контроллер следит за текущим составом топливовоздушной смеси.

При значительном отклонении топливовоздушной смеси от желаемого значения контроллер воспринимает это состояние как неисправность, и в памяти контроллера фиксируется один из двух кодов неисправностей:

  • P0171 — система топливоподачи слишком бедная;
  • Р0172 — система топливоподачи слишком богатая.

Повышенное или пониженное давление в топливной рампе — одна из причин, по которым в памяти контроллера могут быть зафиксированы коды Р0171, Р0172. Причиной значительного обеднения или обогащения топливовоздушной смеси могут быть неисправные датчики массового расхода воздуха, датчики кислорода, форсунки. К переобеднению топливовоздушной смеси приводят подсосы воздуха.

© Алексей Пахомов, aka Is_ 18 , г.Ижевск

Давление топлива – один из самых важных с точки зрения диагностики параметров двигателя. От него зависит состав смеси, а следовательно, и поведение автомобиля в различных режимах. Попробуем свести в систему методы диагностики по давлению топлива.
Естественно, для работы потребуется топливный манометр. Лучше всего приобрести прибор с крупной удобочитаемой шкалой, предел измерения – 5 – 6 кгс/см 2 . Например, такой, как на фото. Использование манометров с пределом до 10 – 12 кгс/см 2 , применяемых при диагностике иномарок, вряд ли целесообразно из-за относительной неточности в диапазоне 2 – 3 кгс/см 2 .
Итак, подключаем манометр и диагностический сканер.

1 . Первым делом оцениваем работу регулятора давления. Для этого на неработающем двигателе включаем насос. Манометр должен показать 3 . 0 +/- 0 . 2 кгс/см 2 . Если давление ниже 2 . 8 кгс/см 2 , лучше поменять РДТ, потому что на мощностных режимах машина будет туповата. Окончательный приговор РДТ выносим только после следующего пункта.

2 . Далее проверяем давление нулевой подачи. Название параметра говорит само за себя – это давление, развиваемое насосом, как говорят, «на пробку», то есть топливо при этом не подается. Косвенно этот параметр говорит об остаточном ресурсе насоса, при износе он постепенно уменьшается.

Итак, берем круглогубцы и пережимаем «обратку». Сделать это нужно достаточно резко. Стрелка манометра должна буквально метнуться к предельному значению. Если она поднимается медленно, то, возможно, забит топливный фильтр или сетка бензоприемника. Само же предельное значение говорит о многом. Если насос новый, оно достигнет 5 – 6 кгс/см 2 , а на насосах производства Чехии – до 7 кгс/см 2 . В любом случае, если давление превысило 5 кгс/см 2 , то насос обладает достаточным ресурсом. В мануалах приводятся различные значения давления нулевой подачи, при которых насос якобы требует замены. Но на практике, если насос «на пробку» давит хотя бы 4 кгс/см 2 , ему еще ездить и ездить. Реально клиенты жалуются на тупизну автомобиля, когда этот параметр уже не дотягивает до трех «очков».

3 . Выключаем насос. Давление должно упасть примерно на 0 . 7 кгс/см 2 и остаться на этом
уровне. Если сразу падает на ноль, то либо неисправен обратный клапан насоса, либо РДТ. Этот дефект, конечно, не смертелен, и часто устраняется кратковременным пережатием «обратки». Если выяснится, что «виноват» РДТ, его можно заменить, но менять из-за обратного клапана бензонасос не представляется целесообразным, во всяком случае, по мнению клиентов.

4 . Заводим двигатель. Внимательно следим за стрелкой манометра. Вот здесь-то и пригодится крупная шкала. Стрелка может слегка дрожать, это следствие больших пульсаций абсолютного давления (давления во впускном ресивере). Эти пульсации – тема отдельного разговора, пока что забудем о них. Но если стрелка не дрожит, а «гуляет», причем в достаточно широких пределах (до 0 . 3 кгс/см 2 ), то наверняка забита сеточка бензоприемника. Например, так на фото. (прим. от Sим – это еще не самый экстремальный вариант – более «крутые» случаи смотрите ЗДЕСЬ)

5 . На заведенном двигателе давление будет около 2 . 3 кгс/см 2 . Если снять с РДТ вакуумный шланг, резко поднимется до 3 кгс/см 2 (либо до того значения, которое получили в п. 1 ). Надеваем шланг обратно. Плавно поднимаем обороты примерно до 3000 . Если при этом давление будет постепенно падать, то это еще один признак «мертвого» насоса.

6 . Можно еще проверить производительность, открутив подающий топливопровод и подав питание на бензонасос. За минуту должно набежать около 1 . 5 литра. Честно говоря, за всю свою практику никогда этого не делал, как-то обходился показаниями манометра.

7 . Самый экстремальный вариант – давление около 1 «очка» и неровный звук работы насоса. Причина – нет бензина в баке. Не смешно. Раз в месяц регулярно отправляю машины на заправку.

Вот и вся нехитрая наука. Если бензобак пришлось-таки разбирать, есть смысл заглянуть в него с фонариком. На дне обнаружится вода, лохмотья грязи, песок и прочие лишние субстанции. Их нужно удалить грушей. А лучше, если есть, вакуумной установкой для замены масла. Раз уж вспомнили о баке – еще один совет. Чтобы зимой бензобак не превращался в лепешку, просверлите его крышку с обратной стороны. Метод тупой и не всеми специалистами признаваемый, но радикально действенный. Удачи!

©chiptuner.ru

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно справочно – информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями, описанными в части 2 на стр. 437 Гражданского Кодекса Российской Федерации.

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Устройство системы питания инжекторного двигателя

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя и электронная система питания.

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Поиск неисправностей топливной системы инжектора. Код ошибки

В данной статье рассмотрим неисправное состояние системы управления инжектора и в качестве примера приведём топливную систему автомобиля.

Как работает топливная система
Топливо подается в рампу под избыточным давлением (6 атмосфер), которое создает бензонасос. С помощью регулятора давления на форсунке поддерживается постоянный перепад давления, равный 3 атмосферам. При постоянном давлении и линейной характеристике форсунок количество впрыскиваемого топлива определяется длительностью импульса управления форсунками. Это теория. На реальном двигателе перепад давления может составлять от 2,8 до 3,2 атмосферы. Это допустимый диапазон, при котором не наблюдается отклонений в работе двигателя. Почему возможен разброс давлений? Он определяется разбросом характеристик регуляторов давления.
Как проверить?
Подключим манометр к топливной рампе. При включенном бензонасосе и неработающем двигателе давление должно составлять 2,8—3,2 атмосферы. Если двигатель работает на холостом ходу, давление должно снизиться до 2,2—2,5 атмосферы. При перегазовках стрелка манометра должна отклоняться в зону 2,8—3,2 атмосферы.

