Какой двигатель имеет большую степень сжатия
Степень сжатия двигателя
Работа двигателей внутреннего сгорания характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.
Что такое степень сжатия
Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.
Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.
Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:
Расчет сжатия
Она вычисляется по формуле:
Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.
Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:
Здесь D – диаметр, а S – ход поршня.
Иллюстрация:
Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.
Читайте также… Как промыть систему охлаждения двигателяАльтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.
На что влияет степень сжатия
Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.
Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.
Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:
| Сжатие | Бензин |
| До 10 | 92 |
| 10.5-12 | 95 |
| От 12 | 98 |
Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.
Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.
Изменение коэффициента сжатия
Зачем менять степень?
На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:
- при желании форсировать двигатель;
- если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
- после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.
Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).
Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.
Форсирование двигателя
Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.
Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.
Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.
Возможные следующие методы, как увеличить степень сжатия двигателя:
- установка тонкой прокладки ГБЦ и доработка головки блока;
- расточка цилиндров.
Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.
Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.
Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.
Дефорсирование под низкооктановое топливо
Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.
Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.
Основной способ, как уменьшить степень сжатия двигателя – сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.
Читайте также… Порядок работы 4 цилиндрового двигателя Некоторые интересные факты
Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.
Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.
В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.
Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.
Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение
Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок.
Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители.
Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.
Двигатель Toyota «Dynamic Force»
Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран.
В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей.
Как определяется степень сжатия, и что это такое?
Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение.
Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).
Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.
Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах).
Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия.
А теперь математический пример соотношения степени сжатия в ДВС.
Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1.
Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений.
Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.
Почему производители стараются увеличить степень сжатия?
Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.
Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень.
Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.
Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.
Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.
Более высокое сжатие в двигателе означает больше мощности, но больше давления
На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород).
На приведенном выше графике кривая 1-2 показывает ход сжатия.
Линия 2-3 показывает сгорание топлива.
Верхняя кривая 3-4 показывает ход расширения.
И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.
Если описать все более техническим языком, то эту диаграмму следует понимать так:
На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке.
Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива.
Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения).
Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.
Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла.
Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия.
И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.
Более высокое сжатие в двигателе также означает более высокую тепловую эффективность
Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.
Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия.
Вот как выглядит уравнение этой взаимосвязи (n – тепловой КПД, r – степень сжатия, а γ (гамма) – свойство жидкости):
Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql).
Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):
Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.
Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше.
Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.
Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы.
Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1.
Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности.
Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом
Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.
Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине.
Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:
Какой бензин лучше?
Почему премиум бензин является пустой тратой денег для большинства автомобилей
Сколько энергии в различных видах топлива
Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля.
Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине.
Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя.
Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.
Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь
Существуют ли ограничения по увеличению степени сжатия в двигателях
Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.
Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире.
Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур).
Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия.
Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях.
Что такое степень сжатия двигателя?
В достижении наилучших эксплуатационных характеристик двигателя внутреннего сгорания (ДВС) нужно быть хорошо подкованным в вопросах принципов его работы и возможностей повышения мощности. Но далеко не каждый автовладелец и даже тот, кто увлекается техническим тюнингом, способен похвастаться такими знаниями. Охватить нужную информацию в рамках одной статьи, конечно же, невозможно, поэтому предлагаю начать с азов и для начала разобраться: что такое степень сжатия и как она влияет на эффективность работы ДВС?
Начнем с определения.
Степенью сжатия двигателя в теории автомобилей называют отношение полного объема цилиндра к объему камеры сгорания этого цилиндра, или, иными словами, отношение максимального его объема к минимальному.
А поскольку данное понятие характеризует отношение объема смеси при подаче в цилиндр к объему, при котором эта смесь воспламеняется, то очевидна зависимость: чем большей является степень сжатия, тем более высокое давление имеет воспламеняющаяся смесь.
В то же время вполне логично, что бесконечно увеличивать такое давление невозможно – велик риск возникновения проблем с мотором при заправке некачественным топливом. Да и чем активнее работает устройство, тем короче будет его «жизнь». Поэтому всего должно быть в меру.
На сегодняшний день эта мера (в отношении степени сжатия) уже давно определена и составляет у бензиновых двигателей от 8 до 12 единиц, а у дизельных – от 14 до 18, точное число зависит от задач, поставленных перед тем или иным движком, а точнее транспортным средством, на которое тот установлен.
Видео.
Увеличение степени сжатия
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать? Степень сжатия можно повысить двумя самыми эффективными способами: 1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки. 2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия. Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14. Примеры прибавок в процентах: с 8 до 9 = 2.0 % прибавка мощности с 9 до 10 = 1.7 % прибавка мощности с 10 до 11 = 1.5 % прибавка мощности с 11 до 12 = 1.3 % прибавка мощности с 12 до 13 = 1.2 % прибавка мощности с 13 до 14 = 1.1 % прибавка мощности с 14 до 15 = 1.0 % прибавка мощности с 15 до 16 = 0.9 % прибавка мощности с 16 до 17 = 0.8 % прибавка мощности Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 % Примеры перехода на более высокооктановое топливо при повышении (СС) менее 8 — 76 бензин от 8 до 9 — 80 бензин от 9 до 10.5 — 92 бензин от 10 до 12.5 — 95 бензин от 12 до 14.5 — 98 бензин от 13.5 до 16 — 102 бензин от 15.5 до 18 — 109 бензин Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.Главная
Какой двигатель имеет большую степень сжатия
Степень сжатия двигателя
Работа двигателей внутреннего сгорания характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.
Что такое степень сжатия
Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.
Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.
Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:
Расчет сжатия
Рассмотрим, как узнать степень сжатия двигателя.
Она вычисляется по формуле:
Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.
Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:
Здесь D – диаметр, а S – ход поршня.
Иллюстрация:
Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.
Читайте также… Shift Lock на АКПП- Для чего нужнаАльтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.
На что влияет степень сжатия
Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.
Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.
Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:
| Сжатие | Бензин |
| До 10 | 92 |
| 10.5-12 | 95 |
| От 12 | 98 |
Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.
Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.
Изменение коэффициента сжатия
Зачем менять степень?
На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:
- при желании форсировать двигатель;
- если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
- после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.
Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).
Читайте также… Как пользоваться коробкой автоматПеревод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.
Форсирование двигателя
Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.
Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.
Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.
Возможные следующие методы, как увеличить степень сжатия двигателя:
- установка тонкой прокладки ГБЦ и доработка головки блока;
- расточка цилиндров.
Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.
Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.
Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.
Дефорсирование под низкооктановое топливо
Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.
Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.
Основной способ, как уменьшить степень сжатия двигателя – сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.
Читайте также… Картер двигателя- Защита и вентиляцияНекоторые интересные факты
Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.
Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.
В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.
Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.
Что такое степень сжатия двигателя?
В достижении наилучших эксплуатационных характеристик двигателя внутреннего сгорания (ДВС) нужно быть хорошо подкованным в вопросах принципов его работы и возможностей повышения мощности. Но далеко не каждый автовладелец и даже тот, кто увлекается техническим тюнингом, способен похвастаться такими знаниями. Охватить нужную информацию в рамках одной статьи, конечно же, невозможно, поэтому предлагаю начать с азов и для начала разобраться: что такое степень сжатия и как она влияет на эффективность работы ДВС?
Начнем с определения.
Степенью сжатия двигателя в теории автомобилей называют отношение полного объема цилиндра к объему камеры сгорания этого цилиндра, или, иными словами, отношение максимального его объема к минимальному.
А поскольку данное понятие характеризует отношение объема смеси при подаче в цилиндр к объему, при котором эта смесь воспламеняется, то очевидна зависимость: чем большей является степень сжатия, тем более высокое давление имеет воспламеняющаяся смесь.
В то же время вполне логично, что бесконечно увеличивать такое давление невозможно – велик риск возникновения проблем с мотором при заправке некачественным топливом. Да и чем активнее работает устройство, тем короче будет его «жизнь». Поэтому всего должно быть в меру.
На сегодняшний день эта мера (в отношении степени сжатия) уже давно определена и составляет у бензиновых двигателей от 8 до 12 единиц, а у дизельных – от 14 до 18, точное число зависит от задач, поставленных перед тем или иным движком, а точнее транспортным средством, на которое тот установлен.
Видео.
Степень сжатия дизельного двигателя
В любом автомобиле двигатель является очень сложной системой, и дизельный не исключение. Они состоят из различных механизмов и сложных систем. Когда происходит взаимодействие всех систем и механизмов, в двигателе образуется энергия, которая преобразуется во время сгорания смеси, образуемой из воздуха и топлива и далее кривошипно-шатунный механизм преобразует поступательно-возвратное движение поршня во вращательное движение коленчатого вала.
Содержание:
Что такое степень сжатия дизельного двигателя
Степенью сжатия является соотношение между полным объемом цилиндра, когда поршень располагается в нижней мертвой точке (НМТ) и объемом камеры сгорания во время достижения поршнем верхней мёртвой точки (ВМТ).
Такое соотношение показывает разницу в давлении, которое образуется в цилиндре мотора при попадании в него топлива. В документах, которые идут вместе с двигателем, такое соотношение указывается при помощи математических расчетов, например 18:1. Наилучшая степень сжатия в таком двигателе располагается в диапазоне от 18:1 до 22:1.
Принцип работы
В дизельных моторах в процессе сжатия, то есть когда происходит движение поршня к ВМТ, происходит очень быстрое сокращение объёма цилиндра. В итоге в камере сгорания располагается только воздушная масса, именно она сжимается, такой процесс носит название такт сжатия. Когда к ВМТ подходит поршень, сжатие воздуха происходит на необходимую степень, происходит подача топлива в камеру сгорания под высоким давлением.
Топливо-воздушная смесь при образованном высоком давлении мгновенно воспламеняется и создает повышенное давление в камере, поршень в такой момент как раз проходит ВМТ. Одним из преимуществ дизеля является то, что смесь возгорается только от давления, нет необходимости в сложной и высокоточной системе зажигания. Но роз без шипов не бывает — обратной стороной повышенного давления является особое внимание к герметизации соединений и наличие топливного насоса высокого давления (ТНВД), штуки прецизионной и очень капризной. В процессе сгорания смеси образуется сильное давление, которое начинает давить на поршень и вести его к НМТ. При помощи шатуна все поршневые движения преобразуются во вращение коленчатого вала.
Процесс образования давления при возгорании смеси, которое заставляет передвигаться поршень к НМТ, носит название рабочий ход. Степень сжатия играет особую роль в такте сжатия. Чем больше степень, тем быстрее и легче воспламеняется смесь, которая полностью сгорает и образует требуемое давление.
Если степень сжатия дизельного двигателя имеет высокий показатель, то она будет создавать высокую мощность при низком заборе топлива. Но у них степень сжатия способна варьироваться в оптимальном диапазоне, который нарушать не стоит, и это не просто так:
- Если образовалась степень сжатия ниже допустимого диапазона, то значительно понижается мощность показателя, а объем потребляемого топлива начнет расти;
- Если образовалась степень сжатия выше необходимого диапазона, то образуется сильная нагрузка на цилиндры и поршни, в результате они быстро изнашиваются.
- Если произошло сильное увеличение степени сжатия, поршень начинает прогорать, а шатун изгибаться.
Зафиксированы случаи, когда при сильном повышении сжатия происходил взрыв всей системы без возможности ее восстановления.
Разница степени сжатия бензинового и дизельного двигателей
Степень сжатия и количество расхода топлива считаются основными показателями в обоих видах двигателей. Так как между сжатием и мощностью существует прямая зависимость.
В двигателях на бензине показатель сжатия находится на отметке 12 единиц, а у дизельных моторов данное число варьируется от 13 до 25 единиц. Показателем экономичности является удельный расход топлива. Его прямой функцией является определение объема сжигаемого топлива во время работы при мощности 1 кВт за один час. Бензиновые двигатели за час сжигают около 305 граммов топлива, в то время как дизельные всего 200 граммов.
К тому же у бензиновых моторов существует один существенный недостаток, у них низкая тяга во время работы на холостых оборотах. Очень часто двигатель глохнет, если совершается попытка движения на низких оборотах. А вот у дизельных двигателей такого недостатка нет.
Степень сжатия и компрессия. — DRIVE2
У кого то нашёл. Очень интересно и познавательно.
Степень сжатия и компрессия.
Степень сжатия — расчетная величина, показывает соотношение объемов до сжатия и после.
Компрессия — реально измеряемая величина, в процессе сжатия меняется не только объем и давление, но и температура, поэтому компрессия (в исправном двигателе) обычно на несколько единиц больше степени сжатия. Hа компрессию влияют также негерметичность клапанов, колец, прокладки и т.п. В руководстве по ремонту обычно указано минимальное значение компрессии, при котором еще можно ездить.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Что такое степень сжатия?Какая степень сжатия лучше всего для вашего двигателя? Вопрос на засыпку, ведь конструкторы моторов с искровым зажиганием1 всячески стремятся повысить степень сжатия. А создатели двигателей с воспламенением от сжатия, наоборот, стараются ее понизить… По поводу этой загадочной характеристики двигателя внутреннего сгорания бытует немало ошибочных мнений.
Одно из наиболее распространенных заблуждений — от степени сжатия зависит многое. На самом деле все очень просто: этот показатель отражает отношение полного объема цилиндра к объему камеры сгорания, или, другими словами, равен частному от деления объема надпоршневого пространства в нижней мертвой точке (н. м. т) на его объем в верхней мертвой точке (в. м. т). То есть геометрическая степень сжатия показывает, во сколько раз сжимается топливовоздушная смесь в цилиндрах двигателя при движении поршня от нижней мертвой точки к верхней мертвой точке. Но в жизни, естественно, получается не всегда так, как в теории…
Вперед и выше
На заре автомобилизма степень сжатия двигателей Отто (а других 100 лет назад и не существовало) делали невысокой — 4 5, чтобы при работе на низкооктановом бензине (гнали, как умели) не возникала детонация2.
Допустим, при рабочем объеме цилиндра 400 «кубиков» объем камеры сгорания равен 100 мл. То есть геометрическая степень сжатия у такого двигателя составляет:
е = (400 + 100) : 100 = 5.
Если же объем камеры сгорания уменьшить до 40 см3 (технически несложно), то степень сжатия повысится:
е = (400 + 40) : 40 = 11.
И что же это дает? А то, что термический КПД двигателя увеличится почти в 1,3 раза. И если 6 цилиндровый 2,4 литровый мотор со степенью сжатия 5 развивает мощность в 100 л.с., то при степени сжатия 11 она повысится почти до 130. Причем при неизменном расходе горючего! Иными словами, расход топлива в расчете на 1 л.с. в час сократится на 22,7 %.
Поразительный результат, достигнутый самыми простыми средствами. Не слишком ли хорошо, чтобы быть правдой? Никакой мистики: чем выше степень сжатия, тем ниже температура отработанных газов, идущих на выхлоп. При е = 11 мы попросту заметно меньше обогреваем атмосферу, чем при е = 5, вот и все.
Азы теплотехники
Автомобильные двигатели — разновидность тепловых машин, которые подчиняются законам термодинамики. Еще в первой половине XIX века замечательный французский физик Сади Карно заложил основы теории тепловых машин, в том числе и двигателей внутреннего сгорания.
По Карно, КПД двигателя внутреннего сгорания тем выше, чем больше разница между температурой газов (рабочего тела) к концу горения топливовоздушной смеси и их температурой на выпуске. Эта разница зависит от е, а вернее, от степени расширения рабочих газов в цилиндрах. Да, тут есть нюанс: по Карно, для термического КПД важна не степень сжатия, а именно степень расширения. Чем сильнее расширяются горячие газы на рабочем ходу, тем ниже падает их температура, что естественно. Просто в двигателях обычных конструкций степень расширения геометрически совпадает со степенью сжатия. Вот мы и привыкли не разделять эти понятия. К тому же детонация зависит как раз от е, то есть от компрессии. Чем сильнее сжимается топливовоздушная смесь в цилиндрах двигателя Отто3, чем выше давление и температура к моменту искрообразования, тем вероятнее возникновение ударных волн в камере сгорания и детонации. Она-то и ограничивает степень сжатия, но степень расширения рабочих газов здесь ни при чем. Вот если бы каким-то образом отделить одну степень от другой — чтобы при умеренной компрессии добиться сильного расширения рабочих газов…
Пятитактный цикл
Уже полвека с лишним известен так называемый 5 тактный цикл Atkinson’а/Miller’а. Он как раз и разводит степень сжатия и степень расширения по разные стороны.
Представьте, что у вашего 1,5 литрового 16 клапанника ВАЗ-2112 впуск заканчивается не на 36 градусах после нижней мертвой точки (по углу поворота коленчатого вала), а очень поздно — на 81 градусе. То есть при 3 тыс. оборотов поршень на своем ходу к верхней мертвой точке вытесняет часть топливовоздушной смеси через открытые клапаны обратно во впускной коллектор (не беспокойтесь, она там не пропадет). Иными словами, такт сжатия начинается только где-то на 75 градусах после нижней мертвой точки, а до того имеет место своеобразный такт вытеснения смеси. Тактов теперь не 4, а 5: впуск, обратное вытеснение, сжатие, рабочий ход, выпуск. На первый взгляд, идиотская схема: зачем гонять смесь туда-сюда? Допустим, обратно вытесняется 20 % топливовоздушной смеси, уже попавшей в цилиндр, и сжимается только 80 %. И пусть геометрическая е равна 13 — исключительно высокая для Отто. Однако реальная степень сжатия гораздо ниже — всего 10,6. Что и требовалось доказать.
У конструкции с реальной степенью сжатия 10,6 (вполне допустимо для товарного бензина) степень расширения рабочих газов — 13. Термический КПД двигателя по факту в 1,0518 раза выше, чем по его степени сжатия. Не так много, но моторостроители годами бьются ради 5 процентной экономии горючего. Двигатели пассажирских автомобилей уже вовсю работают по 5 тактному циклу. В качестве примера можно привести 1,5 литровую тойотовскую «четверку» 1NZ-FXE (для Prius) или фордовскую 2,26 литровую (для Escape Hybrid).
Вроде бы блестящее решение, однако у медали есть и обратная сторона. Геометрическая е (степень расширения рабочих газов) у 1NZ-FXE — 13, реальная степень сжатия — около 10,5. В результате из-за обратного вытеснения смеси 1,5 литровый мотор по крутящему моменту и мощности, к сожалению, опускается примерно до 1,2 литрового. Итог — выигрываем в термическом КПД ценой потери реального литража. Мало того, двигатель с поздним закрытием впускных клапанов совсем не тянет «на низах». Поэтому 5 тактный цикл годится в «гибридных» силовых агрегатах, где тяговый электромотор принимает на себя нагрузку при самых низких оборотах. Потом в работу вступает двигатель внутреннего сгорания. Так или иначе 5 тактный цикл позволяет повысить степень расширения рабочих газов и термический КПД двигателя.
А вот наддув, наоборот, вынуждает понижать степень сжатия. При подаче топливовоздушной смеси под избыточным давлением реальная компрессия в цилиндрах оказывается слишком высокой — даже при умеренной геометрической е. Приходится отступать. Отсюда снижение термического КПД и повышенный расход бензина у двигателей с наддувом, если не применять спецгорючее.
На спирту
Чем больше октановое число бензина, тем выше возможная (по условиям детонации) степень сжатия, тем эффективнее работает мотор. Исключительно высокую е допускает используемый в качестве горючего газ (нефтяной или природный): без наддува — 13 14, с компрессором — 10 11. Водород тоже отличается стойкостью против детонации. Потрясающие антидетонационные качества у спирта — метилового или этилового. Вдобавок у него высокая теплота испарения. Испаряясь, он сильно охлаждает топливовоздушную смесь (а заодно и поверхность камеры сгорания). Холодная смесь плотнее и в цилиндр ее по весу входит существенно больше — реальный коэффициент наполнения оказывается выше и, как следствие, возрастают крутящий момент и мощность. Кроме того, этиловый (питьевой!) спирт экологичен. Правда, расход спиртового топлива в литрах гораздо больше, чем бензина, поскольку теплотворная способность метанола и этанола незначительная. А вот в энергетическом эквиваленте спирт заметно эффективнее бензина — благодаря высокой степени сжатия (расширения). У такого топлива есть перспектива. На сегодняшний день в некоторых странах широкое распространение получила смесь E85: 85 % этанола и 15 % бензина.
Истина в мере
Пока что повысить степень сжатия вазовского 16 клапанника с 10,5 до 11,5 на 92 м бензине от местной АЗС — ой как непросто. Можно применить впрыск бензина непосредственно в камеры сгорания — вместо впускных каналов. Испарение бензина не на впуске, а в цилиндрах — тот же самый «компрессорный» эффект. Или организовать двухискровое зажигание — с двумя свечами на цилиндр. А также поставить выпускные клапаны с внутренним (натриевым) охлаждением — раскаленные тарелки провоцируют детонацию. И еще — очистить поверхность камеры сгорания от нагара и отполировать ее.
Влияют на степень сжатия и конфигурация камеры сгорания и скорость вихревого движения топливовоздушной смеси. Есть много способов борьбы с детонацией, хороших и разных. Так до какого уровня есть смысл поднимать е двигателя Отто? Здесь вот что важно учитывать: термический КПД нарастает с повышением степени сжатия (расширения), но не линейно, а с постепенным замедлением. Если при увеличении степени сжатия от 5 до 10 он повышается в 1,265 раза, то от 10 до 20 — только в 1,157 раза. Зато быстро накапливаются побочные «заморочки», которых лучше избегать. Поэтому степень сжатия 13 14 — разумный компромисс, к которому и следует стремиться. Вперед и с песней!
1 Мы обычно говорим «бензиновый», хотя знаем, что автомобильные двигатели прекрасно работают и на газе. А также на спирте — метиловом или этиловом… Так что лучше называть их двигателями с искровым зажиганием или двигателями Отто (по имени создателя такой конструкции Николауса Отто) — по аналогии с дизелями.
2 Кто не слышал детонационные звуки в цилиндрах? Это когда говорят: «пальцы стучат». При слишком высокой (по качеству горючего) степени сжатия горение топливовоздушной смеси после ее воспламенения от искры нарушается. Оно приобретает взрывной характер, в камере сгорания возникают ударные волны, способные вызвать поломку мотора.
3 Именно двигатели Отто; дизели детонации не знают. Почему — отдельный разговор.
«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453
Уменьшение и увеличение степени сжатия двигателя автомобиля
Кто-то хочет больше мощности и задумывается над увеличением степени сжатия. Другие, желают дефорсировать мотор и уменьшают её. Поговорим про уменьшение и увеличение степени сжатия, зачем это делают.
Увеличение степени сжатия
Увеличение степени сжатия является одной из основных методик поднятия мощности. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования детонации. Если значительно повысим степень сжатия, то мощность повысится, но придется заправляться более высокооктановым топливом. С другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене будет несущественна.2 способа увеличить степень сжатия
Установка более тонкой прокладки двигателя
При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант — установка новых поршней с более глубокими выемки под клапана. Также изменятся фазы газораспределения и нужно будет их заново настраивать.Растачивание цилиндров
Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, т.к. камера сгорания остается прежней, но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия. Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.Уменьшение степени сжатия
Для чего уменьшают степень сжатия мотора? Если при увеличении добивались повышения мощности, то тут ситуация противоположная. Уменьшение степени сжатия производиться с целью перевести автомобиль на более дешевый бензин.
Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств. Если на современной иномарке уменьшить степень сжатия до 8, то ее динамика будет как у «копейки». Многие моторы можно заправлять 92-ым бензином вместо 95-ого и у многих даже детонации не случается. Когда машина на гарантии, то не стал бы экономить. Ведь на 95-ом бензине расход топлива меньше, чем на 92-ом и при чуть высшей цене — общая стоимость на бензин выходит равной. Что было проверено на практике. Другое дело, производитель указывает ездить на более высокооктановом бензине из-за норм экологичности. Если в новую машину заправить более дешевый бензин — может выйти из строя катализатор, т.к. 92-ый бензин имеет меньшую температуру горения. Плюс могут засориться форсунки.
По поводу детонации. Делать переделку мотора, чтобы заправлять 92 вместо 95 бензина — глупо. Чтобы сознательно уменьшать степень сжатия нужны более веские причины, например так поступают при установке турбокомпрессора на двигатель, чтобы избавиться от детонации.
После вышеописанной процедуры уменьшиться степень сжатия за счет увеличения камеры сгорания двигателя и можно заливать дешевый бензин. Не рекомендуем делать эту операцию на современном авто, оборудованным большим количеством электроники, во избежание неприятностей.
Сколько лошадей дает увеличение степени сжатия
СТЕПЕНЬ СЖАТИЯОбъем камеры сгорания влияет на конечную степень сжатия двигателя.
Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.
Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.
Объем камеры сгорания состоит из суммы 3 объемов:
1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они
не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.
Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?
Степень сжатия можно повысить двумя самыми эффективными способами:
1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.
2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.
Примеры прибавок в процентах:
с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %
Примеры перехода на более высокооктановое топливо при повышении (СС)
менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени
сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма,
системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени
сжатия без повышения качества топлива.
Главная
Степень сжатия в чем измеряется
Что такое степень сжатия двигателя и чем она отличается от компрессии
Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией.
Что такое степень сжатия и чем она отличается от компрессии
Иллюстрация степени сжатия 10:1
Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.
Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.
Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см2, а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.
На что влияет степень сжатия двигателя
Нормальное сгорание смеси (вверху) и детонация (внизу)
Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.
У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.
Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.
Читайте также: Какая компрессия должна быть в двигателе.
Как рассчитывают степень сжатия двигателя
Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.
Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:
- CR=(V+C)/C,
- где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.
Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.
На практике значение степени сжатия двигателя обычно определяется в следующих случаях:
- При форсировании силового агрегата;
- При его приспособлении для функционирования с топливом другого октанового числа;
- После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.
Как изменить степень сжатия двигателя
У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.
Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла.
Видео на тему
Похожие публикации
Что такое компрессия и степень сжатия
При диагностике автомобиля перед покупкой опытные автовладельцы практически всегда советуют новичкам проверить компрессию. А еще существует степень сжатия – казалось бы, схожий термин, ведь компрессия – это и есть сжатие. На самом деле это совершенно разные вещи. Давайте разберемся, что есть что, а заодно поймем, что и как нужно проверять при покупке машины.
Что такое степень сжатия?
Начнем со степени сжатия. Как мы помним, поршень в цилиндре при работе двигателя движется вверх-вниз, имея две так называемых мертвых точки, верхнюю и нижнюю. Так вот, степень сжатия – это отношение между двумя объемами: полным объемом цилиндра, когда поршень находится в нижней мертвой точке, и объемом камеры сжатия, когда поршень находится в верхней мертвой точке. То есть степень сжатия – это математическое отношение, которое показывает, во сколько раз топливовоздушная смесь (или воздух, если речь о дизеле) сжимается в цилиндре при работе мотора.
Степень сжатия – одна из базовых характеристик любого двигателя, и закладывается она на стадии проектирования. У бензиновых моторов она ниже, чем у дизельных: в среднем от 8:1 до 12:1 у первых и от 14:1 до 23:1 у вторых. Дело в том, что работа дизельного мотора предполагает самостоятельное воспламенение топливовоздушной смеси от сжатия, а в бензиновом моторе смесь в каждом такте поджигается свечой зажигания. Однако в целом по мере развития технологий двигателестроения степень сжатия в моторах росла. Причина проста: повышение степени сжатия позволяет увеличить КПД мотора, получая больше мощности при том же рабочем объеме и расходе топлива. Собственно, с ростом степени сжатия связано и применение более высокооктановых бензинов.
Таким образом, степень сжатия – это конструктивная характеристика двигателя, и она не меняется по мере его износа и старения. Степень сжатия не нужно «проверять» при покупке, а знать ее нужно в основном для того, чтобы знать, какой бензин лучше заливать в бак купленной машины.
Что такое компрессия?
Если степень сжатия – параметр математический и неизменный, то компрессия – характеристика изменяемая. Компрессия – это давление, создаваемое в цилиндре в конце такта сжатия, когда поршень идет от нижней мертвой точки к верхней, сжимая воздух или топливовоздушную смесь. Давление в цилиндре в момент, когда поршень достиг верхней мертвой точки – это и есть компрессия. Можно подумать, что компрессия фактически должна быть равна степени сжатия – ведь она тоже показывает разницу давления в цилиндре при двух положениях поршня – верхнем и нижнем. Однако на самом деле компрессия оказывается значительно выше. Ведь воздух при резком сжатии нагревается, что означает увеличение давления. А еще он нагревается от горячих стенок цилиндра, ведь рабочая температура двигателя гораздо выше температуры окружающей среды. Таким образом, компрессия, конечно, зависит от степени сжатия, но не равна ей. И именно компрессию замеряют при диагностике двигателя, чтобы оценить его техническое состояние.
Как замеряют компрессию?
Замер компрессии проводится с учетом перечисленных выше условий: на полностью прогретом двигателе и при полностью открытой дроссельной заслонке, отвечающей за подачу воздуха в цилиндр. Разумеется, горение топлива для замера компрессии не нужно, в цилиндре сжимается только воздух. Так что подачу топлива отключают, а свечу зажигания (или накаливания, если речь идет о дизеле) выкручивают, а на ее место вкручивают шлаг компрессометра. Компрессометр – это прибор для измерения компрессии. Он фактически представляет собой манометр, подключаемый трубкой к цилиндру и оснащенный обратным клапаном, чтобы не сбрасывать измеренное давление.
Зачем измерять компрессию?
Замер компрессии позволяет оценить исправность и техническое состояние двигателя. Во-первых, после замера можно сравнить соответствие полученного результата заводским параметрам – то есть оценить компрессию в имеющемся двигателе по сравнению с новым. Во-вторых, низкий показатель компрессии означает наличие проблем с мотором, ведь он сигнализирует о том, что воздух «утекает» из камеры сгорания, а при работе мотора из нее будут прорываться раскаленные газы. Причин может быть довольно много: поршневые кольца, повреждения седел клапанов и самих клапанов, негерметичность прокладки ГБЦ и даже трещина в самом поршне. Ну а в-третьих, важна не только сама величина компрессии, но и ее равномерность во всех цилиндрах двигателя. Если компрессия в одном или нескольких цилиндрах ниже, чем в других, это говорит о неравномерном износе и наличии проблем.
Таким образом, замер компрессии – одна из простых, но эффективных методик оценки исправности и общего технического состояния двигателя. Он позволяет быстро отсеять заведомо «мертвые» моторы, имеющие проблемы с цилиндропоршевой группой, клапанами и так далее. Поэтому замер компрессии можно и нужно проводить при диагностике практически любого автомобиля перед покупкой.
Что такое такое степень сжатия двигателя и на что она влияет
Автор Павел Александрович Белоусов На чтение 7 мин. Просмотров 138
От величины сжатия зависит термический КПД двигателя. Но с ростом степени повышается и риск детонации, поэтому при форсировке и капитальном ремонте следует уделить время расчетам. Давайте рассмотрим, как увеличить степень сжатия двигателя, взаимосвязь компрессии и степени, и чем примечателен двигатель цикла Миллера-Аткинсона.
Как связаны степень сжатия и компрессия двигателя?
Степень сжатия в цилиндрах мотора – величина абсолютная и рассчитывается математически. На практике это соотношение отображает коэффициент сжатия поступившей в цилиндр топливной смеси на такте впуска. Понятие компрессии означает пиковое давление в камере сгорания в конце такта сжатия и может быть измерено практически. Компрессия хоть и является производной от степени сжатия, но зависит от многих факторов:
- герметичность цилиндро-поршневой группы (ЦПГ) и клапанного механизма;
- мощность стартера, состояние АКБ и качество контактов, влияющее на количество оборотов стартера.
Форсирование двигателя путем увеличения степени сжатия
Чем выше степень, тем горячее воздух в конце такта сжатия и тем выше КПД двигателя. Но повышение одного параметра не гарантирует линейное возрастание второго. Наибольший прирост мощности ощущается при повышении степени до 10-11 единиц.
К примеру, увеличив степень сжатия стандартного ВАЗовского мотора с 9.8 до 11, мы в теории получаем прирост термического КПД на 4%. Тест на стенде при этом покажет куда более скромное значение – 2,5%. Повысив степень сжатия того же мотора еще на единицу, мы получим фактическую прибавку в 4.5%. Моментная характеристика возрастет главным образом на низких и средних оборотах. Дальнейшее увеличение степени сжатия без перехода на высокооктановое спортивное топливо и вовсе не даст результат.
Причина такого явления — в детонации, которая возникает в случае слишком высокого пикового давления в камере сгорания. При контакте с разогретым воздухом в таком случае смесь самовоспламеняется еще до момента подачи искры. При этом фронт пламени распространяется со скоростью более 2000 м/с, тогда как значение при нормальном сгорании не превышает 250-300 м/с.
Ударная волна такой силы оказывает разрушительное давление на цилиндры, стенки камеры сгорания, поршни. Также значительно повышается температура выхлопных газов, что приводит к прогоранию днища поршня, клапанов.
Поэтому тюнинг со сжатием следует проводить после точного математического расчета и с прицелом на октановое число бензина.
Основные методы увеличения
- Уменьшение толщины ГБЦ, БЦ. С привалочной плоскости головки и блока методом фрезеровки либо шлифовки снимается слой металла и уменьшается объем камеры сгорания.
- Установка поршней с выпуклостями. Цель, как и в предыдущем методе – уменьшение объема камеры сгорания.
- Увеличение хода поршня за счет установки другого коленчатого вала, шатунов.
Как работает двигатель с изменяемой степенью сжатия?
До недавнего времени показатель степени закладывался инженерами на этапе разработки и был фиксированным вне зависимости от режима работы двигателя. Нормальное значение для современных бензиновых моторов варьируется от 8 до 14 единиц, традиционно высокая степень сжатия у дизельных моторов – 18-23.
Ужесточение экологических норм заставляет гениев инженерной мысли искать новые пути увеличения термического КПД. Одно из таких решений – двигатель с изменяемой степенью сжатия. Было разработано несколько вариантов динамического изменения степени:
- дополнительная секция в полости ГБЦ. Открытие секции позволяет увеличить объем камеры сгорания, уменьшая тем самым степень. Система не получила распространения из-за избыточного усложнения конструкции ГБЦ;
- поршни с изменяемой высотой. Конструкция получилась слишком громоздкой, появились проблемы с перекосом поршней и уплотнением ЦПГ;
- регулировка высоты подъема коленчатого вала. Изменение степени сжатия осуществляется за счет специальных эксцентриковых муфт, которые регулируют высоту опорных подшипников коленвала. Технология долгое время тестировалась концерном VAG, но так и не вошла в серию;
- регулировка высоты поднятия ГБЦ. Специальный механизм с электроприводом и шарнирное соединение частей блока двигателя позволяли регулировать степень от 8 до 14 единиц. Разрабатывалась технология инженерами SAAB, но из-за ненадежности резинового кожуха, герметизирующего подвижные части блока, и излишней сложности конструкции также не пошла в серию;
- шатун с изменяемой длиной. Высота шатуна регулировалась специальным реечным механизмом с помощью давления масла. Как и в предыдущих случаях, разработка французских инженерах не была внедрена в массовое производство;
- траверсный механизм сочленения шатуна с коленчатым валом. За счет изменения угла поворота траверсы уменьшается либо увеличивается ход поршня. Разработка инженеров Infiniti используется на двухлитровом моторе VC-T, который сейчас устанавливается на кроссовер QX50. Двигатель развивает максимальную мощность в 268 л.с. и пиковый крутящий момент 380 Нм.
Цикл Миллера-Аткинсона
Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.
Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.
Математический расчет
Степень сжатия двигателя внутреннего сгорания равняется объему камеры сгорания к рабочему объему цилиндра и рассчитывается по формуле (V + C)/C = CR, где
- V — объем цилиндра, когда поршень находится в нижней мертвой точке (НМТ). Для расчета необходимо сумму объемов всех цилиндров (указывается в технической характеристике ДВС) разделить на количество котлов;
- С — объем камеры сгорания, когда поршень в верхней мертвой точке (ВМТ). Включает в себя объем полости ГБЦ, прокладки ГБЦ и выемок в цилиндре. Если поршень имеет выпуклость, ее объем отнимается от общего объема камеры сгорания.
Вычислить степень сжатия математически довольно непросто из-за сложной геометрической формы камеры сгорания. Поэтому на практике применяются 2 основные методы вычисления.
Видео:Как измерить степень сжатия правильно.
Практический расчет методом проливки
Суть измерения заключается в поочередном заполнении жидкостью площади над поршнем, когда тот находится в верхней мертвой точке, и стенок камеры сгорания ГБЦ. Для измерения нам необходим кусок оргстекла, в котором будут пропилены отверстия для вкручивания болтов ГБЦ и отверстие для заливки жидкости. Между оргстеклом и блоком необходимо установить уже использованную (обжатую) прокладку. Стенки цилиндров для увеличения гидроплотности необходимо смазать густой консистентной смазкой (литиевой либо обычным солидолом).
Притянув оргстекло болтами, заполните образовавшейся объем жидкостью. Объем поместившейся воды будет соответствовать объему надпоршневого пространства. Аналогичный тест проводится и с головкой блока. При этом клапана должны быть притерты, между седлами и тарелками нанесена консистентная смазка. Сумма объема залитых жидкостей и будет объемом камеры сгорания.
Чтобы рассчитать степень сжатия на онлайн-калькуляторе, также будет необходимо измерить величину хода поршня и диаметр цилиндра. Все эти значения помогут вычислить объем двигателя, который изменяется при каждой фрезеровке плоскостей БЦ, ГБЦ, установке поршней иной геометрической формы, расточки цилиндров либо установке других шатунов, коленчатого вала.
Можно ли рассчитать степень, измерив компрессию?
Компрессия напрямую зависит не только от понятия степени сжатия двигателя, но и от природы сжимаемого газа и условий в камере сгорания. На практике зависимость этих параметров выливается в формулу Р = Ро*Ɛƴ, где
- Ро – начальное давление в цилиндре, принимаемое за 1;
- Ƴ – адиабатический показатель для воздуха. В двигателе внутреннего сгорания при сжатии часть тепла отдается стенкам цилиндра, камеры сгорания; происходит утечка части газа через неплотности, а воздух перемешан с частичками топлива, поэтому процесс считается недиабетическим. Показатель политропы при этом равняется не эталонным 1.4, а приближенным к фактическим 1.2.
Все это значит, что, измерив компрессию, мы можем вычислить показатель степени сжатия двигателя. К примеру, при компрессии 15,8 степень сжатия будет близка к 10 единицам. Чтобы уменьшить погрешность, нужно соблюсти все правила измерения компрессии:
- Свечи должны быть выкручены.
- Дроссель открыт на 100%.
- Отключена подача топлива.
- АКБ должна быть полностью заряжена. При этом емкости должно хватать на измерения компрессии во всех котлах.
- Стартер должен быть исправен, а на проводах его питания отсутствует значительное падение напряжение из-за окислов.
Начинающие автолюбители, которые только недавно обзавелись машиной, очень часто пытаются разобраться в том, что находится внутри, то есть под капотом. Особый интерес у человека вызывает двигатель, так как строение у этого агрегата очень сложное, а разбираться в этом нужно, дабы сэкономить деньги в случае поломки. Ведь если хорошо разбираться во всем этом, то можно и самостоятельно починить свою машину, не обращаясь в сервисный центр. Неопытные автомобилисты часто путают понятия «компрессия» и «степень сжатия», хотя они не оказывают влияние один на другой. Стоит сказать, что компрессия меняется в период эксплуатации машины, а степень сжатия – величина безразмерная и относительная. Степень сжатияСтепень сжатия — расчетная величина, показывает соотношение объемов до сжатия и после. Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией. Что такое степень сжатия и чем она отличается от компрессииКаждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется. Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1. Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см2, а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие. На что влияет степень сжатия двигателяСтепень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными. У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия. Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива. Как рассчитывают степень сжатия двигателяПоскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор. Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:
Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета. На практике значение степени сжатия двигателя обычно определяется в следующих случаях:
Как изменить степень сжатия двигателяУ современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке. Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла. На форсированном мотореСтепень сжатия. В зависимости от конечной задачи, степень сжатия может серьезно варьироваться, достигая величин в 11 — 11.5 . Все это направлено на снятие максимальной мощности с мотора конкретного объема. Чем выше степень сжатия — тем выше удельная мощность. Правда при этом неизбежно снизится ресурс и резко возрастает риск проблем с мотором при заправке некачественным топливом. Одна заправка сомнительным топливом может быстро кончить «зажатый» мотор. Так что при форсировании мотор сэкономить на качестве бензина не удастся.Поэтому, при тюнинге двигателя степень сжатия увеличивается не очень значительно, обычно что бы перейти на марку бензина, следующую за уже используемой по октановому числу. В принципе, косвенно, о величине степени сжатия можно судить по марке используемого бензина — на АИ-80 можно ездить при степени сжатия равной 9.0 , на АИ-92 — до 10.0 (при условии, что бензин соответствует заявленным характеристикам ).Поднятие степени сжатия — сложный процесс, требующий точных расчетов и очень высокой квалификации моториста. Поэтому самостоятельно этим заниматься крайне не рекомендуется. Как уже было сказано выше компрессия это давление в цилиндре. Именно поэтому компрессия зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии. Для этого необходимо: двигатель прогрет, АКБ полностью заряжена, дроссель открыт, воздушный фильтр снят, все свечи выкручены. В таком режиме полностью заряженная АКБ позволит стартеру раскрутить двигатель до 200 об/мин. Компрессия во всех цилиндрах должна быть ровной. При снижении уровня компрессии необходимо выяснить причину падения. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 гр. моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршне. |
Как рассчитать и изменить степень сжатия двигателя
string(10) "error stat"
string(10) "error stat"
Одним из главнейших технических показателей автомобильного мотора является коэффициент сжатия. Он показывает соотношение разницы между объёмом свободного участка над цилиндровым поршнем и под ним в крайних его положениях.
Что такое степень сжатия двигателя
Условно величину сжатия представляют и как соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно эта степень обусловлена конструкцией автомобильного двигателя, и может быть высокой или низкой.
Перед непосредственным процессом воспламенения горючей смеси, поршни сжимают топливо до определённого объёма. Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии проектирования. Узнав количественное соотношение данной величины к объёму камеры сгорания, можно делать различные выводы.
На бензиновых силовых установках показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия двигателя или ССД, тем больше удельная мощность мотора. Однако при сильном увеличении данного показателя снижается ресурс агрегата, особенно при заправке низкосортным бензином. На дизельных моторах, ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.
В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.
На что она влияет
ССД непосредственно определяет объём работы, произведённой ДВС. Чем изначально выше рассчитана степень сжатия, тем продуктивнее будет воспламенение. Пропорционально увеличится и отдача мотора. Вспомним, как разработчики в 90-е годы старались повышать этот показатель, полностью не модернизируя двигатель. Таким способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая при этом много средств. Но что самое интересное — моторы в этом случае не потребляли больше горючего, а даже становились экономнее.
Однако всему есть предел, и как было сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС. Почему это происходит? Дело в том, что при значительном сжатии топливная смесь начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое ограничение.
Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.
Отличие степени сжатия от компрессии
Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.
Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.
Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.
Расчет коэффициента сжатия
Ввиду того, что желательно увеличивать степень сжатия до определённого значения, необходимо уметь рассчитывать этот показатель. К тому же это даст возможность избежать детонационных моментов, разрушающих силовой агрегат изнутри в процессе форсирования.
Таким образом, необходимость в измерении этого показателя требуется в таких случаях, как:
- форсировка мотора;
- подгонка под топливо с другим АИ или для метанового топлива с октановым числом 120;
- послеремонтная корректировка.
Турбированные моторы
На турбомоторах расчёт коэффициента сжатия отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае величину, полученную в ходе вычислений, умножают на показатель турбокомпрессора.
Кроме того, при вычислении степени сжатия турбированных моторов учитывается не только давление наддува, но и показатель эффективного сжатия, климатические изменения и многое другое. В данном случае процесс значительно усложняется по сравнению с измерениями на атмосферном двигателе.
Пример подсчета
Вот как выглядит общепринятая расчётная формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь отмечена как «ССД», рабочий объём цилиндра — «РО», а объём камеры сгорания — «ОКС».
Для расчёта «РО» нужно в первую очередь разложить единый объём двигателя или литраж на количество используемых цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.
Для вычисления параметра «ОКС» специалисты пользуются проградуированной в см3 трубкой или пипеткой. Под камерой подразумевается место, где непосредственно происходит возгорание горючего. Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки. Если нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем измерить в мерной посуде или на весах. В этом случае желательно для расчёта использовать не бензин или солярку, а чистую воду, так как её удельный вес более соотносим к объёму в см3.
Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.
Как увеличить степень сжатия двигателя
Если необходимо увеличить данный показатель, используют несколько способов:
- расточка блока и установка поршней с большим диаметром;
- уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.
Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.
Интересно, что лучше всех раскрыли потенциал степени сжатия ДВС японские производители. В то время как европейские автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив изменяемую величину. Но как это возможно без детонационных моментов? Всё оказалось просто. Оказывается, нужно охладить камеру, где происходит возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не обязательно для этого использовать прохладный воздух: достаточно модернизировать систему выпуска.
Приём, давно известный ещё по гоночным движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.
Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.
Однако для реализации данного метода нужно будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру, изменить длину поршневого хода посредством компьютерного вмешательства.
Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.
Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.
Курс на увеличение степени сжатия двигателя наблюдался и в середине 20 века в США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась в пределах 11-13 единиц. Но работали они только на очень качественном, высокооктановом топливе, получаемом путём этилирования. После того как этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя сжатия.
Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.
Дефорсирование ДВС: для чего нужно и как осуществить
Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.
Дефорсирование двигателя, как правило, процедура вынужденная. В том числе это делается для снижения налоговых выплат или в целях увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше работают, меньше подвержены износу. Однако любой такой процесс усложняется законом, чтобы недобросовестные владельцы искусственно не занижали технические данные.
Что касается снижения показателя сжатия на турбированных моторах, то здесь потребуется модернизация системы электрики с датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.
В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.