Теперь проверим работу форсунок. На неработающем двигателе создадим необходимое давление в рампе (2,8—3,2 атмосферы), после чего с помощью диагностического оборудования подадим серию тестовых импульсов на первую форсунку, контролируя изменение давления. Вышеописанную процедуру необходимо провести для всех форсунок. Перепад давления во всех случаях должен быть одинаков. Если результаты проверки давления топлива соответствуют вышеописанным — система подачи топлива исправна.

Что будет происходить, если давление топлива в рампе окажется пониженным (менее 2 атм.) или повышенным (более 4 атм.)? Количество впрыскиваемого топлива изменится пропорционально отклонению давления от нормы. Другими словами, произойдет обеднение или обогащение топливовоздушной смеси.

Особенно болезненным оно будет в системах управления двигателем без обратной связи по датчику кислорода, так как контроллер не знает о неисправности и продолжает рассчитывать топливоподачу для нормального значения давления топлива. В системах управления с датчиком кислорода контроллер может компенсировать изменение состава топливовоздушной смеси, но только в разумных пределах.

При неправильном давлении топлива возникают проблемы с пуском двигателя, появляются провалы при движении автомобиля, увеличивается расход топлива.

Поиск неисправности
Вспомним состав системы топливоподачи. В нее входят: топливный бак с установленным погружным бензонасосом, топливный фильтр, топливопроводы (подающая и сливная магистрали), рампа форсунок и регулятор давления. Неисправность любого компонента может стать причиной неверного давления топлива. Попробуем перечислить часто встречающиеся неисправности для каждого компонента.

Бензобак. Через специальные трубопроводы бензобак сообщается с атмосферой, что предотвращает его деформацию (сплющивание). Если связь с атмосферой нарушена, внутри бензобака создается разрежение. В этом случае давление в топливной рампе может быть пониженным.

Бензонасос. Неисправностей бывает несколько:

  • бензонасос не развивает нужного давления, как следствие — пониженное давление топлива;
  • обратный клапан бензонасоса не держит давление, как следствие — быстрое падение давления после выключения зажигания;
  • загрязнение сеточки-фильтра бензонасоса, как следствие — пониженная производительность насоса, сказывающаяся в динамических режимах работы двигателя.

Загрязнение топливного фильтра может приводить к пониженному давлению топлива из-за снижения пропускной способности топливной магистрали. Если топливный фильтр поврежден (порван), грязь может попасть в форсунки со всеми вытекающими последствиями.


Топливопроводы могут быть пережаты. Если это случилось с подающей магистралью, то давление топлива будет пониженным, если со сливной магистралью — повышенным. Кроме того, к снижению пропускной способности топливных магистралей может приводить использование некачественного бензина с повышенным содержанием смол.

Регулятор давления топлива. Встречаются регуляторы с подклинившей диафрагмой в открытом или закрытом положении. В первом случае давление топлива в системе будет пониженным, во втором — повышенным.

Форсунки. Характерны следующие виды неисправностей:

  • Не открывается, как следствие — обедненная топливовоздушная смесь;
  • Постоянно открыта, как следствие — обогащенная топливовоздушная смесь;
  • Форсунка работает, но ее характеристика «уплыла», как следствие — некорректная топливовоздушная смесь.
Бортовая диагностика для определения неисправности
Неисправность топливной системы приводит к отклонению давления в топливной рампе. Вследствие этого количество топлива, подаваемого в цилиндры, отличается от рассчитанного, происходит обеднение или обогащение топливовоздушной смеси. В системах управления двигателем с датчиком кислорода контроллер следит за текущим составом топливовоздушной смеси.

При значительном отклонении топливовоздушной смеси от желаемого значения контроллер воспринимает это состояние как неисправность, и в памяти контроллера фиксируется один из двух кодов неисправностей:

  • P0171 — система топливоподачи слишком бедная;
  • Р0172 — система топливоподачи слишком богатая.
Повышенное или пониженное давление в топливной рампе — одна из причин, по которым в памяти контроллера могут быть зафиксированы коды Р0171, Р0172. Причиной значительного обеднения или обогащения топливовоздушной смеси могут быть неисправные датчики массового расхода воздуха, датчики кислорода, форсунки. К переобеднению топливовоздушной смеси приводят подсосы воздуха.

Значение давления топлива может находиться за пределами допустимого диапазона, при этом бортовая диагностика ничего не фиксирует. Вполне реальная ситуация.

Какое давление выдает топливный насос на ВАЗ-2110

Топливный насос представляет собой моторчик, который работает от электричества и расположен в баке. При помощи его нагнетается нужное давление в топливную систему. Этот узел важен, так как от его исправности зависит многое, а именно, подача топлива в инжектор ВАЗ 2110, благодаря чему авто может двигаться. Иногда данный узел может выходить из строя. Причины для этого бывают разные.

Причины неисправности бензонасоса на ВАЗ-2110

Загрязнение топливного бака приводит к преждевременному выходу бензонасоса из строя.

Основной причиной, которая может привести к выходу из строя бензонасоса, является плохое топливо и постоянное малое количество топлива в баке (5 литров и меньше).

Также к неисправности узла может привести неправильная его эксплуатация. Эксперты советуют при запуске двигателя изначально на 2-3 минуты включать только зажигание и не запускать стартер. За это время насос накачает в систему нужное количество топлива и создаст там определенное давление.

Также насос может выйти из строя по причине естественного износа. Обычно он служит при пробеге в 150 000 километров. Это 4-5 лет. Но сроки могут быть разные. Тут всё зависит от условий его эксплуатации.

Сгоревшие контакты клеммной колодки бензонасоса.

Иногда к выходу из строя насоса может привести поломка в электросети, выход из строя реле или предохранителя. Такие неисправности можно устранить быстро своими силами. Стоит это не дорого.

Есть умельцы!

Важно! Насос подачи топлива можно отремонтировать. Стоить такая процедура будет меньше, чем покупка нового насоса. Но не стоит (мнение редакции).

Проверка уровня давления топлива в системе

Когда происходят неполадки в топливной системе, то там снижается уровень давления. При этом проявляются такие признаки:

  1. Мотор плохо работает на холостых оборотах.
  2. Повышенная или пониженная частота вращения коленвала.
  3. Авто не приемисто.
  4. Сбои в работе двигателя при движении.

При таких проявлениях стоит проверить герметичность форсунок и сам топливный насос. Давление проверяется при помощи манометра, который подключается к топливной системе авто. Нормальнее давление должно быть в пределах 300 кПа.

Манометр и шланг с внутренним диаметром 9 мм.

Проверка

  1. Включить зажигание. Насос при этом должен заработать. Если он не гудит, то стоит искать неполадки в электросети. Нужно помнить, что если зажигание включается три раза подряд и при этом не запускается стартер, то насос может и не работать, так как он уже создал давление в системе.
  2. Подключить манометр к системе.

    Снимаем пластиковый колпачок на топливной рампе.

    Выкручиваем нипель колпачком от колеса.