Таблица: зависимость степени сжатия от октанового числа
| Степень сжатия | Октановое число |
| 5,5-7 | АИ 66-72 |
| 7-7,5 | АИ 72-76 |
| 7,5-8,5 | АИ 76-85 |
| 10 | АИ 92 |
| 10,5-12,5 | АИ 95 |
| 12-14,5 | АИ 98 |
Таблица: популярные двигатели и показатель сжатия
| Двигатели | Степень сжатия |
| BMW M54B30 | 10,2 |
| Mercedes-Benz M112 E32 3.2 л | 10 |
| Ford-Mazda 2,0 л Duratec HE/MZR LF | 10,8 |
| Infiniti VQ37VHR (Nissan) 3.7 л | 11.0 |
| Mitsubishi 4М41 | 17.0 |
| Audi 3.6 FSI | 12.0 |
| ЗМЗ 406 2.3 л. | 8-9,3 |
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Степень сжатия и компрессия
Степень сжатия — величина определяемая геометрическими параметрами двигателя:
1. Объем камеры сгорания — Объем образующийся над поршнем, когда он находится в ВМТ
2. Полный объем цилиндра — Это объем камеры сгорания, когда поршень
находится в НМТ, он равен сумме рабочего объема и объема камеры сгорания.
Степень сжатия = полный объем цилиндра/объем камеры сгорания.
Для движков классики составляет 8.5.
Изменяется при помощи изменения объема камеры сгорания (например прокладкой).
Повышение степени сжатия в карбюраторном двигателе ограничено стойкостью топлива к детонации.
Под компрессией понимают давление в конце такта сжатия. Эта величина и измеряется манометром (компрессиометром).
Как соотносятся степень сжатия и компресия?
Немного теории. Компрессия обычно больше, чем степень сжатия (12 у нового приработанного 2103 двигателя), поскольку сжатие происходит практически адиабатически, и, соответственно, сопровождается изменением (увеличением) температуры смеси. Эта величина была бы равна степени сжатия, если бы сжатие происходило изотермически в герметически замкнутом объеме.
В случае адиабатическиго сжатия максимальное возможное давление в конце такта сжатия («компрессия») оценивается согласно уравнению Пуассона
PVx=const
показатель степени для идеального двухатомного газа составляет x=cp/cv =7/5. Таким образом, для
«классического» движка со степенью сжатия 8.5 максимальное давление составляет примерно 20
атм. Кстати, очень похожая цифра (16-17 атм) получается у двигателя с идеально притертыми
клапанами при измерении компрессии «с маслом», когда кольца (и замки колец) герметизированы
залитым в цилиндр моторным маслом. Недостающие 3-4 атм получаются, например, за счет того,
что начальное давление меньше 1 атм. При измерении компрессии без масла давление составляет 12 атм, за счет вытекания горючей смеси из цилиндра при сжатии через замки колец и в зазор между кольцами и цилиндром, который имеется в силу конструктивных особенностей (например сетка Хона). Поэтому обычно говорят, что «компрессия у исправного двигателя в 1.2 -1.3 раза больше степени сжатия».
Измеряется компрессия следующим образом. На прогретом двигателе выкручиваются все свечи,
обычно одна из свечей устанавливается с центральным электродом на массу, нажимается «газ в пол» и двигатель прокручивается стартером, пока значение на установленном в свечном отверстии
компрессиометре не стабилизируется.
Следует отметить, что «бытовые» компрессиометры, особенно с резиновым наконечником могут иметь значительную погрешность, и, в случае получения низких значений, желательно проверить
результаты измерений другим компрессиометром. Кроме того, стартер должен обеспечивать
достаточную частоту вращения коленчатого вала, для чего двигатель должен быть прогретым, а
аккумуляторная батарея нормально заряжена.
По компрессии можно судить о степени износа цилидро-поршневой группы. Согласно
«Руководству по ремонту …» для наших движков, признаком необходимости капремонта является
компрессия ниже 10 атм или отличие компрессии в различных цилиндрах более 1 атм.
Для того, чтобы определить, в чем проблема, в негреметичности колец или клапанов, компрессию
измеряют повторно, залив в цилиндр 10-30 г моторного масла. Если компрессия останется такой же — то проблема в клапанах, если повысится — то в кольцах.
Желаю всем хорошей компрессии и исправных компрессиометров.
Что такое степень сжатия? (с изображениями)
Степень сжатия относится к объему или количеству топливовоздушной смеси, которое камера сгорания в двигателе внутреннего сгорания может удерживать, когда она пуста и имеет самый большой размер по сравнению с объемом, который она удерживает, когда смесь сжимается до минимально возможного размера. Это соотношение применяется как к двигателям внутреннего сгорания, которые используются в современных автомобилях, так и к редко используемым двигателям внешнего сгорания. Как дизельные, так и газовые двигатели имеют степень сжатия, хотя конструкция дизельного двигателя способствует более высокой степени сжатия.Двигатели с более высокой степенью сжатия обычно считаются лучшими, поскольку они создают большую мощность, сохраняя при этом эффективность.
Дизельные двигатели более эффективны, чем бензиновые, отчасти потому, что они используют высокую степень сжатия для воспламенения топлива.Чтобы рассчитать степень сжатия двигателя, инженер сначала вычислит объем, который цилиндр двигателя может удерживать, когда поршень находится в нижней части цилиндра.За один ход двигателя поршень движется снизу вверх и сжимает топливовоздушную смесь. После определения объема цилиндра, когда поршень опущен и, следовательно, еще не сжат, инженеру необходимо будет вычислить объем, когда поршень поднят и воздушно-топливная смесь сжата. Например, такое соотношение, как 13: 1, означает, что двигатель удерживает в 13 раз больший объем, когда поршень опущен, чем когда он сжат. Количество топливовоздушной смеси не меняется, а просто вдавливается в значительно меньшее пространство, чтобы создать большой взрыв.
Степень сжатия применяется к обоим двигателям внутреннего сгорания, например, к двигателям современных автомобилей.Дизельные двигатели используют сжатие для создания температуры, при которой дизельное топливо воспламеняет топливно-воздушную смесь, которая создает необходимую мощность для движения автомобиля вперед.Высокая степень сжатия в газовых двигателях часто вызывает проблему, известную как детонация. С другой стороны, дизельные двигатели для нормальной работы рассчитаны на высокую степень сжатия. Передаточное число 13: 1 считается высоким для газового двигателя, в то время как дизельный двигатель может варьироваться от 14: 1 до 23: 1 в зависимости от типа.
Высокая степень сжатия приводит к увеличению мощности за счет сжатия воздуха и топлива даже сильнее, чем в среднем, и, таким образом, вызывает более мощный взрыв.Плотная упаковка топливовоздушной смеси способствует лучшему смешиванию воздуха и топлива, а при взрыве большая часть смеси испаряется. Более сильное испарение является признаком более высокого теплового КПД, что означает, что двигатель работает лучше, не используя слишком много дополнительной энергии для получения этой мощности.
Недостатком более высокой степени сжатия в газовом двигателе является возможность детонации или звона в двигателе.Это происходит, когда происходит более сильный взрыв, чем требуется, и поршень слишком быстро перемещается вверх или вниз. В результате возникает громкий стук, и, если его не устранить, продолжительный стук двигателя может привести к необратимому повреждению двигателя. Автомобили, использующие бензин с более высоким октановым числом или датчиком детонации, могут использовать более высокую степень сжатия, но все же не могут соответствовать высокой степени дизельного двигателя.
.Как определить степень сжатия
Если вы создаете новый двигатель и вам нужна метрика, или вам интересно узнать, насколько эффективно ваш автомобиль использует топливо, вы должны уметь рассчитать степень сжатия двигателя. Есть несколько уравнений, необходимых для расчета степени сжатия, если вы делаете это вручную. Сначала они могут показаться сложными, но на самом деле это всего лишь базовая геометрия.
Степень сжатия двигателя измеряет две вещи: соотношение объема газа в цилиндре, когда поршень находится в верхней точке хода (верхняя мертвая точка, или ВМТ), по сравнению с объемом газа, когда поршень находится в верхней мертвой точке. нижняя часть хода (нижняя мертвая точка или НМТ).Проще говоря, степень сжатия — это измерение от сжатого газа до несжатого газа или насколько плотно смесь воздуха и газа помещается в камеру сгорания до того, как она воспламенится свечой зажигания. Чем плотнее прилегает эта смесь, тем лучше она горит и тем больше энергии преобразуется в мощность для двигателя.
Есть два метода, которые вы можете использовать для расчета степени сжатия двигателя. Первая — это версия с ручным управлением, которая требует от вас максимально точных вычислений, а вторая — и, вероятно, самая распространенная — требует манометра, установленного в пустое гнездо свечи зажигания.
Метод 1 из 2: вручную измерить степень сжатия
Этот метод требует очень точных измерений, поэтому важно иметь очень точные инструменты, чистый двигатель и дважды или трижды проверять свою работу. Этот метод идеально подходит для тех, кто строит двигатель и имеет под рукой инструменты, или для тех, у кого двигатель уже разобран. Разборка двигателя для использования этого метода займет очень много времени. Если у вас собран двигатель, прокрутите вниз и используйте метод 2 из 2.
Необходимые материалы
- Калибр
- Калькулятор
- Обезжириватель и чистые тряпки (при необходимости)
- Инструкция производителя (или автомобильная инструкция)
- Микрометр
- Блокнот, ручка и бумага
- Линейка или рулетка (с точностью до миллиметра)
Шаг 1: Очистите двигатель Тщательно очистите цилиндры и поршни двигателя обезжиривателем и чистой тряпкой.
Шаг 2: Найдите размер отверстия .Циферблатный калибр используется для измерения диаметра отверстия или, в данном случае, цилиндра. Сначала определите приблизительный диаметр цилиндра и откалибруйте индикатор внутреннего диаметра с помощью микрометра. Вставьте калибр в цилиндр и несколько раз измерьте отверстие в разных местах цилиндра и запишите результаты измерений. Сложите свои измерения и разделите на то, сколько вы взяли (обычно трех или четырех достаточно), чтобы получить средний диаметр. Разделите это измерение на 2, чтобы получить средний радиус отверстия.
Шаг 3: Рассчитайте размер цилиндра . Используя точную линейку или рулетку, измерьте высоту цилиндра. Измерьте расстояние от самого низа до самого верха, убедившись, что ваша линейка выровнена. Это число вычисляет ход или площадь, которую поршень перемещает вверх или вниз по цилиндру один раз. Для расчета объема цилиндра используйте эту формулу: V = π r 2 h
Шаг 4: Определите объем камеры сгорания .Найдите объем камеры сгорания в руководстве по эксплуатации вашего автомобиля. Объем камеры сгорания измеряется в кубических сантиметрах (CCs) и определяет, сколько вещества необходимо для заполнения отверстия камеры сгорания. Если вы собираете двигатель, обратитесь к руководству производителя. В противном случае обратитесь к руководству по эксплуатации автомобиля.
Шаг 5: Найдите высоту сжатия поршня . В мануале найдите высоту сжатия поршня. Это измерение представляет собой расстояние между центральной линией отверстия под палец и верхом поршня.
Шаг 6: Измерьте объем поршня . Снова в руководстве найдите объем купола или тарелки поршня, также измеренный в кубических сантиметрах. Поршень с положительным значением CC всегда называется «куполом», который выступает над высотой сжатия поршня, а «тарелка» — это отрицательное значение, которое учитывает карманы клапана. Обычно поршень имеет как купол, так и тарелку, а окончательный объем представляет собой сумму обеих характеристик (купол минус тарелка).
Шаг 7: Найдите зазор между поршнем и декой .Рассчитайте зазор между поршнем и декой с помощью следующего расчета: (Диаметр цилиндра [измерение из шага 2] + Диаметр цилиндра × 0,7854 [константа, которая преобразует все в кубические дюймы] × расстояние между поршнем и платформой в верхней мертвой точке [ВМТ]).
Шаг 8: Определите объем прокладки . Измерьте толщину прокладки головки и диаметр отверстия, чтобы определить объем прокладки. Сделайте это почти так же, как и зазор деки (шаг 7): (Диаметр отверстия [измерение из шага 8] + отверстие × 0,7854 × толщина прокладки).
Шаг 9: Рассчитайте степень сжатия . Рассчитайте степень сжатия, решив это уравнение:
Если вы получите число, скажем, 8,75, степень сжатия будет 8,75: 1.
- Совет : Если вы не хотите вычислять числа самостоятельно, в Интернете есть несколько калькуляторов степени сжатия, которые помогут решить эту проблему; кликните сюда.
Метод 2 из 2: используйте манометр
Этот метод идеален для тех, у кого двигатель собран, и кто хочет проверить степень сжатия автомобиля через гнезда свечей зажигания.Вам понадобится помощь друга.
Необходимые материалы
- Манометр
- Ключ для свечей зажигания
- Рабочие перчатки
Шаг 1. Прогрейте двигатель . Дайте двигателю поработать, пока он не прогреется до нормальной температуры. Вы не хотите пробовать это, когда двигатель холодный, потому что вы не получите точных показаний.
Шаг 2: Снимите свечи зажигания . Полностью выключите зажигание и отсоедините одну из свечей зажигания от кабеля, соединяющего ее с распределителем.Откручиваем свечу зажигания.
- Совет Если ваши свечи зажигания грязные, вы можете использовать это как возможность их почистить.
Шаг 3: Вставьте манометр . Вставьте патрубок манометра в отверстие, где крепилась свеча зажигания. Важно, чтобы сопло было полностью вставлено в камеру.
Шаг 4: Проверить цилиндр . Пока вы держите манометр, попросите друга запустить двигатель и разогнать автомобиль примерно на пять секунд, чтобы вы могли получить правильные показания.Выключите двигатель, выньте сопло манометра и установите свечу зажигания с надлежащим крутящим моментом, указанным в руководстве. Повторяйте эти шаги, пока не проверите каждый цилиндр.
Шаг 5: Проведите проверку давления . В каждом цилиндре должно быть одинаковое давление, и они должны совпадать с номером в руководстве.
Шаг 6: Рассчитайте отношение PSI к степени сжатия . Рассчитайте отношение PSI к степени сжатия. Например, если у вас показание манометра около 15, а ваша степень сжатия должна быть 10: 1, тогда ваш PSI должен быть 150 или 15 × 10/1.
.Что такое сжатие в уличном бензиновом двигателе с насосом
Четырехтактный (или четырехтактный) двигатель называется так потому, что в процессе выработки мощности поршень четыре раза проходит вверх и вниз по отверстию. Эти ходы или события представляют собой ход впуска, сжатия, мощности и выхлопа. Как вы можете предположить, эффективное функционирование всех важно для создания двигателя большой мощности. Но из четырех такт сжатия имеет гораздо менее очевидные, но более далеко идущие последствия для оптимальных характеристик двигателя и его последующего успеха в качестве производителя энергии.
Очевидно, что основная идея такта сжатия состоит в том, чтобы сжать всасываемый заряд с максимальной эффективностью и с минимальной утечкой. Мы должны помнить об этом по мере продвижения, потому что есть два основных фактора, связанных со степенью сжатия. Первый — это расчетное соотношение, которое мы будем называть геометрическим или статическим соотношением. Следующим и не менее важным фактором является то, насколько эффективно и в какой степени физические компоненты двигателя сжимают заряд в пространстве сгорания.По сути, то, что мы собираемся здесь рассмотреть, является мерой того, насколько эффективно наша теоретическая степень сжатия переводится в реальное давление в цилиндре перед сгоранием. На это сильно влияют такие факторы, как кольцо и уплотнение клапана, а также события открытия / закрытия клапана.
Возможно, вы слышали термин «коэффициент сжатия» (CR) много раз, но, возможно, не знаете точно, что определяет CR или как он рассчитывается. Если это так, вам нужно обратиться к соседней боковой панели.
Также может показаться, что мы идем здесь по проторенной дорожке, но стоит быстро взглянуть на четыре хода, поскольку каждый из трех других тесно связан с тактом сжатия.Посмотрите на четырехтактную последовательность событий на боковой панели. Каждый из этих ходов должен эффективно выполнять свою задачу, чтобы двигатель мог производить высокую мощность. Начнем с такта впуска. Чем эффективнее цилиндр наполняется на такте впуска, тем больше оборотов может вращать двигатель, прежде чем он «перестанет дышать». Чем лучше впускное наполнение, тем выше давление на такте сжатия. Это, наряду с такой высокой степенью сжатия, которую выдерживает топливо, означает значительно более высокое давление на рабочем такте.
Переходя к самому такту сжатия, мы обнаруживаем, что чем выше степень сжатия, тем выше результирующее давление сгорания. Кроме того, заряд также сгорает быстрее, поэтому для оптимального сгорания требуется меньше времени. В дополнение к этому количество остаточного выхлопа, остающегося в камере в начале такта впуска, меньше. Это уменьшает нежелательное разбавление впуска выхлопными газами. Это наиболее очевидные факторы увеличения мощности, но они ни в коем случае не являются наиболее влиятельными.Есть и другие менее очевидные, но более важные последствия, с которыми мы поговорим позже, когда мы подробно рассмотрим CR и коэффициенты сжатия. Далее идет рабочий ход. Каждый бит мощности, развиваемой двигателем, создается на этом такте. Нам нужно убедиться, что все, что происходит до, во время и после этого инсульта, либо усиливает его, либо, по крайней мере, оказывает на него минимальное негативное влияние. Это означает, в первую очередь, не только герметизацию цилиндра, но также обеспечение того, чтобы он не протекал на протяжении рабочего хода и чтобы его герметизирующая способность не происходила за счет высокого трения кольца о стенку цилиндра.Последний из четырех тактов — выхлоп. Здесь необходимо убедиться, что опорожнение баллона происходит без чрезмерных потерь при перекачке. Любое давление, остающееся в цилиндре, пока поршень движется вверх по отверстию, является отрицательной мощностью. Что касается эффективности такта выпуска, более высокий CR может, как мы увидим позже, привести к значительному снижению насосных потерь.
Термодинамика упрощена Чтобы понять, что увеличение CR приведет к увеличению давления в цилиндре, требуется самое малое количество умственных способностей, что приведет к тому, что выходной крутящий момент во всем диапазоне оборотов будет просто следовать этому примеру.Что менее очевидно, так это то, что увеличение выхода из более высокого CR происходит в основном за счет увеличения теплового КПД. Тепловой КПД — это мера того, насколько эффективно двигатель преобразует тепловыделяющий потенциал топлива при его сжигании с соответствующим количеством воздуха в механическую энергию. Объяснить все это (начиная от сырого топлива и воздуха до выхода на маховик) гораздо сложнее, чем у нас есть пространство (или наклон), с которым нужно иметь дело, но это не имеет значения, поскольку здесь применяется наиболее подходящая и относительно простая часть не является.
Чтобы более четко оценить, как повышается термический КПД, нам нужно рассмотреть, что по сути является противоположной стороной медали для CR. Это коэффициент расширения (ER), который описывает то, что происходит, когда поршень движется вниз по каналу во время рабочего хода, а не то, что происходит, когда он движется вверх во время такта сжатия.
Взгляните на диаграмму спада давления в цилиндре, а затем давайте рассмотрим характеристическую разницу (вычисленную с учетом типичных тепловых потерь) между цилиндром высокого сжатия и цилиндром низкого сжатия.На мгновение представим, что цилиндры 15: 1 и 2: 1 начинаются в ВМТ с давлением 1000 фунтов на квадратный дюйм. По мере того, как поршень каждого цилиндра движется вниз по каналу, падение давления идет по совершенно другой линии. Цилиндр 15: 1 понижает давление намного быстрее, чем его аналог 2: 1, из-за более быстрого изменения объема. Ему нужно лишь немного спуститься вниз по каналу, чтобы первоначальный объем увеличился вдвое, тогда как цилиндр 2: 1 должен пройти до дна канала, чтобы удвоить свой первоначальный объем.В нижней части хода цилиндр 15: 1 опустился примерно на 25 фунтов на квадратный дюйм выше атмосферного, тогда как в цилиндре 2: 1 все еще находится давление примерно 260 фунтов на квадратный дюйм. Проще говоря, цилиндр с высокой степенью сжатия, когда выпускной клапан открывается при НМТ, сбрасывает только 2,5 процента своего исходного давления, тогда как цилиндр 2: 1 сбрасывает 26 процентов!
До этого момента мы предполагали, что оба цилиндра начинаются с давления 1000 фунтов на квадратный дюйм. На самом деле, лучшее, что может создать цилиндр с соотношением 2: 1, составляет около 200 фунтов на квадратный дюйм.Это дает нижнюю кривую (голубая линия) на нашем графике. Цилиндры 2: 1 и 15: 1 потребляют примерно одинаковое количество топлива и воздуха. Но мы можем видеть, что цилиндр 15: 1 имеет большую площадь под кривой на величину, равную площади, заштрихованной зеленым цветом. Добавление зеленой заштрихованной области под кривой дает примерно удвоение выходной мощности при том же количестве топлива и воздуха. Это означает, что при той же теплотворной способности топлива мы удвоили тепловой КПД и, таким образом, получили вдвое больше энергии.
Из того, что мы рассмотрели до сих пор, вы можете понять, почему цилиндр с высокой степенью сжатия обеспечивает лучшую мощность и экономию топлива. Причина не только в том, что заряд сжимается сильнее и результирующее давление сгорания увеличивается, но также потому, что более высокая степень расширения позволяет извлекать больше энергии из исходного заряда высокого давления.
Посмотреть все 30 фотографий
Простое теоретическое усиление мощности Приведенная ниже формула (см. Рис. 1) может использоваться для расчета теоретического прироста мощности, наблюдаемого при повышении CR, и диаграмма избавит вас от усилий по вычислению этого прироста.Эта формула не учитывает неизбежные тепловые потери, поэтому, чтобы учесть это, значение «K» обычно снижают с 1,4 до 1,3. Используя это значение, мы обнаруживаем, что, не изменяя ничего, кроме сжатия, выходной сигнал в значительной степени следует тенденции, продиктованной формулой, примерно до 15: 1. С этого момента химические реакции, вызываемые генерируемыми высокими температурами и давлением, поглощают тепло и возвращают его обратно в цикл только на столь позднем этапе расширения, что не служат никакой полезной цели.Из-за этого многие учебники скажут вам, что попытка использовать CR после 14: 1 — бесплодное занятие. Но это применимо только в том случае, если в двигатель не вносятся другие изменения. Если, как мы сейчас увидим, воспользоваться преимуществами сверхвысокой компрессии, ситуация изменится полностью.
Динамическое сжатие В реальном мире мы обычно обнаруживаем, что теоретический рост обычно не наблюдается на практике из-за потерь, которые мы проигнорировали, чтобы упростить и без того сложную теорию.Для высокопроизводительных двигателей часть того, что упускается из виду в простом уравнении теплового КПД, дает результаты намного лучше, чем предполагалось. Другими словами, все цифры на графике (рис. 2) находятся на нижней стороне. Например, слегка модифицированный малоблочный Chevy 9: 1 350 будет развивать крутящий момент около 380 фунт-фут. Основываясь исключительно на нашей формуле термического КПД, повышение степени сжатия до 12: 1 должно увеличить этот показатель до 397 фунт-футов. На практике это число обычно превышается, и чем больше задействованный кулачок, тем больше выигрыш.Чтобы понять, как можно большего, давайте посмотрим, как кулачок влияет на ситуацию. При более низких оборотах мы обнаруживаем, что статический CR никогда не реализуется, потому что наша формула теплового КПД предполагает, что впускной клапан закрывается точно при НМТ до начала такта сжатия. На самом деле этого не происходит.