    Закрепляем шланг манометра на штуцере рампы.

  3. Запустить мотор.

    Проверяем давление по манометру.

Если давление ниже 300 кПа, то стоит искать неисправности. Это могут быть неисправности с насосом или регулятором давления топлива.

Замена насоса

Тут потребуется изначально купить качественный насос. Рекомендуется покупать такой, который стоял раньше. Также можно купить деталь от компании BOSH.

Понадобится:

  1. Ключ на «17».
  2. Головка на «10».
  3. Отвертка.
  4. Плоскогубцы.

Перед проведением работ по снятию насоса стоит снизить давление в системе и отсоединить аккумулятор. Далее потребуется снять все патрубки, которые подходят к насосу и открутить болты его крепления к мотору.

Работы стоит проводить аккуратно, так как в системе может остаться определенное количество топлива.

Снимаем лючок бензобака под задним сиденьем.

Отсоединяем колодку и топливные шланги.

Отворачиваем гайки крепления насоса.

Убрав прижимное кольцо, вытаскиваем бензонасос.

Работы по сборке проводятся в обратном порядке.

Заключение

Если в работе двигателя на авто наблюдаются перебои, то это может быть не только причиной неисправности бензонасоса. Могут быть и другие. Чтобы в этом удостовериться, надо предварительно проверить давление в системе.

Видео о том, как заменить насос на ВАЗ-2110

Понимание топливной системы прямого впрыска LT для замены

Двигатели серии LT поколения V немного отличаются от серии LS, особенно в части топливной системы. Все двигатели серии LT имеют прямой впрыск, то есть топливо находится под давлением от 2000 до 2900 фунтов на квадратный дюйм (2175 для LT1, 2900 для LT4) и впрыскивается непосредственно в камеру сгорания, как в дизельном двигателе. Двигатели DI имеют гораздо большую экономию топлива, потому что ECM гораздо лучше контролирует количество сжигаемого топлива.

Просмотреть все 41 фотоЭто то место, где двигатели серии LT действительно отходят от нормы. Топливные магистрали соединены с механическим топливным насосом, который приводится в действие топливным крылом распределительного вала. Обратной линии нет, а насосу для правильной работы требуется большое давление и поток, а именно 72 фунта на квадратный дюйм при 45 галлонах в час.

Для подачи топлива в систему прямого впрыска высокого давления имеются два топливных насоса, электрический питающий насос в баке и механический нагнетательный насос под всасывающим устройством.Механический нагнетательный насос работает от трехлепесткового крыла распределительного вала. Модернизация послепродажного обслуживания для увеличения расхода топлива может производиться через распределительный вал. Comp Cams предлагает кулачки с дополнительными лопастями топливного насоса различной формы, которые могут увеличивать расход топлива на 74 процента. Электрический питающий насос в бензобаке также отличается от стандартного электронасоса.

Посмотреть все 41 фото Чтобы это произошло, GM решила использовать контроллер вторичной топливной системы. Топливный компьютер управляет топливным насосом посредством широтно-импульсной модуляции (ШИМ) и контролирует давление с помощью датчика.Посмотреть все 41 фото Мы решили изготовить собственное крепление для датчика, используя кусок топливной алюминиевой топливной рейки (это рейка Холли). Сначала просверлили центр рельса примерно на 85 градусов перпендикулярно потоку топлива. Концы топливопровода -6 уже были нарезаны. См. Все 41 фото. Далее блок был нарезан метчиком 9 / 16-18, чтобы соответствовать адаптеру -6 AN, который мы используем для датчика. См. Все 41 фото. собран с постфильтром Aeromotive (после датчика), датчиком и переходником с уплотнительным кольцом от -6 до 10 мм.

Вместо основного топливного насоса и регулятора, заводской подающий насос управляет ECM через модуль топливного насоса для управления давлением основного топлива, когда оно достигает механического топливного насоса DI. Специальный датчик давления в топливной магистрали контролирует давление топлива, которое поддерживается на уровне 72 фунтов на квадратный дюйм при 45 галлонах в час. Вместо регулятора давление регулируется с помощью широтно-импульсной модуляции или управления насосом «ШИМ». По сути, ECM включает и выключает напряжение и ток, подаваемые на насос, с очень высокой скоростью, чтобы контролировать скорость насоса, обеспечивая постоянное полное давление без задержек.В обычном электрическом топливном насосе, когда вы нажимаете на дроссельную заслонку, происходит быстрый скачок потока топлива, за которым следует затишье, когда насос восстанавливается после внезапной потери давления. При правильном подключении двигатель с внедрением портов не увидит слишком большого падения производительности в этом сценарии. В двигателе DI это может вызвать серьезную проблему, поскольку механическому насосу постоянно требуется полное давление для поддержания более 2000 фунтов на квадратный дюйм, необходимого для правильной работы. Это усложняет замену топливной системы для двигателя серии LT.Вы не можете использовать только старый топливный насос. Топливные насосы DI должны поддерживать ШИМ, а не все электрические топливные насосы.

Еще одним фактором является то, что топливная система LT безвозвратная; это было сделано для снижения температуры топлива. Поскольку горячее топливо не проходит через насос в двигатель и обратно в бак, температура топлива остается постоянной. Безвозвратные топливные насосы редко подходят для использования EFI без управления PWM, а те, которые доступны, не могут поддерживать тип давления и потока, необходимые для LT.Требования к насосу составляют 72 фунта на квадратный дюйм при 45 галлонах в час (галлонов в час) и сброс давления 84 фунта на квадратный дюйм, чтобы быть совместимым с системой управления Chevrolet Performance, что является довольно высокой нагрузкой для электрического топливного насоса, работающего на улице. Так что же тогда нам делать с LT-свопами?

Посмотреть все 41 фото Требования к топливной магистрали — 3/8 или -6. Для соединения фильтра с двигателем использовалась плетеная резиновая магистраль высокого давления. См. Все 41 фото. Топливный компьютер был установлен на верхней части поперечины трансмиссии.Коробка водонепроницаема, но соединения должны быть расположены так, чтобы вода не собиралась и не стояла в разъеме. См. Все 41 фото. Вверху мы использовали вставной адаптер для соединения гибкой топливной магистрали -6 с топливной рампой. . См. Все 41 фото Для самого насоса мы выбрали внутрибаковый комплект Aeromotive Phantom 340. Эта система способна справляться с требованиями к давлению и расходу и может быть настроена на работу без возврата с помощью ШИМ-управления. См. Все 41 фото Чтобы Phantom 340 работал без возвратной линии, в этой пробке необходимо просверлить отверстие 1/32. » сверло.