При низких оборотах скорость порта и волны давления слишком слабы, чтобы вызвать какой-либо удар цилиндра. Добавьте к этому тот факт, что даже короткий кулачок примерно на 250 градусов по времени вне седла не закроет клапан примерно до 50 градусов после НМТ.На рис. 3 показана типичная степень движения поршня назад по каналу перед закрытием впускного отверстия для трех кулачков. Из-за задержки закрытия впуска мы обнаруживаем, что в течение периода, когда поршень движется вверх по каналу от НМТ до закрытия клапана, значительное количество всасываемого воздуха на низких оборотах в минуту возвращается во впускной коллектор. Это означает, что объемный КПД (эффективность дыхания) и, следовательно, эффективный рабочий объем цилиндра намного ниже 100 процентов. Другими словами, цилиндр объемом 100 см3 со статическим CR 10: 1 может удерживать только 75 см3 воздуха.Это означает, что динамический CR, составляющий примерно 8,5: 1, упал значительно ниже статического CR 10: 1. Чем больше кулачок, тем сильнее проявляется этот эффект.
Пример здесь покажет, насколько сильно влияет задержка закрытия впуска на динамический CR. Давайте возьмем три кулачка разной продолжительности, все из которых имеют угол осевой линии лепестка (LCA) 108 градусов и все рассчитаны на 4 градуса вперед. Наряду с этим, допустим, наш статический CR составляет 12: 1. С кулачком продолжительности 250 градусов динамический CR будет в пределах от средних до низких 11 с.Для кулачка длительностью около 275 градусов динамический CR упадет примерно до середины 10 секунд. Из-за геометрии кривошипа поршень / шатун поршень имеет тенденцию двигаться намного медленнее вокруг НМТ. Это работает в нашу пользу для более коротких кулачков, но поршень быстро выходит из этого оптимального положения, поэтому, как только мы преодолеем 280 градусов, нам лучше иметь приличный динамический CR. Чтобы дать вам представление о том, в какой степени это происходит, мы находим, что в нашем примере кулачок для гонок на 300 градусов, используемый со статическим CR 12: 1, имеет динамический CR всего около 8.3: 1. Этот фрагмент информации должен показать важность наличия достаточного CR для большой камеры. В противном случае, возможно, результаты динамометрического теста на рис. 4 верны. Это некоторые тесты, которые я провел с 2-литровыми кулачками Ford Pinto, которые я разработал для Kent Cams в Англии несколько лет назад. Я понимаю, что очень немногие из вас водят Pintos, но двухлитровая версия этого двигателя из-за своей геометрии реагирует примерно так же, как типичный малоблочный Chevy, поэтому результаты применимы напрямую. Из этих результатов мы видим, что с CR 9: 1 был получен кулачок с углом обзора 260 градусов (серые кривые на рис.4) неплохие результаты от низких оборотов на высоких оборотах. Как и ожидалось, крутящий момент начал падать к моменту приближения к 5000 об / мин, а мощность достигла почти 140 л.с. Затем этот кулачок был заменен на 285-градусный кулачок. На том же CR 9: 1 (синие кривые на рис. 4) этот больший кулачок упал на 38 фунт-фут крутящего момента при 1750 об / мин. Это составляет 32 процента сокращения. Дополнительная продолжительность не окупалась до 3750 оборотов в минуту. С этого момента больший кулачок окупился, увеличив максимальный крутящий момент на 4 фунт-фут и почти на 26 л.с.На этом этапе головка была фрезерована, чтобы довести CR почти до 12: 1. Результаты этого перемещения показаны зелеными кривыми на рис. 4. Как вы можете видеть, это увеличение сжатия компенсировало почти весь потерянный крутящий момент на низкой скорости. Вдобавок ко всему, комбинация большой кулачок / высокая степень сжатия дала увеличение на 15 фунт-футов и 33 л.с. Увеличивая этот результат до 350-дюймового двигателя, цифры больше похожи на дополнительные 40 фунт-фут и 95 л.с. Так реалистичны ли эти цифры? Конечно, есть. Я видел прирост более чем на 100 л.с. по сравнению с 355-дюймовым малоблочным Chevy с увеличенным на 25 градусов продолжительностью кулачка, на 100 тысячных большей подъемной силой и на 2 балла большей компрессией.
Большой рост, наблюдаемый при сочетании большего сжатия и кулачка, легче понять, когда мы вернемся к основам. Если вы посмотрите на цифры на диаграмме (рис. 3), вы увидите, что наибольший выигрыш от увеличения сжатия происходит при переходе от низкого уровня сжатия к более высокому. Переход с 8: 1 до 10: 1 дает теоретические 3,7 процента, тогда как повышение степени сжатия на те же два пункта с 11: 1 до 13: 1 дает только 2,5 процента. Это означает, что чем больше размер кулачка, тем он более чувствителен к увеличению CR, особенно в нижнем диапазоне оборотов.
Давление сжатия Сейчас некоторые из вас задаются вопросом, имеет ли двигатель, который вы только что построили и установили, достаточное сжатие для выбранного вами кулачка. Предполагая, что ваш двигатель имеет хорошее кольцо и уплотнение клапана, простой способ определить, так ли это, — проверить давление сжатия в цилиндре. С помощью пакета колец и процедуры подготовки отверстия, которые я использую, мои собственные двигатели почти всегда имеют почти нулевую утечку, и мы рассмотрим, как этого добиться позже. Если цилиндры герметичны, я ищу 190 фунтов на квадратный дюйм в качестве нижнего предела с желательно 200 фунтов на квадратный дюйм в качестве цели при использовании топлива с октановым числом 93.Для каждого октанового числа менее 93 давление сжатия должно быть примерно на 5 фунтов на квадратный дюйм меньше, чтобы избежать детонации при нормальных обстоятельствах.
Каким бы хорошим ни был тест на сжатие, чтобы определить, сопровождается ли используемый вами кулачок соответствующими компрессионными петлями, в определенной степени, в зависимости от того, насколько хорошо уплотняются кольца и клапаны. Лучший способ установить это — провести тест на утечку. Для этого потребуется прибор для проверки герметичности и источник сжатого воздуха под давлением около 100-110 фунтов на квадратный дюйм. Вопрос о том, насколько допустима утечка, открыт для обсуждения.С кольцами и подготовкой отверстий, которые я использую, я ожидаю, что не больше 1 процента, а что-то близкое к нулю — это то, что я обычно вижу. Но средний уличный двигатель редко бывает настолько хорош, поэтому мы поговорим о более практичных цифрах. Если ваши баллоны проверяются на 7 процентов или меньше, тогда все в порядке. С таким цилиндром, позвольте манометру компрессии пройти 8 насосов и использовать это как показание, чтобы определить вашу совместимость кулачка / сжатия. Если кольцевое уплотнение таково, что показывает 10-процентную утечку, то это граница для высокопроизводительного двигателя, и показания сжатия будут искусственно заниженными.Если утечка составляет 15 процентов или более, то, возможно, вам следует рассмотреть новые кольца как средство повышения производительности, а также как восстановление.
Соотношение впускных и выпускных клапанов Управляющие факторы, влияющие на наилучшее соотношение впускных и выпускных клапанов для максимальной производительности (и при этом предполагается, что используется все доступное пространство для клапанов), были предметом многочисленных споров, который в большинстве случаев часть, не оставила читателя поумневшим. Часто разрекламированное правило 75 процентов обычно принимается без лишних вопросов.На самом деле значение далеко не фиксированное. Оптимальное соотношение впуска и выпуска может варьироваться от 0,75: 1 (для двигателя с наддувом с низким CR) до 1: 0,6 (для безнаддувного двигателя с очень высокой степенью сжатия). Здесь обычно не принимают во внимание то, что CR по большей части является контролирующим фактором. Поскольку цилиндр с высокой степенью сжатия передает энергию на кривошип намного раньше во время рабочего такта, мы можем воспользоваться некоторыми преимуществами. Наиболее очевидным является то, что выпускной клапан можно открыть раньше и дольше держать открытым.Это может быть сделано для улучшения выходной мощности на высоких оборотах без значительного влияния на выходную мощность двигателя на низких оборотах. Правило здесь состоит в том, что чем выше степень сжатия, тем меньше требуется выпускной клапан для выполнения работы. Это, в свою очередь, оставляет больше места для большего потребления.
Когда мы вынуждены использовать более низкую компрессию, например, в случае двигателя с наддувом, тогда выпускной клапан необходимо оставить на седле до более поздних стадий рабочего такта, чтобы не сбрасывать излишне полезное давление в цилиндре.Поскольку он должен открываться позже, остается меньше времени для продувки выхлопных газов, поэтому необходимо использовать клапан большего размера за счет впуска. Это правило 75-процентного расхода выхлопных газов, упомянутое ранее, работает для двигателей в диапазоне от 10 до 13: 1, но к тому времени, когда мы дойдем до 16: 1 с плюсом, оптимально будет иметь поток выхлопных газов около 65 процентов от впускного.
Просмотреть все 30 фото
Здесь показан типичный тестер сжатия. При прогретом двигателе немного откройте дроссельную заслонку и проверните двигатель. Продолжайте проворачивать и проверять, какое давление зарегистрировано на восьмом такте сжатия.Если вы вынуждены придерживаться обычных головок, сделанных по образцу пластин оригинального образца, тогда Chevys с большим блоком могут быть чем-то вроде закона сами по себе. По сравнению с обычным двигателем с параллельными клапанами камера несколько меньше обычного. Chevy с большим блоком продаж потерпит значительное повышение короны до того, как компромисс начнет сводить на нет потенциальную прибыль. Главное — убедиться, что приподнятая часть короны не слишком плотно закрывает свечу зажигания. Если достижение CR приводит к чрезмерно навязчивой головке, есть альтернативное решение.Вместо того, чтобы пытаться уменьшить емкость камеры сгорания, попробуйте увеличить емкость цилиндра. Это сделает либо увеличение диаметра отверстия, либо увеличение хода. Например, если вы хотели достичь, скажем, 10,5: 1 с 454, для этого потребуется максимальная работа по фрезерованию головки плюс проникновение поршня, приближающееся к полдюйма. Работа по фрезерованию головки будет означать много, возможно, дорогостоящую обработку коллектора для повторного выравнивания портов. Более простым и минимально более дорогостоящим способом было бы установить одну из стальных литых Scat 4.Строкеры 25 дюймов. Это в сочетании со 100-тысячным внутренним диаметром не только даст 505 дюймов, но также позволит достичь соотношения 10,5: 1 с очень приемлемой высотой коронки около 150 тысячных. Такой же прием можно успешно применить к мелким блокам. Использование недорогого строкера в 350 Chevy не только дает дополнительные кубики, но также позволяет достичь CR 10,5: 1 с поршнями с плоским верхом и обычными немолотыми головками 68cc.
Просмотреть все 30 фото
Давайте немного поговорим о закалке.Охлаждающий зазор — это расстояние между декой поршня и торцом головки цилиндров в ВМТ. Свободные (широкие) зазоры для гашения могут фактически способствовать детонации. Худшее, что нужно иметь для большинства обычных V-образных восьмицилиндровых двигателей с клиновидной головкой, — это примерно от 100 до 125 тысячных. Уменьшение этого зазора (за счет фрезерования блока или более высокого поршня) может существенно предотвратить детонацию. То, насколько плотно может быть произведена закалка, зависит от того, насколько гибкими являются блок и нижний конец в сборе и какое тепловое расширение необходимо учитывать.С хорошими стальными стержнями и кривошипом чистый зазор обычно можно уменьшить до 30 тысячных. С типичной прокладкой FelPro толщиной около 40 тысячных это будет означать, что поршни выйдут из блока на 10 тысячных.
Если гашение так хорошо подавляет детонацию и позволяет использовать более высокие CR для большей мощности и увеличения пробега, почему завод не делает его жестким с самого начала? Вкратце ответ — выбросы. Сильное охлаждение на слишком большой площади (например, наблюдаемое в типичных небольших моделях Chevy или Ford до 1997 года) приводит к увеличению выбросов несгоревших углеводородов.Однако закалка является ключевым элементом быстрого горения, и это само по себе может привести к успешному использованию более высокого CR, как мы видим в двигателях семейства LS1 / 6. Для современных двигателей тенденция заключалась в использовании более открытой камеры с меньшей площадью закалки, но чтобы сделать закалочное действие более активным путем ее затягивания по мере необходимости. Хотя высокая степень сжатия увеличивает расход топлива, она может привести к резкому увеличению содержания оксидов азота, что является основной причиной смога. Это компенсируется тем фактом, что, поскольку камера быстрого горения требует меньшего опережения зажигания, величина давления в цилиндре и температура, генерируемые для развития определенной мощности, меньше, поэтому в этом отношении снижается содержание оксидов азота.В целом, оптимизация зазора закалки и площади закалки (в процентах от диаметра отверстия) — это что-то вроде натянутой проволоки, выполняемой на уровне оригинального оборудования, и вы можете спросить, стоит ли нам беспокоиться об этом для наших уличных машин? Ответ — нет.» Некоторые котлы с высоким расходом и хорошо откалиброванная система подачи топлива будут контролировать выбросы.
Просмотреть все 30 фотографий
Сдерживание давления Высокая степень сжатия предъявляет повышенные требования к уплотнению цилиндра. Чем выше давление, тем больше внимания нужно уделять деталям.Первая часть уравнения для герметизации цилиндра — убедиться, что ваша механическая мастерская оттачивает блок правильно. Это должно включать использование плиты настила для имитации деформации, вызванной напряжениями затяжки болтов головки. Затем убедитесь, что ваша механическая мастерская знает тип используемого материала поршневых колец, чтобы они могли нанести соответствующую отделку. Затем хорошенько протрите отверстия новой подушечкой Scotch Brite и большим количеством очистителя двигателя Gunk. После этого протрите (жесткой щеткой) отверстия сильным жидким моющим средством и промойте их горячей водой.Убедившись, что они чистые и без песка, опустите блок из шланга и опрыскайте обработанные поверхности WD-40, чтобы предотвратить ржавчину.
Теперь, когда отверстия готовы, давайте посмотрим на кольца, которые будут на них ездить. С современными маслами износ колец уже не является проблемой, которая была раньше. В этом случае используйте самые тонкие практичные кольца. Многие поршни V-8 старого образца все еще производятся в широких масштабах. Большинство этих поршней по-прежнему имеют компрессионные кольца диаметром 5/64 дюйма. Нет веских причин использовать эти более широкие кольца.Кольца шириной 1/16 дюйма или даже 43 тысячных — это то, что вам нужно. Имейте в виду, что чем шире кольцевые зазоры, тем больше потеря давления в цилиндре и, следовательно, мощности. Добавьте к этому увеличение прорыва в картер двигателя. Это быстрее загрязняет масло и требует более частой замены масла. Если вы собираетесь использовать обычные кольца, то зазоры между ними должны быть минимальными, рекомендованными производителем. Если вы можете себе это позволить, выбирайте кольца Total Seal, поскольку они действительно обеспечивают почти 100-процентную герметичность и, что не менее важно, сохраняют ее в течение значительно более длительного периода, чем даже самые лучшие кольца обычного типа.
Просмотреть все 30 фотографий
Возможно, вы слышали термин «перенос газа», но не совсем понимаете, что он означает. Это метод поддержки верхнего кольца давлением камеры сгорания, чтобы кольцо более плотно прижималось к каналу. Есть два типа газовых каналов: те, которые проходят вниз через головку поршня, и те, которые расположены радиально, пересекая верхнюю поверхность канавки верхнего кольца. Газовые порты радиального типа обычны для двигателей для гонок на длинные дистанции.Текущая тенденция заключается в использовании радиальных отверстий для подачи газа, поскольку они кажутся столь же эффективными, но не чрезмерно ускоряют износ колец и отверстий в ВМТ. С хорошей гоночной смесью или уличной синтетикой износ цилиндра в ВМТ не является проблемой. Я только что завершил 1000-мильный тест на выносливость с новым гоночным маслом Joe Gibbs Racing, и кольца поршней JE с газовыми портами в моем двигателе Cup Car изношены менее чем на три десятых тысячной доли от поверхности. Такой износ привел к тому, что зазор между кольцами увеличился всего на одну тысячную.Анализ масла в точке 100 и 1000 миль показал, что большая часть износа пришлась на первые 100 миль. Это означает, что комбинация кольца и масла может быть пригодна для пробега до 10 000 миль.
Просмотреть все 30 фотографий
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА СЖАТИЯ CR — это отношение объема над поршнем в НМТ (слева) по сравнению с объемом в ВМТ (справа). Формула CR: (V + C) / C. В этой формуле V — это рабочий объем цилиндра (то есть рабочий объем цилиндра в кубических сантиметрах или кубических сантиметрах), а C — общий объем камеры сгорания (в кубических сантиметрах), когда поршень находится в ВМТ.
Пример может выглядеть так: скажем, объем над поршнем в НМТ составляет 110 куб. См, причем 100 куб. См — это рабочий объем (V) из-за движения поршня, а 10 куб. Когда содержимое цилиндра в НМТ сжимается в 10 куб. См, оставшихся в ВМТ, заряд занимает 1/11 часть пространства, поэтому CR составляет 11: 1. Чтобы узнать, какой общий кубический сантиметр камеры сгорания требуется для CR, вы хотите вычесть 1 из этого отношения и разделить результат на рабочий объем цилиндра.
Просмотреть все 30 фото
Головки CC’ing Здесь можно увидеть самое необходимое для CC-головок (и поршней, если у них есть тарелка). Сюда входит бюретка объемом 100 куб. См и подставка для нее. Также требуется пластина из оргстекла, которая для большинства отечественных головок V-8 потребует некоторых вырезов для бровей для очистки клапанов. У COMP Cams есть недорогой комплект со всеми необходимыми деталями. Для получения легко видимой измерительной жидкости используйте жидкость для омывателя лобового стекла. Содержащийся в нем спирт уменьшает ржавчину и помогает снизить поверхностное натяжение.
ФУНКЦИЯ ЧЕТЫРЕХТАКТНЫХ ДВИГАТЕЛЕЙ Слева направо показаны такты впуска, сжатия, мощности и выпуска четырехтактного или четырехтактного двигателя. На такте всасывания свежий воздух / топливный заряд проходит через открытый впускной клапан, когда поршень движется вниз по каналу. Примерно в нижней мертвой точке (НМТ) впуск закрывается, и движение поршня вверх по отверстию запускает такт сжатия. В какой-то момент, непосредственно перед тем, как поршень достигнет верхней точки такта сжатия в верхней мертвой точке (ВМТ), свеча зажигания загорится.В этот момент происходит небольшая задержка сгорания, прежде чем оно действительно начнется (отсюда и сгорание незадолго до ВМТ). Когда поршень проходит через ВМТ, в результате сгорания происходит сгорание заряда, а выделяемое тепло вызывает быстрое повышение давления в содержимом цилиндра. Это давление толкает поршень вниз по отверстию во время рабочего хода. Когда поршень приближается к концу рабочего хода, выпускной клапан начинает открываться. Сначала газы, все еще находящиеся под относительно высоким давлением, выходят наружу через постепенно открывающийся выпускной клапан.К тому времени, как поршень начинает двигаться вверх по отверстию, выпускной клапан уже далеко отходит от своего седла. После этого первоначального «продувки» цилиндра движение поршня вверх по каналу выталкивает оставшийся израсходованный заряд через выпускной клапан. В верхней части такта выпуска впускное отверстие начинает открываться, и вся последовательность событий начинается заново.
Все 30 фото
Все 30 фото
.Что такое сжатие?
Если мы когда-нибудь потратим время на то, чтобы взглянуть на форму волны нашей аудиозаписи, то заметим, что она состоит из нескольких пиков и впадин разного размера — вот почему ему дано такое название. Независимо от того, записали ли мы нежный вокал на микрофон RØDE или громкие, громкие барабаны, всегда будет естественный диапазон громкости, от самого тихого записанного звука до самого громкого. Это известно как динамический диапазон.
«
»
Компрессия дает нам больше контроля над динамическим диапазоном наших треков, что может облегчить микширование вместе с другими частями.
Динамический диапазон — это то, что делает записанный звук естественным и реалистичным. Если нам удастся записать точную копию исходного источника звука, это, конечно, очень хорошо и заслуживает похвалы. Однако иногда мы можем пожелать, чтобы наш трек был немного более последовательным, с меньшим количеством изменений громкости. Например, многодорожечный сеанс гораздо сложнее микшировать, когда каждый из этих треков имеет колеблющуюся громкость. Кроме того, за презентацией будет гораздо труднее следить, возможно, до такой степени, что она отвлечет внимание, если громкость голоса говорящего периодически меняется.
The Great Compression
Чтобы решить эту проблему и помочь нам добиться более согласованной по громкости записи звука, необходимо применить форму динамической обработки, известную как «сжатие». Проще говоря, сжатие уменьшает динамический диапазон звуковой дорожки, понижая уровень громкости самых громких частей, ближе к более мягким сегментам дорожки. Это приведет к тому, что дорожка будет иметь меньшее количество вариаций громкости, от микрофона до конечного продукта.
На этом этапе мы можем увеличить общую громкость только что сжатого трека, что создаст впечатление, что более мягкие части записи были увеличены по громкости — соответствуя более громким частям.
Компрессия дает нам больший контроль над динамическим диапазоном наших треков, что может облегчить микширование вместе с другими произведениями. Кроме того, это дает нам больше общей согласованности в записи.
Как работает сжатие?
Теперь, когда мы знаем, что делает сжатие, давайте посмотрим, как оно работает. Например, как компрессор «знает», когда тихие звуки начинаются, а громкие заканчиваются (и наоборот)? Возможно, мы не хотим сжимать весь трек, а только его отдельные части.Как этого добиться? Читай дальше что бы узнать!
Следующие параметры обычно присутствуют в большинстве аудиокомпрессоров, что дает полный контроль над тем, что мы сжимаем и насколько мы сжимаем:
Порог
Порог устанавливает уровень децибел (дБ), при котором компрессор срабатывает и начинает сокращать динамический диапазон. Чтобы проиллюстрировать, если бы мы установили порог на -15 дБ, компрессор не включился бы, пока аудиосигнал не достигнет и не превысит это число.Как только этот уровень будет превышен, сигнал будет сжат на определенную величину.
Соотношение
Когда мы говорим о «соотношении», мы имеем в виду, насколько мы хотим, чтобы звук был сжат выше порогового уровня. Чем выше коэффициент, тем сильнее будет сжатие. Давайте посмотрим на несколько соотношений ядер:
- Наименьшее возможное соотношение — 1: 1, что означает, что никакого сжатия не применяется.
- Соотношение 2: 1 означает, что на каждые 2 дБ сигнал превышает пороговое значение, компрессор будет выдавать только 1 дБ на выходе.
- Соотношение 4: 1 означает то же самое, только в более высоких терминах. Следовательно, на каждые 4 дБ, когда сигнал превышает пороговое значение, компрессор будет давать выходной сигнал 1 дБ.
Атака
«Атака» относится к количеству времени, которое требуется компрессору, чтобы отреагировать на аудиосигнал и перейти к максимальному коэффициенту после превышения порога. Атака обычно измеряется в миллисекундах (мс).
Если мы установим быструю атаку, мы гарантируем, что любые всплески или переходные процессы сигнала будут полностью сжаты в одно мгновение.Более медленная атака позволит пройти через эти всплески и переходные процессы, но последующий звук будет сжат.
«
»
Мы можем использовать сжатие как корректирующее или творческое средство.
Release
«Release» — это время, которое требуется компрессору для остановки после того, как аудиосигнал упал ниже порогового значения. Быстрое высвобождение — это не то, к чему мы должны стремиться, так как это может звучать совершенно неестественно — аудиосигнал может очень быстро пропадать.Поэтому более медленное, постепенное уменьшение, возможно, будет более приятным для слуха.
Дополнительное усиление
После сжатия аудиосигнала общая громкость дорожки будет ниже. Для повышения общего уровня трека, чтобы он естественным образом сидел в миксе, применяется усиление макияжа. В конечном итоге запись будет иметь меньший динамический диапазон и более стабильную громкость.
Теперь, когда мы изучили базовое понимание общих правил сжатия, мы можем применить их к нашим записям как два разных инструмента.Мы можем использовать компрессию для коррекции (например, для уменьшения колебаний громкости) или для творчества (чтобы сблизить все уровни ударной установки, возможно).
Как и в случае с большинством аудиозаписей, нет правильных или неправильных методов, есть только рекомендации. Почему бы не поэкспериментировать со своими настройками, проявить творческий подход и использовать метод проб и ошибок, чтобы найти звук, который лучше всего подходит для вас и вашего проекта?
.python 3.x — Самый быстрый способ измерить степень сжатия строки в Python3
Переполнение стека- Около
- Продукты
- Для команд
- Переполнение стека Общественные вопросы и ответы
- Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
Сжатие данных / оценка эффективности сжатия — Викиучебники, открытые книги для открытого мира
Из Wikibooks, открытые книги для открытого мира
Перейти к навигации Перейти к поиску| Найдите Сжатие данных / оценка эффективности сжатия в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием. Другие причины, по которым это сообщение может отображаться:
|
Изменяется ли степень сжатия при работе двигателя?
Увеличение степени сжатия
Объем камеры сгорания влияет на конечную степень сжатия двигателя.
Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.
Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.
Объем камеры сгорания состоит из суммы 3 объемов:
1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.
Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?
Степень сжатия можно повысить двумя самыми эффективными способами:
1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.
2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.
Примеры прибавок в процентах:
с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %
Примеры перехода на более высокооктановое топливо при повышении (СС)
менее 8 — 76 бензин
от 8 до 9 — 80 бензин
от 9 до 10.5 — 92 бензин
от 10 до 12.5 — 95 бензин
от 12 до 14.5 — 98 бензин
от 13.5 до 16 — 102 бензин
от 15.5 до 18 — 109 бензин
Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.
Что такое степень сжатия двигателя
Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией.
Что такое степень сжатия и чем она отличается от компрессии
Иллюстрация степени сжатия 10:1
Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.
Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.
Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см 2 , а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.
На что влияет степень сжатия двигателя
Нормальное сгорание смеси (вверху) и детонация (внизу)
Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.
У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.
Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.
Читайте также: Какая компрессия должна быть в двигателе.
Как рассчитывают степень сжатия двигателя
Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.
Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:
- CR=(V+C)/C,
- где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.
Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.
На практике значение степени сжатия двигателя обычно определяется в следующих случаях:
- При форсировании силового агрегата;
- При его приспособлении для функционирования с топливом другого октанового числа;
- После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.
Как изменить степень сжатия двигателя
У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.
Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла.
Видео на тему
Зрим в корень: сказки про компрессию двигателя
Компрессия – это вульгаризм. Правильно – давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива – для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.
По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?
Компрессия и степень сжатия – одно и то же: сказка первая
Нет, не так! Компрессия – это давление в цилиндре, степень сжатия – безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия – это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия – это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии – нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.
«Компрессия» – то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.
1 no copyright
Поднял компрессию – увеличил мощность: сказка вторая
Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.
Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором – на 9%. Здорово!
А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, – на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2-3%, причем в зоне малых и средних оборотов. А на высоких – никакого эффекта.
Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик – и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, – стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.
Способ второй – уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.
Сделали. Для нового мотора – всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами – 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.
Компрессия резко выросла, а мощность – нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.
2 no copyright
Нет компрессии – сразу на капиталку: сказка третья
Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?
Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это – тема отдельной статьи.
Чем выше компрессия, тем лучше: сказка четвертая
Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.
Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.
Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя – базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.
3 no copyright
И совсем не сказка.
Так на что же влияет компрессия? На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.
В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.
Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.
Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.
Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой – наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» – дело в целом бесперспективное.
Недостатки высокой степени сжатия
Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежное 11. двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, гак как цилиндр «упаковывается» смесью так как если бы работал невидимый нагнеатель.
Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см 3 , то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличим, степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общин объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя. Пример: типичный двигатель «Шевроле» Grand National 350 может использовать степень сжатия 12,5:1. Он также может иметь VE около 115%; таким образом,
при оборотах динамическая степень сжатия будет заметно выше 12,5:1. Если увеличить статическую степень сжатия до 13,5:1 путем уменьшения объема камеры сгорания, то в объем цилиндра/камеры сгорания поступит меньше рабочей смеси, VE уменьшится и мощность, скорее всего, снизится.
Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см 3 . Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, го объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, (т. е. 1639 см 3 «выбранного» объема плюс 1639 см 3 камеры сгорания равны 3278 см 3 общего объема цилиндра). Даже при 3278 см 3 во всем цилиндре двигатель может втянуть только 1639 см 3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненным объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см 3 будут заполнены выхлопными газами от последнего цикла сгорания.
Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см 3 топливовоздушной смеси в цилиндр вместо исходных 1639 см 3 , которые двигатель мог «вдохнуть» в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278 см 3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со 1639 см 3 до 1092 см 3 ? Когда поршень находится в конце такта впуска, общин объем цилиндра будет теперь только 2731 см 3 . Если не изменять давление наддува, то оно может «вдавить» только 2731 см 3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см 3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см 3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из 17% потерь мощности.
Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы
для увеличения мощности двигателей.
Если на воображаемый двигатель объемом 1639 см 3 со степенью сжатии 2,0:1,
который втягивает 1639 см 3 топливовоздучпюй смеси (в верху) установить наддув, то он теперь будет заполняться 3278 см 3 смеси (в середине). Если степень сжатия увеличивается до 3,0:1 путем уменьшения объема камеры сгорания, то в двигатель будет поступать только 2731 см 3 топливовоздушной смеси. Результатом будет уменьшение мощности (внизу), т. к. объемная эффективность уменьшилась на 17% 1 — 1639 см 3 ; 2 — 1092 см 3 .
Степень сжатия и топливо
Хотя верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.
Лучшим путем увеличения степени сжатия является увеличение диаметра отверстия цилиндра путем расточки блока цилиндров или выбором блока с отверстиями большего диаметра. Эта модернизация может увеличить степень сжатия, путем давления рабочего объема, уменьшая необходимость использования поршней с большими «куполами » или уменьшения объема камер
Более высокая степень сжатия, конечно, требует использования
Сборка двигателя за . — Тиу.ру!
Техцентр оборудован специальным инструментом, моторный цех оснащен станками и крепежом, где происходит Сборка двигателя дизельного типа. Специалисты автосервиса хорошо разбираются в автомобильных двигателях обладают знанием физики металлов, уплотнений, прокладок и информацией крутящих моментов затяжки каждой марки.
Несмотря на схожесть конструкции бензинового и дизельного двигателя, процесс сборки покажет существенные отличия.
Дизель имеет большую степень сжатия, чем двс бензинового типа. По этой причине самые основные детали шатуны, коленчатый вал, гильзы, поршни более усилены.
Важным моментом при сборке двигателя стоит отметить, что в процессе тяжело нагруженный крепеж и уплотнения применяется только один раз. Подготовка рабочего места, проверка наличия всех необходимых инструментов, герметика, смазки, запчастей. Проверка наличия дефектов у деталей различной величины, их размер и допуск. Все это особенно важно, если предстоит сборка двигателя спецтехники. После демонтажа детали требуется досконально промыть и сжатым воздухом продуть закрытые полости. Все работы по производству выполняются в чистом помещении.
Порядок сборки грузовых двигателей имеет свою определенность.
1) Коленчатый вал – в отсутствии трещин и раковин убеждаемся при помощи магнитного дефектоскопа, проверка на осевое биение.
2) Поршни и шатуны — если необходимо, то нужно подогнать. Следует не забывать, что разница в весе каждого поршня составляет 4 грамма в пределах двигателя.
У шатунов эта разница составляет 8 г. Особое внимание уделяется соединению шатуна с поршнем. Требуется либо совмещать по меткам поршня и шатуна. Либо, если метки отсутствуют на шатунах, ориентируемся тогда на замки вкладышей. Если спереди, то справа. В случае если поршень с плавающим пальцем, то в процессе сборки прежде потребуется нагревание верхних головок шатуна до 270-300 град.
3) Толщина новой прокладки в процессе сборки цилиндро-поршневой группы. Она должна быть больше высоты выхода поршней над плоскостью блока не менее 0,5 мм. Если при затяжке прокладка просядет на 0,25 0,3 мм на работе бензинового двигателя это не скажется, а на работе дизеля это отразится.
4) Проверка компрессии поршневой группы, головки блока, прокладки и распределительного механизма при помощи специального прибора — компрессометра, отключение подачи топлива, чистка и установка — топливные трубки, форсунки.
5) Установка: Снятие кабелей, шлангов Тормоза-замедлитель, Ретардер, Интардер, питания генератора, компрессора кондиционера, рулевого насоса, коробки передач (КПП), отключение питания электропроводки передней части кабины, замена масла
6) Установка навесных деталей: стартера, генератора, топливного насоса, вентилятора, водяного насоса, насоса гидроусилителя, топливный насос высокого давления (тнвд) и т.д., компонентов на восстановленный двигатель, диагностика и чистка деталей.
При соблюдении правил в процессе дальнейшей сборки дизельного двигателя, с запуском и дальнейшей эксплуатации не будет никаких проблем. Если же были допущены какие-либо ошибки, то их придется исправлять.
Оформите заявку онлайн или звоните по контактным телефонам. Всегда рады сотрудничеству. Обращайтесь!
Почему у дизельных двигателей более высокая степень сжатия? Тайна не раскрыта
Автор Цукаса Азума
Последнее обновление 4 февраля 2021 г.
0 комментариев
Коэффициент сгорания является важным фактором, определяющим поведение любого двигателя. Это оценка способности цилиндра двигателя сжать топливо и воздух. Различные двигатели, такие как бензиновый и дизельный, имеют разную степень сжатия. Однако передаточное число дизельного двигателя сравнительно выше. Почему у дизельных двигателей более высокая степень сжатия ? Этот вопрос должен поразить вас, и вы получите ответ на него прямо сейчас.
Итак, давайте узнаем вместе!
Почему у дизельных двигателей более высокая степень сжатия — основные причины проверить!Ниже мы перечислили основные причины, по которым дизельный двигатель имеет более высокую степень сжатия, чем любой другой двигатель. Так что проверьте это!
1. В зависимости от приложения Дизельные двигателиидеально подходят для тяжелых транспортных средств, таких как локомотивы, корабли, грузовики и другие гигантские автомобили.Следовательно, он имеет более высокий крутящий момент. Чтобы включить такой большой автомобиль, требуется большое количество энергии, что в конечном итоге приводит к увеличению скорости сгорания. Сжатие воздуха — это процесс, который происходит в большом цилиндре внутри двигателя. Следовательно, топливо также быстро сгорает. Он производит больше мощности внутри двигателя, что в конечном итоге приводит к более высокой степени сжатия. Следовательно, размер цилиндра двигателя и, конечно же, область применения являются причиной того, почему у дизельных двигателей более высокая степень сжатия .
Основные причины, по которым у дизельных двигателей более высокая степень сжатия (Источник фото: everypixel)СМОТРЕТЬ БОЛЬШЕ:
2. Уклонение от ударовДетонация — серьезная проблема для двигателей. Это случается, когда в цилиндре двигателя происходит ненормальное сгорание. Проблема детонации обычно чаще встречается в бензиновых двигателях. По мере увеличения степени сжатия бензиновый двигатель выходит из строя, поэтому многие люди не считают его идеальным двигателем с компрессией.Возвращаясь к дизельному двигателю, детонации нет. Больший размер цилиндра обеспечивает достаточно места для вашего топлива, чтобы работать и сгорать внутри двигателя.
Основные причины, по которым двигатель может вызывать детонацию, включают:
Задержка зажигания внутри форсунок
Повышенная температура внутри двигателя
Когда топливная форсунка не может полностью воспламенить топливо
Следовательно, чтобы избежать детонации в двигателе, дизельный двигатель имеет максимальную степень сжатия.
>> Купить б / у авто у надежных японских продавцов можно здесь <<
3. Свеча зажиганияБензиновые или бензиновые двигатели требуют свечи зажигания для сгорания топлива. Дизельному двигателю не нужна свеча зажигания для выработки энергии, вместо этого достаточно высокой степени сжатия, чтобы зажечь топливо. Для самовоспламенения двигателя; требуется более высокая степень сжатия. Кроме того, дизель очень летуч, и для воспламенения топлива достаточно только сжатия воздуха.Таким образом, чтобы предотвратить возгорание двигателя или другие опасности, дизельный двигатель сконструирован таким образом, что он обеспечивает повышенную степень сжатия. Кроме того, чтобы решить любую неожиданную проблему с дизельным двигателем, вы можете получить несколько полезных советов по обслуживанию от экспертов.
Объяснение, почему у дизельных двигателей более высокая степень сжатия (Источник фото: dailydriven) ЗаключениеИтак, когда вы думаете о , почему у дизельных двигателей более высокая степень сжатия , запомните эту полезную информацию и выберите двигатель по своему желанию.
VC-Turbo — первый в мире двигатель с регулируемой степенью сжатия, готовый к производству
Вставить этот синемаграф на свой сайт
«Технология переменной степени сжатия представляет собой прорыв в разработке трансмиссий. QX50, оснащенный нашей системой VC-Turbo, является первым серийным автомобилем, который когда-либо предлагал водителям двигатель, который трансформируется по требованию, устанавливая новый стандарт возможностей трансмиссии и совершенства.Этот необычайно плавный двигатель предлагает потребителям мощность и производительность, а также эффективность и экономичность ».
Кристиан Менье, вице-президент глобального подразделения INFINITI
Интеллектуальная мощность и улучшенный контроль за счет усовершенствованного двигателя внутреннего сгорания VC-Turbo
Двигатель VC-Turbo от INFINITI — первый в мире двигатель с регулируемой степенью сжатия, готовый к производству, и он дебютирует в производстве на новом QX50. Эта уникальная технология переменного сжатия представляет собой прорыв в конструкции двигателей внутреннего сгорания — QX50’s 2.0-литровый VC-Turbo постоянно трансформируется, регулируя степень сжатия для оптимизации мощности и топливной экономичности. Он сочетает в себе мощность 2,0-литрового бензинового двигателя с турбонаддувом с крутящим моментом и эффективностью усовершенствованного четырехцилиндрового дизельного двигателя.
VC-Turbo плавно изменяет степень сжатия с помощью усовершенствованной многорычажной системы, непрерывно увеличивая или уменьшая вылет поршней для преобразования степени сжатия, предлагая мощность и эффективность по запросу.
Высокая степень сжатия дает больший КПД, но в некоторых случаях представляет риск преждевременного возгорания («детонации»).Низкая степень сжатия обеспечивает большую мощность и крутящий момент и позволяет избежать детонации. При работе двигатель VC-Turbo QX50 обеспечивает любую степень сжатия от 8: 1 (для высокой производительности) до 14: 1 (для высокой эффективности). Развертывая интеллектуальную мощность для большего контроля, двигатель расширения возможностей демонстрирует ориентированный на водителя подход INFINITI.
Сочетание характеристик и эффективности представляет собой убедительную альтернативу дизельному двигателю, опровергая представление о том, что только гибридные и дизельные силовые агрегаты способны обеспечивать высокий крутящий момент и эффективность.Двигатель развивает мощность 268 л.с. (200 кВт) при 5600 об / мин и 380 фунт-фут (380 Нм) при 1600 — 4800 об / мин. Удельная выходная мощность VC-Turbo выше, чем у многих конкурирующих бензиновых двигателей с турбонаддувом, и приближается к характеристикам некоторых бензиновых двигателей V6. Турбо-режим с одной прокруткой обеспечивает немедленную реакцию акселератора по запросу.
Оснащенный двигателем VC-Turbo, QX50 конкурентоспособно эффективен, обеспечивая экономию бензина 27 миль на галлон (в смешанном цикле США, передний привод; 26 миль на галлон при полном приводе).В спецификации с передним приводом это обеспечивает повышение топливной экономичности на 35% по сравнению с бензиновым двигателем V6 в предыдущем QX50, в то время как расход 26 миль на галлон новой полноприводной модели представляет собой улучшение на 30%.
Среди других преимуществ — компактная упаковка и технологии снижения веса. Блок двигателя и головка цилиндров отлиты из легкого алюминиевого сплава, а трансформируемые многорычажные компоненты изготовлены из сплава высокоуглеродистой стали.По сравнению с 3,5-литровым двигателем VQ V6 INFINITI, 2,0-литровый VC-Turbo весит на 18 кг меньше и требует меньше места в моторном отсеке.
В двигателе используется первая в мире многорычажная система и электродвигатель с уникальным редуктором Harmonic Drive для изменения степени сжатия. Электродвигатель подключен к Harmonic Drive с помощью рычага управления; когда Harmonic Drive вращается, управляющий вал в основании двигателя вращается, перемещая многорычажную систему внутри двигателя.По мере изменения угла многорычажных рычагов он регулирует положение верхней мертвой точки поршней и вместе с ними степень сжатия. Эксцентриковый управляющий вал изменяет степень сжатия всех цилиндров одновременно. В результате объем двигателя варьируется от 1997 куб. См (для низкого передаточного числа 8: 1) до 1970 куб.
VC-Turbo может без перерыва переключаться между циклами Аткинсона и обычным сгоранием, обеспечивая большую эффективность и производительность при преобразовании.
По циклу Аткинсона воздухозаборники и воздухозаборники перекрываются, что позволяет топливу в камере сгорания расширяться до больших объемов для большей эффективности. Двигатель INFINITI работает по циклу Аткинсона при более высоких степенях сжатия, с более длинными ходами поршня, позволяющими впускным клапанам открываться на короткое время в начале такта сжатия. Цикл Аткинсона обычно используется в гибридных двигателях для максимального повышения эффективности.
Когда степень сжатия падает, двигатель возвращается к обычному циклу сгорания — впуск, сжатие, сгорание, выпуск — в отдельные фазы, чтобы обеспечить более высокую производительность.
Двигатель VC-Turbo сочетает в себе ряд существующих технологий INFINITI, чтобы реализовать его изменчивый характер. В двигателе используются MPI (многоточечный впрыск) и GDI (прямой впрыск бензина) для обеспечения баланса эффективности и мощности в любых условиях:
- GDI улучшает полноту сгорания и производительность, а также позволяет двигателю избегать детонации при более высоких степенях сжатия
- MPI раньше смешивает топливо и воздух, обеспечивая полное сгорание в камере для большей эффективности при низких нагрузках двигателя
Двигатель переключается между обоими при обычных оборотах, причем оба набора форсунок могут работать совместно при более высоких нагрузках.
Турбокомпрессор с одной спиралью обеспечивает максимальную производительность и эффективность, обеспечивая немедленную реакцию дроссельной заслонки при любой скорости или степени сжатия. Турбокомпрессор обеспечивает производительность, эквивалентную шестицилиндровому безнаддувному агрегату. Система с одной спиралью, достаточно малая для обеспечения компактных габаритов, также снижает потери тепловой энергии и давление выхлопных газов.
Встроенный выпускной коллектор встроен в алюминиевую головку блока цилиндров для дальнейшего улучшения упаковки и эффективности.Это позволяет инженерам INFINITI размещать каталитический нейтрализатор рядом с турбонаддувом, создавая более короткий путь прохождения горячих выхлопных газов. Это означает, что процесс контроля выбросов может начаться раньше, поскольку каталитический нейтрализатор нагревается быстрее.
Тесно контролируя поток выхлопных газов через турбонагнетатель, привод перепускной заслонки с электронным управлением поддерживает давление наддува турбонагнетателя. Это обеспечивает высокую топливную экономичность и производительность в любых условиях при минимальных выбросах.
Необычайно плавный двигатель VC-Turbo избавляется от двух балансирных валов, необходимых в обычных четырехцилиндровых двигателях, из-за конструкции многорычажной системы (см. Ниже).
VC-Turbo также более плавный, чем обычные рядные двигатели, и имеет низкий уровень шума и вибрации, ожидаемый от традиционного V6. Частично это является результатом его многорычажной конструкции, в которой поршневые шатуны во время цикла сгорания почти вертикальны (вместо того, чтобы двигаться шире в поперечном направлении, как при традиционном вращении коленчатого вала).Это представляет собой идеальное возвратно-поступательное движение и полностью исключает необходимость в балансирных валах. Несмотря на добавление многорычажной компоновки, двигатель таким же компактным, как обычный 2,0-литровый четырехцилиндровый двигатель.
Результат — необычно низкий уровень вибрации. Во время внутренних испытаний INFINITI сравнила двигатель с четырехцилиндровыми двигателями конкурирующих производителей. VC-Turbo производит пониженный уровень шума двигателя — почти так же совершенен, как V6.
«Зеркальное покрытие отверстия» INFINITI с низким коэффициентом трения способствует снижению трения цилиндра на 44%, что позволяет двигателю вращаться более плавно.Покрытие наносится на стенки цилиндра с помощью плазменной струи, затем закаливается и хонинговается для создания сверхгладких стенок цилиндра.
В 2,0-литровом двигателе VC-Turbo QX50 используется первая в мире активная система гашения вибрации опоры двигателя, называемая Active Torque Rod (ATR), для еще большего снижения шума двигателя. QX50 — единственный автомобиль в своем классе, предлагающий такую технологию. Встроенный в верхнюю опору двигателя, где генерируется наибольший шум с высоким крутящим моментом и вибрация двигателя, ATR имеет G-сенсор, который обнаруживает вибрации.Затем он создает противоположные возвратно-поступательные колебания, позволяя четырехцилиндровому двигателю быть таким же плавным и тихим, как V6, снижая шум двигателя на 9 дБ (по сравнению с текущим QX50). Это помогает сделать VC-Turbo одним из самых тихих и плавных двигателей в сегменте внедорожников премиум-класса.
Иллюстрируя роль бренда как новатора в технологии трансмиссии, INFINITI представила первую в мире активную опору двигателя для дизельного двигателя в 1998 году. INFINITI разработала ATR в период с 2009 по 2017 год, уделяя особое внимание уменьшению ее размера и веса.В более ранних прототипах размер приводного двигателя ATR представлял проблему. Тем не менее, разработка поршневого приводного двигателя уменьшенных размеров позволяет ATR поместиться в гораздо меньшее пространство, при этом оставаясь достаточно прочным, чтобы справиться с интенсивным использованием.