Существует два варианта модернизации топливных систем, совместимых с LT DI: система управления ШИМ или система насос / регулятор / возвратный трубопровод. Многие сменщики уже имеют в своем автомобиле электронную топливную систему. Замена LT в этот сценарий может означать покупку новых деталей, но еще не все потеряно. Можно обойти систему насоса в стиле ШИМ, используя стандартный электрический насос с возвратной линией и регулятором, установленным на 72 фунта на квадратный дюйм при 45 галлонах в час. Это довольно много для уличного насоса постоянного использования, поэтому убедитесь, что ваш насос способен обеспечивать требуемый расход и давление.Рабочий цикл этого давления и расхода, безусловно, будет высоким, а срок службы насоса будет довольно низким. 72 фунта на квадратный дюйм — это высокий показатель для уличной топливной системы, как и расход 45 галлонов в час. Типичный встроенный топливный насос EFI с модернизированной установкой может расходовать 42-45 галлонов в час, но только при 15 фунтах на квадратный дюйм. Это означает, что вам понадобится топливный насос гораздо большего размера, чтобы обеспечить двигатель достаточным количеством топлива для работы. Вы будете страдать от тяжелого запуска, а также от проблем с управляемостью и горячим топливом. Переход на систему ШИМ дает вам больший контроль.

Установка ШИМ-контроллера выполняется по принципу «подключи и работай», но датчик давления топлива и проводка топливного насоса немного сложны. Во-первых, вам понадобится встроенный адаптер с отверстием для датчика давления, расположенным между 5 и 85 градусами по отношению к горизонтальному потоку топлива, согласно руководству GM для контроллера топлива. Это довольно просто, так как этих адаптеров для топливных датчиков существует множество. Проблема в том, что большинство адаптеров предназначены для фитингов 1/8 дюйма npt, а не для 10-миллиметровой резьбы, необходимой для датчика GM.Найти переходник 1/8 дюйма npt с наружной резьбой на штекер 10 мм сложно. На данный момент нет коммерчески доступного адаптера датчика для датчика давления серии LT. Вы можете легко найти переходник с штекера -6 AN на штекер 10 мм. Для этого вам понадобится алюминиевый топливный бревно или топливный разделитель Y-образного блока и переходник с вилкой на вилку от -6 до 10 мм. Это позволяет подключать датчик к топливной системе. Мы сделали один из остатков топливной рампы от другого. проект

Посмотреть все 41 фото После этого насос в сборе опускается в бак и прикручивается болтами, как указано.Посмотреть все 41 фотографию Поскольку насос теперь безвозвратный, возвратный порт на держателе должен быть заблокирован заглушкой. Все фитинги имеют диаметр -6 AN. См. Все 41 фото Из жгута топливного компьютера выходят эти три провода, которые подключаются к топливному насосу. Цветовые коды следующие: желтый с черным — заземление насоса, серый — положительный вывод насоса, маленький черный экран (не заземлять). Мы зачистили провода, чтобы их можно было удлинить. Посмотреть все 41 фото Новые удлинители могут быть любого цвета, который вы выберете.Три провода были неплотно скручены вместе для оптимального экранирования. См. Все 41 фото Здесь вы можете увидеть, как провода были проложены. Мы выбрали красный с черной полосой — положительный полюс насоса, черный с белой полосой — заземление насоса и маленький черный цвет для экрана. Для соединения этих проводов требуется пайка, чтобы обеспечить хорошее соединение с минимальным сопротивлением. См. Все 41 фото. Хорошая пайка имеет решающее значение для хорошей проводимости. Всегда нагревайте провод снизу и добавляйте припой сверху, чтобы припой протекал через провод.Это поможет устранить соединения холодной пайки. См. Все 41 фото. Каждое соединение также подвергается термоусадке. См. Все 41 фото. Наконец, новые провода обернуты классической оплеткой P безболезненно. кольцевой зажим на питании и заземлении, в то время как экранированный провод прикреплен к двум другим проводам как можно ближе к выводам.

Подключение самого насоса требует немного терпения. От модуля насоса отходят три провода: желтый с черной полосой, серый и черный провод меньшего сечения.В отличие от обычной установки, провода питания имеют калибр только 14. ШИМ-управление также устраняет необходимость в силовых реле. Желто-черный провод — это земля, серый провод — сторона питания, а маленький черный провод — экран. Если вы используете насос GM с защитным штифтом (например, Corvette 2014 года или грузовик), подключите маленький черный провод к этому контакту, если вы используете насос без защитного штифта, оставьте провод без заделки и закрепите его лентой. к другим проводам. Из-за природы управления ШИМ существует очень реальный потенциал для EMI (электромагнитных помех) от другой электроники в автомобиле.Чтобы избежать прерывания сигнала управления, два основных провода управления питанием скручены с 3-м экранирующим проводом. Жгут проводов Chevrolet Performance идет только с коротким проводом; большинству автомобилей требуются более длинные провода. Чтобы сохранить экранирование, вы должны скрутить провода минимум на 27 витков на 8 футов провода. Лучший способ убедиться, что провода правильно скручены и не распутаются, — это оплетка. Свяжите три провода вместе свободно и последовательно, это не обязательно должно быть плотной оплеткой, наматывая провода друг на друга через каждые 2 дюйма или около того.Не используйте для этих проводов обжимные соединители, убедитесь, что вы их хорошо припаяли и используете термоусадочную трубку.

Для нашей установки мы использовали комплект топливного насоса Aeromotive Phantom 340, подключенный к ECM Chevrolet Performance и модулю управления подачей топлива в Buick GS 1971 года с новым 6,2-литровым двигателем LT1. Топливный насос был установлен в заводской топливный бак и подключен напрямую к модулю управления подачей топлива GM. Провода были удлинены примерно на 10 футов и обернуты классической оплеткой безболезненного исполнения.

Самой сложной частью установки был датчик давления; остальное довольно просто, если вы поймете, что нужно для работы системы. Датчик необходимо установить как можно дальше от двигателя, в нашем случае это было на поперечине трансмиссии. У привязи короткий поводок, так что это максимально возможное расстояние, не растягивая привязь. Так как она похожа на подвеску C7 Corvette, мы ее оставили.

Посмотреть все 41 фотоПоследний шаг — это подключение проводов к помпе.Топливная система LT1 с ШИМ-управлением не укомплектована.

Установка правильной топливной системы для питания двигателя серии LT дает вам наилучший возможный контроль топлива. С ШИМ давление топлива почти всегда остается идеальным, уменьшая скачки и отставания в работе вашего двигателя. Разбор деталей для вашей установки может занять некоторое время, но, в конце концов, результаты того стоят.

Источники:

См. Все 41 фото

Важность правильного давления топлива в двигателе с впрыском топлива

Давление и объем топлива жизненно важны для эффективной работы двигателя с впрыском топлива.Если двигатель работает неровно, нерегулярно работает на холостом ходу и не развивает мощность при ускорении, не исключайте топливную систему как возможную причину. Во многих случаях, когда присутствует такой сценарий, топливная система не вызывает подозрений, поскольку она получает давление топлива и работает.

Модулю управления трансмиссией (PCM), который выполняет правильные вычисления и регулирует количество времени или длительность импульса форсунки, требуется заранее определенное количество топлива для выхода из форсунки. Если по какой-либо причине давление топлива низкое или объем недостаточен, PCM должен сделать все возможное, чтобы отрегулировать длительность импульса форсунки.

Отсутствие надлежащего давления топлива вызывает проблемы с ускорением из-за недостаточного количества топлива для удовлетворения потребности в мощности, как указывается в PCM датчиком положения дроссельной заслонки.

На старых двигателях с впрыском топлива форсунки срабатывали одновременно, и если одна форсунка вышла из строя, остальные форсунки обычно компенсировали одну или две вышедшие из строя форсунки. В более поздних моделях систем впрыска топлива используется последовательный впрыск топлива, при котором форсунки запускаются отдельно и не могут скрыть загрязненные форсунки.Произойдет пропуск зажигания, имитирующий засорение свечи зажигания, и PCM установит код P030X для пропуска зажигания. X будет заменен номером затронутого цилиндра.

Кривые калибровки топлива, имеющиеся в модуле управления трансмиссией, обеспечивают максимальную мощность и экономию топлива. Он имеет возможность использовать стратегии адаптивного управления подачей топлива, которые позволяют ему регулировать топливную корректировку с учетом изменений давления топлива и высоты над уровнем моря для поддержания правильного отношения топлива.

Однако возможности PCM ограничены.Если топливный фильтр заблокирован, произойдет сбой регулятора давления топлива или неисправный топливный насос отрицательно повлияет на производительность по всем направлениям.

Любая из вышеперечисленных неисправностей может привести к слишком обедненной топливной смеси, что приведет к пропуску зажигания.

Причины низкого давления топлива:

  • Забит топливный фильтр
  • Разрыв регулятора давления топлива
  • Неисправность топливной форсунки
  • Лакированная форсунка
  • Неисправность топливного насоса
  • Проблемы с проводкой, ослабленный или корродированный разъем
  • Неудачный PCM

Диагностика

Проверьте коды двигателя на наличие кода пропуска зажигания, указывающего на поврежденный цилиндр.Поместите тестер свечей зажигания между свечой зажигания и проводом на поврежденном цилиндре и запустите двигатель. Если свеча загорается, проблема в топливной форсунке или во внутреннем механическом состоянии.

Снимите тестер искры и наденьте провод на свечу. При выключенном двигателе и положении ключа для принадлежностей потяните за разъем форсунки и с помощью вольтметра проверьте наличие постоянного напряжения на одной клемме. Если питание присутствует, инжектор неисправен.

Запустите двигатель и используйте длинную отвертку, прижав ручку к уху, а другой конец на инжекторе.Соблюдайте особую осторожность, чтобы избежать движущихся частей двигателя. Если форсунка регулярно щелкает, она засорена и требует очистки. Отсутствие шума указывает на неисправность.

Если кода нет, но двигатель работает нерегулярно, проверьте регулятор давления топлива на конце топливной рампы, сняв вакуумный шланг. Если есть запах топлива или топлива в вакуумной магистрали, регулятор неисправен.

Если регулятор в порядке, поместите датчик давления топлива в контрольное отверстие на топливной рампе. Включите ключ и обратите внимание на показания манометра.Оно должно быть точно в пределах одного PSI от указанного в руководстве по обслуживанию. Он также должен удерживать давление не менее 5 минут, не падая. Если давление падает быстро, виной всему негерметичный инжектор. Если давление не может подняться до необходимого, неисправен топливный насос.

Запустите двигатель и проследите за показаниями давления. Увеличьте обороты двигателя и следите за падением давления. Если давление падает, топливный фильтр забит или топливный насос не может производить достаточный объем.Замените топливный фильтр и повторите проверку.

Методы уменьшения проблем с давлением топлива

Никогда не позволяйте уровню топлива опускаться выше 1/8 бака, открывая топливный насос, охлаждаемый топливом. Это способствует перегреву и преждевременному выходу из строя.

Замени топливный фильтр каждые 30 000 км.

Изучите автомобильную инженерию у инженеров-автомобилестроителей

Outlook

«В течение следующего десятилетия подавляющее большинство дизельных двигателей будут работать с давлением впрыска около 2000 бар.Хотя 3000 бар вполне реальна, она будет ограничена гоночными автомобилями и высокопроизводительными дизельными двигателями ».
(д-р Маркус Хейн, президент подразделения дизельных систем Robert Bosch GmbH)

Bosch Common-Rail дизель

Система Common Rail CRS3-25 оснащена первым пьезоинжектором Bosch для легковых автомобилей, который работает с давлением впрыска 2 500 бар. Оптимизированная система впрыска топлива более тонко распыляет топливо, улучшая сгорание.Меньшее потребление — лишь одно из преимуществ этой технологии.

Преимущества более высокого давления впрыска

Более высокое давление впрыска создает большую удельную мощность и увеличивает крутящий момент. Вот почему увеличение давления впрыска в двигателе делает его более мощным: время, доступное для сгорания, чрезвычайно ограничено, как только двигатель работает с полной нагрузкой и высокими оборотами. Это означает, что топливо должно впрыскиваться в двигатель очень быстро при высоком давлении для достижения оптимальной мощности.

Воздействие турбонагнетателя на систему впрыска

Чем больше воздуха в камере сгорания, тем выше должно быть давление впрыска. Для получения горючей топливовоздушной смеси необходимо за короткий промежуток времени ввести большое количество топлива. В двигателях с несколькими турбонаддувом, особенно в моделях с двумя и тремя турбинами, давление впрыска превышает 2000 бар.

Влияние впрыска на выбросы

Более высокое давление впрыска — ключевой фактор в сокращении неочищенных выбросов двигателя.Действительно, в автомобилях компактного класса это часто может даже помочь избежать необходимости обработки выхлопных газов. Чем выше давление впрыска, тем более тонкой может быть конструкция как инжектора, так и инжекционного сопла. Это улучшает распыление и приводит к лучшей топливовоздушной смеси, а это означает, что достигается оптимальное сгорание и не может образовываться сажа.

Потребность в системных компетенциях

Более высокое давление впрыска требует большего, чем просто модернизированный инжектор. Обладая обширным опытом в области дизельных систем, Bosch может собрать настроенную систему, включающую не только блок управления, но также топливный насос, систему Common Rail и инжектор.

Развитие давления впрыска за прошлое

до 100 бар
Цель на момент начала разработки в 1922 году

более 100 бар
Первый серийный рядный ТНВД
(грузовик MAN, 1927 г.)