Вставить этот синемаграф на свой сайт
Вставить этот синемаграф на свой сайт
Вставить этот синемаграф на свой сайт
Вставить этот синемаграф на свой сайт
Щелкните по изображению для увеличения
Щелкните изображение, чтобы увеличить
Щелкните изображение, чтобы увеличить
Контакты
По вопросам INFINITI Global Communications обращайтесь:
Джон Уолш
Старший менеджер, INFINITI Global Communications
INFINITI Motor Company Ltd., Гонконг
Телефон: +852 3948 0129
Мобильный: +852 9447 9705
[email protected]
Более подробную информацию о INFINITI и ее передовых технологиях можно найти по адресу www.INFINITI.com . Вы также можете подписаться на INFINITI на Facebook , Instagram , Twitter , LinkedIn и посмотреть все наши последние видео на YouTube .
Степень сжатия | Tractor & Construction Plant Wiki
- Информацию о степени сжатия при сжатии данных см. В Википедии: степень сжатия данных.
| Эта статья требует дополнительных ссылок для проверки . Пожалуйста, помогите улучшить эту статью, добавив цитаты из надежных источников. Материал, не полученный от источника, может быть оспорен и удален. (май 2009 г.) |
«Степень сжатия» двигателя внутреннего сгорания или двигателя внешнего сгорания — это величина, которая представляет собой отношение объема его камеры сгорания от наибольшей емкости к наименьшей.Это фундаментальная спецификация для многих распространенных двигателей внутреннего сгорания.
В поршневом двигателе это соотношение между объемом цилиндра и камеры сгорания, когда поршень находится в нижней части своего хода, и объемом камеры сгорания, когда поршень находится в верхней части своего хода. [1]
Изобразите цилиндр и его камеру сгорания с поршнем в нижней части его хода, содержащего 1000 см3 воздуха (900 см3 в цилиндре и 100 см3 в камере сгорания).Когда поршень переместился в верхнюю часть своего хода внутри цилиндра, а оставшийся объем внутри головки или камеры сгорания был уменьшен до 100 см3, тогда степень сжатия будет пропорционально описана как 1000: 100 или с частичным уменьшением. , степень сжатия 10: 1.
Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из заданной массы топливовоздушной смеси из-за его более высокого теплового КПД. Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями, и более высокий КПД создается, поскольку более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.
Однако при более высоких степенях сжатия бензиновые двигатели подвержены детонации, если используется топливо с более низким октановым числом, также известное как детонация. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, замедляющие синхронизацию. Однако датчики детонации были требованием спецификации OBD-II, используемой в автомобилях 1996 модельного года и новее.
Дизельные двигатели, с другой стороны, работают по принципу воспламенения от сжатия, поэтому топливо, которое сопротивляется самовоспламенению, вызовет позднее воспламенение, что также приведет к детонации в двигателе.
Формула
Коэффициент рассчитывается по следующей формуле:
- , где
- = отверстие цилиндра (диаметр)
- = длина хода поршня
- = зазор. Это объем камеры сгорания (включая прокладку головки). Это минимальный объем пространства в конце такта сжатия, то есть когда поршень достигает верхней мертвой точки (ВМТ). Из-за сложной формы этого пространства его обычно измеряют напрямую, а не рассчитывают.
Типичные степени сжатия
Бензиновый двигатель
Из-за детонации (детонации) в бензиновом или бензиновом двигателе степень сжатия обычно не намного превышает 10: 1, хотя некоторые серийные автомобильные двигатели, построенные для высокопроизводительных двигателей с 1955 по 1972 год, имели такие же высокие степени сжатия. как 13,0: 1, что может безопасно работать на доступном в то время высокооктановом этилированном бензине.
Техника, используемая для предотвращения возникновения детонации, — это двигатель с сильным «завихрением», который заставляет всасываемый заряд совершать очень быстрое круговое вращение в цилиндре во время сжатия, что обеспечивает более быстрое и более полное сгорание.В последнее время, с добавлением датчиков изменения фаз газораспределения и детонации для задержки момента зажигания, стало возможным производить бензиновые двигатели со степенью сжатия более 11: 1, которые могут использовать топливо 87 (MON + RON) / 2 (октановое число).
В двигателях с датчиком «пинга» или «детонации» и электронным блоком управления CR может достигать 13: 1 (BMW K1200S 2005 года). В 1981 году Jaguar выпустил головку блока цилиндров, которая допускала сжатие до 14: 1; но довольствовался 12,5: 1 в серийных автомобилях. Конструкция головки блока цилиндров была известна как головка «May Fireball»; его разработал швейцарский инженер Майкл Мэй.
Mazda в 2012 году выпускает новые бензиновые двигатели под торговой маркой SkyActiv со степенью сжатия 14: 1, которые будут использоваться во всех автомобилях Mazda к 2015 году. [2] [3] [4]
Бензиновый / бензиновый двигатель с наддувом
В бензиновых двигателях с турбонаддувом или наддувом CR обычно изготавливается с соотношением 10,5: 1 или ниже. Это происходит из-за того, что турбокомпрессор / нагнетатель уже значительно сжал топливно-воздушную смесь перед тем, как она попадает в цилиндры.
Бензин / бензиновый двигатель гоночный
Двигатели для гонок на мотоциклах могут использовать степень сжатия до 14: 1, и нередко можно встретить мотоциклы с коэффициентом сжатия более 12,0: 1, рассчитанные на топливо с октановым числом 86 или 87. Двигатели F1 приближаются к соотношению 17: 1 (что очень важно для максимизации объемной / топливной эффективности при 18000 об / мин).
Двигатели на этаноле и метаноле
Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин.Гоночные двигатели, работающие на метаноле и этаноле, часто имеют коэффициент CR 14,5-16: 1.
Газовый двигатель
В двигателях, работающих исключительно на СНГ или СПГ, CR может быть выше из-за более высокого октанового числа этих топлив.
Дизельный двигатель
В дизельном двигателе с самовоспламенением электрическая свеча зажигания отсутствует; теплота сжатия повышает температуру смеси до точки самовоспламенения. CR обычно превышает 14: 1, а соотношение более 22: 1 является обычным явлением.Соответствующая степень сжатия зависит от конструкции головки блока цилиндров. Обычно это значение составляет от 14: 1 до 16: 1 для двигателей с прямым впрыском и от 18: 1 до 23: 1 для двигателей с непрямым впрыском.
Диагностика и диагностика
Измерение давления сжатия двигателя с помощью манометра, подключенного к отверстию свечи зажигания, дает представление о состоянии и качестве двигателя. Однако формулы для расчета степени сжатия на основе давления в цилиндре не существует.
Если дана номинальная степень сжатия двигателя, давление в цилиндре перед воспламенением можно оценить с помощью следующего соотношения:
где — давление в цилиндре в нижней мертвой точке, которое обычно составляет 1 атм, — это степень сжатия, а — удельная теплоемкость рабочей жидкости, которая составляет около 1,4 для воздуха и 1,3 для метановоздушной смеси. смесь.
Например, если двигатель, работающий на бензине, имеет степень сжатия 10: 1, давление в цилиндре в верхней мертвой точке равно
Однако эта цифра также будет зависеть от кулачка (т.е.е. клапана) ГРМ. Как правило, давление в цилиндре для обычных автомобильных конструкций должно составлять не менее 10 бар или, по приблизительной оценке в фунтах на квадратный дюйм (psi), в 15-20 раз больше степени сжатия, или в этом случае от 150 до 200 psi, в зависимости от кулачок синхронизации. Специально построенные гоночные двигатели, стационарные двигатели и т. Д. Будут давать цифры за пределами этого диапазона.
Факторы, включающие позднее закрытие впускного клапана (относительно профиля распределительных валов, выходящих за пределы типичного диапазона серийных автомобилей, но не обязательно в области двигателей соревнований), могут дать в результате этого испытания заведомо низкое значение.Чрезмерный зазор шатуна в сочетании с чрезвычайно высокой производительностью масляного насоса (редко, но не невозможно) может привести к образованию достаточного количества масла, чтобы покрыть стенки цилиндра достаточным количеством масла, чтобы облегчить разумное поршневое кольцевое уплотнение, искусственно давая обманчиво высокий показатель на двигателях с нарушенным кольцевым уплотнением.
Это действительно может быть использовано для некоторого небольшого преимущества. Если испытание на сжатие дает низкое значение и было установлено, что это не связано с закрытием впускного клапана / характеристиками распределительного вала, то можно различить причину, связанную с проблемами уплотнения клапана / седла и кольцевым уплотнением, путем впрыскивания моторного масла в искру. отверстие плунжера в количестве, достаточном для распределения по днищу поршня и окружности контакта верхнего кольца и, таким образом, к упомянутому уплотнению.Если вскоре после этого будет проведено второе испытание на сжатие и новое показание будет намного выше, проблематичным будет кольцевое уплотнение, тогда как если наблюдаемое испытательное давление на сжатие останется низким, это будет уплотнение клапана (или, реже, прокладка головки, или прорыв поршня, или более редкое повреждение стенки цилиндра).
Если существует значительная (более 10%) разница между цилиндрами, это может указывать на то, что клапаны или прокладки головки цилиндров протекают, поршневые кольца изношены или что блок треснул.
Если есть подозрение на проблему, то более подробный тест с использованием тестера утечки может определить местонахождение утечки.
Двигатели с переменной степенью сжатия (VCR)
Поскольку диаметр отверстия цилиндра, длина хода поршня и объем камеры сгорания почти всегда постоянны, степень сжатия для данного двигателя почти всегда постоянна, пока износ двигателя не сказывается.
Единственным исключением является экспериментальный двигатель Saab Variable Compression Engine (SVC). В этом двигателе, разработанном Saab Automobile, используется технология, которая динамически изменяет объем камеры сгорания (V c ), что, согласно приведенному выше уравнению, изменяет степень сжатия (CR).
Цикл двигателя Аткинсона был одной из первых попыток переменного сжатия. Поскольку степень сжатия — это соотношение между динамическим и статическим объемами камеры сгорания, метод цикла Аткинсона по увеличению длины рабочего хода по сравнению с тактом впуска в конечном итоге изменил степень сжатия на разных этапах цикла.
Степень динамического сжатия
Расчетная степень сжатия, как указано выше, предполагает, что цилиндр герметизирован в нижней части хода, и что сжатый объем является фактическим объемом.
Однако: закрытие впускного клапана (уплотнение цилиндра) всегда происходит после НМТ, что может привести к тому, что часть всасываемого заряда будет сжиматься назад из цилиндра поднимающимся поршнем на очень низких скоростях; сжимается только процент хода после закрытия впускного клапана. Настройка и продувка впускного отверстия могут позволить большей массе заряда (при давлении выше атмосферного) задерживаться в цилиндре, чем можно было бы предположить по статическому объему (эта «скорректированная» степень сжатия обычно называется «степенью динамического сжатия , »). .
Это соотношение выше при более консервативном (т.е. раньше, вскоре после НМТ) времени впускных кулачков и ниже при более радикальном (т.е. позже, намного позже НМТ) времени впускных кулачков, но всегда ниже статического или «номинального» коэффициент сжатия.
Фактическое положение поршня можно определить тригонометрическим методом, используя длину хода и длину шатуна (измеренную между центрами). Абсолютное давление в цилиндре является результатом показателя степени динамического сжатия.Этот показатель степени представляет собой политропное значение для отношения переменной теплоты воздуха и подобных газов при существующих температурах. Это компенсирует повышение температуры, вызванное сжатием, а также потерю тепла в цилиндре. В идеальных (адиабатических) условиях показатель степени будет 1,4, но используется более низкое значение, обычно от 1,2 до 1,3, поскольку количество потерянного тепла будет варьироваться между двигателями в зависимости от конструкции, размера и используемых материалов, но дает полезные результаты для в целях сравнения. Например, если степень статического сжатия составляет 10: 1, а степень динамического сжатия — 7.1,3 × атмосферное давление, или 13,7 бар. (× 14,7 фунтов на квадратный дюйм на уровне моря = 201,8 фунтов на квадратный дюйм. Давление, показанное на манометре, будет абсолютным давлением за вычетом атмосферного давления, или 187,1 фунтов на квадратный дюйм.)
Две поправки на динамическую степень сжатия влияют на давление в цилиндре в противоположных направлениях, но не в одинаковой степени. Двигатель с высокой статической степенью сжатия и поздним закрытием впускного клапана будет иметь DCR, аналогичный двигателю с более низким уровнем сжатия, но более ранним закрытием впускного клапана.
Кроме того, давление в цилиндре, развиваемое при работающем двигателе, будет выше, чем показанное при испытании на сжатие, по нескольким причинам.
- Значительно более высокая скорость поршня при работающем двигателе по сравнению с проворачиванием коленчатого вала позволяет меньше времени для выхода давления через поршневые кольца в картер.
- Работающий двигатель покрывает стенки цилиндра гораздо большим количеством масла, чем двигатель, который запускается на низких оборотах, что способствует уплотнению.
- более высокая температура цилиндра создает более высокое давление при работе по сравнению со статическим тестом, даже если тест проводится с двигателем, температура которого близка к рабочей.
- Работающий двигатель не прекращает забирать воздух и топливо в цилиндр, когда поршень достигает НМТ; Смесь, которая устремляется в цилиндр во время движения вниз, развивает импульс и продолжается некоторое время после прекращения вакуума (в том же отношении, что быстрое открытие двери создает сквозняк, который продолжается после прекращения движения двери). Это называется уборкой мусора. Настройка впуска, конструкция головки блока цилиндров, фазы газораспределения и настройка выхлопа определяют, насколько эффективно двигатель работает.
Степень сжатия в зависимости от степени общего давления
Степень сжатия и общая степень сжатия взаимосвязаны следующим образом:
| Степень сжатия | 2: 1 | 3: 1 | 5: 1 | 10: 1 | 15: 1 | 20: 1 | 25: 1 | 35: 1 |
|---|---|---|---|---|---|---|---|---|
| Степень сжатия | 2,64: 1 | 4,66: 1 | 9,52: 1 | 25,12: 1 | 44.31: 1 | 66.29: 1 | 90.60: 1 | 145,11: 1 |
Причина этой разницы в том, что степень сжатия определяется через уменьшение объема:
- ,
, а степень сжатия определяется как увеличение давления:
- .
При вычислении степени сжатия мы предполагаем, что выполняется адиабатическое сжатие (т.е. что сжимаемый газ не получает тепловую энергию и что любое повышение температуры происходит исключительно из-за сжатия).Мы также предполагаем, что воздух — это идеальный газ. С этими двумя допущениями мы можем определить взаимосвязь между изменением объема и изменением давления следующим образом:
где — отношение удельной теплоты воздуха (приблизительно 1,4). Значения в таблице выше получены с использованием этой формулы. Обратите внимание, что в действительности соотношение удельных теплоемкостей изменяется с температурой и что будут происходить значительные отклонения от адиабатического поведения.
См. Также
- Среднее эффективное давление
- Общий коэффициент давлений — тесно связанный коэффициент для реактивных двигателей
Ссылки
Внешние ссылки
{[википедия}}
Обсуждение степени сжатия и совместимости с насосом
Если вы называете себя редуктором, то, скорее всего, цените мощность.Один из способов увеличить мощность двигателя без наддува — это начать с высокой степенью сжатия. В этой истории мы коснемся нескольких моментов, касающихся сжатия, и того, как вы можете заставить это сжатие работать в ваших интересах.
Сжатие — одна из немногих областей двигателя, в которых действительно верна теория «чем больше, тем лучше». Стандартная рекомендация для уличных двигателей, работающих на бензиновом насосе, всегда заключалась в том, чтобы обеспечить степень сжатия от 9,0: 1 до, возможно, 9,5: 1. Это сделано для того, чтобы двигатель мог безопасно работать с насосом бензина, который для большей части страны ограничен 91-октановым числом.Хотя 9: 1 — безопасное число, максимальное сжатие — отличный способ увеличить мощность, а также улучшить расход топлива, реакцию дроссельной заслонки и управляемость. Общепринятая оценка — улучшение от трех до четырех процентов на полную точку сжатия. Это означает, что простое изменение статической степени сжатия 9: 1 на 10: 1 на небольшом блоке мощностью 400 л.с. будет стоить целых 16 лошадиных сил.
Графически вот как выглядит детонация на кривой давления. Зубчатые края — это неконтролируемые резкие скачки давления, которые имеют тенденцию вызывать дребезжание поршня в цилиндре и вызывать повреждение двигателя.
Сдерживающая детонация
Самым большим ограничивающим фактором при попытке увеличить степень сжатия является угроза детонации. Это определяется как неконтролируемое горение, которое происходит после зажигания свечи зажигания. Думайте о процессе горения не как о взрыве, а скорее как о костре кустарника, горящем на большом поле сухой травы.
В двигателе свеча зажигания начинает возгорание в одном углу верхней части поршня, который представляет собой нашу травянистую прерию. Однако есть одно большое различие.Когда происходит сгорание, давление в цилиндре продолжает расти вместе с температурой. В какой-то момент, если октановое число топлива окажется недостаточным, отходящие газы загорятся сами по себе в результате самопроизвольного мини-взрыва в той части камеры, где собрались отходящие газы. Это создает скачок давления, который приводит к вибрации поршня в отверстии. Это то, что вызывает этот слишком частый скрежет или стук.
Детонация — это плохо, и ее нельзя допускать продолжения, потому что она может сломать детали, повредить камеры сгорания и повредить прокладки головки блока цилиндров.Самым простым и легким средством является добавление в топливо октанового числа, и в конце мы сделаем несколько предложений, которые доступны по цене и работают очень хорошо. Но с механической точки зрения производитель двигателя также может предпринять несколько шагов, чтобы увеличить сжатие, а также минимизировать вероятность детонации.
Статический или динамический
Когда мы говорим о сжатии, это должно быть более точно определено как статическая степень сжатия. Это буквально соотношение объема цилиндра с поршнем внизу по сравнению с объемом поршня наверху своего хода.Если мы вычислим объем 6,0-литрового двигателя Stroker LS с диаметром цилиндра 4,030 дюйма и ходом поршня 4,00 дюйма, то получится объем в 51 кубический дюйм (куб.дюйм) или 836 кубических сантиметров (куб.см). Если затем мы подтолкнем поршень к верхней точке его хода, в нашем конкретном случае мы теперь сжимаем тот же объем почти в десять раз, создавая объем всего 5,1 куб. См или 83,6 куб. См при степени сжатия 10,0: 1. Это статическая степень сжатия.
Вот пример того, что детонация может сделать с поршнем.Эти стрелки указывают на разорванные участки кольца, вызванные сильной детонацией. Это мгновенно приведет к повреждению уплотнения цилиндра, и вы очень быстро узнаете, что двигатель поврежден.
Хотя это хороший компаратор между двигателями, реальность такова, что двигатели фактически работают с гораздо более низким передаточным числом, потому что впускной клапан все еще открыт, когда поршень движется вверх от нижней мертвой точки (НМТ). Фактическую или динамическую степень сжатия можно рассчитать, только зная, где находится поршень при закрытии впускного клапана.United Engine and Machine (UEM) предлагает калькулятор динамической степени сжатия, который вводит статическую степень сжатия, ход и длину шатуна вместе с числом закрытия впуска при подъеме толкателя 0,050 дюйма плюс 15 градусов. Если ваша видеокарта предлагает закрытие входа на 0,006 дюйма (заявленная продолжительность), вы можете использовать это число (возможно, прибавив один градус к указанному числу), и вы будете очень близки.
Плотная закалка достигается за счет минимизации зазора между поршнем и головкой до менее 0.045 дюймов для двигателей с клиновой головкой диаметром 4,00 дюйма. Таким образом, для двигателя с расстоянием между поршнем и декой 0,003 дюйма добавление прокладки 0,041 дюйма обеспечит зазор между поршнем и головкой 0,044 дюйма. Узкая зона закалки улучшает движение смеси и фактически увеличивает эффективность сгорания. Избегайте больших зазоров между поршнем и головкой более 0,050 дюйма.
Для того же двигателя Stroker LS мы подключили статическое сжатие 10: 1, длину штока 6,125 дюйма, ход 4,00 дюйма и число закрытия впуска 0,050 дюйма, равное 47 градусам плюс 15 градусов.Это равно 62 градусам. С этими входами калькулятор UEM предлагал динамическое сжатие 8,198 или 8,2: 1. Общепринятая консервативная оценка составляет от 8,0 до, возможно, 8,5: 1 динамической степени сжатия для бензинового насоса с октановым числом 91. Это справедливо для старых традиционных двигателей с менее эффективными камерами сгорания. Но для более поздних моделей двигателей с лучшими камерами, это могло быть улучшено до 9,0: 1 в динамике.
Двумя наиболее эффективными переменными в этом расчете являются статическая степень сжатия и точка закрытия впуска.Если мы добавим 8 градусов к точке закрытия впускного клапана (70 градусов), это снизит динамическое сжатие с 8,2: 1 до 7,7: 1. Чтобы восстановить динамическое сжатие, потребуется увеличить степень статического сжатия до 10,67: 1. Это показывает драматическое влияние фаз газораспределения на динамическое сжатие.
Чтобы еще больше подчеркнуть эту концепцию, наихудшей комбинацией будет большой кулачок с очень поздней точкой закрытия впуска, используемый в двигателе с низкой степенью статического сжатия.В качестве примера представьте небольшой блок 350 с статической степенью сжатия 8,2: 1, заявленной продолжительностью 300 градусов и закрытием впуска на 58 градусов при 0,050 дюйма плюс 15 градусов, что соответствует точке закрытия ABDC на 73 градуса. Эта комбинация снижает динамическое сжатие до жалких 6,1: 1. Это показывает, как динамическая степень сжатия может помочь определить относительную силу или слабость комбинации двигателей перед сборкой двигателя.
ДвигателиLS — хороший образец современной камерной конструкции.Это камера в нашем 6,0-литровом двигателе с головками объемом 225 куб. См. Trick Flow Specialties.
Но есть много других факторов, помимо статической и динамической степени сжатия. Дизайн камеры, безусловно, является решающим фактором. В двигателях более поздних моделей используются камеры гораздо меньшего размера и улучшенной конструкции, улучшающие процесс сгорания. Преимущество лучшей камеры в том, что она уменьшает время зажигания, необходимое для достижения максимальной мощности. Возможно, 30 лет назад не было ничего необычного в том, что небольшой блок с большим кулачком и куполообразными поршнями требовал от 38 до 42 градусов полного угла опережения зажигания для оптимизации мощности.Сравните это с современными двигателями, такими как GM LS, со статическим сжатием 10,5: 1 и хорошим кулачком, которому для достижения максимальной мощности требуется всего 30 градусов времени. Уменьшение требований по времени является важным показателем того, что пространство сгорания намного более эффективно.
Время — ключ
Конечно, слишком большой угол опережения зажигания может вызвать другие проблемы. Для современных двигателей трехмерная временная карта, основанная как на нагрузке, так и на оборотах, будет иметь большое значение для контроля детонации. Все двигатели могут получить выгоду от этого более точного управления зажиганием.Например, мы потратили некоторое время на настройку двигателя Chevy с большим блоком 468ci нашего друга Эрика Розендала после установки корпуса дроссельной заслонки Sniper EFI.
С помощью всего четырех простых входных данных этот бесплатный калькулятор United Engine & Machine может определить динамическую степень сжатия двигателя. Как видно из этих входных данных, механизм статического сжатия 10,0: 1 вычисляет динамическое сжатие 8,2: 1, что хорошо, но немного консервативно.
После точной настройки соотношения воздух-топливо мы заменили распределитель HEI и баллон с опережающим вакуумом на распределитель Sniper и использовали программное обеспечение для управления синхронизацией.Мы смогли добавить больше времени в крейсерском режиме, но убрать синхронизацию в двух критических точках нагрузки с неполным дросселем, которые вызывали детонацию при использовании опережения вакуума. Раньше это требовало, чтобы мы отключили вакуумное продвижение, потому что мы не могли настроить его. Но с конечным цифровым управлением кривой синхронизации мы смогли добавить больше времени там, где этого хотел двигатель, а также защитить двигатель от детонации в других точках. Это было невозможно с простым дистрибьютором.
Эти же методы могут позволить интеллектуальному тюнеру увеличивать динамическое сжатие, сводя к минимуму проблемы детонации с помощью газового насоса с октановым числом 91.Еще одна область, о которой стоит упомянуть, — это то, что температура воздуха на входе имеет большое влияние на чувствительность к детонации. Мы узнали эту информацию от ныне ушедшего на пенсию инженера по топливу компании Rockett Racing Тима Вуша. Он рассказал нам, что несколько лет назад заводские установки провели серьезное испытание, в ходе которого оценили взаимосвязь между температурой воздуха на входе и детонацией. Они обнаружили, что повышение температуры воздуха на входе на 25 градусов, скажем, с 70 до 95 градусов, потребовало увеличения октанового числа на одну точку (например, с 90 до 91), чтобы предотвратить детонацию.Другими словами, если вы можете снизить температуру воздуха на входе на 25 градусов, это снизит октановое число двигателя на одно полное октановое число — например, с 91 до 90.
Детка, на улице холодно
Этот эффект может быть уменьшен другими атмосферными условиями. Например, высокий уровень влажности имеет тенденцию немного снижать октановую чувствительность, поскольку дополнительная вода из воздуха попадает в камеру сгорания. Это может изменить тенденцию к детонации. И наоборот, повышение атмосферного давления приведет к увеличению давления в цилиндре.Это добавляет мощности, но также имеет тенденцию облагать налогом пределы существующего октанового числа топлива. Идеальной ситуацией для максимальной мощности будет холодный приточный воздух со средней влажностью и высоким атмосферным давлением. Это увеличивает мощность, но также может вызвать скачок давления в цилиндре и, возможно, привести к небольшой детонации.
Свечи зажигания с удлиненным носиком помещают искру ближе к центру камеры и могут помочь в процессе минимизации детонации.
Также важно усилить прямую связь между точкой закрытия впуска и статической степенью сжатия как действительно критическими факторами, относящимися к динамическому давлению в цилиндре.Например, мы исследовали несколько гидравлических кулачков с роликами COMP Cams, которые мы использовали на протяжении многих лет, и большинство из этих кулачков проверяются с закрытием впуска при подъеме толкателя 0,006 дюйма (заявленная продолжительность) в диапазоне от 62 до 72 градусов. ABDC. Это может оказать некоторую помощь в определении полезного распределительного вала, помня, что меньшее число (например, 62 градуса) повысит динамическое сжатие, а большее число (более позднее закрытие) уменьшит его.
Одним из быстрых способов повысить октановое число может быть добавление небольшого количества E85 для создания смесей этанола от 20 до 30 процентов (от E20 до E30).Смешивание этанола в смесях до этих уровней повысит октановое число R + M / 2 примерно на два полных числа, увеличивая октановое число 91 до 93. Конечно, это также потребует перенастройки системы подачи топлива.
Трудно сделать какие-либо общие заявления о комбинациях, но мы можем поделиться парой примеров динамической степени сжатия. Например, большой блок Chevy нашего друга 468ci с портированными заводскими чугунными овальными портами и относительно консервативным распредвалом COMP с гидравлическими роликами (XR-282HR, 230/236 градусов при 0.050) со сжатием 10,5: 1 — это довольно отзывчивый мотор-крыс, который отлично работает на премиум-классе с октановым числом 91. Калькулятор UEM обеспечивает динамическую степень сжатия 8,2: 1. Как упоминалось ранее, двигатель действительно дребезжал в определенных местах, что вынудило нас немного замедлить синхронизацию. Это заставляет нас думать, что это довольно близко при динамике 8,2: 1 к максимальной степени сжатия, которую мы можем запустить в этом двигателе с октановым числом топлива 91.
Начальник отдела заряда
Некоторые могут быть обеспокоены железными головками, поскольку энтузиасты опасаются, что железные головки более подвержены детонации, чем алюминиевые.Несколько лет назад мы провели динамометрический тест, используя небольшой блок Chevy, чтобы проверить эту теорию. Результаты показали, что алюминиевые головки производили больше энергии, чем железная версия с тем же размером и формой камеры. Одно испытание вряд ли будет окончательным, но было бы справедливо сказать, что старые железные головки с плохой конструкцией камеры будут менее эффективными и будут способствовать чувствительности к детонации.
Вот еще один пример взрыва. Эта голова оторвалась от небольшого блока 434ci, который в течение длительного периода времени подвергался слабой детонации.Этот двигатель работал на бензиновом насосе с октановым числом 91, мягким кулачком с гидравлическими роликами и степенью статического сжатия 11,0: 1. Небольшие кратеры образовались в результате взрыва.
Мы также использовали 6,0-литровый двигатель LS на динамометрическом стенде, используя систему управления Holley HP EFI с компрессией 10,5: 1, пару хороших алюминиевых головок Trick Flow Specialties с портом 225 куб. См, ход поршня 3,62 дюйма, шатуны 6,10 дюйма, и кулачок с закрытием впуска 62 градуса ABDC. Этот пакет обеспечивает впечатляющее динамическое сжатие 8,54: 1.Двигатель также выдавал более 550 л.с. на динамометрическом стенде с бензиновым насосом с октановым числом 91. У нас не было возможности запустить этот двигатель на улице, так как это наш тестовый двигатель-испытатель, но, судя по всему, он будет более чем доволен этой комбинацией на бензиновом насосе с октановым числом 91.
Безусловно, существуют возможности для достижения статических степеней сжатия до 10,5: 1 включительно в сочетании с современной камерой сгорания, синхронизацией кулачков и надлежащей настройкой двигателя. Конечно, оригинальные производители движутся в этом направлении с новыми двигателями GM LT1 с непосредственным впрыском топлива, которые теперь работают под двигателем 11.Статическая степень сжатия 5: 1. Эти двигатели также извлекают выгоду из датчиков детонации и миллионов долларов на исследования и разработки. Но есть признаки того, что при правильной комбинации деталей и времени кулачка дни, когда устанавливалось статическое сжатие 9,0: 1 на безнаддувном двигателе, быстро выходят из моды.
Работа турбобензинового двигателя с высокой степенью сжатия с использованием спирта
Аннотация
Смеси бензина и этанола были исследованы как стратегия уменьшения детонации в двигателе, явления при сгорании двигателя с искровым зажиганием, когда часть конечного газа сжимается до точки самовоспламенения.Такое самовоспламенение опасно для работы двигателя внутреннего сгорания, поскольку может серьезно повредить компоненты двигателя. Поскольку конструкторы двигателей пытаются повысить эффективность двигателя внутреннего сгорания, детонация в двигателе является ключевым ограничивающим фактором в конструкции двигателя. Два метода были использованы для ограничения детонации двигателя, которые будут здесь рассмотрены; замедление момента зажигания и добавление присадок, снижающих склонность топливной смеси к детонации. У обоих есть недостатки. Замедление искры снижает эффективность двигателя, а добавки обычно снижают теплотворную способность топлива, требуя больше топлива для данной рабочей точки.Для изучения этой проблемы был испытан двигатель с турбонаддувом с различными комбинациями бензина и этанола, присадки с очень хорошими антидетонационными свойствами. Было записано давление, и моделирование GT Power использовалось для определения температуры внутри цилиндра. Было рассчитано эффективное октановое число, чтобы измерить способность топлива сопротивляться детонации. Эффективное октановое число варьировалось от 91 для UTG91 до 111 для E25 соответственно. Моделирование двигателя использовалось для экстраполяции к точкам, которые не могли быть протестированы в экспериментальной установке, и создания карт производительности, которые можно было использовать для прогнозирования того, как двигатель будет действовать внутри транспортного средства.Было обнаружено, что увеличение степени сжатия с 9,2 до 13,5 приводит к относительному увеличению КПД при частичной нагрузке на 7%. При использовании в автомобиле это приводит к увеличению расхода топлива на 2-6% миль на галлон в зависимости от используемого ездового цикла. Мили на галлон использованного этанола были значительно выше, чем у бензина; 141 миля на галлон этанола — это самый низкий показатель за все изученные циклы.
Описание
Диссертация: S.M., Массачусетский технологический институт, факультет машиностроения, 2013. Страница 62 пустая. Каталогизируется из PDF-версии диссертации. Включает библиографические ссылки (стр. 61).Отдел
Массачусетский Институт Технологий. Кафедра машиностроения .; Массачусетский Институт Технологий. Кафедра машиностроенияИздатель
Массачусетский технологический институт
Двигатели с циклом МиллераДвигатели с циклом Миллера
Двигатели с циклом МиллераHannu Jääskeläinen
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Циклы двигателя, в которых эффективная степень сжатия меньше эффективной степени расширения, называются циклами чрезмерного расширения. Цикл Миллера — это сверхрасширенный цикл, реализованный либо с ранним (EIVC), либо с поздним (LIVC) закрытием впускного клапана. Цикл Миллера реализован как в дизельных, так и в двигателях с искровым зажиганием. В дизелях цикл Миллера использовался в основном для контроля выбросов NOx при высокой нагрузке двигателя.В двигателях с искровым зажиганием преимущества цикла Миллера включают снижение насосных потерь при частичной нагрузке и повышение эффективности, а также снижение детонации.
Циклы Миллера и Аткинсона
Циклы двигателя, в которых эффективная степень сжатия меньше, чем эффективная степень расширения (см. Обсуждение степени сжатия в разделе Основные принципы двигателя ), могут называться сверхрасширенными циклами. В современной практике сверхрасширенные циклы реализуются либо с ранним (EIVC), либо с поздним (LIVC) закрытием впускного клапана.Основным эффектом EIVC и LIVC является снижение температуры в конце такта сжатия. Более низкая температура позволяет использовать более высокие геометрические степени сжатия, что дает более длительную степень расширения и повышение эффективности.
Чрезмерно расширенные циклы обычно называют циклами Миллера или Аткинсона; имея в виду изобретателей Ральфа Миллера и Джеймса Аткинсона. Использование этих терминов в литературе непоследовательно.
Ральф Миллер не , а придумал идею использования фаз газораспределения для управления эффективной степенью сжатия.Об этом свидетельствует тот факт, что в отчете 1927 года он обсуждался как вариант ограничения детонации в авиационных двигателях при использовании низкооктанового топлива [3522] .
Миллера в первую очередь интересовало использование момента закрытия впускного клапана для ограничения температуры ВМТ. В двух своих патентах он описал механизмы изменения фаз газораспределения впускных клапанов, которые позволяли IVC изменяться в зависимости от нагрузки двигателя, чтобы контролировать температуру в цилиндрах в конце такта сжатия. Он заявил о своих идеях без наддува и с принудительной индукцией, дизельным двигателем и искровым зажиганием [1938] [1939] .Миллер стремился увеличить удельную мощность. В патенте 1954 года температура в конце сжатия должна была снижаться по мере увеличения нагрузки, чтобы двигатель мог сжигать больше топлива при полной нагрузке, оставаясь в пределах свойств материала. Он был специально предназначен для двигателей с наддувом и промежуточным охлаждением. Патент 1956 года был предназначен специально для двигателей SI и был предназначен для предотвращения преждевременного зажигания и обеспечения более высокого соотношения топливо / воздух при полной нагрузке при сохранении высокой геометрической степени сжатия.
Рисунок 1 . Стратегия Миллера EIVC и ее влияние на температуру в цилиндрах и требования к давлению во впускном коллекторе для форсированного дизельного двигателяПатент США 2,670,595 | 2 марта 1954 г.
Хотя Миллер упоминает как раннее, так и позднее закрытие впускного клапана, он, похоже, предпочитал закрывать впускной клапан раньше, когда объем цилиндра все еще увеличивался, потому что дополнительное расширение после закрытия впускного клапана могло еще больше охладить впускной заряд. Он назвал это «внутренним охлаждением» [3520] .Рисунок 1 иллюстрирует стратегию EIVC Миллера для форсированного дизельного двигателя по патенту 1954 года. Обратите внимание, что изменение момента закрытия впускного клапана требовалось при нагрузке от 50 до 100%. Современные подходы к проектированию двигателей, называемые использованием цикла Миллера, обычно усилены и включают в себя как раннее закрытие [1912] , так и позднее закрытие впускных клапанов [1919] .
Иногда двигатели с поздним закрытием впускных клапанов называют двигателями цикла Аткинсона . Некоторые предпочитают ограничивать упоминание двигателей с циклом Аткинсона, поскольку они являются безнаддувными и имеют позднее закрывающийся впускной клапан.Однако оригинальные патенты Джеймса Аткинсона относятся не к моменту закрытия клапана, а к двигателю, в котором один цикл двигателя завершается за один оборот коленчатого вала, и с механизмом коленчатого вала, который допускал более высокую степень расширения, чем степень сжатия. Управление моментом закрытия впускного клапана для достижения этого эффекта не упоминается [1915] [1916] .
В то время как Аткинсон заслуживает похвалы за то, что, возможно, первым признал преимущества наличия различных степеней сжатия и расширения, Миллера следует отдать должное за разработку рецепта для достижения набора целей, который остается актуальным даже для современных двигателей внутреннего сгорания.Таким образом, было бы правомерно ссылаться на проявления чрезмерно расширенных циклов, которые полагаются на переменной времени закрытия впускного клапана для их реализации в качестве двигателей с циклом Миллера — независимо от того, используют ли они принудительную индукцию или нет, и независимо от того, являются ли они воспламенением от сжатия или искровым зажиганием. . Идеи Миллера были успешно применены в коммерческих целях, в то время как механизм Аткинсона нашел очень ограниченное коммерческое применение.
Однако широко распространено игнорирование исторического контекста, и как Аткинсону, так и Миллеру часто приписывают современную реализацию чрезмерно расширенных циклов с использованием времени IVC.Называть некоторые из них двигателями цикла Аткинсона совершенно произвольно. Примером такого произвольного подхода является терминология, используемая Агентством по охране окружающей среды США, которое считает цикл Аткинсона чрезмерно расширенным циклом, применяемым к безнаддувным двигателям с EIVC или LIVC, а цикл Миллера — циклом Аткинсона (т. Е. EIVC). или LIVC) с турбонаддувом или нагнетателем [3476] .
Коммерческие приложения
Интерес к применению идей Ральфа Миллера возрос в 1980-х, когда в 1990-х появился ряд коммерческих приложений.Mazda 2.3 L KJ-ZEM, представленная в 1993 году, была ранней бензиновой версией для легковых автомобилей [2823] . Кроме того, в конце 1990-х годов компания Niigata Power произвела среднеоборотный дизельный двигатель 32FX [2586] . Еще одним приложением, привлекшим внимание примерно в это время, были большие стационарные газовые двигатели [3510] . Многие из этих ранних приложений были мотивированы потенциалом увеличения удельной мощности и эффективности. Надежное оборудование для изменения фаз газораспределения еще не было доступно (или, возможно, даже не было необходимости) для многих из этих приложений, и они полагались на фиксированные EIVC или LIVC.
Интерес к применению цикла Миллера для снижения выбросов NOx из дизельных двигателей возник в 1990-х годах для некоторых судовых двигателей IMO Tier 1. Некоторые из этих двигателей могут использовать относительно мягкий «эффект Миллера» и, следовательно, могут делать это с фиксированными фазами газораспределения [2586] . Дальнейшее сокращение NOx потребует более агрессивного эффекта Миллера и, следовательно, изменения момента закрытия впускного клапана для решения проблем с низкой нагрузкой и запуском двигателя. Некоторыми из первых двигателей для этого были двигатели Caterpillar 2004 года для дорожных двигателей C11, C13 и C15.Кроме того, среднеоборотные судовые двигатели применяют аналогичный подход к ограничениям выбросов NOx стандарта IMO Tier 2, которые вступили в силу в 2010 году.
В бензиновых двигателях легковых автомобилей преимущества эффективности стратегии LIVC были привлекательными для двигателей в гибридных транспортных средствах. Toyota Prius 1 st поколения переняла это в 1997 году. Последующие поколения Prius продолжали использовать эту технологию. В 2007 году Mazda представила безнаддувный двигатель SI, MZR 1,3 л, для японского рынка с фиксированным LIVC и для негибридных автомобилей.Примерно с 2012 года стремление к дальнейшему снижению расхода топлива привело к более широкому применению LIVC в негибридных легковых бензиновых двигателях. Для этих приложений, многие из которых уже имели фазовращатели, включение цикла Миллера было относительно недорогой мерой. Дизельные двигатели малой мощности не спешили внедрять идеи Миллера — возможно, из-за дополнительных затрат. Многие дизельные двигатели малой мощности не используют фазовращатели.
###
Наука о степенях сжатия для высокопроизводительных двигателей
Степень сжатия двигателя имеет большое значение.Вы никогда не увидите гоночный двигатель с низкой степенью сжатия, если он не будет произвольно ограничен каким-либо ограничением класса. Более высокая степень сжатия увеличивает мощность гоночных и уличных двигателей. Все помнят анемичные 1970-е с низкой компрессией, и никто не хочет их повторять. Когда производители оригинального оборудования получили больший контроль над топливом и искрой с помощью EFI и электронного управления двигателем, степень сжатия снова выросла, потому что автопроизводители знают, что это дает больше мощности и дает более высокую топливную экономичность. Более высокая степень сжатия — основная причина, по которой дизельные двигатели неизменно обеспечивают лучшую экономию топлива, чем бензиновые.
Этот технический совет взят из полной книги PERFORMANCE AUTOMOTIVE ENGINE MATH. Подробное руководство по этой теме вы можете найти по этой ссылке:
УЗНАТЬ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ
ПОДЕЛИТЬСЯ ЭТОЙ СТАТЬЕЙ: Пожалуйста, не стесняйтесь поделиться этой статьей на Facebook, на форумах или в любых клубах, в которых вы участвуете. Вы можете скопировать и вставить эту ссылку, чтобы поделиться: https://musclecardiy.com/performance/science -двигатели-коэффициенты сжатия /
Высокопроизводительные приложения должны тщательно учитывать степени сжатия, независимо от того, являются ли они без наддува или сильно нагнетаются за счет наддува.Нам нужна максимальная мощность и эффективность, которые мы можем получить, но плохая комбинация деталей может чрезмерно повлиять на допуск двигателя к октановому числу топлива с потенциально катастрофическими результатами.
Конфигурация верхней части поршня является одним из многих факторов, влияющих на степень сжатия двигателя и допуск на октановое число топлива.
Очень важно знать или прогнозировать степень сжатия с высокой степенью уверенности, чтобы можно было сделать правильный выбор топлива. Теперь, когда у нас есть низко- и среднеоктановый бензин, высокооктановый этанол E85 и гоночное топливо, как никогда важно, чтобы степень сжатия соответствовала предполагаемому применению и топливу, которое будет сжигаться.В случае новых сборок двигателя подходящая смесь компонентов может быть адаптирована для достижения целевой степени сжатия, которая является либо октановой, либо, в некоторых случаях, санкционированной органом.
Двигатели с ограничением по октановому числувсегда могут привести к летальному исходу. Вот почему в 80-х годах в двигателях появились датчики детонации, которые сигнализировали бортовому компьютеру о замедлении подачи искры при обнаружении начала детонации. Сегодня у нас есть роскошные средства управления двигателем, которые позволяют нам работать с более высокими степенями сжатия, но мы все равно должны рассчитывать их в соответствии с конкретными требованиями.
Степень сжатия — эффективное средство ограничения мощности в некоторых гоночных сериях. Он также используется для снижения стоимости многих гоночных площадок. Обычно это влияет на выбор поршня и головки блока цилиндров, где конкретная головка блока цилиндров также может быть указана уполномоченным органом. Когда размер головки цилиндра и камеры диктуется, конфигурация поршня, высота деки и толщина прокладки должны быть изменены, чтобы соответствовать требованиям степени сжатия. Короткие треки часто применяют правило 9: 1, в то время как двигатели NASCAR ограничены до 12: 1.Безлимитные дрэг-рейсинги и двигатели Bonneville часто превышают 14: 1, в то время как дрэг-рейсеры стандартного класса ограничены исходной заводской степенью сжатия их конкретного автомобиля.
Пределы степени сжатиямогут быть полезны до некоторой степени, поскольку они обычно диктуют наличие поршней с плоским верхом, которые способствуют эффективному сгоранию при сохранении желаемого гашения, способствуя турбулентности заряда и поддерживая качество смеси. Часто указываются заэвтектические поршни, хотя в некоторых сериях допускается поковка.Без более высоких степеней сжатия, конечно, меньше отдачи, но, учитывая конкретные параметры, опытные производители двигателей настраивают участвующие компоненты, чтобы наилучшим образом соответствовать любой фиксированной степени сжатия, особенно с прицелом на увеличение эффективной степени сжатия за счет соответствующей синхронизации распределительного вала и эффективной настройки впускных клапанов. .
Факторы, влияющие на степень сжатия
Быстро назовите десять или более вещей, которые влияют или зависят от степени сжатия.Если не можете, примите во внимание следующее:
- Октановое число топлива
- Качество топливной смеси (размер капли)
- Объем цилиндра
- Объем камеры сгорания
- Высота деки
- Толщина сжатой прокладки
- Форма прокладки
- Зазор между поршнем и головкой
- Площадь закалки
- Купол или объем купола
- Объем посуды
- Опережение зажигания
- Клапан разгрузки объема
- Объем щели
- Фаска отверстия
Формула для расчета степени сжатия довольно проста.Мы поработаем с некоторыми примерами через мгновение, но сначала давайте исследуем влияние элементов в нашем списке, особенно тех, которые находятся под нашим контролем во время процесса сборки двигателя. Конечно, толерантность к октановому числу топлива является первоочередной задачей, поэтому нам нужно знать, какое топливо мы будем использовать. Качество смеси этого топлива в значительной степени определяется температурой воздуха, топливной смесью и компонентами всасывания, которые дозируют топливо, поступающее в двигатель. К ним относятся карбюратор или топливные форсунки, впускной коллектор, головки цилиндров и клапаны.Даже синхронизация фаз газораспределения может влиять на динамическое сжатие или давление в цилиндре. Это все, что мы можем контролировать, как и элементы в нашем списке, все они находятся прямо внутри цилиндра, оказывая свое влияние на степень сжатия. Рассмотрим основную формулу.