300 бар
ТНВД распределителя VE (VW Golf D, 1975)

900 бар
Аксиально-поршневой насос (Audi 100 TDI, 1989)

1500 — 1750 бар
Радиально-поршневой насос VP 44
(Opel Vectra, Audi A6 2.5 TDI, 1996 г .; BMW 320d, 1998)

1350 бар
Common rail (Alfa-Romeo 156 2,4 JTD, 1997)

2050 бар
Насос-форсунка (VW Passat TDI, 1998)

более 2000 бар
Common Rail с пьезоинжектором
(впервые применен в Audi A6 3.0 TDI, 2003/4)

2500 бар
CRS3-25 Common-Rail (доступно в серийных автомобилях с 2014 года)

Источник: Bosch

Прямой впрыск топлива: краткая история

Концепция прямого впрыска топлива существует с 1925 года, когда ее изобрел шведский инженер Йонас Хессельман.Во время Второй мировой войны некоторые истребители оснащались системой непосредственного впрыска топлива для предотвращения сваливания во время маневров на высокой скорости. После Второй мировой войны автомобильные компании обнаружили, что механический впрыск топлива в цилиндр был практически невозможен при использовании этой технологии в то время. Несмотря на эти неудачи, кажется, что ошибки были устранены, и концепция предложила множество улучшений для современных операций.

Историческая перспектива

Система впрыска через корпус дроссельной заслонки была одной из первых отечественных систем впрыска топлива, которые вышли на рынок и легко заменили карбюратор в двигателях существующих конструкций.TBI требовался простой компьютер, способный управлять несколькими форсунками, распыляющими воздух, поступающий во впускной коллектор. Датчик положения дроссельной заслонки (TPS), датчик температуры охлаждающей жидкости (CTS), датчик абсолютного давления в коллекторе (MAP) и датчик кислорода (O2) были основными датчиками, необходимыми для точного контроля топлива в двигателе. Топливо подавалось с помощью топливного насоса в баке. Хотя TBI был чрезвычайно простым, капли фурела накапливались во впускном канале, что приводило к «мокрому потоку», который создавал неравномерное распределение по цилиндрам.Чтобы уменьшить влажный поток, автопроизводители ввели многопортовый впрыск. Многопортовые системы впрыска смогли синхронизировать впрыск топлива при открытии впускного клапана. Распределение топлива между цилиндрами оставалось неравномерным.

Прямой впрыск топлива

Поскольку стандарты выбросов продолжали ужесточаться, системы прямого впрыска бензина (GDFI) стали более доступными. Системы GDFI имеют ту же базовую настройку, что и обычные системы MPI. В большинстве GDFI для подачи топлива в насос высокого давления используется насос в баке.PCM контролирует насос высокого давления и может изменять количество топлива, поступающего в насос. Большинство насосов создают давление топлива около 2000 фунтов на квадратный дюйм, чтобы преодолеть давления, возникающие при сгорании и сжатии, и впрыснуть относительно большой объем топлива за короткий промежуток времени. Для систем GDFI требуются пьезоэлектрические топливные форсунки, которые могут открывать клапаны игл форсунок при давлении более 2000 фунтов на квадратный дюйм.

Преимущества прямого впрыска бензина

Самыми непосредственными преимуществами впрыска бензина непосредственно в цилиндр двигателя являются повышенная экономия топлива и мощность.Есть много вещей, которые могут повлиять на использование системы прямого впрыска бензина, поэтому в этой статье основное внимание будет уделено основам. Двигатель GDFI может работать в стехиометрическом режиме (соотношение воздух / топливо 14,7: 1 по массе теоретически производит только углекислый газ (CO2) и воду (h3O)) на полной мощности (соотношение воздух / топливо от 13: 1 до 14: 1 до достичь максимальной мощности.) и ультра-обедненный (соотношение воздух / топливо варьируется в зависимости от транспортного средства и может превышать 50: 1) режимах. Стратегия работы с распределенным впрыском топлива (FSI) также может повысить экономию топлива.Стратифицированное соотношение воздух / топливо может быть создано путем впрыска бедной топливно-воздушной смеси в цикл рабочего такта сразу после того, как происходит начальное «богатое» сгорание. Многослойная система имеет ограниченное применение из-за множества проблем, таких как повреждение выпускного клапана. Прямой впрыск бензина также позволяет инженерам фактически запустить двигатель, впрыскивая топливо в цилиндр, находящийся в состоянии покоя, во время рабочего такта и зажигая его свечой зажигания. Это повторяется во всех цилиндрах в последовательности зажигания до тех пор, пока не будет достигнута частота вращения холостого хода.Это позволяет выключать двигатель на светофоре для экономии топлива и быстро запускать его снова. Наконец, скрытая теплота испаряет топливо и фактически охлаждает внутреннюю часть цилиндра, что увеличивает степень сжатия.

Текущие проблемы прямого впрыска бензина

Большинство систем прямого впрыска бензина можно диагностировать с помощью диагностического прибора. Самая последняя проблема — скопление нагара на уплотнениях впускных клапанов, вызывающее пропуски зажигания в цилиндрах. Большая часть накопления углерода может быть связана с масляным туманом из системы ПВХ и EGR.Наконец, механические топливные насосы высокого давления, по-видимому, являются ранней точкой отказа современных серийных автомобилей. Помните, что насос низкого давления должен работать правильно, чтобы насос высокого давления работал. Все специалисты по запчастям также должны знать, что многие производители могут потребовать полной замены топливной рампы при замене одной топливной форсунки из соображений безопасности. Как и в случае с любой новой технологией, информационная система профессионального уровня жизненно важна для успешной диагностики исходной проблемы и завершения успешного ремонта.

Под давлением — Дизельный редуктор

Если вы являетесь счастливым обладателем дизельного топлива и хотите увеличить мощность под капотом, то модернизация ТНВД просто необходима!

В то время как в газовых двигателях для воспламенения топлива используются свечи зажигания, в дизельных двигателях используется топливный насос высокого давления для подачи топлива в форсунку, которая затем впрыскивает топливо в цилиндр под высоким давлением. Когда топливо поступает в цилиндр, оно воспламеняется от тепла в цилиндре и приводит двигатель в действие.

ТНВД отвечает за подачу дизельного топлива под высоким давлением на вход форсунки. Топливные насосы и мощность двигателя неразрывно связаны. Чем больше топлива может обработать двигатель, тем большую мощность он может выдать. Если насос не производит нужное давление или объем топлива, тогда страдает производительность двигателя, и это не хорошие новости для энтузиаста дизельного топлива.

В большинстве дизельных двигателей сегодня используется система впрыска Common Rail.Это означает, что один насос используется для подачи топлива в одну общую топливораспределительную рампу. Инжектор теперь также имеет электронное управление для более точного управления. В старых дизельных двигателях давление топлива на впускных отверстиях форсунок составляло от 80 до 200 фунтов на квадратный дюйм. В системах Common Rail используется насос, создающий давление топлива выше 10 000 фунтов на квадратный дюйм. Эта топливная рампа высокого давления обеспечивает большую мощность и расход топлива, позволяя форсунке всегда иметь топливо. Таким образом, наличие этого топлива в любое время и использование инжектора с электронным управлением позволяет осуществлять многократный впрыск для контроля дыма, а также для снижения расхода топлива.

Однако такое высокое давление приводит к более серьезным последствиям. Чтобы получить это более высокое давление и более точный контроль топлива, механические допуски становятся более жесткими. Таким образом, если загрязнение в виде воды или грязи попадет в топливную систему, это может быстро повредить насос и форсунки.

Итак, что вы можете сделать, чтобы защитить свои вложения? Как владелец дизельного топлива, вы можете сделать несколько вещей, чтобы поддерживать топливный насос в идеальном состоянии.

  1. Убедитесь, что вы используете высококачественное дизельное топливо.
  2. Не допускайте, чтобы у грузовика закончилось топливо. Лучше не высасывать резервуар насухо. Сохраните подачу топлива к ТНВД.
  3. Часто меняйте топливные фильтры. Используйте фильтр хорошего качества. Благодаря этому ваши топливные фильтры будут чистыми от мусора и других материалов, которые могут забить их. Это позволяет топливу беспрепятственно поступать к топливному насосу высокого давления, поэтому он может работать бесперебойно и выполнять свою работу.

Предлагаем высококачественный ТНВД для Cummins; неизменно популярный Bosch CP3.Поэтому, если вы хотите обновить устройство или вам просто нужна замена, помните, что мы можем помочь.

Поднимите давление топлива на более высокий уровень.

GDI (прямой впрыск бензина) — Professional Automotive, Inc.

Что такое GDI?

Профессиональная автомобильная промышленность Ответ:
GDI означает «Прямой впрыск бензина». Это тип впрыска топлива, который в наши дни используют все больше и больше производителей. Он отличается от обычного впрыска топлива через порт, с которым вы, возможно, более знакомы.

Порт для впрыска топлива использует небольшой порт на внешней стороне цилиндра двигателя.
Работает примерно так. Топливо в количестве, определяемом компьютером, впрыскивается в систему впуска воздуха. Он доступен снаружи впускного клапана. Когда впускной клапан открывается, топливо всасывается в камеру сгорания и воспламеняется свечой зажигания. Процесс горения топлива толкает поршень вниз, создавая мощность для раскрутки двигателя.

Процесс прямого впрыска бензина немного отличается:

В этом двигателе вы не найдете отверстия для распыления топлива.В двигателе GDI воздухозаборник открывается и втягивает воздух в камеру сгорания для ее сжатия. Затем в нужный момент, который определяется компьютером, форсунка впрыскивает топливо непосредственно в камеру сгорания, после чего она воспламеняется свечой зажигания, чтобы сжечь топливо.

Зачем переходить на GDI? Пытаясь соответствовать постоянно растущим стандартам кафе, которые навязывают автопроизводителям, они всегда должны искать новые способы выжать все больше и больше километража из каждой капли топлива.Система GDI позволяет более точно контролировать и подавать топливо. Благодаря тому, что топливо распыляется непосредственно в области камеры сгорания, это обеспечивает большую мощность и лучшую экономию топлива.

Обычно для работы топливных форсунок требуется давление топлива от 46 до 65 фунтов на квадратный дюйм. Для топливных форсунок GDI потребуется давление свыше 2000 фунтов на квадратный дюйм. Им требуется большее давление, потому что они должны преодолевать высокое давление в камере сгорания.

Это вызывает некоторые проблемы с обслуживанием.Впускные клапаны со временем накапливают нагар, и некоторые из них счищаются в двигателе с впрыском через порт, потому что топливо протекает через клапаны и смывает его. В двигателе GDI этого не происходит, потому что топливо впрыскивается непосредственно в двигатель. Таким образом, если вы вылейте бутылку очистителя топливной системы в топливный бак, она не дойдет до задней стороны клапанов вашего двигателя. Профессиональная очистка в Professional Automotive сохранит эти клапаны в чистоте и обеспечит эффективную работу вашего двигателя GDI.

GDI будет по-прежнему распространяться в Индианаполисе, Каслтоне и Фишерсе во всем, от компактных автомобилей до пикапов. Спросите своего консультанта по профессиональному автомобильному обслуживанию, можно ли очистить топливную систему вашего автомобиля.

Позвоните нам.

Professional Automotive
7013 E 86th St
Indianapolis, IN 46250
317.596.0898

Как работает электронный впрыск топлива

Новые автомобили сбивают с толку. Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то волшебное колдовство.Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления. На прошлой неделе мы рассмотрели возможность изменения фаз газораспределения. Сегодняшняя тема: Электронный впрыск топлива.

Раньше старый добрый карбюратор отвечал за подачу необходимого количества топлива в цилиндры. Сегодня эта работа принадлежит ECU.

Посмотрим, как это работает.

Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось об автомобилях, не помешает объяснить, как они на самом деле работают.

G / O Media может получить комиссию

ЭЛЕКТРОННЫЙ ВПРЫСК ТОПЛИВА

Фото предоставлено: Альбертас Агеевас

Если сердцем автомобиля является его двигатель, то его мозгом должен быть блок управления двигателем ( ЭБУ). Также известный как модуль управления трансмиссией (PCM), ЭБУ оптимизирует работу двигателя, используя датчики, чтобы решить, как управлять определенными исполнительными механизмами в двигателе. ЭБУ автомобиля в первую очередь отвечает за четыре задачи. Во-первых, ЭБУ контролирует топливную смесь.Во-вторых, ЭБУ контролирует холостой ход. В-третьих, ЭБУ отвечает за опережение зажигания. Наконец, в некоторых приложениях ЭБУ управляет фазой газораспределения.

Прежде чем мы поговорим о том, как ЭБУ выполняет свои задачи, давайте проследим путь капли бензина, попадающей в ваш бензобак. Времена изменились после видео Down the Gasoline Trail , так что пришло время для обновления. Первоначально, когда капля газа попадает в ваш бензобак (который теперь сделан из пластика), она всасывается электрическим топливным насосом.Электрический топливный насос обычно поставляется в модуле в баке, который состоит из насоса, фильтра и отправляющего устройства. В передающем блоке используется делитель напряжения, чтобы сообщить манометру, сколько топлива осталось в вашем баке. Насос перекачивает бензин через топливный фильтр, по трубопроводам с твердым топливом и в топливную рампу.

Регулятор давления топлива с вакуумным приводом на конце топливной рампы гарантирует, что давление топлива в рампе остается постоянным по отношению к давлению на впуске. Для бензинового двигателя давление топлива обычно составляет порядка 35-50 фунтов на квадратный дюйм.Топливные форсунки подключаются к рейке, но их клапаны остаются закрытыми до тех пор, пока блок управления двигателем не решит отправить топливо в цилиндры.