Степень сжатия (CR) = (V1 + V2) ÷ V2
Где:
V1 = объем цилиндра
V2 = объем камеры сгорания
Калькулятор коэффициента сжатия Performance Trends — это надежный инструмент, который объединяет все измеренные и рассчитанные компоненты формулы степени сжатия для обеспечения точных расчетов степени сжатия.
Циферблатный индикатор с мостовой стойкой используется для измерения высоты настила. Поместите циферблатный индикатор на поверхность деки и обнулите циферблат. Затем поверните поршень до ВМТ и измерьте разницу до верха поршня. Измерьте по оси поршневого пальца, чтобы получить среднюю высоту деки.
Большинство прокладок головки имеют многослойную конструкцию, и все лучшие из них обеспечивают заявленную толщину и объем в сжатом состоянии. Если объем вашей прокладки неизвестен, вы все равно можете измерить его, как указано в сопроводительном тексте.
На практике V2 фактически называют объемом зазора или объемом сжатия, потому что он включает в себя все элементы из нашего списка и фактически представляет собой общее пространство сгорания над поршнем. Это пространство, в которое во время сжатия оказывается сжатый объем цилиндра. Я назову это объемом сжатия для нашего обсуждения. Таким образом, формула фактически устанавливает соотношение между общим объемом цилиндра с поршнем в нижней части его хода к объему цилиндра с поршнем в верхней части его хода.Каждый пункт в нашем списке в той или иной степени изменяет значение V2, и это оказывает глубокое влияние на фактическую рабочую степень сжатия.
Высота палубы
Существует два типа высоты колоды: положительная и отрицательная. На большинстве двигателей поршень останавливается немного ниже поверхности деки блока, когда он находится в ВМТ, иногда 0,020 дюйма или более. Это называется положительной высотой деки, потому что блочная дека все еще находится выше верхней части поршня. Каким бы малым оно ни было, это расстояние дает дополнительный объем пространству сгорания V2 над поршнем.Этот объем необходимо рассчитать и добавить к V2. В некоторых случаях поршень немного выступает из отверстия. Это называется отрицательной высотой деки, и ее объем необходимо вычесть из V2, потому что он вычитает объем из пространства сгорания.
Толщина сжатой прокладки
Объем прокладки головки также увеличивает объем сжатия. Это определяется толщиной сжатой прокладки, диаметром отверстия прокладки и формой прокладки. Многие прокладки головки блока цилиндров немного больше диаметра отверстия цилиндра и часто имеют неправильную форму.Высота деки и толщина прокладки также влияют на зазор между поршнем и головкой, который необходимо учитывать, особенно при высоких оборотах. Стальные шатуны на самом деле не растягиваются, поэтому вы можете поднести этот поршень вплотную к головке блока цилиндров (без каких-либо последствий для улучшения закалки). Закалка — это место, где плоская верхняя часть поршня поднимается очень близко к головке, что имеет тенденцию выталкивать или разбрызгивать заряд в сторону свечи зажигания с высокой турбулентностью камеры для улучшения горения.
Алюминиевые шатуны обладают некоторой степенью эластичности, поэтому для них требуется увеличенный зазор между поршнем и головкой, чтобы избежать физического контакта и последующего повреждения при высоких оборотах двигателя.
Куполообразные поршни повышают степень сжатия за счет смещения объема в пространстве сгорания над поршневой декой, но мелкие камеры сгорания являются современной тенденцией для повышения степени сжатия. За счет устранения или уменьшения купола эффективность сгорания повышается, поскольку купол не блокирует ядро пламени, которое возникает у свечи зажигания.
Плоские верхние части являются наиболее распространенной конфигурацией поршней. В некоторой степени они упрощают расчет степени сжатия, но вам все равно придется иметь дело с предохранительными клапанами.Они способствуют превосходному сгоранию с хорошими характеристиками закалки и турбулентности.
Формованные поршни предназначены для уменьшения степени сжатия за счет увеличения объема сжатия над поршнем. Многие из них не имеют предохранительных клапанов, потому что тарелка уже достаточно глубокая. Вы можете использовать опубликованный объем тарелки для расчетов степени сжатия или куб поршня, чтобы проверить его.
Эти требования могут повлиять на ваш выбор толщины прокладки и, следовательно, степени сжатия.Часто вам приходится жонглировать комбинацией, чтобы получить то, что вы хотите. Предварительный расчет поможет вам сделать правильный выбор.
Объем купола и тарелка
Объем Если поршень имеет приподнятый купол для увеличения сжатия, объем купола должен учитываться при расчете степени сжатия. Объем купола необходимо вычесть из V2, так как это уменьшает объем сжатия. Объем блюда добавлен к V2, так как он добавляет объем. И пока вы рассчитываете объемы купола и тарелки, вы также должны учитывать объем любых сбросов клапана в верхней части поршня.
И если вы действительно хотите выбрать гниды, вы можете включить объем щели над верхним поршневым кольцом и объем фаски в верхней части отверстия цилиндра. Хотя они бесконечно малы, они все же вносят вклад в общий объем V2 в уравнении. Объем щели — это крошечное пространство между поршнем и стенкой цилиндра над верхним кольцом. Обычно это всего лишь несколько тысячных долей дюйма, но оно все равно умножается на длину окружности отверстия и имеет объемное значение. И если отверстие цилиндра также имеет большую фаску для облегчения установки поршня, это также увеличивает объем пространства сгорания.Сумасшедший, да?
Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания для увеличения сжатия за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем камеры сгорания для уменьшения степени сжатия.
Определите объем камеры сгорания, заполнив камеру водой или спиртом из градуированной бюретки, калиброванной в кубических сантиметрах (кубических сантиметрах). Затяните свечу зажигания в камере с обоими установленными клапанами.Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.
Некоторые из этих томов в большинстве случаев несущественны, но вы должны знать о них, чтобы решить, включать ли их в свои расчеты. Если вы создаете высокопроизводительный движок, вам придется постоянно измерять и изменять многие из этих объемов во время предварительной сборки макетов.Правильный зазор между быстро движущимися частями очень важен и неумолим, поэтому вы должны сначала установить их. Понимание их влияния на степень сжатия поможет вам соответствующим образом рассмотреть ваши изменения и выбор деталей.
В поисках V2
Степень сжатия — вещь непростая, особенно если разбить ее на все факторы, влияющие на нее. Тем не менее, это управляемо, и на это можно взглянуть по-разному. Хотя это в первую очередь учебник по математике двигателя, все же важно понимать все факторы и то, как они влияют на работу двигателя.Степень сжатия — это просто мера того, насколько сильно входящий заряд сжимается до того, как свеча зажигания его воспламенит. Он создается за счет объединенного объема цилиндра и объема сжатия, когда поршень достигает ВМТ. В действительности он регулируется рабочим объемом цилиндра и любой комбинацией различных объемов пространства сгорания, составляющих объем сжатия V2. Поскольку именно здесь находятся все переменные, именно здесь вы должны сконцентрировать свои усилия для достижения желаемой степени сжатия.
Чтобы увидеть, насколько сильно влияют эти факторы, давайте сравним базовую формулу с той же формулой, в которой учтены все факторы. Как обсуждалось ранее, различные способствующие факторы являются либо суммирующими, либо вычитающими из общего объема сжатия. Камера сгорания — это первостепенная ценность. Все остальные объемы либо добавляются к нему, либо вычитаются из него до работы с основным уравнением.
CR = V1 + V2 ÷ V2
Это сравнение куполообразного поршня и выпуклого поршня показывает, как купол выступает в камеру сгорания, чтобы увеличить сжатие за счет уменьшения объема камеры, в то время как выпуклый поршень увеличивает объем камеры сгорания для уменьшения степени сжатия.Определите объем камеры сгорания, заполнив камеру водой или спиртом из градуированной бюретки, калиброванной в кубических сантиметрах (см). Затяните свечу зажигания в камере с обоими установленными клапанами. Затем используйте легкую смазку для уплотнения поверхности деки. Поместите пластиковую пластину CC над камерой и поместите головку так, чтобы отверстие для заполнения находилось в самой высокой точке. Заполните камеру и снимите показания бюретки. Разделите на 16,4, чтобы преобразовать в кубические дюймы.
Обратите внимание, что V1 является постоянным, но V2 может в значительной степени изменяться, когда вы начинаете складывать и вычитать различные значения, которые влияют на него.В простой формуле V2 называется объемом камеры, но мы знаем, что на самом деле это объем сжатия, потому что он включает в себя другие факторы. Если сложить все остальные факторы, получится очень длинное уравнение. Вы можете разбить его, вычислив абсолютное значение V2, прежде чем вводить его в уравнение. Это требует точных измерений, хотя на практике опубликованные значения объема прокладки, объема купола и тарелки, а также объемов сброса клапана часто заменяются. Объем щели и объем фаски обычно игнорируются, потому что они очень малы.Следующий список называется стеком V2.
Чтобы найти абсолютное значение V2, начните с измеренного объема камеры с кубическими сантиметрами, преобразованными в кубические дюймы, затем:
добавить объем деки (или вычесть, если дека отрицательный)
добавить сжатый объем прокладки
добавить объем тарелки (или вычесть, если купол)
вычесть объем купола (или добавить, если тарелка)
добавить объем сброса клапана
добавить объем щели (при желании)
добавить объем фаски (при желании)
Это просто, но несколько утомительно для измерения и расчета, поэтому многие производители двигателей предпочитают измерять все сразу, сравнивая цилиндр с поршнем в нем.Я объясню, как это сделать чуть позже, но сначала давайте обсудим, как определить все отдельные тома, составляющие V2.
Объем деки
Рассчитайте объем деки, как если бы это был очень короткий цилиндр. Положительное или отрицательное измерение настила представляет собой размер высоты в формуле, в которой используется константа смещения 0,7854.
Пример: для положительной высоты деки 0,020 дюйма на 4-дюймовом отверстии
42 х 0.020 x 0,7854 = 0,251328 ci
Он будет добавлен в стек V2, поскольку увеличивает объем сжатия. Если бы размер деки был отрицательным (поршень над декой), результат вычли бы из стопки V2, потому что это уменьшает объем сжатия. Интересным фактом является то, что все малоблочные Chevys имеют двигатели с положительной декой, но все новые двигатели Gen III имеют отрицательную деку.
Объем камеры
Объем камеры сгорания измеряется непосредственно путем измерения камеры градуированной бюреткой.Обратите внимание, что размер камеры в кубических сантиметрах необходимо преобразовать в кубические дюймы. Разделите на 16,4, чтобы произвести преобразование. Это будет ваш базовый объем для расчета степени сжатия. Все остальные соответствующие объемы либо добавляются, либо вычитаются из объема камеры для определения объема сжатия.
Чтобы смазать цилиндр, нанесите на стенку цилиндра легкую смазку или масло, чтобы закрыть правильный зазор. Вращайте двигатель, пока верхняя часть поршня не войдет в отверстие достаточно глубоко, чтобы очистить купол.Измерьте глубину с помощью шкального индикатора и вычислите пустой объем, используя формулу объема цилиндра. Затем скопируйте цилиндр, чтобы узнать, какой объем смещается куполом. Вычтите это значение из объема сжатия.
Объем прокладки
В большинстве случаев объем прокладки публикуется производителем прокладки, и можно безопасно добавить (+) к стеку V2. Когда опубликованное число недоступно, строители часто ошибаются, вычисляя объем на основе идеального круга (точно так же, как объем высоты колоды).Проблема в том, что диаметр отверстия прокладки часто больше диаметра отверстия цилиндра и часто имеет неправильную форму. Если он идеально круглый, вы можете рассчитать его по формуле объема цилиндра с соответствующим диаметром и толщиной в сжатом состоянии.
Если форма неправильная, вы можете подделать ее или использовать метод веревки и ленты, чтобы найти истинную длину окружности отверстия под прокладку, а затем рассматривать ее как идеальный круг для расчета. Приклейте прокладку скотчем к плоской поверхности и с помощью небольших кусочков ленты закрепите тонкую ленту по периметру отверстия под прокладку.Достигнув начальной точки, осторожно обрежьте веревку и измерьте ее длину.
Это пример прокладки головки неправильной формы с диаметром, превышающим диаметр отверстия. Обычно такая бровь находится рядом с обоими клапанами. Это должно быть включено в ваш расчет степени сжатия. Вы можете натянуть периметр нерегулярной прокладки и использовать длину струны для вычисления объема прокладки на основе измеренной толщины (см. Текст).
Используя формулу длины окружности круга, вы можете найти соответствующий диаметр, который будет использоваться при расчете объема прокладки.Предположим, у вас диаметр цилиндра 4 дюйма, а отверстие прокладки заметно больше и имеет неправильную D-образную форму вокруг клапанов (что типично для многих прокладок головки блока цилиндров). Вы аккуратно натягиваете периметр и получаете длину 131⁄16 дюйма. Преобразуйте в десятичные дроби, и у вас будет 13,0625 дюймов. Теперь подставьте это измерение в формулу.
Окружность = 2 π r или C = π d
Где:
r = радиус
d = диаметр
d = C ÷ π
13,0625 ÷ 3,14 = 4,16 дюйма
Это ваш истинный диаметр отверстия прокладки, и теперь его можно вставить в формулу объема прокладки:
Истинный объем прокладки = 4.162 x толщина прокладки x 0,7854
Объем тарелки
Dish обычно публикуются, поэтому вы можете подключить их прямо к стеку V2. Но предположим, что ваш блок уже пару раз был декорирован, и он немного короче, чем обычно, поэтому поршень имеет отрицательную колоду на некоторую величину, которая больше, чем то, что вам удобно для зазора между поршнем и головкой.
Большинство поршней допускают некоторую стружку деки поршня (до 0.100 дюймов или даже больше во многих случаях), поэтому вы решаете обрезать их, чтобы достичь нулевой деки (поршень заподлицо с поверхностью блочной деки). Это легко сделать с помощью поршней с плоской вершиной и выпуклой формы; С куполообразными поршнями дело обстоит немного сложнее (редко).
Если ваш поршень выпуклый, и вы уменьшили его на некоторую величину, вы можете скопировать тарелку и добавить новый объем в свой стек V2. Или вы можете использовать формулу объема цилиндра для вычисления разницы, если у вас есть точные измерения глубины и диаметра.На практике это никогда не бывает легко, потому что блюдо не всегда идеально круглое и часто имеет D-образную форму и изогнутую снизу.
Объем купола Объемы купола также публикуются производителями поршней. Они довольно точны, так что вы можете безопасно вычесть этот объем из своего стека V2, если вы не изменили купол, подогнав его к форме камеры, вырезав более глубокие клапаны сброса или вырезав паз для свечи зажигания. Иногда во время сборки макета вы обнаруживаете небольшое пятно, где купол поршня соприкасается с крышей камеры во время вращения.Эти пятна обычно вырезаются для достижения минимального зазора, что изменяет объем купола, что затем требует его измерения. Морозо продает простой инструмент для измерения объемов купола, и он пригодится в этой ситуации. Помните, что объем купола вычитается из окончательного стека V2.
Предохранительные клапаны
Клапанные сбросы достаточно легко смонтировать на поршне с плоским верхом, и большинство производителей уже публикуют объемы для всех своих поршней.Здесь, опять же, вам нужно только измерить, если вы значительно снизили срез предохранителей, чтобы получить адекватный зазор между поршнем и клапаном. Независимо от объема, это добавочное значение для вашего стека V2.
Объем щелей
Объемы щелей минимальны и не часто учитываются при расчетах степени сжатия, но некоторые строители находят причины для этого. Некоторые просто помешаны на деталях. Давно известно, что объемы щелей влияют на выбросы, поскольку они служат укрытием для небольших количеств топливной смеси, которые не участвуют в процессе сгорания.Это в основном важно для химиков и инженеров по горению, но если вы хотите включить это, вот как.
CV = (d1 — d2) x c x r
Где:
d1 = диаметр отверстия
d2 = диаметр поршня на поверхности верхнего кольца
c = окружность отверстия
r = глубина верхнего кольца от деки поршня
Итак, с отверстием 4,00 дюйма, зазором поршня до стенки 0,010 дюйма над верхним кольцом и кольцом 0,125 дюйма вниз по отверстию мы вычисляем:
CV = (4,00 — 3,990) x 12,56 x 0,125 = 0,0157 ci
12.56 — это длина окружности отверстия, полученная умножением диаметра отверстия на пи. Если вы хотите быть точным, добавьте результат вашего окончательного расчета в стек V2.
Объем фаски
Большинство механиков делают фаску в верхней части отверстия, чтобы помочь направить кольца в отверстие во время сборки. Иногда это довольно много, поэтому вы можете включить его в свои расчеты. Фаски обычно составляют от 40 до 60 градусов, и даже при таких небольших размерах вы можете рассматривать их как квадраты или прямоугольники, если смотреть на них с торца.Используйте ту же формулу, что и для объема щели, но начните с большего внешнего размера, где начинается фаска (см. Рис. 1, стр. 35)
Если он примерно на 0,060 больше диаметра цилиндра:
CV = [(4,060 — 4,000) x 12,748 x 0,060] ÷ 2 = 0,022 ci
Обратите внимание, что размер «c» изменился, потому что теперь у нас есть внешний диаметр 4,06 дюйма (4,06 x 3,14 = 12,748). Глубина составляет всего 0,060 дюйма, и мы должны разделить результат на 2, чтобы завершить формулу для площади треугольника и, следовательно, объема при добавлении длины.
Суммарный объем щели и фаски — это пространство между стенкой цилиндра и поршнем над верхним поршневым кольцом. Здесь это показано темной заштрихованной областью над кольцом.
Большая фаска в верхней части отверстия также в некоторой степени способствует увеличению объема сжатия, но этого недостаточно, чтобы беспокоить большинство строителей. Если объем сжатия определяется путем смещения цилиндра, в измерение включаются объем щели и объем фаски.
Результат — больше, чем объем щели, но все еще ничего существенного, поэтому большинство производителей двигателей исключают объем щели и объем фаски из своих расчетов. Если вы их используете, помните, что они являются аддитивными и поэтому добавляются в ваш стек V2. Объем щели и объем камеры частично занимают одно и то же пространство, но их удобнее рассчитывать по отдельности.
Теперь давайте рассмотрим наш стек V2 с вычисленными значениями, основанными на следующих измерениях:
V1
Диаметр цилиндра / ход поршня, 4.00 x 3,00 дюйма ……………… 37,699 куб. Дюйм
V2 Объем камеры, 64 куб. См ………………………… 3,902 куб. Толщина прокладки, 0,015 (опубликовано) ……… .0,194 ci
V2 + Плоский верх (или тарелка / купол) ………………………… 0,000 (плоский) ±
Разгрузка клапана, 4 см3 (опубликовано) …… …………… .0,243 ci
V2 + Объем щели, рассчитанный …………………… 0,015 ci
V2 + Объем фаски, рассчитанный ………………… .0,022 ci
V2 + Итого 4,627 ci = V2
V1 + V2 ÷ V2 = CR
(37,699 + 4,627) ÷ 4,627 = 9.14 CR
Достаточно, но, возможно, немного мало для уличных выступлений. Если вы обнуляете блок и убираете высоту деки из V2, вы можете поднять степень сжатия до 9,61: 1, что почти идеально для уличного двигателя. Это небольшое изменение показывает, насколько сильно все небольшие объемы, составляющие V2, влияют на окончательную степень сжатия.
Коэффициент рабочего объема
Концепция степени вытеснения не часто используется, но ее следует понимать, потому что она иногда может помочь нам оценить объем измельчения камеры сгорания, который позволит достичь желаемой степени сжатия.Как мы видели, степень сжатия — это объединенный объем рабочего объема цилиндра и объема сжатия, деленный на объем сжатия (см. Врезку, стр. 37). Коэффициент вытеснения — это просто рабочий объем цилиндра, деленный на объем сжатия:
Степень сжатия = V1 + V2 ÷ V2
Коэффициент рабочего объема = V1 ÷ V2
Обратите внимание, что степень сжатия всегда на 1 больше степени вытеснения. Изменяя формулу степени сжатия, мы можем рассчитать новый объем сжатия V2, который даст желаемую степень сжатия.
Новый V2 = V1 ÷ коэффициент смещения
Теперь мы можем вывести формулу для фрезерования головки блока цилиндров:
Mill Cut = [(новый коэффициент смещения — старый коэффициент смещения) ÷ (новый коэффициент смещения x старый коэффициент смещения)] x ход
Напомним, что ранее мы рассчитали степень сжатия 9,14: 1 для диаметра отверстия 4,00 дюйма и хода поршня 3 дюйма. Поскольку степень вытеснения всегда на 1 меньше степени сжатия, мы используем 8,14 для степени вытеснения в нашей формуле. Мы уже видели, что устранение 0.Высота деки 020 дюймов увеличила сжатие до 9,61: 1. Теперь посмотрим, что дает уменьшение объема сгорания. Поскольку мы хотим поднять степень сжатия до 9,61: 1, наш коэффициент смещения равен 8,61.
Фрезерование = [(8,61 — 8,14) ÷ (8,61 x 8,14)] x 3 = 0,0201 дюйма
Это почти то же самое, что и высота колоды, которую мы исключили в наших предыдущих расчетах, но правильно ли это? Не совсем. При удалении размера высоты деки мы учли весь диаметр отверстия цилиндра.Но D-образная камера сгорания на нашем малоблочном Chevy составляет лишь половину диаметра канала ствола. Мы должны сделать более глубокий разрез, чтобы получить тот же результат. В этом случае около 0,040 дюйма дает нам желаемый результат. Мы должны вдвое сократить разрез, потому что мы имеем дело только с половиной площади. Это относительно простые процедуры, но вы должны тщательно обдумать их, чтобы избежать дорогостоящих ошибок.
Сжатие коленчатого вала
Компрессию при проворачивании коленчатого вала часто путают со степенью сжатия.В то время как степень сжатия — это соотношение объемов в цилиндре, сжатие при запуске — это фактически измеренное давление в цилиндре, измеренное в отверстии для свечи зажигания, когда двигатель запускается с коленчатым валом с открытыми дроссельными заслонками. Во время этой операции провод катушки снимается, чтобы предотвратить срабатывание других цилиндров. Сжатие при запуске — это пиковое давление, достигаемое в цилиндре во время запуска. Более высокие степени сжатия могут повлиять на сжатие коленчатого вала, но они не связаны.
Сжатие при проворачивании коленчатого вала используется как индикатор состояния двигателя, а также отношения точек открытия и закрытия впускных и выпускных клапанов.В зависимости от состояния поршневых колец и клапанов исправный двигатель обычно имеет сжатие при запуске от 150 до 180 фунтов на квадратный дюйм. Двигатель с хорошими характеристиками может легко иметь сжатие при запуске более 200 фунтов на квадратный дюйм. Некоторые из них немного выше, а некоторые намного ниже. Важно, чтобы показания всех цилиндров во время теста на сжатие были одинаковыми. Низкое значение любого цилиндра обычно указывает на негерметичность клапанов или поршневых колец. Большие распредвалы с большим перекрытием клапанов также могут влиять на сжатие при запуске, но не в значительной степени.Если все цилиндры совпадают в пределах 5 или 10 фунтов на квадратный дюйм, у вас, вероятно, есть исправный двигатель.