Обычно форсунки имеют два штифта. Один вывод подключается к батарее через реле зажигания, а другой вывод идет к ЭБУ. ЭБУ посылает импульсное заземление на форсунку, которая замыкает цепь, обеспечивая ток на соленоид форсунки. Магнит в верхней части плунжера притягивается к магнитному полю соленоида, открывая клапан. Поскольку в рампе находится высокое давление, при открытии клапана топливо с высокой скоростью направляется через распылительный наконечник форсунки.Продолжительность открытия клапана и, следовательно, количество топлива, подаваемого в цилиндр, зависит от ширины импульса (то есть от того, как долго ЭБУ посылает сигнал заземления на форсунку).

Когда плунжер поднимается, он открывает клапан, и форсунка направляет топливо через распылительный наконечник во впускной коллектор непосредственно перед впускным клапаном или непосредственно в цилиндр. Первая система называется многоточечным впрыском топлива, а вторая — прямым впрыском.

Схема из Википедия

Контроль топливной смеси

Мы уже рассмотрели, как работает электронное управление дроссельной заслонкой.Мы показали вам, что, когда водитель нажимает на педаль газа, датчик положения педали акселератора (APP) посылает сигнал в ЭБУ, который затем дает команду на открытие дроссельной заслонки. ЭБУ получает информацию от датчика положения дроссельной заслонки и приложения до тех пор, пока дроссельная заслонка не достигнет желаемого положения, установленного водителем. Но что будет дальше?

Датчик массового расхода воздуха (MAF) или датчик абсолютного давления в коллекторе (MAP) определяет, сколько воздуха поступает в корпус дроссельной заслонки, и отправляет информацию в ЭБУ.ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы смесь оставалась стехиометрической. Компьютер постоянно использует TPS для проверки положения дроссельной заслонки и датчик массового расхода воздуха или MAP, чтобы проверить, сколько воздуха проходит через впускное отверстие, чтобы отрегулировать импульс, отправляемый на форсунки, гарантируя, что соответствующее количество топлива впрыскивается во впускной патрубок. воздух. Кроме того, ЭБУ использует датчики o2 для определения количества кислорода в выхлопных газах. Содержание кислорода в выхлопе указывает на то, насколько хорошо горит топливо.Между датчиками массового расхода воздуха и датчиком 02 компьютер точно настраивает импульс, который он отправляет на форсунки.

Контроль холостого хода

Фото предоставлено: Aidan

Давайте поговорим о холостом ходу. В большинстве ранних автомобилей с впрыском топлива использовался электромагнитный клапан управления воздухом холостого хода (IAC) для изменения потока воздуха в двигатель на холостом ходу (см. Белую пробку на изображении выше). Управляемый ЭБУ, IAC обходит дроссельную заслонку и позволяет компьютеру обеспечивать плавный холостой ход, когда водитель не нажимает педаль акселератора.IAC похож на топливную форсунку в том, что они оба изменяют поток жидкости через штифт, приводимый в действие соленоидом.

Большинство новых автомобилей не имеют клапанов IAC. В старых дросселях с тросовым управлением воздух, поступающий в двигатель на холостом ходу, должен был обойти дроссельную заслонку. Сегодня это не тот случай, поскольку системы электронного управления дроссельной заслонкой позволяют ЭБУ открывать и закрывать дроссельную заслонку с помощью шагового двигателя.

ЭБУ контролирует скорость вращения двигателя с помощью датчика положения коленчатого вала, который обычно представляет собой датчик Холла или оптический датчик, который считывает скорость вращения шкива коленчатого вала, маховика двигателя или самого коленчатого вала.ЭБУ отправляет топливо в двигатель в зависимости от скорости вращения коленчатого вала, что напрямую связано с нагрузкой на двигатель. Допустим, вы включаете кондиционер или переключаете автомобиль на движение. Скорость вашего коленчатого вала снизится ниже пороговой скорости, установленной ЭБУ из-за дополнительной нагрузки. Датчик положения коленчатого вала будет сообщать об этой пониженной частоте вращения двигателя в ЭБУ, который затем откроет дроссельную заслонку больше и отправит более длинные импульсы на форсунки, добавляя больше топлива, чтобы компенсировать повышенную нагрузку на двигатель.В этом прелесть управления с обратной связью.

Почему у вашего двигателя больше оборотов при запуске? Когда вы впервые включаете автомобиль, ЭБУ проверяет температуру двигателя с помощью датчика температуры охлаждающей жидкости. Если он замечает, что двигатель холодный, он устанавливает более высокий порог холостого хода для прогрева двигателя.

Управление моментом зажигания

Фото предоставлено: AJ Hill

Теперь, когда мы упомянули задачи ECU по поддержанию холостого хода двигателя, а также поддержанию надлежащей топливно-воздушной смеси, давайте поговорим о зажигании. сроки.Для достижения оптимальной работы в свечу зажигания должен подаваться ток в очень точные моменты времени, обычно от 10 до 40 градусов поворота коленчатого вала до верхней мертвой точки в зависимости от частоты вращения двигателя. Точный момент зажигания свечи зажигания относительно положения поршня оптимизирован, чтобы способствовать развитию пикового давления. Это позволяет двигателю извлекать максимум работы из расширяющегося газа.

Старые двигатели (до середины 2000-х) использовали распределители для контроля искры.Показанная выше система состоит из ротора и крышки распределителя. Ротор электрически соединен с катушкой зажигания, которая, по сути, представляет собой трансформатор, который изменяет напряжение с 12 В до более чем 10 000 вольт, необходимых для искры. Ротор механически соединен с распределительным валом через шестерню. Когда распредвал вращается, вращается и ротор. Когда ротор вращается, он очень близко подходит к медным столбам (по одному на каждый цилиндр). Ток от катушки зажигания перепрыгивает через небольшой воздушный зазор между ротором и штырями, посылая высокое напряжение через провода свечи зажигания на свечу зажигания каждого цилиндра в определенное время.Обратите внимание, что этим системам нужен был способ изменить время. При высоких оборотах двигателя необходима опережающая искра. Ранние двигатели с распределителями использовали вакуум двигателя или вращающиеся грузы для регулировки времени. Позднее стали более распространены системы хронометража на основе транзисторов.

В современных автомобилях не используется центрально расположенная катушка зажигания. Вместо этого эти системы зажигания без распределителя (DIS) имеют катушку, расположенную на каждой отдельной свече зажигания. На основе входных данных от датчика положения коленчатого вала, датчика детонации, датчика температуры охлаждающей жидкости, датчика массового расхода воздуха, датчика положения дроссельной заслонки и других, ЭБУ определяет, когда запускать транзистор драйвера, который затем включает соответствующую катушку.

ЭБУ может контролировать положение поршня с помощью датчика положения коленчатого вала. ЭБУ постоянно получает информацию от датчика положения коленчатого вала и использует ее для оптимизации момента зажигания. Если ЭБУ получает информацию от датчика детонации (который представляет собой не более чем небольшой микрофон) о том, что в двигателе возникла детонация (которая часто вызывается преждевременным искровым зажиганием), ЭБУ может замедлить опережение зажигания, чтобы уменьшить детонацию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *